
JP 6169081 B2 2017.7.26

10

20

(57)【特許請求の範囲】
【請求項１】
　ミドルウェアまたはその他の環境において使用される動的呼出しおよびサービスインタ
ーフェイスを提供するためのシステムであって、
　クライアントコンピュータ、クライアントコンテナ、およびクライアントアプリケーシ
ョンを含むクライアントサイド環境と、
　サービスプロバイダコンピュータ、サービスプロバイダコンテナ、およびサービスを含
むサービスサイド環境と、
　前記クライアントサイド環境および前記サービスサイド環境で動作可能な動的呼出しお
よびサービスインターフェイスとを備え、
　前記クライアントサイド環境において、
　　前記クライアントアプリケーションがメッセージをメッセージ処理のためのランタイ
ムモジュールに与えることができるようにするディスパッチャリクエスト関数が与えられ
、かつ、前記クライアントアプリケーションが前記メッセージを前記メッセージ処理後に
前記ランタイムモジュールから受けることができるようにするディスパッチャレスポンス
関数が与えられ、
　　メッセージの通信を提供するためのトランスポートモジュールから、前記クライアン
トサイド環境のメッセージ処理を切離すクライアントリクエストトランスポート関数およ
びクライアントレスポンストランスポート関数が与えられ、
　前記サービスサイド環境において、

(2) JP 6169081 B2 2017.7.26

10

20

30

40

50

　　前記サービスサイド環境のメッセージ処理を前記トランスポートモジュールから切離
すサービスリクエストトランスポート関数およびサービスレスポンストランスポート関数
が与えられ、
　　前記メッセージが前記ランタイムモジュールを介して受けとられて前記サービスによ
って処理されるようにするプロバイダリクエスト関数と、レスポンスメッセージが処理の
ために前記サービスによって前記ランタイムモジュールに与えられるようにするプロバイ
ダレスポンス関数とが与えられる、システム。
【請求項２】
　各リクエスト関数は、前記クライアントサイド環境および前記サービスサイド環境にお
いて、対応するコールバック関数に関連付けられており、前記コールバック関数はメッセ
ージ処理を非同期にする、請求項１に記載のシステム。
【請求項３】
　前記サービスは、ウェブサービスであり、
　前記サービスプロバイダコンテナは、ウェブサービスコンテナであり、
　前記クライアントアプリケーションは、ウェブサービスクライアントである、請求項１
または２に記載のシステム。
【請求項４】
　前記クライアントサイド環境において、
　　前記クライアントアプリケーションは、前記ディスパッチャリクエスト関数をコール
することによって、ターゲットサービスに対するリクエストを行ない、
　　前記リクエストは、前記ランタイムモジュールによって処理され、
　　前記ランタイムモジュールはクライアントリクエストトランスポート関数をコールし
、
　　前記クライアントコンテナにおける前記クライアントリクエストトランスポート関数
は、前記リクエストをトランスポートモジュールに伝え、
　前記サービスサイド環境において、
　　前記サービスリクエストトランスポート関数は前記リクエストを前記トランスポート
モジュールから受け、
　　前記サービスリクエストトランスポート関数は前記リクエストを処理のために前記ラ
ンタイムモジュールに伝え、
　　前記ランタイムモジュールはプロバイダリクエスト関数を前記サービスによる処理の
ためにコールし、
　前記サービスサイド環境において、
　　前記サービスがレスポンスを与えることができる状態になると、前記サービスはプロ
バイダレスポンス関数をコールして前記レスポンスを処理のために前記ランタイムモジュ
ールに伝え、
　　前記ランタイムモジュールは前記サービスレスポンストランスポート関数をコールし
、
　　前記サービスレスポンストランスポート関数は、前記レスポンスを前記トランスポー
トモジュールに伝え、
　前記クライアントサイド環境において、
　　前記クライアントコンテナは前記レスポンスを前記トランスポートモジュールから受
け、
　　前記クライアントコンテナはクライアントレスポンストランスポート関数をコールし
て前記レスポンスを前記ランタイムモジュールに伝え、
　　シンプルオブジェクトアクセスプロトコル（ＳＯＡＰ）に従う処理の後、前記ランタ
イムモジュールは、前記リクエストを前記クライアントアプリケーションに送るために前
記ディスパッチャレスポンス関数に伝える、請求項１から３のいずれかに記載のシステム
。
【請求項５】

(3) JP 6169081 B2 2017.7.26

10

20

30

40

50

　リクエストヘッダに含まれるレスポンスアドレスに応じて前記レスポンスを前記クライ
アントアプリケーションに伝えるために、２つの異なるサービスレスポンストランスポー
ト関数を与え選択的に呼出すことができ、
　前記クライアントサイド環境において、
　　前記クライアントアプリケーションがメッセージを処理するために前記ランタイムモ
ジュールに非同期で与えることができるようにするディスパッチャリクエスト関数が与え
られ、
　　ディスパッチャレスポンス関数は、処理後にレスポンスを前記ランタイムモジュール
から非同期で受けることができるようにするために与えられ、
　　メッセージ処理を前記トランスポートモジュールから切離し、かつメッセージを非同
期でハンドリングできるようにする、クライアントリクエストトランスポート関数および
クライアントレスポンストランスポート関数が与えられ、
　前記サービスサイド環境において、
　　メッセージ処理を前記トランスポートモジュールから非同期で切離し、かつ前記ラン
タイムモジュールがメッセージを処理できるようにする、サービスリクエストトランスポ
ート関数およびサービスレスポンストランスポート関数が与えられ、
　　前記ランタイムモジュールによる処理後にリクエストメッセージを非同期で受けるプ
ロバイダリクエスト関数が与えられ、
　　サービスレスポンスを前記ＳＯＡＰに従う処理のために前記ランタイムモジュールに
非同期で与えることができるようにするプロバイダレスポンス関数が与えられる、請求項
４に記載のシステム。
【請求項６】
　ミドルウェアまたはその他の環境において使用されるメッセージングアプリケーション
プログラミングインターフェイス（ＡＰＩ）を提供するための方法であって、
　クライアントコンピュータを含むクライアントサイド環境において、クライアントコン
テナおよびクライアントアプリケーションにアクセスするステップと、
　サービスプロバイダコンピュータを含むサービスサイド環境において、サービスプロバ
イダコンテナおよびサービスにアクセスするステップと、
　前記クライアントサイド環境および前記サービスサイド環境で動作可能な動的呼出しお
よびサービスインターフェイスにアクセスするステップとを含み、
　前記クライアントサイド環境において、
　　前記クライアントアプリケーションがメッセージを処理するためのランタイムモジュ
ールに与えることができるようにするディスパッチャリクエスト関数が与えられ、かつ、
処理後に、前記クライアントアプリケーションが前記メッセージを前記ランタイムモジュ
ールから受けることができるようにするディスパッチャレスポンス関数が与えられ、
　　メッセージの通信を提供するためのトランスポートモジュールからメッセージ処理を
切離すクライアントリクエストトランスポート関数およびクライアントレスポンストラン
スポート関数が与えられ、
　前記サービスサイド環境において、
　　前記メッセージ処理を前記トランスポートモジュールから切離すサービスリクエスト
トランスポート関数およびサービスレスポンストランスポート関数が与えられ、
　　前記サービスが前記ランタイムモジュールを介してメッセージを受けて処理すること
ができるようにするプロバイダリクエスト関数と、前記サービスが処理のためにレスポン
スメッセージを前記ランタイムモジュールに与えることができるようにするプロバイダレ
スポンス関数とが与えられる、方法。
【請求項７】
　各リクエスト関数は、前記クライアントサイド環境および前記サービスサイド環境にお
いて、対応するコールバック関数に関連付けられており、前記コールバック関数はメッセ
ージ処理を非同期にする、請求項６に記載の方法。
【請求項８】

(4) JP 6169081 B2 2017.7.26

10

20

30

40

50

　前記サービスは、ウェブサービスであり、
　前記サービスプロバイダコンテナは、ウェブサービスコンテナであり、
　前記クライアントアプリケーションは、ウェブサービスクライアントである、請求項６
または７に記載の方法。
【請求項９】
　前記クライアントサイド環境において、
　　前記クライアントアプリケーションは、前記ディスパッチャリクエスト関数をコール
することによって、ターゲットサービスに対するリクエストを行ない、
　　前記リクエストは、前記ランタイムモジュールによって処理され、
　　前記ランタイムモジュールはクライアントリクエストトランスポート関数をコールし
、
　　前記クライアントコンテナにおける前記クライアントリクエストトランスポート関数
は、前記リクエストを前記トランスポートモジュールに伝え、
　前記サービスサイド環境において、
　　前記サービスリクエストトランスポート関数は前記リクエストを前記トランスポート
モジュールから受け、
　　前記サービスリクエストトランスポート関数は前記リクエストを処理のために前記ラ
ンタイムモジュールに伝え、
　　前記ランタイムモジュールはプロバイダリクエスト関数を前記サービスによる処理の
ためにコールし、
　前記サービスサイド環境において、
　　前記サービスがレスポンスを与えることができる状態になると、前記サービスはプロ
バイダレスポンス関数をコールして前記レスポンスを処理のために前記ランタイムモジュ
ールに伝え、
　　前記ランタイムモジュールは前記サービスレスポンストランスポート関数をコールし
、
　　前記サービスレスポンストランスポート関数は、前記レスポンスを前記トランスポー
トモジュールに伝え、
　前記クライアントサイド環境において、
　　前記クライアントコンテナは前記レスポンスを前記トランスポートモジュールから受
け、
　　前記クライアントコンテナはクライアントレスポンストランスポート関数をコールし
て前記レスポンスを前記ランタイムモジュールに伝え、
　　シンプルオブジェクトアクセスプロトコル（ＳＯＡＰ）処理の後、前記ランタイムモ
ジュールは、前記リクエストを前記クライアントアプリケーションに送るために前記ディ
スパッチャレスポンス関数に伝える、請求項６から８のいずれかに記載の方法。
【請求項１０】
　リクエストヘッダに含まれるレスポンスアドレスに応じて前記レスポンスを前記クライ
アントアプリケーションに伝えるために、２つの異なるサービスレスポンストランスポー
ト関数を与え選択的に呼出すことができ、
　前記クライアントサイド環境において、
　　前記クライアントアプリケーションがメッセージを処理するために前記ランタイムモ
ジュールに非同期で与えることができるようにするディスパッチャリクエスト関数が与え
られ、
　　処理後にレスポンスを前記ランタイムモジュールから非同期で受けることができるよ
うにするディスパッチャレスポンス関数が与えられ、
　　メッセージ処理を前記トランスポートモジュールから切離し、かつ前記メッセージを
非同期でハンドリングできるようにする、クライアントリクエストトランスポート関数お
よびクライアントレスポンストランスポート関数が与えられ、
　前記サービスサイド環境において、

(5) JP 6169081 B2 2017.7.26

10

20

30

40

50

　　メッセージ処理を前記トランスポートモジュールから非同期で切離し、かつ前記ラン
タイムモジュールが前記メッセージを処理できるようにする、サービスリクエストトラン
スポート関数およびサービスレスポンストランスポート関数が与えられ、
　　前記ランタイムモジュールによる前記ＳＯＡＰに従う処理後にリクエストメッセージ
を非同期で受けるプロバイダリクエスト関数が与えられ、
　　サービスレスポンスを前記ＳＯＡＰに従う処理のために前記ランタイムモジュールに
非同期で与えることができるようにするプロバイダレスポンス関数が与えられる、請求項
９に記載の方法。
【発明の詳細な説明】
【技術分野】
【０００１】
　優先権主張
　本願は、本明細書に引用により援用する、２０１１年９月９日に出願され「ミドルウェ
アまたはその他の環境において使用される動的呼出しおよびサービスインターフェイスを
提供するためのシステムおよび方法（SYSTEM AND METHOD FOR PROVIDING A DYNAMIC INVO
CATION AND SERVICE INTERFACE FOR USE IN A MIDDLEWARE OR OTHER ENVIRONMENT）」と
題された米国仮特許出願第６１／５３３，０６８号に基づく優先権の利益を主張する、２
０１２年３月２２日に出願され「ミドルウェアまたはその他の環境において使用される動
的呼出しおよびサービスインターフェイスを提供するためのシステムおよび方法」と題さ
れた米国特許出願第１３／４２７，５７４号に基づく優先権の利益を主張する。
【０００２】
　発明の分野
　本発明は、概して、コンピュータシステムおよびミドルウェア等のソフトウェアに関し
、具体的には、ミドルウェアまたはその他の環境において使用される動的呼出しおよびサ
ービスインターフェイス（dynamic invocation and service interface）（ＤＩＳＩ）を
提供するためのシステムおよび方法に関する。
【背景技術】
【０００３】
　背景
　一般的に、ウェブサービスは、ネットワークを介したマシン間の遣り取りをサポートす
るソフトウェアシステムである。ウェブサービスプロトコルスタックは、サービスの定義
、サービスの場所の特定、サービスの実装、およびサービス間の遣り取りを可能にするた
めに使用できる、ネットワーキングおよびその他のプロトコルのスタックである。このよ
うなプロトコルの例にはシンプルオブジェクトアクセスプロトコル（Simple Object Acce
ss Protocol）（ＳＯＡＰ）が含まれる。ＳＯＡＰは、ウェブサービスで使用される構造
化された情報の交換を規定し、メッセージフォーマットを拡張可能マークアップ言語（Ex
tensible Markup Language）（ＸＭＬ）に依拠し、メッセージの送信をその他のプロトコ
ル（たとえばハイパーテキスト転送プロトコル（Hypertext Transfer Protocol）（ＨＴ
ＴＰ）または簡易メール転送プロトコル（Simple Mail Transfer Protocol）（ＳＭＴＰ
））に依拠する。一般的に、各ウェブサービスには、ウェブサービス記述言語（Web Serv
ice Description Language）（ＷＳＤＬ）等の、マシンが理解可能なフォーマットで記述
されたインターフェイスがある。その他のシステムは、ＳＯＡＰメッセージを用いること
により、そこに記述されたやり方でウェブサービスインターフェイスと遣り取りすること
ができる。
【０００４】
　その他の種類のプロトコルスタックも同様に、メッセージ情報の何らかの処理を含み得
る。このメッセージそのものは何らかのやり方で符号化される。例としてコモンオブジェ
クトリクエストブローカアーキテクチャ（Common Object Request Broker Architecture
）（ＣＯＲＢＡ）スタックがある。
【０００５】

(6) JP 6169081 B2 2017.7.26

10

20

30

40

50

　コンピュータ同士が比較的ハイレベルで通信できるようにする、ＳＯＡＰまたはＣＯＲ
ＢＡスタック等のメッセージリモーティング（remoting）スタックという文脈では、メッ
セージを１つの単位として扱うことができる、すなわちメッセージを得てこのメッセージ
に必要なデコードを含む処理を施しその結果を提供することができる、という利点がある
。ウェブサービスを構築する際に使用するＪａｖａ（登録商標）ＥＥプラットフォームの
一部として提供される、Java API for XML Web Services（ＪＡＸ－ＷＳ）仕様は、クラ
イアントおよびサービスサイドの動的メッセージ処理のいくつかの側面を含む。しかしな
がら、ＪＡＸ－ＷＳ仕様は、クライアントサイドおよびサービスサイドのトランスポート
レベルでの動的メッセージ処理手段も、サービスサイドのプロバイダレベルでのメッセー
ジの非同期ハンドリング手段も提供しない。これらが、本発明の実施の形態が対象として
いる一般的な分野である。
【発明の概要】
【課題を解決するための手段】
【０００６】
　概要
　本明細書において、ミドルウェアまたはその他の環境において使用される動的呼出しお
よびサービスインターフェイス（ＤＩＳＩ）を提供するためのシステムおよび方法が開示
される。ある実施の形態に従い、このシステムおよび／または方法は、クライアントサイ
ドでもサービスサイドでも動作可能である。サービスサイドにおいて、ユーザは、サービ
スリクエストトランスポートを用いてメッセージをインバウンド処理チェーンに挿入する
ことができる。サービスサイドでのインバウンド処理後、メッセージはプロバイダリクエ
スト関数を介してユーザに与えられる。ユーザは、メッセージをサービスサイドアウトバ
ウンド処理チェーンに挿入するプロバイダレスポンス関数を用いてレスポンスを与える。
サービスサイドでのアウトバウンド処理後、メッセージはユーザのサービスレスポンスト
ランスポートに与えられる。サービスリクエストトランスポートおよびサービスレスポン
ストランスポートは、メッセージング処理をトランスポートから切離し、メッセージ処理
を事実上非同期にする。プロバイダリクエストおよびプロバイダレスポンスも事実上非同
期である。クライアントサイドでは、ユーザは、ディスパッチャリクエストを用いてメッ
セージをアウトバウンド処理チェーンに挿入することができる。クライアントサイドでの
アウトバウンド処理後、メッセージはユーザのクライアントリクエストトランスポートに
与えられる。これは、メッセージ処理をトランスポートから切離し、メッセージ処理を事
実上非同期にする。レスポンスを受けると、ユーザは、クライアントレスポンストランス
ポート関数を用いてレスポンスをクライアントサイドインバウンド処理チェーンに挿入す
る。クライアントサイドでのインバウンド処理後、メッセージはユーザのディスパッチャ
レスポンス関数に与えられる。ディスパッチャリクエストおよびディスパッチャレスポン
スも事実上非同期である。クライアントサイドでもサービスサイドでもＤＩＳＩは非同期
なので、スレッドはバックアップされない、すなわち、クライアントはリクエストを送信
することができレスポンスを待つ必要はない。このプロセスによって、たとえばＳＯＡＰ
処理をメッセージトランスポートから切離すこともでき、これを事実上非同期にする。
【図面の簡単な説明】
【０００７】
【図１】ある実施の形態に従う、動的呼出しおよびサービスインターフェイス（ＤＩＳＩ
）を利用できるシステムを示す。
【図２】ある実施の形態に従う、標準およびＤＩＳＩクライアントサイド呼出しフローを
示す。
【図３】ある実施の形態に従う、標準およびＤＩＳＩサービスサイド呼出しフローを示す
。
【図４】ある実施の形態に従う、クライアントサイドの動的呼出しおよびサービスインタ
ーフェイス（ＤＩＳＩ）を提供する方法のフローチャートである。
【図５】ある実施の形態に従う、サービスサイドの動的呼出しおよびサービスインターフ

(7) JP 6169081 B2 2017.7.26

10

20

30

40

50

ェイス（ＤＩＳＩ）を提供する方法のフローチャートである。
【発明を実施するための形態】
【０００８】
　詳細な説明
　上記のように、ウェブサービスはネットワークを介したマシン間の遣り取りをサポート
するソフトウェアシステムである。ウェブサービスプロトコルスタックは、サービスの定
義、サービスの場所の特定、サービスの実装、およびサービス間の遣り取りを可能にする
ために使用できる、ネットワーキングおよびその他のプロトコルのスタックである。この
ようなプロトコルの例にはシンプルオブジェクトアクセスプロトコル（ＳＯＡＰ）が含ま
れる。ＳＯＡＰは、ウェブサービスで使用される構造化された情報の交換を規定し、メッ
セージフォーマットを拡張可能マークアップ言語（ＸＭＬ）に依拠し、メッセージの送信
をその他のプロトコル（たとえばハイパーテキスト転送プロトコル（ＨＴＴＰ）または簡
易メール転送プロトコル（ＳＭＴＰ））に依拠する。一般的に、各ウェブサービスには、
ウェブサービス記述言語（ＷＳＤＬ）等の、マシンが理解可能なフォーマットで記述され
たインターフェイスがある。その他のシステムは、ＳＯＡＰメッセージを用いることによ
り、そこに記述されたやり方でウェブサービスインターフェイスと遣り取りすることがで
きる。
【０００９】
　その他の種類のプロトコルスタックも同様に、メッセージ情報の何らかの処理を含み得
る。このメッセージそのものは何らかのやり方で符号化される。例としてコモンオブジェ
クトリクエストブローカアーキテクチャ（ＣＯＲＢＡ）スタックがある。
【００１０】
　コンピュータ同士が比較的ハイレベルで通信できるようにする、ＳＯＡＰまたはＣＯＲ
ＢＡスタック等のメッセージリモーティングスタックという文脈では、メッセージを１つ
の単位として扱うことができる、すなわちメッセージを得てこのメッセージに必要なデコ
ードを含む処理を施しその結果を提供することができる、という利点がある。ウェブサー
ビスを構築する際に使用するＪａｖａ（登録商標）ＥＥプラットフォームの一部として提
供される、Java API for XML Web Services（ＪＡＸ－ＷＳ）仕様は、クライアントサイ
ドおよびサービスサイドの動的メッセージ処理のいくつかの側面を含む。しかしながら、
ＪＡＸ－ＷＳ仕様は、クライアントサイドおよびサービスサイドのトランスポートレベル
での動的メッセージ処理手段も、サービスサイドのプロバイダレベルでのメッセージの非
同期ハンドリング手段も提供しない。
【００１１】
　ある実施の形態に従い、本明細書において、ミドルウェアまたはその他の環境において
使用される動的呼出しおよびサービスインターフェイス（ＤＩＳＩ）を提供するためのシ
ステムおよび方法が開示される。このシステムおよび／または方法は、クライアントサイ
ドおよびサービスサイド双方で動作する。
【００１２】
　サービスサイドにおいて、メッセージング処理をトランスポートから切離しメッセージ
処理を事実上非同期にするサービスリクエストトランスポートおよびサービスレスポンス
トランスポートを用いて、メッセージを挿入することができる。サービスサイドでは、ユ
ーザが、サービスリクエストトランスポートを用いてメッセージをインバウンド処理チェ
ーンに挿入することができる。サービスサイドでのインバウンド処理後、メッセージはプ
ロバイダリクエスト関数を介してユーザに与えられる。ユーザは、メッセージをサービス
サイドアウトバウンド処理チェーンに挿入するプロバイダレスポンス関数を用いてレスポ
ンスを与える。サービスサイドでのアウトバウンド処理後、メッセージはユーザのサービ
スレスポンストランスポートに与えられる。サービスリクエストトランスポートおよびサ
ービスレスポンストランスポートは、メッセージング処理をトランスポートから切離し、
メッセージ処理を事実上非同期にする。プロバイダリクエストおよびプロバイダレスポン
スも事実上非同期である。（ＪＡＸ－ＷＳにプロバイダはないが、これは非同期ではない

(8) JP 6169081 B2 2017.7.26

10

20

30

40

50

。ＪＡＸ－ＷＳには、サービスリクエストトランスポートおよびサービスレスポンストラ
ンスポートに相当するものはない。）
　クライアントサイドでは、アウトバウンド処理チェーンの初めにメッセージを置くディ
スパッチャリクエスト関数が与えられ、インバウンド処理チェーンの最後でメッセージを
受けるディスパッチャレスポンス関数が与えられる。このプロセスは非同期なので、スレ
ッドはバックアップされない、すなわち、クライアントはリクエストを送信することがで
きレスポンスを待つ必要はない。また、このプロセスによって、たとえばＳＯＡＰ処理を
メッセージトランスポートから切離すことができ、これを事実上非同期にする。クライア
ントサイドでは、ディスパッチャリクエスト関数がメッセージをクライアントサイドアウ
トバウンド処理チェーンに挿入する。クライアントサイドにおいて、ユーザは、メッセー
ジを、ディスパッチャリクエストを用いてアウトバウンド処理チェーンに挿入することが
できる。クライアントサイドでのアウトバウンド処理後、メッセージはユーザのクライア
ントリクエストトランスポートに与えられる。これは、メッセージ処理をトランスポート
から切離し、メッセージ処理を事実上非同期にする。レスポンスを受けると、ユーザは、
クライアントレスポンストランスポート関数を用いてレスポンスをクライアントサイドイ
ンバウンド処理チェーンに挿入する。クライアントサイドのインバウンド処理後、メッセ
ージはユーザのディスパッチャレスポンス関数に与えられる。ディスパッチャリクエスト
およびディスパッチャレスポンスも事実上非同期である。（ＪＡＸ－ＷＳには、非同期機
能がないディスパッチ関数がなく、ＪＡＸ－ＷＳには、クライアントリクエストトランス
ポートおよびクライアントレスポンストランスポートに相当するものはない。）クライア
ントサイドおよびサービスサイドいずれにおいても、ＤＩＳＩは非同期であるため、スレ
ッドはバックアップされない、すなわち、クライアントはリクエストを送信することがで
きレスポンスを待つ必要はない。また、このプロセスによって、たとえばＳＯＡＰ処理を
メッセージトランスポートから切離すことができ、これを事実上非同期にする。
【００１３】
　ある実施の形態に従い、ＤＩＳＩインターフェイスを、標準ＪＡＸ－ＷＳクライアント
およびサービスエンドポイントインターフェイスに倣ってモデル化することができるが、
特に非同期性要件およびトランスポート中立性要件の分野において、オラクルサービスバ
ス（Oracle Service Bus）（ＯＳＢ）等の環境または製品を含むという要件を満たすのに
必要な相違も含み得る。たとえば、ＪＡＸ－ＷＳはクライアントサイド非同期プログラミ
ングモデルを含むが、非同期サービスのためのモデルはない。したがって、ある実施の形
態に従い、ＤＩＳＩは、それ自身の非同期クライアントサイドプログラミングモデルを定
義することにより、クライアント、サービスエンドポイント、およびトランスポートレベ
ルインターフェイスが整合するようにすることができる。
【００１４】
　ある実施の形態に従い、このＤＩＳＩインターフェイスを用いることにより、たとえば
、構成、管理性、データバインディング、および一般的なランタイムを含めてウェブサー
ビスをＯＳＢが如何にして統合すべきかに関して、Oracle WebLogic、JRF Web Services
、およびＯＳＢ等の、異なる環境または異なる製品間のコントラクトを形にすることがで
きる。ＤＩＳＩインターフェイスの利点の一部には、明示的なＪａｖａ（登録商標）ＥＥ
またはＪＲＦスタイルのデプロイメントなしでサービスエンドポイントを動的かつ自発的
に初期化できること、コーラー（caller）（すなわち製品を含む）がフックポイントを通
してインバウンドおよびアウトバウンドのトランスポートを完全に制御できること、コー
ラー（すなわち製品を含む）がWebServiceFeatureインスタンスを通してサービスまたは
クライアント構成を完全に制御でき明示的にデプロイメント記述子が不要である、ならび
に、完全に非同期であることが可能であり、リクエストおよび特定のリクエストに対する
レスポンス処理を異なるスレッドで実行できることが、含まれる。
【００１５】
　図１は、ある実施の形態に従う、動的呼出しおよびサービスインターフェイス（ＤＩＳ
Ｉ）を利用できるシステム１００を示す。

(9) JP 6169081 B2 2017.7.26

10

20

30

40

50

【００１６】
　図１に示されるように、クライアントコンピュータ１１３、クライアントコンテナ１１
４、およびクライアントアプリケーション１１６（たとえばウェブサービスクライアント
）を含むクライアントサイド環境１１２は、トランスポート１２８を介して、サービスプ
ロバイダコンピュータ１２３、サービスコンテナ１２４（たとえばウェブサービスコンテ
ナ）、およびサービス１２６（たとえばウェブサービス）を含むサービスサイド環境１２
２と、通信する。
【００１７】
　クライアントサイドにおいて、クライアントアプリケーションは、ディスパッチャリク
エスト（DispatcherRequest）１３２を呼出す（レスポンスが戻されたとき／戻されるな
らばスタックによって呼出されるディスパッチャレスポンス（DispatcherResponse）イン
スタンスも与える）ことによって、アウトバウンドコールを開始する。ランタイムスタッ
ク１４０は、アウトバウンドＳＯＡＰ処理（たとえばＷＳアドレス指定、ＭＴＯＭ、文字
符号化、WS-ReliableMessaging、WS-Security等）を行なう。アウトバウンドＳＯＡＰ処
理が完了すると、ランタイムスタックは、送信するメッセージ（およびレスポンスが戻さ
れたときに呼出すクライアントレスポンストランスポートインスタンス）で、クライアン
トリクエストトランスポート１４２をコールする。次に、クライアントはトランスポート
（たとえば共有メモリ、ＪＭＳ、ＦＴＰ等）でメッセージを送信１４４する役割がある。
また、クライアントは、レスポンス（たとえばＪＭＳキュー、ソケットリスナ）を受ける
クライアントレスポンスハンドリングコード１４６をセットアップする役割がある。この
トランスポートでレスポンスが戻る１４７と、クライアントコードは、クライアントレス
ポンストランスポート（ClientRequestTransport）１４８をメッセージでコールする。ラ
ンタイムスタックは、インバウンドＳＯＡＰ処理を行なう。インバウンドＳＯＡＰ処理が
完了すると、ランタイムスタックは、ディスパッチャレスポンス１５０をレスポンスでコ
ールし、このレスポンスは次にクライアントアプリケーションに与えられる。
【００１８】
　サービスサイドはクライアントサイドと同様である。サービスサイドは、トランスポー
ト１２８からリクエストを受けるサービスリクエストハンドリングコード１６２をセット
アップしなければならない。メッセージは、トランスポートに到着する１６０と、サービ
スリクエストハンドリングコード１６２によって扱われる。サービスリクエストハンドリ
ングコード１６２は、サービスリクエストトランスポート（ServiceRequestTransport）
１６３をこのメッセージでコールする（また、レスポンスが戻されたとき／戻されるなら
ば呼出される２つのサービスレスポンストランスポートインスタンスを与える）。ランタ
イムスタック１４０はインバウンドＳＯＡＰ処理を行なう。インバウンドＳＯＡＰ処理が
完了すると、ランタイムスタックは、サービス１２６に対するメッセージ（およびレスポ
ンスを戻すために呼出すプロバイダレスポンスインスタンス）でプロバイダリクエスト１
６４をコールする。サービス１２６は、このレスポンスを、プロバイダレスポンス１６６
をメッセージ（メッセージは、呼出しのデータおよび処理に必要な任意のメタデータ（た
とえばＭＩＭＥタイプ）双方を意味する）で呼出すことにより、伝える。ランタイムスタ
ック１４０はアウトバウンドＳＯＡＰ処理を行なう。アウトバウンドＳＯＡＰ処理が完了
すると、ランタイムスタックは、レスポンスをトランスポートに置く１７２という役割が
あるサービスレスポンストランスポート（ServiceResponseTransport）１６８をコールす
る。また、図１に示されるように、ボックス（すなわちオブジェクト）が、クライアント
、ランタイム、またはサービスコンテナの内部に示されている場合、オブジェクトを作成
することがコンテナの役割であることを示す。
【００１９】
　クライアントサイド呼出しフロー
　図２は、ある実施の形態に従う、それぞれ収容環境２１０、２５０と、ランタイムスタ
ック２１２、２５２と、物理トランスポート２１６、２５６との間の、標準クライアント
サイド呼出しフロー２０２およびＤＩＳＩクライアントサイド呼出しフロー２４２を示す

(10) JP 6169081 B2 2017.7.26

10

20

30

40

50

。
【００２０】
　アウトバウンドトランスポートプロセッサ２２８およびインバウンドトランスポートプ
ロセッサ２３２を使用する標準モデルでは、トランスポートハンドリングコードおよび物
理トランスポートはたいてい不透明である。これに対し、ＤＩＳＩモデルでは、トランス
ポートハンドリングコードおよび物理トランスポートは、クライアントが利用できる／ク
ライアントから見えるものである。（図２に示されるように、ボックス（すなわちオブジ
ェクト）がコンテナの内部に示されているとき、これは、オブジェクトがコンテナ側から
見えることを示す）。このため、標準モデルではクライアントコンテナから見えるのがデ
ィスパッチ２２６と非同期ハンドラ２３４のみであるのに対し、ＤＩＳＩモデルではクラ
イアントリクエストハンドリング（すなわちクライアントリクエストおよびレスポンスト
ランスポート）および物理トランスポート双方が見える／利用できる。
【００２１】
　図２に示されるように、標準クライアントサイド呼出しフロー２０２は、ディスパッチ
インスタンスで始まり、ウェブサービスランタイムを通して実行され、トランスポートで
終わる。ディスパッチは、使用し易い非同期プログラミングモデルを提供する。図２はモ
デルの一変形を示しており、この場合のコーラーは非同期ハンドラを与えてレスポンスを
受ける：
　ディスパッチ→…ランタイムスタック…→…トランスポート
　非同期ハンドラ←…ランタイムスタック…←トランスポート
　上記ディスパッチは収容環境によってコールされるのに対し、上記非同期ハンドラは収
容環境によって実装される。上記手法の場合、非常に低レベルのソケットまたはＵＲＬ接
続のファクトリ構成を使用する以外に、アプリケーションがトランスポート実装をオーバ
ライドまたは制御する標準的な方法はない。ディスパッチは、永続性またはクラスタリン
グに対する標準的なサポートを提供せず、非同期ハンドラはシリアライズ可能である必要
はない。
【００２２】
　ある実施の形態に従い、ＤＩＳＩクライアントサイド呼出しフローは、それぞれディス
パッチおよび非同期ハンドラに代えてディスパッチャリクエスト２６６およびディスパッ
チャレスポンス２７４を定め、それぞれアウトバウンド（リクエスト）トランスポートお
よびインバウンド（レスポンス）トランスポートに代えてクライアントリクエストトラン
スポート２６８およびクライアントレスポンストランスポート２７０を定める：
　ディスパッチャリクエスト→…ランタイムスタック…→クライアントリクエストトラン
スポート
　ディスパッチャレスポンス←…ランタイムスタック…←クライアントレスポンストラン
スポート
　上記ディスパッチャリクエストおよびクライアントレスポンストランスポートは収容環
境によってコールされるのに対し、上記ディスパッチャレスポンスおよびクライアントリ
クエストトランスポートは収容環境によって実装される。
【００２３】
　ある実施の形態に従い、収容環境（たとえばＯＳＢ）は、ディスパッチャリクエストの
インスタンスを呼出すことによってリクエストを発行することができる。このリクエスト
は、クライアントリクエストトランスポートのインスタンスに対するコールで終わる。ク
ライアントリクエストトランスポートインスタンスには、物理トランスポートと遣り取り
する役割がある。物理トランスポートがレスポンスを受けると、収容環境は、クライアン
トレスポンストランスポートのインスタンスに対するレスポンス処理を呼出す。このレス
ポンス処理は、ランタイムスタック２４６を通して進行し、ディスパッチャレスポンスの
インスタンスに対するコールで終わる。
【００２４】
　Oracle WebLogic、Oracle Web Services、およびOracle Service Busを使用する実装例

(11) JP 6169081 B2 2017.7.26

10

20

30

40

50

は以下に示す構成を含み得る。異なる製品を利用する他の環境および実装は異なる構成を
使用し得る。
・ディスパッチャリクエスト：Web Servicesによって実装される。
・クライアントリクエストトランスポート：収容環境（たとえばＯＳＢ）によって実装さ
れる。
・クライアントレスポンストランスポート：Web Servicesによって実装され、アウトバウ
ンドコールがなされたときにクライアントリクエストトランスポートに送られる。
・ディスパッチャレスポンス：収容環境によって実装され、最初のリクエストがなされた
ときにディスパッチャリクエストに送られる。
【００２５】
　ある実施の形態に従い、クライアントは、ディスパッチャリクエスト／ディスパッチャ
レスポンスの使用と、クライアントリクエストトランスポート／クライアントレスポンス
トランスポートの使用および標準パターンの使用とを、組合せてもよい。すなわち、クラ
イアントは、標準ディスパッチ（同期、ポーリング、非同期ハンドラ）を、クライアント
リクエストトランスポート／クライアントレスポンストランスポートとともに使用しても
よい。また、クライアントは、ディスパッチャリクエスト／ディスパッチャレスポンスを
、ビルトイントランスポートとともに使用してもよい。
【００２６】
　クライアントライフサイクル
　ある実施の形態に従い、ＤＩＳＩは、ディスパッチャリクエストインスタンスに対する
ファクトリとして機能するサービスクラスを提供する。収容環境（たとえばＯＳＢ）は、
サービスまたはディスパッチ／ディスパッチャリクエストいずれかの初期化時に、Client
TransportFeatureという特徴を用いて、クライアントリクエストトランスポートの実装（
implementation）を送る。
【００２７】

// Initialize instance of customer-implemented ClientRequestTransport
ClientRequestTransport clientRequestTransport = new OSBClientRequestTransport();
// Create DispatcherRequest
ClientTransportFeature ctf = new ClientTransportFeature(clientRequestTransport);
Service s = ServiceFactory.factory().create(..., ctf);
DispatcherRequest dispatcherRequest = s.createDispatch(...);
// Making a call
DispatcherResponse callback = new MyDispatcherResponse();
dispatcherRequest.request(..., callback);

　コーラーがDispatcherRequest.request(...)を呼出すと、リクエスト処理が始まり、リ
クエスト処理は、エラーでまたはクライアントリクエストトランスポートに対するコール
で終わる。交換がなされたとき、クライアントリクエストトランスポートは、呼出すクラ
イアントレスポンストランスポートのインスタンスを受ける。アプリケーションコードが
クライアントレスポンストランスポートインスタンスを呼出すと、レスポンス処理が始ま
りそのフローはディスパッチャレスポンスインスタンスに対するコールで終わる。
【００２８】
　サービスサイド呼出しフロー
　図３は、ある実施の形態に従う、それぞれサービスサイドコンテナ３１０、３５０と、
ランタイムスタック２１２、２５２と、物理トランスポート２１６、２５６との間の、標
準サービスサイド呼出しフロー３０２およびＤＩＳＩサービスサイド呼出しフロー３４２
を示す。
【００２９】
　図３に示されるように、標準サービスサイド呼出しフロー３０２は、トランスポートで

(12) JP 6169081 B2 2017.7.26

10

20

30

40

50

始まり、インバウンドトランスポートプロセッサ３１４およびアウトバウンドトランスポ
ートプロセッサ３２０を介してウェブサービスランタイムを通して進行し、プロバイダ（
Provider）インスタンス（またはＳＥＩ）３１６で終わり、次にリターンする。ＪＡＸ－
ＷＳリファレンス実装は非同期プロバイダを提供しないが、標準非同期サービスサイドプ
ログラミングモデルはない：
　トランスポート→…ランタイムスタック…→プロバイダ
　トランスポート←…ランタイムスタック…←プロバイダ（リターン）
　上記プロバイダおよびプロバイダ（リターン）は、収容環境によって実装される。クラ
イアントサイドと同じく、非常に低レベルのまたはアプリケーション－サーバ専用のイン
テグレーションを使用する以外に、アプリケーションがトランスポート実装をオーバライ
ドまたは制御する標準的な方法はない。プロバイダモデルは、持続性またはクラスタリン
グに対する標準的なサポートを提供せず、プロバイダはシリアライズ可能である必要はな
く、標準プロバイダモデルは非同期ではない。
【００３０】
　ある実施の形態に従い、ＤＩＳＩサービスサイド呼出しフロー３４２は、それぞれイン
バウンドおよびレスポンストランスポートに代えてサービスリクエストトランスポート３
５４およびサービスレスポンストランスポート３６４、３６８、ならびにプロバイダに代
えてプロバイダリクエスト（ProviderRequest）３５６およびプロバイダレスポンス（Pro
viderResponse）３６０を定める：
　サービスリクエストトランスポート→…ランタイムスタック…→プロバイダリクエスト
　サービスレスポンストランスポート（匿名）←…ランタイムスタック…←プロバイダレ
スポンス
　サービスレスポンストランスポート（非匿名）←…ｏｒ…
　上記サービスリクエストトランスポートおよびプロバイダレスポンスは収容環境によっ
てコールされ、サービスレスポンストランスポート（匿名）、サービスレスポンストラン
スポート（非匿名）およびプロバイダリクエストは収容環境によって実装される。
【００３１】
　ある実施の形態に従い、収容環境（たとえばＯＳＢ）は、サービスリクエストトランス
ポートのインスタンスを呼出すことによってリクエストを発行することができる。このリ
クエストは、アプリケーションが何を初期化したかに応じて、Java Web Service（ＪＷＳ
）、プロバイダインスタンス、またはプロバイダリクエストのインスタンスに対するコー
ルで終わる。
【００３２】
　サービスリクエストトランスポートのコーラーおよびサービスレスポンストランスポー
トの実装には、物理トランスポートと遣り取りするという役割がある。たとえば、収容環
境は、サーブレット（servlet）、ＭＤＢにおけるリクエストを受けるかまたはこのリク
エストをファイルから読出してサービスリクエストトランスポートを通してウェブサービ
スランタイムに送ることができる。
【００３３】
　プロバイダリクエスト実装にはアプリケーションリクエストを実行するという役割があ
り、これは、ディスパッチャリクエスト（ＯＳＢの場合と同様媒介手段として機能する）
を用いてクライアントフローにコールすることを含む。
【００３４】
　アプリケーションレスポンスを利用できるとき、アプリケーションには、プロバイダリ
クエストに対する元のリクエストがなされたときにアプリケーションに送られたプロバイ
ダレスポンスを呼出すという役割がある。
【００３５】
　プロバイダレスポンスの呼出しは、ウェブサービスランタイムを通して行なわれ、サー
ビスレスポンストランスポートインスタンスのうちの１つに対するコールで終わる。ある
実施の形態に従うと、このモデルはクライアントサイドとサービスサイドでわずかに異な

(13) JP 6169081 B2 2017.7.26

10

20

30

40

50

る。非匿名のアドレス指定をサポートするために、ウェブサービスランタイムは、２つの
異なるサービスレスポンストランスポート（ここでは３６４および３６８として示される
）を呼出すことができる。これらトランスポートのうちの第１のトランスポートは、リク
エストトランスポートの匿名のサービスレスポンストランスポートを表わす（すなわち「
バックチャネル」としても知られている「匿名（anon）」）。ある実施の形態に従い、リ
クエストのReplyToまたはFaultToヘッダが匿名に設定されると、アウトバウンドのサービ
スサイドＳＯＡＰ処理後に匿名のサービスレスポンストランスポートがコールされる。こ
の場合、非匿名のサービスレスポンストランスポートは決してコールされない。リクエス
トのReplyToまたはFaultToヘッダが非匿名に設定されると、アウトバウンド処理後に、匿
名のサービスレスポンストランスポートが最初にメタデータのみで（すなわちメッセージ
なしで）コールされる。これは、接続を閉じ「ＯＫ」（たとえばＨＴＴＰ２０２）メッセ
ージを送信者に送信する機能を与える。次に、非匿名のサービスレスポンストランスポー
トが、レスポンスメッセージでコールされる。レスポンスメッセージのための配信アドレ
スはアドレス指定ヘッダによって決まるので、非匿名のメッセージは、サービスリクエス
トトランスポートの前にあるトランスポートとは異なる種類のトランスポートで配信でき
る。非匿名のレスポンスを必要としないサービスコンテナについては、収容環境が、非匿
名のサービスレスポンストランスポートに対してnullを送ってもよい。
【００３６】
　Oracle WebLogic、Oracle Web Services、およびOracle Service Busを使用する実装例
は、以下に示す構成を含み得る。異なる製品を利用するその他の環境および実装は異なる
構成を使用し得る：
　・サービスリクエストトランスポート：ウェブサービスによって実装される。
【００３７】
　・プロバイダリクエスト：収容環境（たとえばＯＳＢ）によって実装される。
　・プロバイダレスポンス：ウェブサービスによって実装されインバウンドコールがなさ
れたときにプロバイダリクエストに送られる。
【００３８】
　・サービスリクエストトランスポート（バックチャネル）：収容環境によって実装され
、元のリクエストがなされたときにサービスリクエストトランスポートに送られる。
【００３９】
　・サービスリクエストトランスポート（非匿名）：収容環境によって実装され、元のリ
クエストがなされたときにサービスリクエストトランスポートに送られる。
【００４０】
　ある実施の形態に従い、サービスは、サービスリクエストトランスポート／サービスレ
スポンストランスポートの使用と、プロバイダリクエスト／プロバイダレスポンスの使用
および標準パターンの使用とを、組合せてもよい。すなわち、サービスは、標準プロバイ
ダ（またはＳＥＩ）を、サービスリクエストトランスポート／サービスレスポンストラン
スポートとともに使用してもよい。また、サービスは、プロバイダリクエスト／プロバイ
ダレスポンスを、ビルトイントランスポートとともに使用してもよい。しかしながら、こ
れには既存のデプロイメントモデルの使用が必要である。
【００４１】
　サービスライフサイクル
　ある実施の形態に従い、ＤＩＳＩは、サービスリクエストトランスポートインスタンス
に対するファクトリとして機能するエンドポイントクラスを提供する。たとえば、ＯＳＢ
は、エンドポイント初期化中にプロバイダリクエストの実装を送ることができる。
【００４２】

// Initialize customer-implemented ProviderRequest and create Endpoint
ProviderRequest providerRequest = new OSBProviderRequest();
Endpoint e = EndpointFactory.factory().create(providerRequest, …);

(14) JP 6169081 B2 2017.7.26

10

20

30

40

50

// Create ServiceRequestTransport
ServiceRequestTransport serviceRequestTransport = e.createServiceRequestTranspor
t(...);
// Making a call
ServiceResponseTransport backchannel = new OSBBackchannelSRT();
ServiceResponseTransport nonanonchannel = new OSBNonAnonSRT();
serviceRequestTransport.request(..., backchannel, nonanonchannel);

　図４および図５は、ある実施の形態に従う、動的呼出しおよびサービスインターフェイ
ス（ＤＩＳＩ）を提供するための方法のフローチャートである。
【００４３】
　図４に示されるように、クライアントサイドでは、ステップ３７０で、収容環境が、デ
ィスパッチャリクエストのインスタンスを呼出すことによって、リクエストを発行する。
ステップ３７２で、ランタイムスタックは、アウトバウンドＳＯＡＰ処理を行なう。ステ
ップ３７４で、リクエストは、物理トランスポートと遣り取りする役割を有するクライア
ントリクエストトランスポートのインスタンスに対するコールで終了する。ステップ３７
６で、物理トランスポートがレスポンスを受けると、収容環境が、クライアントレスポン
ストランスポートのインスタンスに対するレスポンス処理を呼出す。ステップ３７８で、
ランタイムスタックはインバウンドＳＯＡＰ処理を行なう。ステップ３８０で、レスポン
ス処理がランタイムスタックを通して進行し、ディスパッチャレスポンスのインスタンス
に対するコールで終了する。
【００４４】
　図５に示されるように、サービスサイドでは、ステップ３８２で、リクエストがトラン
スポートに到着する。ステップ３８４で、収容環境が、サービスリクエストトランスポー
トを呼出すことによって、リクエストを発行する。ステップ３８６で、ランタイムは、サ
ービスサイドのインバウンドＳＯＡＰ処理を行なう。ステップ３８８で、リクエストは、
プロバイダリクエストに対するコールで終了する。ステップ３９０で、プロバイダリクエ
ストが、アプリケーションリクエストの実行を開始する。ステップ３９２で、アプリケー
ションが、プロバイダレスポンスを、レスポンスで呼出す。ステップ３９４で、ランタイ
ムは、サービスサイドのアウトバウンドＳＯＡＰ処理を行なう。ステップ３９６で、リク
エスト処理が、サービスレスポンストランスポートに対するコールで終了する。ステップ
３９８で、サービスレスポンストランスポートが物理トランスポートと遣り取りする。
【００４５】
　スレッディング（threading）
　ある実施の形態に従い、ユースケース（use-case）がＳＯＡＰランタイム内部でのバッ
ファリングを必要としないとき、以下の特性が有効である。
【００４６】
　・サービスリクエストトランスポートを呼出すスレッドは、プロバイダリクエストを呼
出すスレッドと同一である。
【００４７】
　・プロバイダレスポンスを呼出すスレッドは、レスポンスがある場合、非匿名のサービ
スレスポンストランスポートを呼出すスレッドと同一である。
【００４８】
　・バックチャネルサービスレスポンストランスポートは、ReplyToまたはFaultToヘッダ
が匿名か非匿名かに応じて、サービスリクエストトランスポートを呼出したスレッドかま
たはプロバイダレスポンスを呼出したスレッドによってコールされる。
【００４９】
　・ＷＳ－ＡＴを用いる一方向のコールは、レスポンスが利用できるようになるまでリク
エスト（たとえばＨＴＴＰ２０２）を承認しない。
【００５０】

(15) JP 6169081 B2 2017.7.26

10

20

30

40

50

　・さもなければ、一方向のまたは非匿名のReplyToまたはFaultToに対し、ウェブサービ
スランタイムはできるだけ早くバックチャネルを呼出す。
【００５１】
　・ディスパッチャリクエストを呼出すスレッドは、クライアントリクエストトランスポ
ートを呼出すスレッドと同一である。
【００５２】
　・クライアントレスポンストランスポートを呼出すスレッドは、ディスパッチャレスポ
ンスを呼出すスレッドと同一である。
【００５３】
　・クライアントリクエストトランスポートを呼出すスレッドはクライアントレスポンス
トランスポートを呼出し得る、または、異なるスレッドが、クライアントリクエストトラ
ンスポートを呼出すスレッドのリターン前または後に、クライアントレスポンストランス
ポートを呼出し得る。
【００５４】
　・プロバイダリクエストを呼出すスレッドはプロバイダレスポンスを呼出し得る、また
は、異なるスレッドが、プロバイダリクエストを呼出すスレッドのリターン前または後に
、プロバイダレスポンスを呼出し得る。
【００５５】
　ある実施の形態に従い、バッファリングがイネーブルされた状態で、バッファリングさ
れねばならないリクエストまたはレスポンスフローは、バッファリングサブシステムにお
いて終了し、その後、バッファリングサブシステムのスレッド（たとえばＭＤＢのための
ワークマネージャ）がこのフローを完了する。言い換えると、バッファリングポイントを
追加するために修正された上記ルールはすべて、その他の追加なしで引続き有効である。
【００５６】
　メタデータアクセス
　ある実施の形態に従い、エンドポイントは、メッセージの一部である、リクエスト毎の
メタデータ（「リクエストコンテキスト」として知られている）におけるメタデータリク
エストを示すことによって、メタデータ（すなわちＷＳＤＬドキュメントおよびＸＳＤ双
方）をコーラーが利用できるようにすることが可能である。リクエストコンテキストは以
下のような特性を有し得る。
【００５７】
　・TransportPropertySet.TRANSPORT_REQUEST_PRESENT_PROPERTY = 偽（false）
　・TransportPropertySet.TRANSPORT_QUERY_PROPERTY = <何らかの値>
　・TransportPropertySet.TRANSPORT_METADATA_BASEADDRESS_PROPERTY = <メタデータド
キュメントのＵＲＬベースアドレス>
　永続性およびクラスタリング
　ある実施の形態に従い、ＤＩＳＩ永続性およびクラスタリングは、リクエスト／レスポ
ンスコンテキストと、クライアントリクエストトランスポート、クライアントレスポンス
トランスポート、ディスパッチャレスポンス、プロバイダリクエスト、プロバイダレスポ
ンス、およびサービスレスポンストランスポートオブジェクトのシリアライズに基づき得
る（クライアントリクエストトランスポートおよびプロバイダリクエストのシリアライズ
は、ＳＯＡＰ処理中にバッファリングが生じるように構成されている場合に限り必要であ
る）。
【００５８】
　ユースケース
　ある実施の形態に従い、プロバイダリクエストの実装は、プロバイダレスポンスオブジ
ェクトと、リクエストからの必要なアーギュメント（arguments）を、シリアライズする
ことができる。その後、バッチプロセス等の別のプロセスが完了したときに、プロバイダ
レスポンスをデシリアライズし呼出すことができる。元のリクエストが発生したマシンと
同じクラスタ内の任意のマシンから、またはサーバの再スタート後に、プロバイダレスポ

(16) JP 6169081 B2 2017.7.26

10

20

30

40

50

ンスをデシリアライズし呼出してもよい。
【００５９】
　Web Servicesを使用する実装において、Web Servicesランタイムは、非匿名のサービス
レスポンストランスポートオブジェクトをシリアライズして、後にこのオブジェクトを用
いて非匿名のレスポンスを送信することができる。これが起こり得る理由は、バッファリ
ングポイント（たとえば非同期のWeb Services Reliable Messaging、ＷＳ－ＲＭの使用
）、または、プロバイダレスポンスオブジェクトがシリアライズされたことである。バッ
クチャネルサービスレスポンストランスポートオブジェクトがシリアライズされるとは予
測されない。なぜなら、バックチャネルをサポートするトランスポートは、バックチャネ
ルレスポンスの永続性またはクラスタリングをサポートしないからである。
【００６０】
　ある実施の形態に従い、クライアントリクエストトランスポートの実装は、クライアン
トレスポンストランスポートオブジェクトをシリアライズして、クライアントレスポンス
トランスポートオブジェクトをサーバの再スタート後にまたはクラスタ内の別のマシンで
呼出すことができるようにしてもよい。これは、非匿名のアドレス指定を用いる非同期の
レスポンスハンドリングの１つの可能な実装である。
【００６１】
　Web Servicesを使用する実装において、Web Servicesランタイムは、ディスパッチャレ
スポンスオブジェクトをシリアライズして、後にこのオブジェクトを呼出してアプリケー
ションレスポンスを配信することができる。これが起こり得る理由は、バッファリングポ
イント、または、クライアントレスポンストランスポートオブジェクトがシリアライズさ
れたことである。ある実施の形態に従うと、ＤＩＳＩは、シリアライズされたコールバッ
クオブジェクトのライフサイクルを管理するためのモデルを定義しない。Web Servicesバ
ッファリングの実装は、格納するオブジェクトに対しこれらの機能を提供することができ
る（たとえば、ＷＳ－ＲＭは、失効または終了した遣り取りに関連するシリアライズされ
たオブジェクトを含む永続データを削除することができる）。
【００６２】
　構成
　ある実施の形態に従い、ＤＩＳＩサービスエンドポイントおよびクライアントのすべて
の構成は、ＪＡＸ－ＷＳ標準ＡＰＩ、ＤＩＳＩ　ＡＰＩ、およびＤＩＳＩ固有のWebServi
ceFeatureクラス（すなわち構成ビーンズ（beans）)を用いてプログラムできる。これら
ＡＰＩは、それぞれ標準サービスおよびエンドポイントクラスから、ならびに標準WebSer
viceFeatureクラスたとえばMTOMFeatureおよびAddressingFeatureから得られる、ＤＩＳ
Ｉのサービスおよびエンドポイントクラス上で利用できるビーン特性を含み得る。ほとん
どのＷＳ－＊特徴について標準WebServiceFeatureクラスはない。所有WebServiceFeature
クラスを、下にあるＳＯＡＰスタックがこれらクラスを理解するのであれば、ＤＩＳＩに
与えてもよい。ある実施の形態に従うと、ＤＩＳＩは、ＤＩＳＩベースのエンドポイント
（すなわちサービスサイド）を動的に再構成するために収容環境が使用できるEndpoint.u
pdate　ＡＰＩを有する。たとえば、ＯＳＢはＯＷＳＭを用いてウェブサービスを管理し
てもよい。ＯＷＳＭから変更の通知が届いたときに、Endpoint.updateを新たな構成で呼
出す。
【００６３】
　リクエストおよびレスポンスコンテキスト
　ある実施の形態に従い、ＤＩＳＩリクエストまたはレスポンスに関するコンテキスト（
メッセージ以外のデータ）は、Map<String, Object>コンテキストオブジェクトのインス
タンスを用いて送ることができる。使い易くするために、ＤＩＳＩは、それぞれ標準サー
ブレットリクエストおよびレスポンスオブジェクトからのリクエストおよびレスポンスコ
ンテキストを構成するためのアダプタクラス、ServletContextAdapterを与える。
【００６４】
　サービスリクエストトランスポート

(17) JP 6169081 B2 2017.7.26

10

20

30

40

50

　表１は、ある実施の形態に従う、ServiceRequestTransport.request()についての、リ
クエストコンテキストキー／値の対を説明する。
【００６５】
【表１】

【００６６】
　サービスレスポンストランスポート
　表２は、ある実施の形態に従う、ServiceResponseTransport.response()およびService
ResponseTransport.fail()についての、レスポンスコンテキストキー／値の対を説明する
。

(18) JP 6169081 B2 2017.7.26

10

20

30

40

【００６７】
【表２】

【００６８】
　プロバイダリクエスト
　表３は、ある実施の形態に従う、ProviderRequest.request()についての、リクエスト
コンテキストキー／値の対を説明する。
【００６９】
【表３】

【００７０】
　プロバイダレスポンス
　表４は、ある実施の形態に従う、ProviderResponse.response()についての、リクエス
トコンテキストキー／値の対を説明する。
【００７１】

(19) JP 6169081 B2 2017.7.26

10

20

30

40

50

【表４】

【００７２】
　ディスパッチャリクエスト
　表５は、ある実施の形態に従う、DispatcherRequest.request()についての、リクエス
トコンテキストキー／値の対を説明する。
【００７３】
【表５】

【００７４】
　ディスパッチャレスポンス
　表６は、ある実施の形態に従う、DispatcherResponse.response()についての、リクエ
ストコンテキストキー／値の対を説明する。
【００７５】
【表６】

【００７６】
　クライアントリクエストトランスポート
　表７は、ある実施の形態に従う、ClientRequestTransport.request()についての、リク
エストコンテキストキー／値の対を説明する。
【００７７】

【表７】

【００７８】
　クライアントレスポンストランスポート
　表８は、ある実施の形態に従う、ClientResonseTransport.response()についての、リ

(20) JP 6169081 B2 2017.7.26

10

20

30

クエストコンテキストキー／値の対を説明する。
【００７９】
【表８】

【００８０】
　本発明は、１台以上のプロセッサ、メモリ、および／または本開示の教示に従いプログ
ラムされたコンピュータ読取可能な記憶媒体を含む、従来の汎用または専用デジタルコン
ピュータ、コンピューティングデバイス、マシン、またはマイクロプロセッサを１台以上
用いて、適宜実現し得る。適切なソフトウェアコーディングは、熟練したプログラマが本
開示の教示に基づいて容易に準備できる。これはソフトウェア技術の当業者には明らかで
あろう。
【００８１】
　実施の形態によっては、本発明は、本発明のプロセスのうちいずれかを実行するために
コンピュータをプログラムするのに使用できる命令が格納された非一時的な記憶媒体また
は（１つまたは複数の）コンピュータ読取可能な媒体であるコンピュータプログラムプロ
ダクトを含む。この記憶媒体は、フロッピー（登録商標）ディスク、光ディスク、ＤＶＤ
、ＣＤ－ＲＯＭ、マイクロドライブ、および光磁気ディスクを含む、任意の種類のディス
ク、ＲＯＭ、ＲＡＭ、ＥＰＲＯＭ、ＥＥＰＲＯＭ、ＤＲＡＭ、ＶＲＡＭ、フラッシュメモ
リデバイス、磁気もしくは光カード、ナノシステム（分子メモリＩＣを含む）、または、
命令および／またはデータを格納するのに適した任意の種類の媒体もしくはデバイスを含
み得るものの、これらに限定されない。
【００８２】
　本発明に関するこれまでの記載は例示および説明を目的として提供されている。すべて
を網羅するまたは本発明を開示された形態そのものに限定することは意図されていない。
当業者には数多くの変更および変形が明らかであろう。実施の形態は、本発明の原理およ
びその実際の応用を最もうまく説明することによって当業者が本発明のさまざまな実施の
形態および意図している特定の用途に適したさまざまな変形を理解できるようにするため
に、選択され説明されている。本発明の範囲は、以下の特許請求の範囲およびその均等物
によって定められることが意図されている。

(21) JP 6169081 B2 2017.7.26

【図１】 【図２】

【図３】 【図４】

(22) JP 6169081 B2 2017.7.26

【図５】

(23) JP 6169081 B2 2017.7.26

10

フロントページの続き

(72)発明者 エーベルハルト，リャン
 アメリカ合衆国、１８４３１　ペンシルベニア州、ホーンズデール、トップ・オブ・ザ・ヒル・ド
 ライブ、１１

 審査官 田中　幸雄

(56)参考文献 特開２００３－１１４８０５（ＪＰ，Ａ）　　　
 特開２００６－８５３６５（ＪＰ，Ａ）　　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　　９／５４　　　　

	biblio-graphic-data
	claims
	description
	drawings
	overflow

