PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

WO 93/20505

(71) Applicant: SEIKO EPSON CORPORATION [JP/JP]; 4-1,
Nishi-Shinjuku 2-chome, Shinjuku-ku, Tokyo 163 (JP).

(72) Inventors: GARG, Sanjiv ; 46820 Sentinel Drive, Fremont,
CA 94539 (US). IADONATO, Kevin, Ray ; 678 Galleon
Court, San Jose, CA 95133 (US).

(74) Agents: SUZUKI, Kisaburo et al.; Seiko Epson Corpora-
tion, 4-1, Nishi-Shinjuku- 2-chome, Shinjuku-ku, Tokyo
163 (JP).

(51) International Patent Classification 5 : (11) International Publication Number:
GOG6F 9/38 A2 (43) International Publication Date: 14 October 1993 (14.10.93)
(21) International Application Number: PCT/JP93/00375 | (81) Designated States: JP, KR, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 26 March 1993 (26.03.93) SE).
(30) Priority data: Published
07/860,719 31 March 1992 (31.03.92) Us Without international search report and to be republished

upon receipt of that report.

(57) Abstract

sable source and destination register fields, adapted for use in

ecution results.

A register renaming system for out-of-order execution of a
set of reduced instruction set computer instructions having addres-

computer having an instruction execution unit with a register file
accessed by read address ports and for storing instruction op- —— e FFO_
erands. A data dependance check circuit is included for determin-
ing data dependencies between the instructions. A tag assignment
circuit generates one or more tags to specify the location of op-
erands, based on the data dependencies determined by the data de-
pendence check circuit. A set of register file port multiplexers se-
lect the tags generated by the tag assignment circuit and pass the
tags onto the read address ports of the register file for storing ex-

(54) Title: SUPERSCALAR RISC INSTRUCTION SCHEDULING

1 05\

101
'}102
0

o
o

/I

|
]
a !
|
!

PORTS
119

TEMPORARY
BUFFERS

L

!
116

|

|

|

|

]

|

]

gegister || !
FILES |
|

|

I

|

|

|

|

{

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso

BG Bulgaria

BJ Benin

B8R Brazit

CA Canada

CF Central African Republic

CG Congo

CH Switzerland

Cl Cote d'lvoire

cM “aneroon

cs Crechoslovakia .

cz Czech Republic
DE Germany

DK Deamark

ES Spain

Fi Finland

France

Gabon

United Kingdom
Guinca

Greece
Hungary

Ireland

ltaly

Japan
Democratic People™s

“ R R
I

of Korea
Republic of Korea
Kazakhstan
Licchtenstein

Sri Lanka
Luxembourg
Mouaco
Mad:{gascar

Mali

Mongolia

Mauritania

Malawi
Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation

- Sudan

Sweden

Siovak Republic

Senegal

Soviet Union

Chad

Fogo

Ukraine

United States of America
Viet Nam

10

15

20

25

30

35

40

WO 93/20505 PCT/JP93/00375

DESCRIPTION
SUPERSCALAR RISC INSTRUCTION SCHEDULING

-REFERENCE T

The following are commonly owned, co-pending applications:

* "Semiconductor Floor Plan and Method for a Register Renaming Circuit",
Serial No. 07/860,718, filed 3/31/92 concurrently filed with the present
application (Attorney Docket No. SP041);
* "High Performance RISC Microprocessor Architecture”, Serial No.
07/817,810, filed 1/8/92 (Attorney Docket No. SP015);
* "Extensible RISC Microprocessor Architecture”, Serial No. 07/817,809, filed
1/8/92 (Attorney Docket No. SP021).

The disclosures of the above applications are incorporated herein by reference.

BACKGR F THE NTION
1. Field of the Invention

The present invention relates to superscalar reduced instruction set computers
(RISC), more particularly, the present invention relates to instruction scheduling
including register renaming and instruction issuing for superscalar RISC computers.

2. Related Art

A more detailed description of some of the basic concepts discussed in this
application is found in a number of references, including Mike Johnson, Superscalar
Microprocessor Design (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1991);
John L. Hennessy et al.,, Computer Architecture - A Quantitative Approach"
(Morgan Kaufmann Publishers, Inc., San Mateo, California, 1990). Johnson's text,
particularly Chapters 2, 6 and 7 provide an excellent discussion of the register
renaming issues addressed by the present invention.

A major consideration in a superscalar RISC processor is to how to execute
multiple instructions in parallel and out-of-order, without incurring data errors due to
dependencies inherent in such execution. Data dependency chepking, register

-1-

10

15

20

25

30

35

WO 93720505 PCT/JP93/00375

renaming and instruction scheduling are integral aspects of the solution.
2.1 nfli ister Renamin

True dependencies (sometimes called "flow dependencies” or "write-read"
dependencies) are often grouped with anti-dependencies (also called "read-write"
dependencies) and output dependencies (also called "write-write" dependencies) into a
single group of instruction dependencies. The reason for this grouping is that each of
these dependencies manifests itself through use of registers or other storage
locations. However, it is important to distinguish true dependencies from the other
two. True dependencies represent the flow of data and information through a
program. Anti- and output dependencies arise because, at different points in time,
registers or other storage locations hold different values for different computations.

When instructions are issued in order and complete in order, there is a one-to-one
correspondence between registers and values. At any given point in execution, a
register identifier precisely identifies the value contained in the corresponding
register. When instructions are issued out of order and complete out of order,
correspondence between registers and values breaks down, and values conflict for
registers. This problem is severe when the goal of register allocation is to keep as
many values in as few registers as possible. Keeping a large number of values in a
small number of registers creates a large number of conflicts when the execution
order is changed from the order assumed by the register allocator.

Anti- and output dependencies are more properly called "storage conflicts"
because reusing storage locations (including registers) causes instructions to
interfere with one another even though conflicting instructions are otherwise
independent. Storage conflicts constrain instruction issue and reduce performance.
But storage conflicts, like other resource conflicts, can be reduced or eliminated by
duplicating the troublesome resource. '

2.2 Dependency Mechanisms

Johnson also discusses in detail various dependency mechanisms, including:
software, register renaming, register renaming with a reorder buffer, register
renaming with a future buffer, interlocks, the copying of operands in the instruction
window to avoid dependencies, and partial renaming. ‘

A conventional hardware implementation relies on software to enforce
dependencies between instructions. A compiler or other code generator can arrange
the order of instructions so that the hardware cannot possibly see an instruction
until it is free of true dependencies and storage conflicts. Unfortunately, this

-2-

"

10

15

20

25

30

35

WO 93/20505 PCT/JP93/00375

approach runs into several problems. Software does not always know the latency of
processor operations, and thus, cannot always know how to arrange instructions to
avoid dependencies. There is the question of how the software prevents the hardware
from seeing an instruction until it is free of dependencies. In a scalar processor with
low operation latencies, software can insert "no-ops" in the code to satisfy data
dependencies without too much overhead. If the processor is attempting to fetch
several instructions per cycle, or if some operations take several cycles to complete,
the number of no-ops required to prevent the processor from seeing dependent
instructions rapidly becomes excessive, causing an unacceptable increase in code
size. The no-ops use a precious resource, the instruction cache, to encode
dependencies between instructions.

When a processor permits out-of-order issue, it is not at all clear what mechanism
software should use to enforce dependencies. Software has little control over the
behavior of the processor, so it is hard to see how software prevents the processor
from decoding dependent instructions. The second consideration is that no existing
binary code for any scalar processor enforces the dependencies in a superscalar
processor, because the mode of execution is very different in the superscalar
processor. Relying on software to enforce dependencies requires that the code be
regenerated for the superscalar processor. Finally, the dependencies in the code are
directly determined by the latencies in the hardware, so that the best code for each
version of a superscalar processor depends on the implementation of that version.

On the other hand, there is some motivation against hardware dependency
techniques, because they are inherently complex. Assuming instructions with two

~ input operands and one output value, as holds for typical RISC instructions, then

there are five possible dependencies between any two instructions: two true
dependencies, two anti-dependencies, and one output dependency. Furthermore, the
number of dependencies between a group of instructions, such as a group of
instructions in a window, varies with the square of the number of instructions in the
group, because each instruction must be considered against every other instruction.

Complexity is further multiplied by the number of instructions that the processor
attempts to decode, issue, and complete in a single cycle. These actions introduce
dependencies. The only aid in reducing complexity is that the dependencies can be
determined incrementally, over many cycles to help reduce the scope and complexity
of the dependency hardware. '

One technique for removing storage conflicts is by providing additional registers
that are used to reestablish the correspondence between registers and values. The
additional registers are conventionally allocated dynamically by hardware, and the
registers are associated with values needed by the program using "register
renaming.” To implement register renaming, processors typically allocate a new

-3

10

15

20

25

30

35

40

WO 93/20505 : PCT/JP93/00375

register for every new value produced (i.e., for every instruction that writes a
register). An instruction identifying the original register, for the purpose of reading its
value, obtains instead the value in the newly allocated register. Thus, hardware
renames the original register identifier in the instruction to identify the new register
and correct value. The same register identifier in several different instructions may
access different hardware registers, depending on the locations of register references
with respect to register assignments.

Consider the following code sequence where "op" is an operation, "Rn" represents

a numbered register, and “:=" represents assignment:
R3b := R3a op R5a 1
R4b:=R3b+1 (2)
R3c:=Rba+1 3)
R7b := R3c op R4b (4)

Each assignment to a register creates a new "instance" of the register, denoted by
an alphabetic subscript. The creation of a new instance for R3 in the third
instruction avoids the anti- and output dependencies on the second and first
instructions, respectively, and yet does not interfere with correctly supplying an
operand to the fourth instruction. The assignment to R3 in the third instruction
supersedes the assignment to R3 in the first instruction, causing R3c to become the
new R3 seen by subsequent instructions until another instruction assigns a value to
R3.

Hardware that performs renaming creates each new register instance and
destroys the instance when its value is superseded and there are no outstanding
references to the value. This removes anti- and output dependencies and allows more
instruction parallelism. Registers are still reused, but reuse is in line with the
requirements of parallel execution. This is particularly helpful with out-of-order issue,
because storage conflicts introduce instruction issue constraints that are not really
necessary to produce correct results. For example, in the preceding instruction
sequence, renaming allows the third instruction to be issued immediately, whereas,
without renaming, the instruction must be delayed until the first instruction is
complete and the second instruction is issued.

Another technique for reducing dependencies is to associate a single bit (called a
"scoreboard bit") with each register. The scoreboard bit is used to indicate that a
register has a pending update. When an instruction is decoded that will write a
register, the processor sets the associated scoreboard bit. The scoreboard bit is reset
when the write actually occurs. Because there is only one scoreboard bit indicating
whether or not there is a pending update, there can be only one such update for each
register. The scoreboard stalls instruction decoding if a decoded instruction will
update a register that already has a pending update (indicated by the scoreboard bit

-4-

10

15

20

25

30

35

WO 93/20505 PCT/JP93/00375

being set). This avoids output dependencies by allowing only one pending update to a
register at any given time.

Register renaming, in contrast, uses multiple-bit tags to identify the various
uncomputed values, some of which values may be destined for the same processor
register (that is, the same program-visible register). Conventional renaming reqﬁires
hardware to allocate tags from a pool of available tags that are not currently
associated with any value and requires hardware to free the tags to the pool once the
values have been computed. Furthermore, since scoreboarding allows only one
pending update to a given register, the processor is not concerned about which update
is the most recent.

A further technique for reducing dependencies is using register renaming with a
"reorder buffer" which uses associative lookup. The associative lookup maps the
register identifier to the reorder buffer entry as soon as the entry is allocated, and, to
avoid output dependencies, the lookup is prioritized so that only the value for the
most recent assignment is obtained if the register is assigned more than once. A tag
is obtained if the result is not yet available. There can be as many instances of a
given register as there are reorder buffer entries, so there are no storage conflicts
between instructions. The values for the different instances are written from the
reorder buffer to the register file in sequential order. When the value for the final
instance is written to the register file, the reorder buffer no longer maps the register;
the register file contains the only instance of the register, and this is the most recent
instance. 7

However, renaming with a reorder buffer relies on the associative lookup in the
reorder buffer to map register identifiers to values. In the reorder buffer, the
associative lookup is prioritized so that the reorder buffer always provides the most
recent value in the register of interest (or a tag). The reorder buffer also writes
values to the register file in order, so that, if the value is not in the reorder buffer, the
register file must contain the most recent value.

In a still further technique for reducing dependencies, associative lookup can be
eliminated using a "future file." The future file does not have the properties of the
reorder buffer discussed in the preceding paragraph. A value presented to the future
file to be written may not be the most recent value destined for the corresponding
register, and the value cannot be treated as the most recent value unless it actually
is. The future file therefore keeps track of the most recent update and checks that
each write corresponds to the most recent update before it actually performs the
write. '

When an instruction is decoded, it accesses tags in the future file along with the
operand values. If the régister has one or more pending updates, the tag identifies
the update value required by the decoded instruction. Once an instruction is decoded,

-5-

10

15

20

25

30

35

WO 93/20505 PCT/JP93/00375

other instructions may overwrite this instructions's source operands without being
constrained by anti-dependencies, because the operands are copied into the
instruction window. Output dependencies are handled by preventing the writing as a
result into the future file if the result does not have a tag for the most recent value.
Both anti- and output dependencies are handled without stalling instruction issue.

If dependencies are not removed through renaming, "interlocks" must use to
enforce dependencies. An interlock simply delays the execution of an instruction until
the instruction is free of dependencies. There are two ways to prevent an instruction
from being executed: one way is to prevent the instruction from being decoded, and
the other is to prevent the instruction from being issued.

To improve performance over scoreboarding, interlocks are moved from the
decoder to the instruction window using a "dispatch stack." The dispatch stack is an
instruction window that augments each instruction in the window with dependency
counts. There is a dependency count associated with the source register of each
instruction in the window, giving the number of pending prior updates to the source
register and thus the number of updates that must be completed before all possible
true dependencies are removed. There are two similar dependency counts associated
with the destination register of each instruction in the window, giving both the
number of pending prior uses of the register (which is the number of anti-
dependencies) and the number of pending prior updates to the register (which is the
number of output dependencies).

When an instruction is decoded and loaded into the dispatch stack, the
dependency counts are set by comparing the instruction's register identifiers with the
register identifiers of all instructions already in the dispatch stack. As instructions
complete, the dependency counts of instructions that are still in the window are
decremented based on the source and destination register identifiers of completing
instructions (the counts are decremented by a variable amount, depending on the
number of instructions completed). An instruction is independent when all of its
counts are zero. The use of counts avoids having to compare all instructions in the
dispatch stack to all other instructions on every cycle.

Anti-dependencies can be avoided altogether by copying operands to the
instruction window (for example, to the reservation stations) during instruction
decode. In this manner, the operands cannot be overwritten by subsequent register
updates. Operands can be copied to eliminate anti-dependencies in any approach,
independent of register renaming. The alternative to copying operands is to interlock
anti-dependencies, but the comparators and/or counters required for these interlocks
are costly, considering the number of combinations of source and result registers to
be compared. '

~ A tag can be supplied for the operand rather than the operand itself. This tagis

-6-

10

15

20

25

- 30

35

WO 93/20505 . PCT/JP93/00375

simply a means for the hardware to identify which value the instruction requires, so
that, when the operand value is produced, it can be matched to the instruction. If
there can be only one pending update to a register, the register identifier can serve as
a tag (as with scoreboarding). If there can be more than one pending update to a
register (as with renaming), there must be a mechanism for allocating result tags
and insuring uniqueness.

An alternative to scoreboarding interlocking is to allow multiple pending updates
of registers to avoid stalling the decoder for output dependencies, but to handle anti-
dependencies by copying operands (or tags) during decode. An instruction in the
window is not issued until it is free of output dependencies, so the updates to each
register are performed in the same order in which they would be performed with in-
order completion, except that updates for different registers are out of order with
respect to each other. This alternative has almost all of the capabilities of register
renaming, lacking only the capability to issue instructions so that updates to the
same register occur out of order.

There appears to be no better alternative to renaming other than with a reorder
buffer. Underlying the discussion of dependencies has been the assumption that the
processor performs out-of-order issue and already has a reorder buffer for recovering
from mispredicted branches. Out-of-order issue makes it unacceptable to stall the
decoder for dependencies. If the processor has an instruction window, it is
inconsistent to limit the look ahead capability of the processor by interlocking the
decoder. There are then only two alternatives: implement anti- and output
dependency interlocks in the window or remove these altogether with renaming,

SUMMARY OF THE INVENTION

The present invention is directed to instruction scheduling including register
renaming and instruction issuing for superscalar RISC computers. A Register
Rename Circuit (RRC), which is part of the scheduling logic allows a computer's
Instruction Execution Unit (IEU) to execute several instructions at the same time
while avoiding dependencies. In contrast to conventional register renaming, the
present invention does not actually rename register addresses. The RRC of the
present invention temporarily buffers the instruction results, and the results of out-
of-order instruction execution are not transferred to the register file until all previous
instructions are done. The RRC also performs result forwarding to provide
temporarily buffered operands (results) to dependant instructions. The RRC
contains three subsections: a Data Dependency Checker (DDC), Tag Assign Logic
(TAL) and Register file Port MUXes (RPM).

The function of the DDC is to locate the dependencies between the instructions for

-7-

10

15

20

25

30

35

WO 93/20505 . PCT/JP93/00375

a group of instructions. The DDC does this by comparing the addresses of the source
registers of each instruction to the addresses of the destination registers of each
previous instruction in the group. For example, if instruction A reads a value from a
register that is written to by instruction B, then instruction A is dependent upon
instruction B and instruction A cannot start until instruction B has finished. The
DDC outputs indicate these dependencies.

The outputs of the DDC go to the TAL. Because it is possible for an instruction to
be dependent on more than one previous instruction, the TAL must determine which
of those previous instructions will be the last one to be executed. The present
invention automatically maps each instruction a predetermined temporary buffer
Tocation; hence, the present invention does not need prioritized associative look-up as
used by convention reorder buffers, thereby saving chip area/cost and execution
speed.

Out-of-order results for several instructions being executed at the same time are
stored in a set of temporary buffers, rather that the file register designated by the
instruction. If the DDC determines, for example, that a register that instruction 6's
source is written to by instructions 2, 8 and 5, then the TAL will indicate that
instruction 6 must wait for instruction 5 by outputting the "tag" of instruction 5 for
instruction 6. The tag of instruction 5 shows the temporary buffer location where
instruction 5's result is stored. It also contains a one bit signal (called a "done flag")
that indicates if instruction 5 is finished or not. The TAL will output three tags for
each instruction, because each instruction can have three source registers. If an
instruction is not dependent on any previous instruction, the TAL will output the
register file address of the instruction's input, rather an a temporary buffer's address.

The last part of the RRC are the RPMs or Register file Port MUXes. The inputs
of the RPMs are the outputs of the TAL, and the select lines for the RPMs come from
another part of the IEU called the Instruction Scheduler or Issuer. The Instruction
Scheduler chooses which instruction to execute (this decision is based partly on the
done flags) and then uses the RPMs to select the tags of that instruction. These tags
go to the read address ports of the computer's register files. In the previous example,
once instruction 5 has finished, the Instruction Scheduler will start instruction 6. It
will select the RPM so that the address of instruction 5's result (its tag) is sent to the
register file, and the register file will make the result of instruction 5 available to
instruction 6.

The foregoing and other features and advantages of the present invention will be
apparent from the following more particular description of the preferred
embodiments of the invention, as illustrated in the accompanying drawings.

)

10

15

20

25

30

35

WO 93/20505 | . PCT/JP93/00375

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood if reference is made to the accompanying
drawings.

FIG. 1 shows a representative high level block diagram of the register renaming
circuit of the present invention.

FIG. 2 shows a representative block diagram of the data dependency check circuit
of the present invention.

FIG. 3 shows a representative block diagram of the tag assignment logic of the
present invention.

FIG. 4 shows a representative block diagram of the register port file multiplexers
of the present invention.

FIG. 5 is a representative flowchart showing a data dependency check method for
IXS1 and IYS/D in accordance with the present invention.

FIG's. 6A and 6B are representative flowcharts showing a tag assignment
method in accordance with the present invention.

FIG. 7 shows a representative block diagram which compares an instruction Y's
source/destination operand with each operand of an instruction X in accordance with
an embodiment of the present invention.

FIG. 8 shows a representative circuit diagram for comparator block 706 of FIG. 7.

FIG. 9 shows a representative block diagram of a Priority Encoder in accordance
with an embodiment of the present invention.

FIG. 10 shows a representative block diagram of the instruction scheduling logic
of the present invention.

DETAILED DESCRIPTION

FIG. 1 shows a representative high level block diagram of an Instruction
Execution Unit (IEU) 100 associated with the present invention. The goal of IEU
100 is to execute as many instructions as possible in the shortest amount of time.
There are two basic ways to accomplish this: optimize IEU 100 so that each
instruction takes as little time as possible or optimize IEU 100 so that it can execute
several instructions at the same time.

Instructions are sent to IEU 100 from an Instruction Fetch Unit (IFU, not
shown) through an instruction FIFO (first-in-first-out register stack storage device)
101 in groups of four called "buckets." IEU 100 can decode and schedule up to two
buckets of instructions at one time. FIFO 101 stores 16 total instructions in four
buckets labeled 0-3. IEU 100 looks at the an instruction window 102. In one
embodiment of the present invention, window 102 comprises eight instructions

-9.

10

15

20

25

30

35

WO 93/20505 o PCT/JP93/00375

(buckets 0 and 1). Every cycle IEU 100 tries to issue a maximum number of
instructions from window 102. Window 102 functions as a instruction buffer register.
Once the instructions in a bucket are executed and their results stored in the
processor's register file (see block 117), the bucket is flushed out a bottom 104 and a
new bucket is dropped in at a top 106.

In order to execute instructions in parallel or out of order, care must be taken so
that the data that each instruction needs is available when the instruction needs it
and also so that the result of each instruction is available for any future instructions
that might need it. A Register Rename Circuit (RRC), which is part of the scheduling
logic of the computer's IEU performs this function by locating dependencies between
current instructions and then renaming the sources (inputs) of the instruction.

As noted above, there are three types of dependencies: input dependencies, output
dependencies and anti-dependencies. Input dependencies occur when an instruction,
call it A, that performs an operation on the result of a previous instruction, call it B.
Output dependencies occur when the outputs of A and B are to be stored in the same
place. Anti-dependencies occur when instruction A comes before B in the instruction
stream and B's result will be stored in the same place as one of A's inputs.

Input dependencies are handled by not executing instructions until their inputs
are available. RRC 112 is used to locate the input dependencies between current
instructions and then to signal an Instruction Scheduler or Issuer 118 when all
inputs for a particular instruction are ready. In order to locate these dependencies,
RRC 112 compares the register file addresses of each instruction's inputs with the
addresses of each previous instruction's output using a data dependency circuit
(DDC) 108. If one instruction's input comes from a register where a previous
instruction's output will be stored, then the latter instruction must wait for the
former to finish.

This implementation of RRC 112 can check eight instructions at the same time,
so a current instruction is defined as any one of those eight from window 102. It
should become evident to those skilled in the art that the present invention can easily
be adapted to check more or less instructions.

In one embodiment of the present invention, instructions can have from 0 to 3
inputs and 0 or 1 outputs. Most instructions' inputs and outputs come from, or are
stored in, one of several register files. Each register file 117 (e.g., separate integer,
floating and boolean register files) has 32 real entries plus the group of 8 temporary
buffers 116. When an instruction completes, (The term "complete” means that the
operation is complete and the operand is ready to be written to its destination
register.) its result is stored in its preassigned location in the temporary buffers 116.
Its result is later moved to the appropriate place in register file 117 after all previous

"instructions' results have been moved to their places in the register file. This

-10-

12

10

15

20

25

- 30

35

WO 93/20505 PCT/JP93/00375

movement of results from temporary buffers 116 to register file 117 is called
"retirement” and is controlled by termination logic, as should become evident to those
skilled in the art. More than one instruction may be retired at a time. Retirement
comprises updating the "official state” of the machine including the computer's
Program Counter, as will become evident to those skilled in the art. For example, if
instruction I0 happens to complete directly before instruction I1, both results can be
stored directly into register file 117. But if instruction I3 then completes, its result

“must be stored in temporary buffer 116 until instruction I2 completes. By having

IEU 100 store each instruction's result in its preassigned place in the temporary
buffers 116, IEU 100 can execute instructions out of program order and still avoid
the problems caused by output and anti-dependencies.

RRC 112 sends a bit map to an Instruction Scheduler 118 via a bus 120
indicating which instructions in window 102 are ready for issuing. Instruction decode
logic (not shown) indicates to Issuer 118 the resource requirements for each
instruction over a bus 123. For each resource in IEU 100 (e.g., each functional unit
being an adder, multiplier, shifter, or the like), Issuer 118 scans this information and
selects the first and subsequent instructions for issuing by sending issue signals over
bus 121. The issue signals select a group of Register File Port MUXes (RPMs) 124
inside RRC 112 whose inputs are the addresses of each instruction's inputs.

Because the results may stay in temporary buffer 116 several cycles before going
to register file 117, a mechanism is provided to get results from temporary buffer 116
before they go to register file 117, so the information can be used as operands for
other instructions. This mechanism is called "result forwarding," and without it,
Issuer 118 would not be able to issue instructions out of order. This result forwarding
is done in register file 117 and is controlled by RRC 112. The control signals
neceésary for performing the result forwarding will be come evident to those skilled in
the art, as should the random logic used for generating such control signals.

If an instruction is not dependent on any of the current instructions result
forwarding is not necessary since the instruction’s inputs are already in register file
117. When Issuer 118 decides to execute that instruction, RRC 112 tells register file
117 to output its data.

RRC 112 contains three subsections: a Data Dependency Checker (DDC) 108,
Tag Assign Logic (TAL) 122 and Register File Port MUXes (RPM) 124. DDC 108
determines where the input dependencies are between the current instructions. TAL
122 monitors the dependencies for Issuer 118 and controls result forwarding. RPM
124 is controlled by Issuer 118 and directs the outputs of TAL 122 to the appropriate
register file address ports 119. Instructions are passed to DDC 108 via bus 110. All
source registers are compared with all previous destination registers for each
instruction in window 102.

-11-

10

15

20

25

30

35

40

WO 93/20505 PCT/JP93/00375

Each instruction has only one destination, which may be a double register in one
embodiment. An instruction can only depend on a previous instruction and may have
up to three source registers. There are various register file source and destination
addresses that need to be checked against each other for any dependencies. As noted
above, the eight bottom instructions corresponding to the lower two buckets are
checked by DDC 108. All source register addresses are compared with all previous

destination register addresses for the instructions in window 102.

For example, let's say a program has the following instruction sequence:
add RO, R1, R2 0)
add RO, R2, R3 (1)
add R4, R5, R2 @
add R2, R3, R4 3)

The first two registers in each instruction 0-3 are the source registers, and the
last listed register in each instruction is the destination register. For example, R0
and R1 are the source registers for instruction 0 and R2 is the destination register.
Instruction 0 adds the contents of registers 0 and 1 and stores the result in R2. For
instructions 1-3 in this example, the following are the comparisons needed to

evaluate all of the dependencies:
I1S1,11S2 vs. 10D
1281, 1282 vs. I1D, I0OD
1381, 1382 vs. 12D, I1D,I0D

The key to the above is as follows: IXRS1 is the address of source (input) number
1 of instruction X; IXRS2 is the address of source (input) number 2 of instruction X;
and IXD is the address of the destination (output) of instruction X.

Note also that RRC 112 can ignore the fact that instruction 2 is output
dependent on instruction 0, because the processor has a temporary buffer where
instruction 2's result can be stored without interfering with instruction 0's result. As
discussed before, instruction 2's result will not be moved from temporary buffers 116
to register file 117 until instructions 0 and 1's results are moved to register file 117.

The number of instructions that can be checked by RRC 112 is easily scaleable.
In order to check eight instructions at a time instead of four, the following additional

comparisons would also need to be made:
1481, 14S2 vs 13D, 12D, 11D, 10D
1581,1582 vs 14D, 13D, 12D, I1D, I0D
I6S1,16S2 vs 15D, 14D, I3D, I2D, I1D, I0D
1781, 1782 vs IeD, I5D, 14D, I3D, I2D, I1D, I0D

There are several special cases that RRC 112 must handle in order to do the
dependency check. First, there are some instructions that use the same register as
an input and an output. Thus, RRC 112 must compare this source/destination
register address with the destination register addresses of all previous instructions.

-12-

10

15

20

25

30

35

WO 93/20505 PCT/JP93/00375

So for instruction 7, the following comparisons would be necessary:
17S81,17S2,17S/D vs. 16D,15D,I4D,13D,I12D,I1D,I0D.

Another special case occurs when a program contains instructions that generate
64 bit outputs (called long-word operations). These instructions need two registers in
which to store their results. In this embodiment, these registers must be sequential.
Thus if RRC 112 is checking instruction 4's dependencies and instruction 1 is a long-
word operation, then it must do the following comparisons:

" 14S1,14S2 vs. I3D,I12D,I1D,I1D+1,I0D

Sometimes, instructions do not have destination registers. Thus RRC 112 must
ignore any dependencies between instructions without destination registers and any
future instructions. Also, instructions may not have only one valid source register, so
RRC 112 must ignore any dependencies between the unused source register (usually
S2) and any previous instructions.

RRC 112 is also capable of dealing with multiple register files. When using
multiple register files, dependencies only occur when one instruction's source register
has the same address and is in the same register file as some other instruction's
destination register. RRC 112 treats the information regarding which register file a
particular address is from as part of the address. For example, in an implementation
using four 32 bit register files, RRC 112 would do 7 bit compares instead of 5 bit
compares (5 for the address and 2 for the register file).

Signals indicating which instructions are long-word operations or have invalid
source or destination registers are sent to RRC 112 from Instruction Decode Logic
(IDL; not shown). IDL also tells RRC 112 which register file each instruction's
sources and destinations will come from or go to.

A block diagram of DDC 108 is shown in FIG. 2. Source address signals arrive
from IFIFO 101 for all eight instructions of window 102. Additional inputs include
long-word load operation ﬂags; register file decode signals, invalid destination register
flags, destination address signals and addressing mode flags for all eight instructions.

DDC 208 comprises 28 data dependency blocks 204. Each block 204 is described
in a KEY 206. Each block 204 receives 3 inputs, IXS1, IXS2 and IXS/D. IXS1 is the
address of source (input) number 1 of instruction X, IXS2 is the address of source
(input) number 2 of instruction X; and IXS/D is the address of the source/destination
(input) of instruction X. Each block 204 also receives input IYS/D, which is the
destination register address for some previous instruction Y. A top row 208, for
example, receives I0S/D, which is the destination register address for instruction 0.
Each block 204 outputs the data dependency results to one of a corresponding bus
line 114. For example, the address of I12S/D must be checked with operand addresses
S1, S2 and S/D of instructions 7, 6, 5, 4, and 3.

-13-

10

15

20

25

30

35

40

WO 93/20505 _ PCT/JP93/00375

Each block 204 performs the three comparisons. To illustrate these
comparisons, consider a generic block 700 shown in FIG. 7, which compares
instruction Y's source/destination operand with each operand of instruction X. In this

example, the three following comparisons must be made:
IXS1=IYSD
IXS2 =IYS/D
IXS/D =1YS/D

These comparisons are represented by three comparator blocks 702, 704 and
706, respectively. One set of inputs to comparator blocks 702, 704 and 706 are the
bits of the IYS/D field, which is represented by number 708. Comparator block 702
has as its second set of inputs the bits of the IXS1. Similarly, comparator block 704
has as its second set of inputs the bits of the IXS1, and comparator block 706 has as
its second set of inputs the bits of the IXS/D.

In a preferred embodiment, the comparisons performed by blocks 702, 704 and
706 can be performed by random logic. An example of random logic for comparator
block 706 is shown in FIG. 8. Instruction Y's source/destination bits [6:0] are shown
input from the right at reference number 802 and instruction X's source/destination
bits [6:0] are shown input from the top at reference number 804. The most
significant bit (MSB) is bit 6 and the least significant bit (LSB) is bit 0. The
corresponding bits from the two operands are fed to a set of seven exclusive NOR
gates (XNORs) 806. The outputs of XNORs 806 are then ANDed by a seven input
AND gate 808. If the corresponding bits are the same, the output of XNOR 806 will
be logic high. When all bits are the same, all seven XNOR 806 outputs are logic high
and the output of AND gate 808 is logic high, this indicates that there is a
dependency between IXS/D and IYS/D.

The random logic for comparator blocks 702 and 704 will be identical to that
shown in FIG. 8. The present invention contemplates many other random logic
circuits for performing data dependency checking, as will become evident to those
skilled in the art without departingr from the spirit of this example.

As will further become evident to those skilled in the art, various implementation
specific special cases can arise which require additional random logic to perform data
dependency checking. An illustrative special data dependency checking case is for
long word handling.

As mentioned before, if a long word operation writes to register X, the first 32 bits
are written to register X and the second 32 bits are written to register X+1. The data
dependency checker therefore needs to check both resisters when doing a
comparison. In a preferred embodiment, register X is an even register, X+1is an odd
register and thus they only differ by the LSB. The easiest way to check both
registers at the same time is to simply ignore the LSB. In the case of a store long

-14-

10

15

20

25

30

35

WO 93/20505 PCT/JP93/00375

(STLG) or load long (LDLG) operation, if X and Y only differ by the LSB bit [0], the
logic in FIG. 8 would cause there to be no dependency, when there really is a
dependency. Therefore, for a long word operation the STLG and LDLG flags must be
ORed with the output of the [0] bit XNOR to assure that all dependencies are
detected.

A data dependency check flowchart for IXS1 and IYS/D is shown in FIG. 5. DDC
108 first checks whether IXS1 and IYS/D are in the same register file, as shown at a
conditional block 502. If they are not in the same register file there is no dependency.
This is shown at block a 504. If there is a dependency, DDC 108 then determines
whether IXS1 and IYS/D are in the same register, as shown at a block 506. If they
are not in the same register, flow proceeds to a conditional block 508 where DDC 108
determines whether IY is a long word operation. If IY is not a long word operation
there is no dependency and flow proceeds to a block 504. If IY is a long word
operation, flow then proceeds to a conditional statement 510 where DDC 108
determines whether IXS1 and IYS/D+1 are the same register. If they are not, there
is no dependency and flow proceeds to a block 504. If IXS1 and IYS/D+1 are the
same registér, flow proceeds to a conditional block 512 where DDC 108 determines if
IY has a valid destination. If it does not have a valid destination, there is no
dependency and flow proceeds to block 504. IfIY does have a valid destination, flow
proceeds to a conditional block 514 where DDC 108 determines if IXS1 has a valid
source register. Again, if no valid source register is detected there is no dependency,
and flow proceeds to a block 504. If a valid source register is detected, DDC 108 has
determined that there is a dependency between IXS1 and IYX/D, as shown at a block
516.

A more detailed discussion of data dependency checking is found in commonly
owned, copending application Serial No. 07/860,718 (Attorney Docket No. SP041,
the disclosure of which is incorporated herein by reference.

Because it is possible that an instruction might get one of its inputs from a
register that was written to by several other instructions, the present invention
must choose which one is the real dependency. For example, if instructions 2 and 5
write to register 4 and instruction 7 reads register 4, then instruction 7 has two
possible dependencies. In this case, it is assumed that since instruction 5 came after
instruction 2 in the program, the programmer intended instruction 7 to use
instruction 5's result and not instruction 2's. So, if an instruction can be dependent
on several previous instructions, RRC 112 will consider it to be dependent on the
highest numbered previous instruction.

Once TAL 122 has determined where the real dependencies are, it must locate the
inputs for each instruction. In a preferred embodiment of the present invention, the
inputs can come from the actual register file or an array temporary buffers 116.

-15-

10

15

20

25

30

35

40

45

WO 93720505 PCT/JP93/00375

RRC 112 assumes that if an instruction has no dependencies, its inputs are all in the
register file. In this case, RRC 112 passes the IXS1, IXS2 and IXS/D addresses that
came from IFIFO 102 to the register file. If an instruction has a dependency, then
RRC 112 assumes that the data is in temporary buffers 116. Since RRC 112 knows
which previous instruction each instruction depends on, and since each instruction
always writes to the same place in temporary buffers 116, RRC 112 can determine
where in temporary buffers 116 an instruction's inputs are stored. It sends these
addresses to register file read ports 119 and register file 117 outputs the data from
temporary buffers 116 so that the instruction can use it.

The following is an example of tag assignments:
0: add 10, r1, r2
1: add 10, r2, r3
2: add r4, r5, r2
3:add r2,r3, 4

The following are the dependencies for the above operations (dependencies are

represented by the symbol "#"):
11S2#10S/D
13S1#I0S/D
13S1#12S/D
I3S2#11S/D

First, look at I0; since it has no dependencies, its tags are equal to its original

source register addresses:
10S1 TAG =10S1 =10
IOS2 TAG = IOS2 =rl
10S/D TAG =10S/D =r2

I1 has one dependency, and its tags are as follows:

" TIS1TAG=I1S1=1r0
11S2 TAG = I0S/D = t0
where: (t0 = inst. 0's slot in temporary buffer)
11S/D TAG=1I1S/D =13

12 is also independent:
12S1 TAG=12S1=r4

1282 TAG = 1282 =15
12S/D TAG =12S/D =12

13S1 has two possible dependencies, I0S/D and 12S/D. Because TAL 122 must
pick the last one (highest numbered one), I25/D is chosen.

13S1 TAG =125/D = t2
I3S2 TAG=1I1S/D =+t1

-16-

10

15

20

25

30

35

40

WO 93/20505 . PCT/JP93/00375

I3S/D TAG =13S/D =r4

These tags are then sent to RPM 124 via bus 126 to be selected by Issuer 118.
At the same time TAL 122 is preparing the tags, it is also monitoring the outputs of
DCL 130 and passing them on to Issuer 118 using bus 120. TAL 122 chooses the
proper outputs of DCL's 130 to pass to Issuer 118 by the same method that it
chooses the tags that it sends to RPM 124.

Continuing the example, TAL 122 sends the following ready signals to Issuer 118:

I0S1INFO =1
(Inst 0 is independent so it can start immediately)
I0S2 INFO =1
I0S/D INFO =1

I1IS1INFO =1
11S2 INFO= DONEI0]

(DONEI0] = 1 when 10 is done)
IISDINFO =1

I2S1INFO =1
12S2 INFO =1
I2S'DINFO =1

13S1 INFO = DONE[2]
1352 INFO = DONE[1]
13S/D READ = 1

(The DONE signals come from DCL 130 via a bus 132. In connection with the
present invention, the term "done" means the result of the instruction is in a
temporary buffer or otherwise available at the output of a functional unit.
Contrastingly, the term "terminate” means the result of the instruction is in the
register file.)

Turning now to FIG. 3, a representative block diagram of TAL 122 will be
discussed. TAL 122 comprises 8 tag assignment logic blocks 302. Each TAL block
302 receives the corresponding data dependency results via buses 114, as well as
further signals that come from the computer's Instruction Decode and control logic
(not shown). The BKT bit signal forms the least significant bit of the tag. DONE[X]
flags are for instructions 0 through 6, and indicate if instruction X is done.
DBLREGIX] flags indicates which, if any, of the instructions is a double (long) word.
Each TAL block 302 also receives its own instructions register addresses as inputs.
The Misc. signals, DBLREG and BKT signals are all implementation dependent
control signals. Each TAL block 302 outputs 3 TAGs 126 labeled IXS1, IXS2 and
IXS/D, which are 6 bits. TAL 122 outputs the least significant 5 bits of each TAG
signal to RPMs 124 and the most significant TAG to Issuer 118.

Each block 302 of FIG. 3 comprises three Priority Encoders (PE), one for S1, one

-17-

10

15

20

25

30

35

WO 93720505 : PCT/JP93/00375

for S2 and one for S/D. There is one exception however. I0 requires no tag
assignment. Its tags are the same as the original S1, S2 and S/D addresses, because
10 is always independent. ,

An illustrative PE is shown in FIG. 9. PE 902 has eight inputs 904 and eight
outputs 906. Inputs 904 for PE 902 are outputs 114 from DDC 108 which show

~ where dependencies exist. For example, in the case of source register 1 (S1), I7S1 tag

assign PE 902's seven inputs are the seven outputs 114 of DDC 108 that indicate
whether 17S1 is dependent on I6D, whether I7S1 is dependent on I5D, and so on down
to whether 1751 is dependent on I0D. An eighth input, shown at reference number
908, is always tied high because there should always be an output from PE 902.

As stated before, if an instruction depends on several previous instructions, PE
902 will select and output only the most previous instruction (in program order) on
which there is a dependency. This is accomplished by connecting the signal showing
if there is a dependency on the most previous instruction to the highest priority input
of the PE 902 and the signal showing if there is a dependency on the second most
previous instruction to the input of PE 902 with the second highest priority and so on
for all previous instructions. The input of the PE 902 with the lowest priority is
always tied high so that at least one of PE 902's outputs will be asserted.

Outputs 906 are used as select lines for a MUX 910. MUX 910 has eight inputs
912 to which the tags for each instruction are applied.

To illustrate this, assume that I7 depends on I6 and I5, then, since 16 has a higher
priority than I5, the bit corresponding to I6 at outputs 906 of PE 902 will be high. At
the corresponding input 912 of MUX 910 will be 16's tag for S1 (recall PE 902 is for
17S1). Because I7 is dependent on I6, the location of 16's result must be output from
MUX 910 so that it can be used by 17. 16's tag will therefore be selected and output
on an output line 914. I6's done flag, DONE[6] must also be output from MUX 910
so that Issuer 118 will know when I7's input is ready. This data is passed to Issuer
118 via bus 120. Since an instruction can have up to three sources, TAL 122
monitors up to three dependencies for each instruction and sends three vectors for
each instruction (totalling 24 vectors) to Issuer 118. If an instruction is independent,
TAL 122 signals to Issuer 118 that the instruction can begin immediately.

The MSB of the tag outputs which are sent to RPMs 124 is used to indicate if the
address is a register file address or a temporary buffer address. If an instruction is
independent, then the five LSB outputs indicate the source register address. For
instructions that have dependencies: the second MSB indicates that the address is
for a 64 bit valve; the third through fifth MSB outputs specify the temporary buffer
address; and the LSB output indicates which bucket is the current bucket, which is
equal to the BKT signal in TAL 122.

Like DDC 108, TAL 122 has numerous implementation dependent, (i.e., special

-18-

10

15

20

25

30

35

WO 93/20505 PCT/JP93/00375

cases) that it handles. First, in an embodiment of the present invention, register
number 0 of the register file is always equal to 0. Therefore, even if one instruction
writes to register 0 and another reads from register 0, there will be no dependency
between them. TAL 122 receives three signals from Instruction Decode Logic (IDL;
not shown) for each instruction to indicate if one of that instruction's sources is
register 0. If any of those is asserted, TAL 122 will ignore any dependencies for that
particular input of that instruction.

Another special case occurs because under some circumstances, an instruction in
bucket 0 will be guaranteed to not have any of the instructions in bucket 1 dependent
on it. A four bit signal called BKT1_NODEP_ is sent to RRC 112 from the IEU
control logic (not shown) and if BKT1_NODEP[X] = 1 then RRC 112 knows to ignore
any dependencies between instructions, 4,5,6 or 7 and instruction X.

An example for TAG assignment of instruction 7's source 1 (I7S1) is shown in a
flowchart in FIG's. 6A-6B. TAL 122 first determines whether 1751 is register 0, as
shown at a conditional block 602. If the first source operand for I7 is register 0, the
TAG is set equal to zero, and the 17S1's INFO flag is set equal to one, as shown in a
block 604. If the first source operand (S1) for I7 is not register 0, TAL 122 then
determines if I7S1 is dependent on I16S/D, as shown at a conditional block 6068. If
1781 is dependent on I65/D flow then proceeds to a block 610 where I7S1's TAG is
set equal to {1,DBLREGI6],0,1,0,BKT} and 17S1's INFO flag is set equal to DONE[6],
as shown at a block 610. If either of the condition tested at a conditional block 606 is
not met, flow proceeds to conditional block 612 where TAL 122 determines if I7S1 is
dependent on I5S/D. If there is a dependency, flow then proceeds to block 616 where
TAL 122 sets I7S1's TAG equal to {1,DBLREG(5],0,0,1,BKT} and 17S1's INFO flag
is set equal to DONE[5]. If the condition tested at block 612 is not met, flow proceeds
to a block 618 where TAL 122 determines if 17S1 is dependent on I4S/D.

As evident by inspection of the remaining sections of FIG's. 6A and 6B, similar
TAG determinations are made depending on whether 1751 is dependent on 14S/D,
I3S/D, 128/D, 11S/D and 10S/D, as shown at sections 620, 622, 624, 626 and 628,
respectively. Finally, if instruction 7 is independent of instruction 0 or if all
instructions in bucket 1 are independent of instruction 0 (i.e., if BKT1_NODEP[0] =
1), as tested at a conditional block 630, the flow proceeds to block 632 where TAL
122 sets I7S1's TAG equal to {0,I7S1} and I7S1's INFO flag equal to 1. It should be
noted for the above example that 17S1 TAG signals are forwarded directly the
register file port MUXes of register file 117. The I7S1 INFO signals are sent to
Issuer 118 to tell it when I7's S1 input is ready.

A representative block diagram of Issuer 118 is shown in FIG. 10. In a preferred
embodiment, Issuer 118 has one scanner block 1002 for each resource (functional
unit) that has to be allocated. In this example, Issuer 118 has scanner blocks FU1,

-19-

10

15

20

25

30

35

WO 93/20505 ' PCT/JP93/00375
&y

FU2, FU3, FU4 through FUn. Requests for functional units are generated from
instruction information by decoding logic (not shown) in a known manner, which are
sent to scanners 1002 via bus 123. Each scanner block 1002 scans from instruction
10 to I7 and selects the first request for the corresponding functional unit to be
serviced during that cycle.

In the case of multiple register files (integer, floating and/or boolean), Issuer 118 is
capable of issuing instructions having operands stored in different register files. For
example, an ADD instruction may have a first operand from the floating point
register file and a second operand from the integer register file. Instructions with
operands from different register files are typically given higher issue priority (i.e.,
they are issued first). This issuing technique conserves processor execution time and
functional unit resources.

In a further embodiment in which IEU 100 may include two ALU's, ALU
scanning becomes a bit more complicated. For speed reasons, one ALU scanner
block scans from I0 to I7, while the other scanner block scans from I7 to I0. This is
how two ALU requests are selected. With this scheme it is possible that an ALU
instruction in bucket 1 will get issued before an ALU instruction in bucket 0, while
increasing scanning efficiency.

Scanner outputs 1003 are selected by MUXing logic 1004. A set of SELect inputs
1006 for MUX 1004 receive three 8-bit vectors (one for each operand) from TAL 122
via bus 120. The vectors indicate which of the eight instructions have no
dependencies and are ready to be issued. Issuer 118 must wait for this information
before it can start to issue any instructions. Issuer 118 monitors these vectors and
when all three go high for a particular instruction, Issuer 118 knows that the inputs
for that instruction are ready. Once the necessary functional unit is ready, the issuer
can issue that instruction and send select signals to the register file port MUXes to
pass the corresponding instructions outputs to register file 117.

In a preferred embodiment of the present invention, after Issuer 118 is done it
provides two 8-bit vectors per register file back to RRC 112 via MUXOUTputs 1008
to bus 121. These vectors indicate which instructions are issued this cycle, are used
a select lines for RPMs 124.

The maximum number of instructions that can be issued simultaneously for each
register file is restricted by the number of register file read ports available. A data
dependency with a previous uncompleted instruction may prevent an instruction
from being issued. In addition, an instruction may be prevented from bemg issued if
the necessary functional unit is allocated to another instruction.

Several instructions, such as load immediate instructions, Boolean operations and
relative conditional branches, may be issued independently, because they may not
require resources other than register file read ports or they may potentially have no

-20-

a

10

15

20

25

WO 93/20505 PCT/JP93/00375

dependencies.

The last section of RRC 112 is the register file port MUX (RPM) section 124. The
function of RPMs 124 is to provide a way for Issuer 118 to get data out of register
files 117 for each instruction to use. RPMs 124 receive tag information via bus 126,
and the select lines for RPMs 124 come from Issuer 118 via a bus 121 and also from
the computer's IEU control logic. The selected TAGs comprise read addresses that
are sent to a predetermined set of ports 119 of register file 117 using bus 128.

The number and design of RPMs 124 depend on the number of register files and
the number of ports on each register file. One embodiment of RPMs 124 is shown in
FIG. 4. In this embodiment, RPMs 124 comprises 3 register port file MUXes 402,
404 and 406. MUX 402 receives as inputs the TAGs of instructions 0-7
corresponding to the source register field S1 that are generated by TAL 122. MUX
404 receives as inputs the TAGs of instructions 0-7 corresponding to the source
register field S2 that are generated by TAL 122. MUX 406 receives as inputs the
TAGs of instructions 0-7 corresponding to the source/destination register field S/D
that are generated by TAL 122. The outputs of MUXes 402, 404 and 406 are
connected to the read addresses ports of register file 117 via bus 128.

RRC 112 and Issuer 118 allow the processor to execute instructions
simultaneously and out of program order. An IEU for use with the present invention
is disclosed in commonly owned, co-pending application Serial No. 07/817,810 -
(Attorney Docket No. SP015/1397.0280001), the disclosure of which is incorporated
herein by reference.

While various embodiments of the present invention have been described above, it
should be understood that they have been presented by way of example, and not
limitation. Thus the breadth and scope of the present invention should not be limited
by any of the above-described exemplary embodiments, but should be defined only in
accordance with the following claims and their equivalents.

21-

WO 93/20505 PCT/JP93/00375

CLAIMS

What is claimed is:
1. A register renaming system for out-of-order execution of a set of reduced

O 00 2 & W H W N

[S = S
W N = O

W N e

instruction set computer instructions having addressable source and
destination register fields, adapted for use in a computer having an instruction
execution unit with a register file accessed by read address ports and for
storing instruction operands, the system comprising:

(a) data dependance check means for determining data dependencies
between the instructions;

(b) tag assignment means for generating one of more tags to specify
the location of operands, based on said data dependencies determined by said
data dependance check means; and '

(¢) register file port means for selecting said tags generated by said
tag assignment means and passing said tags onto the read address ports of
the register file for storing execution results.

2.The system of claim 1, wherein said data dependance check means determines

said data dependencies by comparing the addresses of the source register field
of each instruction to the addresses of the destination register fields.

3.The system of claim 1, further comprising temporary storage means for

temporarily storing out-of-order execution results, wherein said out-of-order
execution results are passed to the register files in order after execution of the
set of instructions is completed.

4.A register renaming method for performing out-of-order execution of a set of

reduced instruction set computer instructions having addressable source and
destination register fields, adapted for use in a computer having an instruction
execution unit with a register file accessed by read address ports and for
storing instruction operands, the method comprising the steps of:

(1) determining data dependencies between the instructions;

(2) performing at least one of in-order and out-of-order issuing of two
or more of the instructions in the instruction execution unit;

(83) storing, temporarily, any out-of-order results in temporary
storage means;

4) generating one or more tags to specify the location of said out-of-
order results based on said data dependencies;

(6) selecting appropriate ones of said tags corresponding to the
issued instruction; and

-22-

“

15
16
17
18

N N i AW W N k= N

oy

00 1 O W A WO

—

WO 93/20505 PCT/JP93/00375

(6) passing said selected tags onto the read address ports of the
register file for one of’ '
(1) accessing said out-of-order results; and
(ii) storing execution results.

5.The method of claim 4, wherein said determining step further comprises the step of
comparing the addresses of the source register field of each instruction to the
addresses of the destination register fields.

6.The method of claim 4, further comprising the step of storing in-order results in the
register file and the temporary storage means.
7.The method of claim 4, further comprising the step of passing said out-of-order
results to the register files in-order after execution of the set of instructions is
_ completed.

8.A method for issuing instructions in a superscalar reduced instruction set
computer having an instruction issuer system capable of issuing a plurality of
instructions in a single cycle, the system having more than one register file
sets, the method comprising the steps of:
prioritizing instructions to be issued according to the number of
different register file sets furnishing operands to the instruction; and
issuing instructions according to said prioritizing step.

9.The method according to claim 8, wherein said prioritizing step assigns a higher
priority to those instructions having operands furnished from the greater
number of register file sets.

10.An instruction issuer system in a superscalar reduced instruction set computer,

the system capable of issuing a plurality of instructions in a single cycle, the
system having more than one set of register files, the system comprising:

first means for prioritizing instructions to be issued according to
the number of different register files furnishing operands to the instruction;
and

second means, responsive to said first means, for issuing
instructions according to said priority.

11. The system according to claim 10, wherein said first means further assigns a
higher priority to those instructions having operands furnished from the greater
number of register files.

-23-

WO 93/20505 . PCT/JP93/00375

106~
3
100 | 101~ 2
< | "L102
| 0
: % j
S G i S
I~ RRC
110 12
Y ‘//’
130 108 bDC
(132
bCL ~ 3 ‘11—"‘1'4
W 122
(123)

» 118
‘1 (120
ISSUER -——-—gﬁfa/,r

I
I
|
|
|
}
|
|
|
i
-
|
I
| 1?6 !
121"4
LY : RPMS
I
l
I .
I
|
|
I
I
l
|
|

(

REGISTER
FILES

124

—128

PORTS
1197

TEMPORARY
BUFFERS

[

l

116

FIG.—1

-1/9-

WO 93/20505 PCT/JP93/00375

102
1451,52,5/D | 1551,52,5/D.]1651,52,5/D | 1751,52,5/D
H IFIFO
1051,52,5/D [1151,52,5/D [1251,52,5/D Ni351,52,5/D
=
I S VN A .1|
1= = : 10S/D
|
|
A }
,,’: | = — = 1 = - = — = - = ——}—HS/D
108 | !
i I
! =FHH=Fd=Fd=F4 =F+mrsn
i I
| |
I I
: 1=Mfag=rrrg= - = ‘—:—ISS/D
| |
| |
| |
% 5
! | == =TIl4/D
| i
| I
| |
! {
i = A= I55/D
| |
| |
I I
| | = j—-165/D
it I e LT 204
1|12 13 14 15 16 7
114 114 2(05
Y IXS1,52,5
DATA DEPENDENCY RESULTS . /P
(TO TAG ASSIGN LoGIC) |IXS1=IYS/D? [T_}-Ivs/p
IXS2=1YS/D? — -
IXS/D=IYS/D?

FIG.—2

-2/9-

WO 93/20505 PCT/JP93/00375
302 1i5
—10S1 TAG
- lostjos2os/0— 9 [jos2 Tac
TN —10S/D TAG
I 302
MISC. SIGNALS o |, 1151 TAG
BKT, DONE[0], DBLREG}O]— TAL F11S2 TAG
11S1,11S2,11S/D — —11S/D TAG
2 302
MISC. SIGNALS -, —1251 TAG
BKT, DONE[1:0], DBLREG[1:01— 1ar |-1252 TAG
1251,1252,125/D — —125/D TAG
13 302
MISC. SIGNALS o | —1351 TAG
ATA BKT, DONE[2:0], DBLREG[2:0]1— 1aL |-1352 TAG
DEPENDENCY 1351,1352,135/D — —135/D TAG
RESULTS
(FROM DDC y (302
MISC. SIGNALS —~ |, — 1451 TAG
BKT, DONE[3:0], DBLREG[3:0]— 1AL |-1452 TAG
1451,1452,145/D — —14S/D TAG
5 302
MISC. SIGNALS — —I551 TAG
BKT, DONE[4:0], DBLREG[4:0]— 1AL |-I552 TAG
I1551,1552,155/D — —155/D TAG
16 302
MISC. SIGNALS o ¢ — 1651 TAG
BKT, DONE[5:0], DBLREG[5:0]— 1A, |-1652 TAG
1651,1652,165/D — —165/D TAG
17 £ 302
MISC. SIGNALS —| —1751 TAG
BKT, DONE[6:0], DBLREG[6:0]— TAL |-17S2 TAG
1751,1752,17S/D — —17S/D TAG

FIG.—3

-3/9-

WO 93/20505 | . PCT/JP93/00375

402

” |
\ (1051 —

1St —

251

1351 —)

126 < —PORT A READ ADDRESS
1451 —]

1551 —

1651 —

121 L1781 —

A

L\ \

MUX(SELECT FROM ISL:

404

A

1052 —
1152 —
1252 — 128

1352 —
1269 15y —PORT B READ ADDRESS >——£

1982 —
16S2—
121 1752 —

MUX(SELECT FROM ISL

406
(0s/0 —~C__

11S/D —
125/D —
135/D —
14S/D —
155/D —
165/D —

1 (21 q 17s/D j/
MUX" SELECT FROM ISL '

FIG.—4

-4/9<

126 < —PORT C READ ADDRESS

/

WO 93/20505 PCT/JP93/00375

504

(
»NO DEPENDENCY
NO TN

502

ARE 1XS1 AND
IYS/D IN THE
SAM

3
REGIST?ER FiL

506

ARE IXS1 AND IS 1Y A
IYS/D_THE SAME LONG WORD
REGISTER OPERATION NO
?

DOES 1Y
HAVE A VALID
DESTINATION

?

IS IXS1 A
VALID SOURCE
REGISTER

?

NO

515\

DEPENDENT

FIG.—3

-5/9-

WO 93/20505 PCT/JP93/00375

604
602 (
IS 1751 _[17s1 186 = 0, 175t
REGISTER 0_PYrs 751 INFO = 1§
?
NO
| 5(10
% e = 1 DBLREG[6],0, 1
DEPENDENT 0 - 1AG = 1, 0,
/0 s 1751 INFO = DONE [6]
NO
616
o2 IS 1751 1751 (
DEPEND;NT 0 > :ll'Aé;KT: 1.DBLREG[5],0,0,
D _ANES 1751 INFO = DONE [5]
NO
620
/
=~ ————————— ————— -
' |
618
1751 |
IS 1751 _
DEPEND}NT 0 o .{)AgKT- 1,DBLREG[4],0,0, l
W/ A ¥Es 751 INFO = DONE [4]] |
y ‘ |
N |

INSAT%EJC%IGNS AL
NSTRUCTIONS ngr' 1,DBLREG[3],0,1,
YES INDg;ﬁgTI%ENT NO | 751 INFO = DONE [3]

WO 93/20505 . . PCT/JP93/00375

1 1
| I
| mﬂ%ﬁ%m L5 |
| 2| IN BUCKET 4 e LDBLREG[2L01
| INDEPENTDENT / NO [[7S1 INFO = DONE 2]} |
| OF 12 7 |
| YES |
- -
| |
| m#%&%m 7! |
TAG = 1,DBLREG[1],0,0,
: Yie IN BUCKET 1 1.BKT [1] :
INDEPENTDENT / NO | 1751 INFO = DONE [1]
| OFI1? N
| :
Y " " - - == —————= 1
| I
ARE ALL 1751
: SEPNIENT O NSTRUCIIONS \ | THG = 1,08LREG[0].0,0 :
| 10S/D YES mooEFPElrngENT NO | 1751 INFO = DONE [0]] |
| ' - I
| g8 N0 YES |
R -
751 TAG = 0,I7S1]
1751 INFO = 1 532

-7/9-

WO 93/20505 PCT/JP93/00375

IXS1,IXS2,IXS/D

700~
— |je1s/p
A ,
r IXS1 IXS2 Xs/p
702~ 704~ 706~

COMP. <—[YS/D COMP. |- IYS/D COMP. |- IYS/D

FIG.—7

IXS/D[6:0] (804)
AL
7 MSB SB.

daaalli

808~)
1=DEPENDENCY -

FIG.—8

-8/9-

—

[
1YS/D[6:0]
(802)

WO 93720505 PCT/JP93/00375

-9/9-

. 9c§z
) 904 906
PRIORITY
(171 OF 114)3— ENCODER S
7 { X8
908
\L(SIO
912 Uy
10-16 TAGS— 9

1751 ADDR — -
123
\\

SCANNER SCANNER SCANNER |)
FU1 FU3 FUn
SCANNER SCANNER >1002
FU2 FU4
1003 1003 1003 1003 1003
i =)
MUXING e SEL 120
MUXOUT (FROM TAL)
1004” 1006
b
121
FIG 10 (T0 RPM.)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

