发明名称

MTO 工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法

摘要

本发明涉及一种 MTO 工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法，主要解决现有耦合技术中流程设计不合理、投资较大、操作费用较高的问题。本发明通过采用一种 MTO 工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法，MTO 产品气经压缩、干燥后进入粗分离塔，包括 C2 以下及部分 C3 组分的粗分离塔顶物流进入石脑油蒸汽裂解制乙烯工艺流程中的脱乙烷塔，包括剩余部分 C3 及 C4 以上组分的粗分离塔釜物流进入 MTO 分离流程中的脱丙烷塔，脱丙烷塔釜物流进入石脑油蒸汽裂解制乙烯工艺流程中的脱轻烃塔。该技术方案较好地解决了上述问题，适用于用于低碳烯烃的生产中。
1. 一种MTO工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法。MTO产品气经压缩、干燥后进入粗分离塔，包括C2以下及部分C3组分的粗分离塔顶物流进入石脑油蒸汽裂解制乙烯工艺流程中的脱乙烷塔，包括剩余部分C3及C4以上组分的粗分离塔釜物流进入MTO分离流程中的脱丙烷塔，脱丙烷塔塔顶物流进入MTO分离流程中的丙烯精馏塔，丙烯精馏塔顶得到丙烯产品，丙烯精馏塔釜得到丙烷，脱丙烷塔釜物流进入石脑油蒸汽裂解制乙烯工艺流程中的脱丁烷塔，其中，石脑油蒸汽裂解制乙烯工艺采用前脱乙烷分离流程，依托石脑油蒸汽裂解制乙烯工艺流程得到甲烷、乙烯、乙烷、部分丙烷、部分丙烯、混合C4及C5以上组产品，从MTO工艺分离流程中得到剩余部分丙烷、剩余部分丙烯产品，通过降低石脑油进料量保持所述脱乙烷塔进料中的乙烯、丙烯流量不变。

2. 根据权利要求1所述MTO工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法，其特征在于所述粗分离塔的操作条件：温度为-20℃～10℃，压力为0.6～3.0MPaG。

3. 根据权利要求1所述MTO工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法，其特征在于所述MTO产品气中乙烯与丙烯质量比0.8～1.5：1。

4. 根据权利要求1所述MTO工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法，其特征在于所述石脑油蒸汽裂解制乙烯工艺的裂解气中丙烯与乙烯质量比0.47～0.53：1。

5. 根据权利要求1所述MTO工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法，其特征在于所述MTO工艺分离单元所需冷量由冷冻水站提供。

6. 根据权利要求1所述MTO工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法，其特征在于所述包括C2以下及部分C3组分的粗分离塔顶物流经增压后进入石脑油蒸汽裂解制乙烯工艺流程中的脱乙烷塔。
MTO 工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法

技术领域

本发明涉及一种 MTO 工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法。

背景技术

低碳烯烃，即乙烯和丙烯，是两种重要的基础化工原料，目前乙烯、丙烯主要是通过石油路线来生产。如石脑油蒸汽裂解制乙烯、丙烯技术。US 20070083071 公布了一种烃催化裂解生产乙烯、丙烯的工艺方法，经原料在催化裂解炉中转化为包括低碳烯烃的产品，然后将产品物流通过一系列工艺分离成 C2～C3 烷烃、C2～C3 烷烃、C4+ 烷烃三种物流，将 C2～C3 烷烃返回管式裂解炉进行热裂解，C4+ 烷烃返回催化裂解炉进行催化裂解，最终得到较高收率的乙烯、丙烯产品。

但由于石油资源有限的供应量及较高的价格，由石油资源生产乙烯、丙烯的成本不断增加。近年来，人们开始大力发展替代原料转化制乙烯、丙烯的技术，尤其是甲醇制烯烃（MTO）工艺，可由煤或天然气经甲醇制备低碳烯烃，降低了对石油资源的依赖度。

US6166282 中公布了一种氧化物转化为低碳烯烃的技术和反应器，采用快速流化床反应器，气相在气速较低的密相反应区反应完成后，上升到内径急速变小的快分器后，采用特殊的气固分离设备初步分离出大部分的夹带催化剂。由于反应后产物气与催化剂快速分离，有效的防止了二次反应的发生。经模拟计算，与传统的鼓泡流化床反应器相比，该快速流化床反应器内径及催化剂所需厚度均大大减少。

CN10375510A 涉及一种利用醇烃共炼技术生产丙烯的工艺，是将乙烯装置或炼油装置与醇烃共炼反应区共用分离区，实现一体化生产的工艺。

对于如何降低石脑油消耗，采用甲醇替代石脑油生产低碳烯烃，并将 MTO 工艺与蒸汽裂解制乙烯工艺有效的耦合在一起，成为研究的方向之一。现有的耦合技术均存在流程设计不合理、投资较大、操作费用较高的问题。

本发明有针对性的解决了该问题。

发明内容

本发明要解决的技术问题是现有耦合技术中流程设计不合理、投资较大、操作费用较高问题，提供一种新的 MTO 工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法。该方法用于低碳烯烃的生产中，具有流程设计合理、投资较小、操作费用较低的优点。

为解决上述问题，本发明采用的技术方案如下：一种 MTO 工艺与石脑油蒸汽裂解制乙烯工艺的耦合方法，MTO 产品汽经压缩、干燥后进入粗分离塔，包括 C2 以下及部分 C3 组分的粗分离塔顶物流进入石脑油蒸汽裂解制乙烯工艺流程中的脱乙烷塔，包括剩余部分 C3 及 C4 以上组分的粗分离塔釜物流进入 MTO 分离流程中的脱丙烷塔，脱丙烷塔塔顶物流进入 MTO 分离流程中的丙烯精馏塔，丙烯精馏塔顶得到丙烯产品，丙烯精馏塔釜得到丙烷，脱丙烷塔釜物流进入石脑油蒸汽裂解制乙烯工艺流程中的脱丁烷塔，其中，石脑油蒸汽裂解制乙烯工艺采用前脱乙烷分离流程，依托石脑油蒸汽裂解制乙烯工艺流程得到甲烷、乙
烯、乙烷、部分丙烷、部分丙烯、混合 C4 及 C5 以上烃产品，从 MTO 工艺分离流程中得到剩余部分丙烷、剩余部分丙烯产品，通过降低石脑油进料量保持所述脱乙烷塔进料中的乙烯、丙烯流量不变。

[0010] 上述技术方案中，优选地，所述预分离塔的操作条件：温度为 -20 ℃ ～ 10 ℃，压力为 0.6 ～ 3.0MPa。

[0011] 上述技术方案中，优选地，所述 MTO 产品气中乙烯与丙烯质量比 0.8 ～ 1.5：1。

[0012] 上述技术方案中，优选地，所述石脑油蒸汽裂解制乙烯工艺的裂解气中丙烯与乙烯质量比 0.47 ～ 0.53：1。

[0013] 上述技术方案中，优选地，所述 MTO 工艺分离单元所需冷量由冷冻水站提供。

[0014] 上述技术方案中，优选地，所述包括 C2 以下及部分 C3 组分的分组分离塔顶物流经增压后进入石脑油蒸汽裂解制乙烯工艺流程中的脱乙烷塔。

[0015] 本发明依托乙烯装置现有设备，用甲醇替代部分石脑油的一体化工艺方法生产乙烯产品，保证石脑油蒸汽裂解制乙烯工艺流程及设备不变，MTO 工艺流程只需要建设粗分离塔、丙烯精馏塔、脱丙烷塔、冷冻水系统，而不需建设高能耗的丙烯制冷单元、脱乙烷塔、脱甲烷塔，乙烯精馏塔，工艺流程设计合理，对于 100 ～ 120 万吨／年乙烯装置负荷 180 万吨／年 MTO 装置来说，少投石脑油 85.05 ～ 127.66 万吨／年，增产丙烯 7.96 ～ 21.01 万吨／年，同时节约 MTO 装置分离单元工程投资 4 ～ 8 亿元人民币，并降低操作费用，其中产品与原料差价可节省 25 ～ 40 亿元人民币／年，取得了较好的技术效果。

[0016] 下面通过实施例对本发明作进一步的阐述，但不仅限于本实施例。

具体实施方式

[0017] 石脑油蒸汽裂解制乙烯装置前脱乙烷工艺主要流程描述：石脑油裂解原料进入裂解炉发生蒸汽热裂解反应生成乙烯、丙烯等物料，裂解炉出口的高温裂解气物料经急冷区急冷处理，急冷后的裂解气物料经压缩区增压后的裂解气物料送脱乙烷塔，塔顶分离出 C2 和 C2 以下轻组分物料，塔釜分离出 C3 和 C3 以上重组分物料；C2 和 C2 以下轻组分物料送脱甲烷塔，塔顶分离出甲烷氢物料，塔釜分离出 C2 物料，C2 物料送乙烯精馏塔，塔顶分离出聚合级乙烯产品，塔釜分离出乙烯物料；脱乙烷塔釜物料送脱丙烷塔，塔顶分离出 C3 物料，塔釜分离出 C4 和 C4 以上重组分物料；C3 物料送丙烯精馏塔，塔顶分离出聚合级丙烯产品，塔釜分离出丙烯物料；C4 和 C4 以上重组分物料送脱丁烷塔，塔顶分离出混合 C4 物料，塔釜分离出 C5 和 C5 以上重组分物料。

[0018] MTO 装置主要流程描述：甲醇原料送 MTO 反应单元发生催化反应生成乙烯、丙烯等低碳烯烃并经急冷等预处理后成为 MTO 产品气，MTO 产品气经产品气压缩机增压后送水洗 / 碱洗塔，塔顶的产品气物料经压缩机增压后送粗分离塔，塔顶分离出含部分 C3 和 C2 以下轻组分物料，经压缩机增压后送乙烯装置的脱乙烷塔；粗分离塔釜分离出含部分 C3 和 C4 以上重组分物料送 MTO 装置的脱丙烷塔，塔顶分离出 C3 物料，塔釜分离出 C4 和 C4 以上重组分物料；C3 物料送丙烯精馏塔，塔顶分离出聚合级丙烯产品，塔釜分离出丙烯物料；C4 和 C4 以上重组分物料送乙烯装置的脱丁烷塔。

[0019] 【比较例 1】

[0020] 在如上所述的石脑油蒸汽裂解制乙烯装置上，采用前脱乙烷工艺流程，裂解气中
丙烯与乙烯的质量比为 0.47，聚合级乙烯纯度 $\geq 99.95\text{mol}\%$，乙烯产能为 120.00 万吨 /年；聚合级丙烯纯度 $\geq 99.6\text{mol}\%$，丙烯产能为 56.40 万吨 /年。

【实施例 1】

石脑油蒸汽裂解制乙烯装置采用前脱乙烷工艺流程，乙烯产能为 120 万吨 /年，裂解气中丙烯与乙烯的质量比为 0.47，新增 MTO 装置的甲醇处理规模为 180 万吨 /年，MTO 产品气中乙烯与丙烯的质量比为 1.5。采用本发明所述的耦合方法，粗分离塔的操作条件：温度为 -10°C，压力为 1.5MPaG。得到的聚合级乙烯纯度 $\geq 99.95\text{mol}\%$，聚合级丙烯纯度 $\geq 99.6\text{mol}\%$，乙烯、丙烯产量分布数据见表 1。与比较例 1 相比，少投石脑油 127.66 万吨 /年，增产丙烯 7.96 万吨 /年，节约 MTO 装置工程投资 7.88 亿元人民币，产品与原料差价可节省 39.4 亿元人民币 /年。

【比较例 2】

按照比较例 1 所述的条件和步骤，只是改变乙烯装置规模，乙烯产能为 110.00 万吨 /年，丙烯产能为 51.70 万吨 /年。

【实施例 2】

石脑油蒸汽裂解制乙烯装置采用前脱乙烷工艺流程，乙烯产能为 110 万吨 /年，裂解气中丙烯与乙烯的质量比为 0.47，新增 MTO 装置的甲醇处理规模为 180 万吨 /年，MTO 产品气中乙烯与丙烯的质量比为 1.5。采用本发明所述的耦合方法，粗分离塔的操作条件：温度为 -10°C，压力为 1.5MPaG。得到的聚合级乙烯纯度 $\geq 99.95\text{mol}\%$，聚合级丙烯纯度 $\geq 99.6\text{mol}\%$，乙烯、丙烯产量分布数据见表 1。与比较例 2 相比，少投石脑油 127.66 万吨 /年，增产丙烯 7.96 万吨 /年，节约 MTO 装置工程投资 7.88 亿元人民币，产品与原料差价可节省 39.4 亿元人民币 /年。

【比较例 3】

按照比较例 1 所述的条件和步骤，只是改变乙烯装置规模，乙烯产能为 100.00 万吨 /年，丙烯产能为 47.00 万吨 /年。

【实施例 3】

石脑油蒸汽裂解制乙烯装置采用前脱乙烷工艺流程，乙烯产能为 100 万吨 /年，裂解气中丙烯与乙烯的质量比为 0.47，新增 MTO 装置的甲醇处理规模为 180 万吨 /年，MTO 产品气中乙烯与丙烯的质量比为 0.8。采用本发明所述的耦合方法，粗分离塔的操作条件：温度为 -20°C，压力为 0.6MPaG。得到的聚合级乙烯纯度 $\geq 99.95\text{mol}\%$，聚合级丙烯纯度 $\geq 99.6\text{mol}\%$，乙烯、丙烯产量分布数据见表 1。与比较例 3 相比，少投石脑油 85.05 万吨 /年，增产丙烯 21.01 万吨 /年，节约 MTO 装置工程投资 4.11 亿元人民币，产品与原料差价可节省 25.1 亿元人民币 /年。

【实施例 4】

按照实施例 3 所述的条件和步骤，只是 MTO 产品气中乙烯与丙烯的质量比为 0.9。采用本发明所述的耦合方法，粗分离塔的操作条件：温度为 10°C，压力为 3.0MPaG。得到的聚合级乙烯纯度 $\geq 99.95\text{mol}\%$，聚合级丙烯纯度 $\geq 99.6\text{mol}\%$，乙烯、丙烯产量分布数据见表 1。与比较例 3 相比，少投石脑油 92.18 万吨 /年，增产丙烯 18.72 万吨 /年，节约 MTO 装置工程投资 4.98 亿元人民币，产品与原料差价可节省 27.4 亿元人民币 /年。

【实施例 5】
按照实施例 3 所述的条件和步骤，只是 MTO 产品气中乙烯与丙烯的质量比为 1.0。采用本发明所述的耦合方法，分组合塔的操作条件：温度为 5℃，压力为 2.5MPa。得到的聚合级乙烯纯度 ≥ 99.95mol%，聚合级丙烯纯度 ≥ 99.6mol%，乙烯、丙烯产量分布见表 1。与比较例 3 相比，少投石脑油 99.09 万吨/年，增产丙烯 16.64 万吨/年，节约 MTO 装置工程投资 5.26 亿元人民币，产品与原料差价可节省 29.7 亿元人民币/年。

按照实施例 3 所述的条件和步骤，只是 MTO 产品气中乙烯与丙烯的质量比为 1.2。采用本发明所述的耦合方法，分组合塔的操作条件：温度为 0℃，压力为 2.2MPa。得到的聚合级乙烯纯度 ≥ 99.95mol%，聚合级丙烯纯度 ≥ 99.6mol%，乙烯、丙烯产量分布见表 1。与比较例 3 相比，少投石脑油 111.88 万吨/年，增产丙烯 12.88 万吨/年，节约 MTO 装置工程投资 5.95 亿元人民币，产品与原料差价可节省 34.1 亿元人民币/年。

按照实施例 3 所述的条件和步骤，只是 MTO 产品气中乙烯与丙烯的质量比为 1.5。采用本发明所述的耦合方法，分组合塔的操作条件：温度为 -15℃，压力为 1.0MPa。得到的聚合级乙烯纯度 ≥ 99.95mol%，聚合级丙烯纯度 ≥ 99.6mol%，乙烯、丙烯产量分布见表 1。与比较例 3 相比，少投石脑油 127.66 万吨/年，增产丙烯 7.96 万吨/年，节约 MTO 装置工程投资 7.88 亿元人民币，产品与原料差价可节省 39.4 亿元人民币/年。

表 1

<table>
<thead>
<tr>
<th>MTO 装置</th>
<th>实施例 1</th>
<th>实施例 2</th>
<th>实施例 3</th>
<th>实施例 4</th>
<th>实施例 5</th>
<th>实施例 6</th>
<th>实施例 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>乙烯/丙烯比（质量）</td>
<td>1.5</td>
<td>1.5</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>乙烯产量（万吨/年）</td>
<td>40.44</td>
<td>40.44</td>
<td>26.94</td>
<td>29.20</td>
<td>31.39</td>
<td>35.44</td>
<td>40.44</td>
</tr>
<tr>
<td>丙烯产量（万吨/年）</td>
<td>26.97</td>
<td>26.97</td>
<td>33.67</td>
<td>32.44</td>
<td>31.39</td>
<td>29.54</td>
<td>26.97</td>
</tr>
<tr>
<td>脱附能耗（万吨/年）</td>
<td>180.00</td>
<td>180.00</td>
<td>180.00</td>
<td>180.00</td>
<td>180.00</td>
<td>180.00</td>
<td>180.00</td>
</tr>
<tr>
<td>乙烯装置</td>
<td>乙烷产量（万吨/年）</td>
<td>79.56</td>
<td>69.56</td>
<td>73.06</td>
<td>70.80</td>
<td>68.61</td>
<td>64.56</td>
</tr>
<tr>
<td>丙烯产量（万吨/年）</td>
<td>37.39</td>
<td>32.69</td>
<td>34.34</td>
<td>33.28</td>
<td>32.25</td>
<td>30.34</td>
<td>27.99</td>
</tr>
<tr>
<td>脱附油耗（万吨/年）</td>
<td>251.16</td>
<td>219.59</td>
<td>230.64</td>
<td>223.51</td>
<td>216.59</td>
<td>203.81</td>
<td>188.02</td>
</tr>
<tr>
<td>MTO 与乙烯装置耦合</td>
<td>乙烯总产量（万吨/年）</td>
<td>120.00</td>
<td>110.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
<tr>
<td>丙烯总产量（万吨/年）</td>
<td>64.36</td>
<td>59.66</td>
<td>68.01</td>
<td>65.72</td>
<td>63.64</td>
<td>59.88</td>
<td>54.96</td>
</tr>
<tr>
<td>增产丙烯（万吨/年）</td>
<td>7.96</td>
<td>7.96</td>
<td>21.01</td>
<td>18.72</td>
<td>16.64</td>
<td>12.88</td>
<td>7.96</td>
</tr>
<tr>
<td>少投石脑油（万吨/年）</td>
<td>127.66</td>
<td>127.66</td>
<td>85.05</td>
<td>92.18</td>
<td>99.09</td>
<td>111.88</td>
<td>127.66</td>
</tr>
<tr>
<td>节省投资（亿元）</td>
<td>7.88</td>
<td>7.88</td>
<td>4.11</td>
<td>4.98</td>
<td>5.26</td>
<td>5.95</td>
<td>7.88</td>
</tr>
<tr>
<td>节省运行费用（亿元/年）</td>
<td>39.4</td>
<td>39.4</td>
<td>25.1</td>
<td>27.4</td>
<td>29.7</td>
<td>34.1</td>
<td>39.4</td>
</tr>
</tbody>
</table>