PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 0 : (11) International Publication Number: WO 98/47259
HO4L 9/00 A2 . i

(43) International Publication Date: 22 October 1998 (22.10.98)

(21) International Application Number: PCT/US98/04621 | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 9 March 1998 (09.03.98)
Published
(30) Priority Data: Without international search report and to be republished
08/813,459 10 March 1997 (10.03.97) US upon receipt of that report.

(71)(72) Applicants and Inventors: FIELDER, Guy, L. [US/US],
1900 Robin Road Trail, Austin, TX 78703 (US). ALITO,
Paul, N. {US/US]; 7011 Tesoro Trail, Austin, TX 78729
(us).

(74) Agent: LESTER, Gerald, E.; Law Offices of Gerald E. Lester,
22107 Fielder, Katy, TX 77450 (US).

(54) Title: FILE ENCRYPTION METHOD AND SYSTEM
(57) Abstract

A file security system is disclosed in which both a deterministic, non—predictable, pseudo-random, symmetric encryption key and
an encrypted information file are highly resistant to cryptographic analysis or brute force trial-and—error attacks. The encryption key is
formed by first combining a constant value and a secret E-Key Seed in accordance with a logic function to shuffle bits and perform a
first many—to—few bit mapping to provide a first pseudo-random result, and by operating upon the result with a secure one-way hash
algorithm to perform a second many—to—few bit mapping and thereby provided a pseudo-random message digest. The message digest may
be truncated to provide a deterministic encryption key. The information file to be protected is then encrypted with the encryption key, and
thereafter the encryption key is destroyed by the file manager of the host system. The encrypted information file and the constant value then
are concatenated, and the result is operated upon by a secure hash algorithm to provide a message integrity code. The constant value and a
constant value checksum are inserted as headers at the beginning of the encrypted file, and the message integrity code, a redundant constant
value, and a redundant constant value checksum are added as trailers at the end of the encrypted file. Any alteration of the encrypted
file is reflected by the message integrity code. If a comparison of the constant value and redundant constant value indicates a match, the
encryption key may be regenerated. If no match occurs, the checksums are tested to determine which of the constant value and redundant
constant value is correct in order to regenerate the encryption key.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG

CI
CcM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho SI Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco D Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania UG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Italy MX Mexico UZ Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway w Zimbabwe
Cote d'Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

15

35

40

45

WO 98/47259 PCT/US98/04621

FILE ENCRYPTION METHOD AND SYSTEM
FIELD OF THE INVENTION

The invention relates generally to a method and system for protecting an information file
from unauthorized access, and more specifically to the encryption of a message or file in
accordance with a deterministic encryption key which is highly resistant to discovery through
brute force attack or cryptographic analysis, and which obviates the need for key directories or
other permanent key management records.

RELATED APPLICATIONS

Copending applications filed on the same date and having same inventors are “Secure
Deterministic Encryption Key Generator System and Method”, Serial No.
“Bilateral Authentication And Information Encryption Token System And Method”, Serlal
No. ; and “Bilateral Authentication And Encryption System”, Serial No.

BACKGROUND OF THE INVENTION

When computer systems were comprised of a mainframe central processing unit (CPU)
and a number of dumb terminals, data file protection consisted of protecting against
unauthorized access to the CPU, since all sensitive information resided in CPU memory. With
the introduction of the personal computer (PC), a migration to local computing through the use
of centralized host/server systems began. Again, the conventional wisdom was that sensitive

information could be protected by guarding against unauthorized access to the host/server
system.

Both desktop and laptop PCs over the past few years have rapidly increased their
computing power, and have rapidly increased their local storage capacity due to the falling cost
per megabyte of hard disk memory. The mobility of PCs through use of cellular as well as cable
networks, the shift from centralized host/server systems to distributed systems, and the
interconnection of LANs (local area networks), WANs (wide area networks), and the Internet

have further exacerbated the problem of protecting sensitive information in such a decentralized
environment.

The most widely accepted method of protecting information stored in a computer system
or communicated over networks is the use of data encryption. Data encryption technology is
basically classified into two technology types: symmetric or asymmetric. An example of a
symmetric encryption key is provided in the Data Encryption Standard, FIPS PUB 46-2; DATA
ENCRYPTION STANDARD (DES), 1993 December 30. The RSA encryption technology

named for its inventors, Rivest, Shamir, and Adleman, is an example of asymmetric or public
key encryption.

Symmetric encryption uses the same key to both encrypt and decrypt an information file.
Asymmetric encryption uses two keys which share a relationship such that information
encrypted with one key can be decrypted only with the second key. Symmetric encryption is

30

40

45

WO 98/47259 PCT/US98/04621

much faster than asymmetric encryption, and is therefore better suited for bulk encryption of
data files.

Encryption algorithms are characterized as being either reversible or irreversible.
Symmetric and asymmetric encryption algorithms are reversible. A reversible algorithm is one
where data is recoverable from its encrypted state back to its cleartext state. An example of an
irreversible algorithm is the secure hash algorithm as defined in FIPS PUB 180-1, SECURE
HASH STANDARD (SHS), 1995 April 17. Secure hash algorithms were originally used to
detect alterations to an information file, whether intentional or unintentional. It is not surprising,
therefore, that the output of the algorithm is called a message integrity code (MIC) or message
digest (MD). Other characteristics of hash algorithms are that the output is always the same
binary length regardless of the size of the input. Thus, an input having a large binary length may
be mapped to an output having a shorter binary length. Further, if only one bit in a message or
file is changed, approximately 50% of the bits in the output change. There is no known
relationship between the input and output of a hash algorithm which may be used to recover the

input from the output. Thus, even brute force trial-and-error attacks become prohibitive in time
and cost.

Encryption keys may in addition be classified as deterministic or non-deterministic. A
deterministic encryption key is one which is repeatable each time a specific input is applied to
the encryption key generator. Different inputs produce different outputs. A non-deterministic
encryption key is one which cannot be repeated with a same input to the encryption key
generator. For example, a random number generator provides a non-deterministic result.

File encryption methods and systems are disclosed in U.S. Patent Nos. 5,421,006;
5,065,429; 5,309,516 and 5,495,533. U.S. Patent No. 5,421,006 discloses the use of an integrity
verification system, but does not disclose the generation of a substantially irreversible and
decterministic encryption key, the use of many-to-few bit mapping, or the recovery of constant
value headers. U.S. Patent No. 5,065,429 does not disclose the generation of a substantially
irreversible and deterministic encryption key, a message integrity code, or the use of many-to-
few mapping of bits. U.S. Patent No. 5,309,516 does not employ file headers, provide for the
checking of the integrity of the encrypted files and headers, or use a many-to-few bit mapping in
its key generation to frustrate brute force attacks. U.S. Patent No. 5,495,533 discloses the use of
file headers, file trailers, and a message authentication check field in the header to protect against
any modifications to the header fields. The patent does not disclose the use of the file header in
the generation of an encryption key, the generation of a deterministic but non-predictable
symmetric encryption key, or the use of file trailers at the end of an encrypted message file to
authenticate the encrypted message file header.

General information related to file encryption techniques may be found in “Applied
Cryptography”, by Bruce Schneier, John Wiley & Sons, Inc., 1996; and “Cryptography: A New
Dimension In Computer Data Security”, by Meyer and Matyas, John Wiley & Sons, Inc., 1982.

In the present invention, a constant value associated with an information file and a
checksum are each stored in the header of the file. The constant value and a secret E-Key Seed
are used to generate a deterministic but non-predictable, pseudo-random, symmetric encryption
key which obviates the need for key directories or other key records to recover the key. The key
generation method which is used employs two many-to-few bit mappings to make the encryption
key highly resistive to brute force trial and error attacks, and a secure hash function which

[88)
i

40

45

WO 98/47259 PCT/US98/04621

produces a message digest of constant binary length (no matter the binary length of the input) to
dcfeat any attempt to discover the inputs necessary to regenerate the key. The information file
thereafter is encrypted with the deterministic encryption key which is destroyed upon use, and
the encrypted information file and constant value are concatenated and operated upon by a secure
hash function to produce a message integrity code (MIC). The MIC, a redundant constant value,
and a redundant checksum are stored as trailers to the encrypted information file, and are used to

verify the integrity of the encrypted information file and file header, and to recover a corrupted
constant value.

SUMMARY OF THE INVENTION

A method and system is disclosed for protecting sensitive information files and
messages from access by unauthorized parties, whether stored in a computer memory or
exchanged over a transfer medium between sending and receiving stations.

Each document or message file is created in normal operation. A constant value or
message 1s logically combined to a secret bit sequence (E-Key Seed) to perform a many-to-few
bit mapping which shuffles the bits and provides a pseudo-random result. The result then is
applied through a secure hash function generator to perform a second many-to-few bit mapping
and provide a pseudo-random message digest. The message digest in turn may be truncated to a
desired bit length to provide a deterministic but non-predictable, pseudo-random, symmetric
encryption key which is used to encrypt the message or information file to be protected. The
deterministic encryption key is destroyed immediately after use. The constant value and
encrypted message thereupon are secure hashed to create a message integrity code (MIC) that is
used to detect any alterations to the encrypted information file that may have occurred
intentionally or unintentionally.

In one alternative embodiment of the invention, both a constant value and a checksum
bit sequence are added as a header at the beginning of an encrypted file, and a redundant constant
value and checksum bit sequence are added after the message integrity code as a trailer at the end
of the encrypted file to accommodate recovery of a constant value that may have been corrupted.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects, features and advantages of the present invention will become
apparent from the following detailed description when read in conjunction with the
accompanying drawings in which:

Figure | is a functional block diagram of an encrypted file transmission system of which
the present invention is a part;

Figure 2 is a graphical illustration of a formatted encrypted file used in the system of
Figure 1:

20

40

45

WO 98/47259 PCT/US98/04621

Figure 3 is a logic flow diagram of a method of generating a symmetric, and
deterministic but non-predictable encryption key in accordance with the invention by using a
constant value associated with the formatted encrypted message of Figure 2 and a secret
sequence of plural bits (E-key seeds); ’

Figure 4 is a logic flow diagram of a method for developing a message integration code
(MIC);

Figure 5 is a plan illustration of a message file format which provides message integrity
protection, constant value recovery, and encryption key regeneration; and

Figure 6 is a graphical illustration of the data fields making up a cleartext constant value
as used in the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

Preferred embodiments of the invention will now be described with reference to the
accompanying drawings.

The term “pseudo-random” as used in this specification means that the output referred to
is repeatable and predictable to anyone who knows the E-Key Seed input to the function
producing the output. Without such knowledge, the output appears to be totally random.

The term “concatenation” means that one bit field is juxtaposed to another.

Referring to Figure 1, a first station 1 which may comprise a personal computer,
workstation, or server desires to transfer information by way of a transmission medium 2 to a
second station 3. The medium 2, by way of example, may be a LAN, WAN, VAN (value added
network such as MCI or Sprint), or TELCO (telephone exchange) communication link, the
Internet, a local intranet, or a wireless cellular phone link. The station 3 also may be a personal
computer, workstation, server, or other computing device able to execute software code.

In order to protect the confidentiality of the file to be transferred by station 1 to station 3,
conventional systems encrypt the file using an encryption key known by both the sender at
station | and the receiving party at station 3. If the encryption key is generated through a weak
cryptographic process and shared, the encrypted information may be revealed to a third party
through cryptographic analysis. Further, if the key holder becomes unavailable prior to
disclosing the encryption key to the receiving party, the encrypted information will be useless to
the receiving party.

Referring to Figure 2, a data file 10 is shown with a constant vaiue 11, a message
integrity code (MIC) 12, and an encrypted information area 13. In accordance with the
invention, the constant value is in cleartext (not encrypted) to accommodate normal file
administration processes. An encryption key is generated from the constant value and a secret E-
Key Seed, and the message to be transmitted is encrypted through use of the key. A message
integrity code 12 thereafter is formed by performing a secure hash on the constant value 1 i and
the encrypted message appearing in area 13 as will be more particularly described beiow.

35

WO 98/47259 PCT/US98/04621

The benefits resulting from the above method are that the message cannot be altered in
any way without causing a change in the MIC 12, and that even when the integrity code indicates
that the message has been altered, neither the encryption key to the encrypted message, nor the
message itself has been compromised. '

A further degree of security is added by using a strong cryptographic method to generate
the encryption key. Referring to Figure 3, an E-Key Seed 20 and constant value 11 are fed
through a bit shuffling function generator 21 that executes, by way of example and not
limitation, the logic function A @ B = C, where A is the E-Key Seed 20 and B is the constant
value I1. The bits of the E-Key Seed 20 and the constant value 11 thereby are randomly mixed
and mapped from a large binary length to a smaller binary length. The bit shuffling algorithm
continues to shuffle bits by wrapping the smaller of the inputs with the larger of the inputs until
all bits of the larger input have been processed. The result C is applied as an input to a secure
hash function generator 22 to produce a message digest 23. The hash algorithm performed by
the function generator 22 provides a deterministic but non-predictable result. That is, the
cncryption key may be used to both encrypt and decrypt information files, and when a same
input is used, the same encryption key is generated. However, even when the constant value is
known, the encryption key that results from the bit shuffling and hashing cannot be predicted.
The output changes dramaticaily, however, if even one bit of the input is changed.

The hash function may be any of the well-known hash functions including those set forth
in Table | below. In the preferred embodiment, the SHA or secure hash algorithm is used.

Table 1

HASH FUNCTION HASH LENGTH
Abreast Davies-Meyer (with IDEA) 128
Davies-Meyer (with DES) 64
GOST Hash 256
HAVAL Variable
MD5 128
N-HASH 128
RIPE-MD 128
FIPS 180-1 (SHA) 160
SNEERU 128

The message digest 23 may be truncated to provide a deterministic, non-predictable,
pseudo-random, symmetric encryption key 24 which has a desired bit length. In the preferred
embodiment, the desired bit length may be less than or equal to the bit length of the message
digest 23. However, an alternative embodiment would perform multiple passes of the key
generator operation and concatenate each pass to the previous pass(es) to create a key length
greater than the message digest length normally created by the hash function. The input can be a
designated part of the message digest output, an interim logic function value, or the constant

value input can be divided into the number of parts which would create a key of the desired
length. '

10

~J
wn

35

40

45

WO 98/47259 PCT/US98/04621

It is to be understood that the bit-shuffling operation performed by the function gencrator
21 of Figure 3, where two functions are combined to shuffle bits, could include numerous

algebraic or logic functions which are executed in series to further protect the E-Key Seed from
being discovered.

Referring to Figure 4, the deterministic, regenerative encryption key thus formed is used
to encrypt the message or information file 13 that is to be protected. More particularly,
information file 13 is applied to an encryption processor 30 where the deterministic encryption
key 24 is used to encrypt the file. The encrypted file at the output of processor 30 is
concatenated with the constant value 11, and the result is applied to a secure hash function

generator 31 to create the message integrity code (MIC) 12 to detect alterations to the encrypted
information file.

Reterring to Figure 5, in an alternative embodiment of the invention, a bit sequence
checksum 40 such as, by way of example, a CRC-16 checksum, is performed on the constant
value 11 and added after the constant value at the beginning of an encrypted information file 41,
and a redundant constant value 42 and redundant checksum 43 are added after the message
integrity code 12 at the end of the encrypted information file 41. The message integrity code 12
thus is formed from the first constant value but not the redundant constant value. If a test of the
message integrity code (regeneration of the MIC by the process set forth in Figure 4 followed by
a comparison of MIC codes) indicates that the message integrity is lost, the constant value |1
and redundant constant value 42 are compared. If they match, the encryption key can be
regenerated by using the constant value 11 and E-Key Seed as before described in connection
with the description of Figure 3. If not, the checksum 40 and redundant checksum 43 are tested
to determine which constant value is correct.

[f both the checksum 40 and the redundant checksum 43 fail to indicate a correct
constant value, the user can read the cleartext constant value and cognitively correct errors.
Corrections can be compared against the checksum until there is a match. If the constant value

cannot be recovered, however, the encryption key cannot be regenerated and the encrypted
information file is lost.

Figure 6 shows the various bit fields that could make up a constant value 11. A length
byte 50 indicates the total number of bytes in the constant value 11. The length byte is nccessary
because a number of the remaining bit fields of the constant value are of variable length.
Following the length byte 50 is the E-Key Seed ID 51 which is used as a table look-up tag
associated with the corresponding E-Key Seed stored in an E-Key Seed table. When the constant
value 11 is first being formed, the E-Key Seed ID is automatically entered as that of the host
system. A user is prompted, however, to either accept the ID or assign another. In this manner,
files may be shared between PCs, workstations, and workgroups that normally use different E-
Key Seeds. The encryption algorithm 52 is optional to accommodate communication
interoperability between parties that normally use different encryption algorithms.

The original file extension 53 is used to keep track of the extension to the file so that it
can be restored to its original state as recognized by the application program which created the
file. That is, when a file is encrypted, the file is assigned a new extension so that the file manager
can track the file. The next occurring bit field is the author/owner field 54 that identifies the
author or owner of a file and thereby accommodates archival searches. The summary
information field 55 is used by either the encryption file manager or the user. Because the

25

30

35

40

45

WO 98/47259 PCT/US98/04621

constant value is concatenated to the encrypted file in cleartext, it can be used to assist in the

management of the sensitive files without requiring the file to be decrypted to disclose actual
contents.

The audit entry field 56 is a field created by the file manager and is used to audit
compliance with security policies without risking exposure of sensitive information or invading
an employce’s privacy. The checksum field 57 is a simple CRC-16 translation of the constant
value in its final form. A CRC-32 or other error correction algorithm could be used as well.

Once the CRC-16 calculation is completed and the result is added to the file header after
the constant value 11 as illustrated in Figure 5, the constant value header of the file cannot be
changed without the user answering encrypted file manager prompts. It is to be understood that
once the constant value is used to create an encryption key, any change will result in a different
key and the file will not be decipherable.

In accordance with the invention, a cleartext constant value is added at the beginning of
an information file that is to be protected. The constant value and a secret E-Key Seed are
combined by one or more logic and/or algebraic functions to provide a bit shuffling and a
mapping of a large number of bits to fewer bits. The result is operated upon by a secure hash
algorithm which provides a message digest which has a constant bit length output for any input,
and which may be truncated to provide a deterministic, non-predictable, pseudo-random,
symmetric encryption key which is not predictable. The encryption key so formed is used to
encrypt the information file, and thereafter is destroyed. The encrypted information file and the
constant value then are concatenated and operated upon by a secure hash algorithm to produce a
message integrity code or MIC that is stored as a trailer after the end of the encrypted
information file. A checksum of the constant value is calcuiated and added to the header of the
information file after the constant value, and a redundant constant value and a redundant
checksum are added as trailers after the MIC. The MIC is used to detect any alterations to the
encrypted information file, and the checksums are used to recover the constant value in the event
that either the constant value or the redundant constant value is corrupted.

Although particular embodiments of the invention have been described and illustrated
herein, it is recognized that modifications and variations may readily occur to those skilled in the
art, and consequently it is intended that the claims be interpreted to cover such modifications,
variations, and equivalents. For example, the constant value 11 may be a random number or file
name extension, the operand used in the bit-shuffling function generator 21 could be any
algebraic, logical or encryption operand, plural bit shuffling function generators could be used
before and after the secure hash function generator 22 in generation of an encryption key as
illustrated in Figure 3, and any hash function including those set forth in Table | may be the
operand for the secure hash function generator 22.

The present invention has been particularly shown and described in detail with reference to
preferred embodiments, which are merely illustrative of the principles of the invention and are
not to be taken as limitations to its scope. Further, it will be readily understood by those skilled
in the art that numerous changes and modifications may be made without departing trom the
spirit of the invention. For example, numerous cycles could be made through the logic flow
process illustrated in Figure 3 to increase the bit length of the deterministic encryption key cycle
by cycle.

20

40

45

WO 98/47259 PCT/US98/04621

WHAT IS CLAIMED IS:

1. A method of protecting an information file from unauthorized access, which
comprises the following steps:

concatenating a constant value to a beginning of said information file;

combining said constant value and a secret plural bit sequence in accordance with an
algebraic function to shuffie bits, perform a first many-to-few bit mapping, and form a first
pseudo-random result;

performing a secure hash operation on said first pseudo-random result to effect a second
many-to-few bit mapping and form a second pseudo-random result;

extracting a deterministic, non-predictable, pseudo-random, symmetric encryption key
from said second pseudo-random result;

encrypting said message file in accordance with said deterministic, non-predictable,
pseudo-random, symmetric encryption key to form an encrypted information file; and

destroying said deterministic, non-predictable, pseudo-random, symmetric encryption

key.
2. The method set forth in Claim 1 above further including the steps of:
combining said encrypted message and said constant value to form a concatenation;
performing a secure hash operation on said concatenation to form a message integrity
code;

performing a checksum bit sequence operation on said constant value to form a first
checksum;

interjecting said first checksum between said constant value and said encrypted
information file; and

adding as a trailer at the end of said encrypted message said message integrity code, said
constant value and said checksum.

3. The method of Claim 1 wherein said step of combining includes a plurality of
algebraic equations.

4. The method of Claim 1 wherein said step of combining includes a plurality of logic
cquations.

5. The method of Claim 1 wherein said step of combining includes a plurality of
cryptographic equations.

WO 98/47259 PCT/US98/04621

6. The method of Claim 1 further including the steps of:

combining said encrypted message and said constant value to form a concatenation;

S
performing said secure hash operation on said concatenation to form a message integrity
code;
adding said message integrity code as a trailer after said encrypted information filc;
10
performing a checksum bit sequence operation on said constant value to form a first
checksum;

adding said first checksum after said constant value;

adding a redundant constant value to said trailer at an end of said encrypted information
file after said message integrity code;

performing a checksum bit sequence on said redundant constant value to form a second
20 checksum;

adding said second checksum to said trailer at said end of said encryption information
filc after said redundant constant value;

t~3
v

testing said message integrity code to determine whether information file integrity has
been lost;

if information file integrity has not been lost, comparing said constant value with said
redundant constant value to determine whether a match occurs to indicate that said deterministic
30 cncryption key may be regenerated; and

if information file integrity has been lost, testing said first checksum and said second

checksum to determine which of said constant value and said redundant constant value is correct;
and

rcgenerating said deterministic encryption key by using a correct one of said constant
value and said redundant constant value.

7. The method of Claim 1, wherein said secret plural bit sequence has a binary length
40 that is larger than that of said constant value.

8. The method of Claim 2, wherein said checksum bit sequence operation is a CRC-16
checksum operation.

45 9. The method of Claim 2, wherein said checksum bit sequence operation is a CRC-32
checksum operation.

10. The method set forth in Claim 1, wherein said constant value is a data file having
plural bit fields including a length byte field, an E-Key Seed ID field, an encryption algorithm

25

30

40

45

WO 98/47259 PCT/US98/04621

field, an original file extension field, an author-owner field, a summary information field, an
audit entry field, and a constant value field.

I'1. An information file structure stored on a memory system for protecting information
exchanged between communication stations, which comprises:

a constant value field concatenated to a beginning of said information file structure for
storing a constant value, and a first checksum field for storing a checksum generated by
performing a checksum bit sequence operation on said constant value;

an encrypted information file area for storing an encrypted information file which has
been formed through use of an encryption key formed by combining said constant value and a
secret E-Key Seed in accordance with an algebraic equation and performing a secure hash
operation on an output of said algebraic equation; and

a plural bit trailer having a message integrity code field for storing a message integrity
code which is generated by forming a concatenation of said constant value and said encrypted
information file and operating upon said concatenation with said secure hash operation.

10

WO 98/47259 PCT/US98/04621

1/4

S

STATION1 |e ~= » STATION2
FIG. 1
10

] CONSTANT
VALUE
MESSAGE 12
._\§~_/
13 INTEGRITY |
CODE

FIG. 2

WO 98/47259

2/4

20

E-KEY SEED

PCT/US98/04621

L

CONSTANT VALUE

o

BIT SHUFFLING
FUNCTION GENERATOR

21
L~

y

SECURE HASH
FUNCTION GENERATOR

22

St

&23

MESSAGE DIGEST

t— DETERMINISTIC ENCRYPTION KEY

24

FIG. 3

WO 98/47259 PCT/US98/04621

3/4
1
-
/"
MESSAGE - 13 CONSTANT VALUE
30
\\ ENCRYPTION PROCESSOR
WITH
DETERMINISTIC KEY - 24
31
SECURE HASH
OPERATION
12
MiC

FIG. 4

WO 98/47259 PCT/US98/04621
4/4
10
y. / -
VALUE |CHECKSUM | oyoovoren —
INFORMATION
FILE
MESSAGE | REDUNDANT
INTEGRITY | CONSTANT %E‘_%(’:":(Dsm;
CODE VALUE
12 42 43
50 51 52 53 54 55 56 57
LENGTH| EKEY |ENCRypTioN| ORIGINAL | AUTHORZ) ~ SUMMARY —| AUDIT | oy,
BYTE | SEED ID | ALSORITIM FILE OWNER | INFORMATION | ENTRY N
EXTENSION | FIELD FIELD FIELD

FIG. 6

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

