

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(10) International Publication Number

WO 2018/115263 A1

(43) International Publication Date

28 June 2018 (28.06.2018)

(10) International Publication Number

WO 2018/115263 A1

(51) International Patent Classification:

A63H 17/26 (2006.01) A63H 19/22 (2006.01)

(74) Agent: GUARDIAN IP CONSULTING I/S; Diplomvej, Building 381, 2800 Kgs. Lyngby (DK).

(21) International Application Number:

PCT/EP20 17/084058

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:

21 December 2017 (21.12.2017)

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

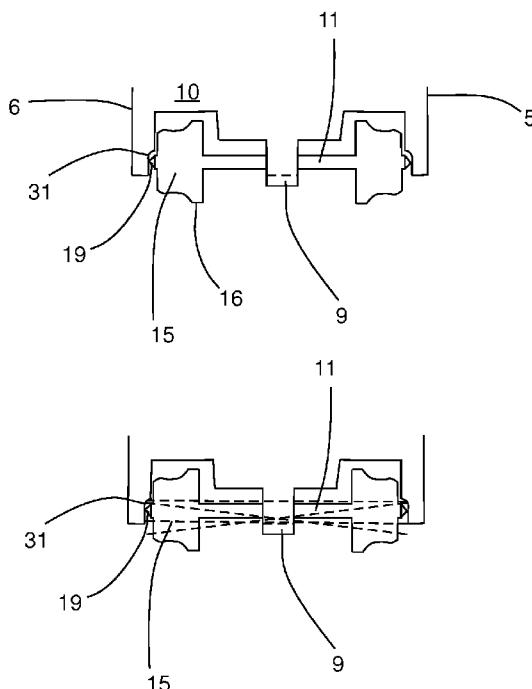
(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:


PA20167103 1 22 December 2016 (22.12.2016) DK

(71) Applicant: LEGO A/S [DK/DK]; Aastvej 1, 7190 Billund (DK).

(72) Inventor: RYAA, Jan; Ksrvej 423, 7190 Billund (DK).

(54) Title: A TOY VEHICLE ADAPTED FOR RUNNING ON RAILS AND A TOY CONSTRUCTION SYSTEM

FIG. 4

(57) Abstract: A toy vehicle (1) configured for running on rails (21), the toy vehicle (1) comprises a chassis (10) comprising a first end (3) and a second end (4), two side faces (5,6) extending in the longitudinal direction of the toy vehicle (1) and a top portion (7), the toy vehicle comprising at least two axles (11) comprising a wheel (15) wherein the chassis (10) comprises oblong recesses (31) positioned on the inner surface of the chassis, the oblong recesses (31) adapted to obtain a protrusion (19) of a wheel (15) or an end portion of the at least two axles (11), the chassis (10) comprising two or more axle support arms (9) adapted to support the at least two axles (11), the two or more axle support arms (9) being adapted to avoid disengagement between an oblong recess (31) and the protrusion (19) of a wheel (15) or an end portion of the at least two axles (11), respectively.

WO 2018/115263 A1

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*

A toy vehicle adapted for running on rails and a toy construction system

The present invention relates to a toy vehicle configured for running on rails, the toy vehicle comprises a chassis comprising a first end and a second end, two side faces extending in the longitudinal direction of the toy vehicle and a top portion, the toy vehicle comprises at least two axles, said at least two axles comprising a wheel.

Furthermore, the present invention relates to a toy construction system.

Background of the invention

Various toy vehicles for running on rails are well known.

US patent No. 5118320 discloses a roller coaster or gravity motive toy. The toy has a tortuous elevated track layout and toy vehicle system, including adjustable support stanchions for the track attached thereto by a universal joint. The vehicle includes rollers movably supporting the vehicle on the track with pivotal roller guide and lateral securement elements to detachably couple the vehicle to the track.

In many cases, it is desirable to provide a toy vehicle having a simple construction, which may be manufactured at low costs and still runs at high speed.

Brief description of the invention

It is an object of the present invention to provide a high speed toy vehicle which may be manufactured at low production costs.

This is achieved in that the chassis comprises oblong recesses positioned on the inner surface of the chassis, the oblong recesses adapted to obtain a protrusion of a wheel or an end portion of the at least two axles, the chassis comprises two or more axle support arms adapted to support the at least two axles, the two or more axle support arms are adapted to avoid disengagement between an oblong recess and the protrusion of a wheel or an end portion of the at least two axles, respectively.

Hereby is achieved a low friction wheel bearing and a toy vehicle which runs at high speed. Furthermore, the toy vehicle may be manufactured by injection molding.

In an embodiment, the axle support arms extend from the chassis downwards leaving a gap between the extremities of the two axle support arms, the gap being smaller than the thickness of the axle.

In an embodiment, wherein the two or more axle support arms extend from the

5 chassis in a distance larger than the size of the two or more axles, the axle support arms are adapted to provide a void allowing movement of the two or more axles within that void of the axle support arms, the axle support arms are adapted such that the wheels are slideable within the oblong recesses, without unintended detachment of the axle and wheels.

10 Hereby is achieved that the axle support arms only add friction to the axles when it is necessary to keep the wheels in place and to avoid detachment; thus, a high speed toy vehicle is obtained.

In an embodiment, the two or more axle support arms are positioned in pairs along the extension of the two or more axles.

15 In an embodiment, the two or more axle support arms are positioned centrally on an axle between two wheels.

In an embodiment, the oblong recess is positioned at the rim of the side faces of the chassis, the oblong recess extends longitudinally in a direction perpendicular to both the extension of the axles and the longitudinal direction of the toy vehicle.

20 In an embodiment, the chassis comprises at least two flexible flanges, the two flexible flanges are positioned opposite each other on both sides of the chassis on each side faces, each flexible flange comprising a snap protrusion at the extremity of the flanges, the snap protrusions extend towards each other in a direction parallel to the extension of said at least two axles, the at least two flexible flanges 25 being flexible in a direction away from each other in the direction transverse the longitudinal direction of the toy vehicle, such that the snap protrusions are adapted to slide past an outer surface of a set of rails.

Hereby is achieved that the toy vehicle is snapped onto the rails by means of a snap projection that only touches the tracks when the car tends to leave the track

30 e.g. during turns or loops.

In an embodiment, the wheels are affixed to the at least two axels, such that the at least two axels and wheels rotate as one cohesive unit.

In an embodiment, the axels and wheels form one cohesive unit manufactured by injection molding or 3D printing.

5 Hereby reduced production costs are achieved.

In an embodiment, the first end and second end comprise complementary coupling organs, the first coupling organ comprising two flexible arms extending towards each other, and the second organ comprises a loop, the first coupling organ and the second coupling organ extend in a direction transversely each other, the first coupling organ being adapted for grasping the second coupling organ.

10 Hereby is provided a visible distinction between the front and back of a series of toy vehicles, as the first and second end of the toy vehicle differs and thereby makes assembly of several toy vehicles on the rails easier for especially younger users.

15 Furthermore, the principle of a snap connector with a rod and an open snap ring to connecting toy vehicles allow the rod to move freely in all directions when assembled.

In an embodiment, the chassis comprises coupling members, which are adapted for detachably interconnecting the toy vehicle with one or more toy construction elements comprising couplings members.

20 In another aspect of the invention, the toy construction system comprising rail track construction elements and toy construction elements, said rail track construction elements and toy construction elements comprise coupling members for detachably interconnecting the elements, the rail track construction elements comprises parallel extending rails, the distance between the rails is smaller than the distance between the flexible flanges in a direction transversely to the longitudinal direction of the toy vehicle, said toy vehicle adapted for snap onto said rail track construction elements.

25 Hereby, increased variability of interaction between a natural three-dimensional

30 structure and the virtual world is achieved. For example, a user may construct a

large variety of spatial structures each defining a different pattern of touch points, thus allowing a user to construct a variety of spatial structures that may each be recognized by a processing device having a touch screen.

Each toy construction member comprises coupling members for detachably

5 interconnecting the toy construction members to create spatial structures. Hence, toy construction members that have been interconnected with each other by means of the coupling members can again be disconnected from each other such that they can be interconnected again with each other or with other toy construction members, e.g. so as to form a different spatial structure.

10 It should be emphasized that the term "comprises/comprising/comprised" when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.

15 Likewise, it should be clear that the embodiments above are presented as separate embodiments, but could be combined as desired by the person skilled in the art.

Brief description of the drawings

An embodiment of the invention will be described in the following with reference to the drawings wherein

Fig. 1 is a bottom view of a toy vehicle,

20 Fig. 2 is a side view of a toy vehicle and a rail track construction element,

Fig. 3 is an end view of a toy vehicle,

Fig. 4 is a schematic view of a chassis and wheel mount,

Fig. 5 is a perspective view of a toy vehicle,

25 Fig. 6 is a perspective view of an axle comprising wheels, two rail track construction members and a toy construction element.

Detailed description of the invention with reference to the figures

The present invention relates to a toy vehicle configured for running on rails.

Furthermore, the present invention relates to a toy construction system.

In that context it may be convenient to define that the term "longitudinal direction" of the toy vehicle in the current specification and appended figures is meant to refer to the direction which runs along the length of the toy vehicle, from a first end to a second end, such that when the toy vehicle moves along the rails, the toy vehicle moves in the "longitudinal direction".

Figure 1 illustrates a bottom view of a toy vehicle 1 adapted for running on rails.

The toy vehicle 1 comprises a chassis 10 comprising a first end 3, a second end 4, and two side faces 5,6 extending in the longitudinal direction of the toy vehicle 1.

10 The first end 3 and the second end 4 are connected by the two side faces 5,6. The chassis 10 comprises a top portion 7 comprising coupling members 30. Together the first end 3, second end 4, the side faces 5,6 and the top portion 7 define a block-shaped chassis 10.

15 The toy vehicle 1 comprises two axles 11. The two axles 11 each comprise two wheels 15. The chassis 10 comprises two flexible flanges 17. The two flexible flanges 17 are positioned opposite each other on both sides of the chassis 10 on each side faces 5,6.

20 Each flexible flange 17 comprises a protrusion 18 at the extremity of the flexible flanges 17. The protrusion 18 extends towards each other in a direction parallel to the extension of said at least two axles 11.

Each of the two side faces 5,6 comprise an outer planar surface extending in the longitudinal direction of the toy vehicle 1. The outer planar surfaces of the two side faces 5,6 extend in two planar surfaces which are parallel. The flexible flanges 17 extend in the same plane as the side faces 5,6 of the chassis 10. One flexible flange 17 and the first side face 5 are positioned in a common plane, and another flexible flange 17 and the second side face 6 lie in a common plane. The two flexible flanges 17 extend in two parallel planes.

30 The wheels 15 comprise a cone-shaped protrusion 19 extending coaxially with the axles 11. The protrusions 19 are positioned centrally on the outer portions of the wheels 15 and they protrude away from the central part of the axle 11.

The chassis 10 comprises pairs of oblong recesses 31. The oblong recesses 31 are positioned on the inner surface of the oppositely positioned side faces 5,6. The oblong recess 31 is adapted to obtain the cone-shaped protrusion 19 of the wheels 15.

5 The wheels 15 are affixed to the two axels 11, such that the axels 11 and wheels 15 rotate as one cohesive unit within the oblong recesses 31.

Preferably, one axle and two wheels form one cohesive unit. The unit may be injection molded which reduces production costs.

10 The two flexible flanges 17 are positioned in the longitudinal direction centrally between the two axels 11 on each side faces 5,6.

The toy vehicle 1 comprises two axels 11 each axel comprising two wheels 15. Each wheel 15 comprises a centrally positioned cone-shaped portion 19 which is adapted for abutting an oblong recess 31 on the inner surface of the side face 5,6 of the toy vehicle.

15 The chassis 10 comprises axle support arms 9. The axle support arms 9 comprises a gap which allows for passage of the axle 11 through the axle support arms 9, when mounting the wheels 15 and axels 11 to the toy vehicle 1. The gap between the support axle arms 9 is smaller than the thickness of the axles 11, the axle support arms 9 being adapted to block the axles 11 for unintentional separation

20 from the toy vehicle 1.

The axle support arms 9 encircles the two axels 11, leaving room for movement of the axels toward and away from the chassis 10, such that the cone-shaped portions 19 of the wheels are slidable within the oblong recesses 31, without unintended detachment of the axle and wheels.

25 The toy vehicle shown in figure 1 comprises coupling members 30 positioned on the top portion 7. The toy vehicle comprises complementary shaped coupling organs 13,14 positioned at the first end 3 and the second end 4, respectively, of the toy vehicle.

Figure 2 illustrates a side view of the toy vehicle having a construction similar to the toy vehicle illustrated in figure 1. The toy vehicle is snapped onto a rail 21 and the supportive rail web 22.

The toy vehicle 1 comprises the first coupling organ 13 at the first end 3 and the 5 second coupling organ 14 at the second end 4. The first coupling organ 13 is adapted to be coupled to a second coupling organ 14 of another toy vehicle, to form a series of toy vehicles, like a train comprising successive wagons coupled together.

The first end 3, comprising the first coupling organ 13, and the second end 4, 10 comprising the second coupling organ 14, may represent the front and back portions, respectively, referring to the direction in which the toy vehicle moves on the rails, thus providing a visible distinction between the front and back of a series of toy vehicles, as the first and second end of the toy vehicle differs and thereby makes assembly of several toy vehicles on the rails easier.

15 The toy vehicle 1 comprises a side face 5 comprising a flexible flange 17 extending downwards passing the outer surface of the rail 21. The flexible flange 17 comprises a snap protrusion 18 positioned at the extremity of the flexible flange 17 below the rail 21. The snap protrusion 18 protrudes towards the longitudinal center line of the toy vehicle, towards the rail web 22.

20 The flexible flange 17 is positioned centrally between the two wheels 15.

In figure 2 the snap protrusion 18, the wheel 15 (partly) and the oblong recess 31 in the side face 6 are illustrated by dotted lines as these features are within the chassis 10.

25 The top portion of the toy vehicle 1 comprises coupling members 30 in the form of studs.

Figures 1 and 2 illustrate the first coupling organ 13 comprising two flexible arms extending towards each other, and the second organ 14 which comprises a loop. The second coupling organ 14 may be in form of a vertical hitch. The first coupling organ 13 extends horizontally and the second coupling organ 14 extends vertically.

30 The first coupling organ 13 and the second coupling organ 14 extend in a direction

transversely to each other. The first coupling organ 13 is adapted for grapping the second coupling organ 14.

The principle of connecting a toy vehicle by a snap connector with a rod and an open snap ring allows the rod to move freely in all direction, when two toy vehicles

5 are assembled.

Thus, the first and second coupling organs 13,14 allow great mobility when two toy vehicles are coupled together as the two toy vehicles may move in great angles relative to each other in the longitudinal direction e.g. during turns.

Figure 3 illustrates a view of the second end 4 of the toy vehicle illustrated in figure

10 2.

The chassis comprises two flexible flanges 17. The two flexible flanges 17 are positioned opposite each other on both sides of the chassis 10 on each side faces 5,6.

The flexible flanges 17 extend downwards passing the outer surface of the rail 21.

15 The flexible flange 17 comprises a snap protrusion 18 positioned at the extremity of the flexible flange 17. The toy vehicle 1 is snapped onto the rails 21 and the snap protrusion 18 is positioned below the rail 21.

The snap protrusion 18 protrudes towards the longitudinal center line of the toy vehicle, towards the rail web 22. The wheels 15 rest on the rails 21.

20 The innermost side face of the wheels 15 comprises a rim 16, such that the wheels 15 are formed like a train wheel. The wheels 15, the flexible flange 17 and the snap protrusion 18 together encircle the rails 21 to avoid unintentional derailment.

The toy vehicle 1 comprises a side face 5 comprising a flexible flange 17 extending downwards passing the outer surface of the rail 21. The flexible flange 17

25 comprises a snap protrusion 18 positioned at the extremity of the flexible flange 17 below the rail 21. The two snap protrusions 18 protrude in a direction towards each other, towards the rail web 22, underneath the rails 21.

Generally, the snap protrusion 18 is positioned at a distance from the wheels 15.

The distance is bigger than the height of the rails 21, such that the snap protrusion

18 is adapted to touch the rails 21 when the wheels are lifted off from the rails. Hereby, the snap protrusion only provides a holding force to avoid derailment. The friction between the rail and the flexible flange is minimized during running of the toy vehicle and a high speed toy vehicle is provided.

5 The rail track element 20 comprises a set of parallel rails 21 supported by rail webs 22. The rail webs 22 are connected to a platform 29 comprising a first type of coupling members 30 and a second type of complementary coupling members 33. The different types of coupling members may be in the form of coupling studs and complementary coupling members, such as a coupling stud and stud-receiving 10 recesses.

In figure 3 the two flexible flanges 17 are flexible in a direction away from each other in a direction transverse the longitudinal direction of the toy vehicle 1, such that the snap protrusions 18 are adapted to slide past on the outer surface of the rails 21 and snap the toy vehicle 1 onto the rails 21. As the toy vehicle 1 is snapped 15 onto the rails 21, the protrusions 18 extend underneath the rails 21 towards the rail web 22.

The wheels are shaped like a train wheel comprising an inner flange 16 adapted to engage the inner surface of the rails 21.

20 In the transverse direction the distance between two wheels 15 is smaller than the distance between the two oppositely positioned flexible flanges 17. In the transverse direction the distance between the parallel rails 21 is smaller than the distance between the flexible flanges 17. Thereby, the wheels 15, the flexible flanges 17 and snap protrusions 18 are adapted to partly encircle the rails.

25 Derailment is avoided as the wheels 15 together with the flexible flange 17 and the snap protrusion 18 partly encircle the rails.

The coupling organs 13,14 are illustrated as protrusions having different shapes in order to recognize the different functions. For example, the coupling member 13 illustrates a front which may engage corresponding coupling organs of another toy vehicle.

30 Figure 4 illustrates a schematic view of the mount for an axle and two wheels.

The chassis 10 comprises oblong recesses 31 on the inner surfaces of the side faces 5,6.

The oblong recesses 31 are positioned opposite each other on the side faces 5,6.

The longitudinal direction of the oblong recesses 31 extends in a direction

5 perpendicular to both the extension of the axles and the longitudinal direction of the toy vehicle, and the oblong recesses 31 are positioned at the rim of the side faces 5,6. The oblong recesses 31 are open at one end by the rim of the side faces 5,6 and the oblong recesses 31 are shaped like a half-cone cup at the other end.

Centrally, in the transverse direction of the chassis 10, the chassis 10 comprises a

10 pair of axle support arms 9. The axle support arms 9 extend downwards leaving a gap between the extremities of the two axle support arms 9.

The gab is smaller than the thickness of the axle 11. Hereby, the axle support arms 9 are adapted to partly encircle the axle 11, configured to avoid unintended detachment and to allow a user to deconstruct by pressing the axle though the gab 15 of the axle support arms 9. The gap is illustrated at figure 1 and figure 4.

The axle support arms 9 extend from the chassis 10 in a distance larger than the thickness of the axle 11.

The axle support arms 9 form a void adapted for loosely accommodating an axle

11. The void is larger than the thickness of the axle 11. The void in the center and 20 the oblong recesses 31 on each side provide space for the axle 11 and wheels 15 to move up, down or tilt, respectively. The possible positions of the axle 11 (and the wheels 15) are illustrated by dotted lines in figure 4.

In for example running mode of the toy vehicle, the axle and wheels rest mostly in the half-cone-shaped portions of the oblong recesses 31. In curves the toy vehicle

25 may tilt due to high speed, such that the axle and wheels are supported by one oblong recess 31 and the centrally positioned axle support arms 9. In loops the axle and wheel may be supported primary by the centrally positioned axle support arms 9.

The axle support arms 9 secure unintentional detachment of the axle and wheels relative to the chassis, but the axle support arms 9 allow sliding movement of the wheels within the oblong recesses 31.

The axle support arms 9 only add friction to the axles 11, when it is necessary to

5 keep the wheels in place and to avoid detachment; thus, a high speed toy vehicle is obtained.

Figure 5 illustrates a perspective view of a toy vehicle. The toy vehicle comprises a chassis 10 comprising two oppositely positioned side faces 5,6. The side face 6 comprises a flexible flange 17. The chassis 10 comprises two oppositely positioned 10 ends, the first and second ends 3,4, respectively.

The chassis 10 comprises a top portion 7 comprising a first type of coupling members 30. The toy vehicle 1 comprises a lowered top part 34, adapted to accommodate e.g. one or more toy construction elements 40, e.g. a mini figure.

Hereby the center of gravity is lowered and thus the tendency to tilt the toy vehicle 15 on the rails 21 is minimized, and friction between the flexible flange 17 and a rail 21 is minimized, thus higher speed is obtained and increased variability of play.

The toy vehicle 1 comprises through holes 32 in the top portion 7 and in the top part 34.

Figure 6 illustrates in a perspective view of an axle 11 shaft comprising a pair of 20 wheels 15, two rail track construction elements 20 and a toy construction element 40.

The wheels 15 are affixed to the axel 11, such that the axel 11 and wheels 15 rotate as one cohesive unit. The wheels comprise a flange 16, such that the wheels 15 are shaped as train wheels.

25 Preferably, the axle 11 and wheels 15 may be manufactured as one cohesive unit by injection molding or 3D printing. Hereby reduced production costs are achieved.

The rail track construction element 20 illustrated in figure 6 comprises a parallel set of rails 21 supported by a set of rail web 22. The distance between the parallel rails 21 is smaller than the distance between the two oppositely positioned flexible 30 flanges 17 in a direction transversely to the longitudinal direction of the toy vehicle

1. Hereby, the toy vehicle 1 is adapted for snap onto the rail track construction elements 20.

The rail web 22 is connected to two platforms 29. The two platforms are positioned in each end of the rail track construction element 20. The platforms 29 are adapted

5 for coupling rail track construction elements 20 together by toy construction elements 40 comprising coupling members 30 and complementary coupling members 33.

The rail track construction element 20 can be coupled to another rail track construction element to form a continuously rail track.

10 The toy construction element 40 illustrated in figure 6 comprises first type of coupling members 30 and complementary shaped second type of coupling members 33. The different types of coupling members may be in the form of coupling studs and complementary coupling members, such as a coupling stud and stud-receiving recesses.

15 A toy construction system comprising toy construction elements 40, which comprises coupling members 30,33, allows a user to create a large set of distinct spatial structures.

The toy construction system comprises at least one toy vehicle 1 and a plurality of rail track construction elements 20 and a plurality of toy construction elements 40.

20 Generally, the toy vehicle 1, the rail track construction element 20 and the toy construction elements 40 are provided with a first type of coupling member 30 and a second type of coupling members 33, such as coupling studs and stud-receiving recesses or other pairs of complementary coupling members configured to engage each other so as to form a physical connection.

25 Generally, in some embodiments, a toy construction element 40 may define a plurality of faces, e.g. a top face, a bottom face and a number of side faces. In some embodiments a given face may include one or more coupling members 30,33.

When the coupling members are removably interconnectable, the user may deconstruct previously built spatial structures and re-use the toy construction

30 elements to build new spatial structures. For example, the toy construction

elements may be interconnected/coupled to each other by traction/friction or by an interlocking connection.

A spatial structure comprises a plurality of toy construction elements directly or indirectly connected with each other by means of coupling members. The toy

5 construction elements are interconnectable so as to form a coherent spatial structure.

The toy construction system is a three dimensional system, wherein the user is able to create spatial structures in three dimensions.

10

Claims

1. A toy vehicle (1) configured for running on rails (21), the toy vehicle (1) comprises a chassis (10) comprising a first end (3) and a second end (4), two side faces (5,6) extending in the longitudinal direction of the toy vehicle (1) and a top portion (7), the toy vehicle comprising at least two axles (11), said at least two axles (11) comprising a wheel (15), and where the chassis (10) comprises oblong recesses (31) positioned on the inner surface of the chassis, the oblong recesses (31) adapted to obtain a protrusion (19) of a wheel (15) or an end portion of the at least two axles (11), the chassis (10) comprising two or more axle support arms (9) adapted to support the at least two axles (11), **characterized in**, that the two or more axle support arms (9) are adapted to provide a void allowing movement of the two or more axles within that void of the axle support arms, so that the wheels are slidable within the oblong recesses but to avoid disengagement between an oblong recess (31) and the protrusion (19) of a wheel (15) or an end portion of the at least two axles (11), respectively, and so that the axle support arms only add friction to the axles when it is necessary to keep the wheels in place and to avoid detachment.
2. A toy vehicle (1) according to claim 1, wherein the axle support arms (9) extend from the chassis downwards leaving a gap between the extremity of the two axle support arms, the gap being smaller than the thickness of the axle (11).
3. A toy vehicle (1) according to claim 1, wherein the two or more axle support arms (9) extend from the chassis in a distance larger than the size of the two or more axles (11), the axle support arms (9) adapted to provide a void allowing movement of the two or more axles (11) within that void of the axle support arms (9), the axle support arms (9) adapted such that the wheels (15) are slidable within the oblong recesses (31), without unintended detachment of the axle and wheels.
4. A toy vehicle (1) according to any of the preceding claims, wherein the two or more axle support arms (9) are positioned in pairs along the extension of the two or more axles (11).

5. A toy vehicle (1) according to any of the preceding claims, wherein the two or more axle support arms (9) are positioned centrally on an axle (11) between two wheels (15).

6. A toy vehicle (1) according to any of the preceding claims, wherein the 5 oblong recesses (31) are positioned at the rim of the side faces (5,6) of the chassis (10), the oblong recesses (31) extending longitudinally in a direction perpendicular to both the extension of the axles and the longitudinal direction of the toy vehicle.

7. A toy vehicle (1) according to any of the preceding claims, wherein the 10 chassis (10) comprises at least two flexible flanges (17), the two flexible flanges (17) being positioned opposite each other on both sides of the chassis (10) on each side faces (5,6), each flexible flange (17) comprising a snap protrusion (18) at the extremity of the flanges (17), the snap protrusions (18) extending towards each other in a direction parallel to the extension of said at least two axles (11), the at least two flexible flanges being flexible in a direction away from each other in a direction transverse 15 the longitudinal direction of the toy vehicle, such that the snap protrusions (18) are adapted to slide past on an outer surface of a set of rails.

8. A toy vehicle (1) according to any of the preceding claims, wherein the 20 wheels (15) are affixed to the at least two axles (11), such that the at least two axles (11) and said wheels (15) rotate as one cohesive unit.

9. A toy vehicle (1) according to any one or more of the preceding claims, wherein the axles and wheels form one cohesive unit manufactured by injection molding or 3D printing.

25 10. A toy vehicle (1) according to claim any one or more of the preceding claims, wherein the first end (3) and second end (4) comprises complementary coupling organs (13,14), the first coupling organ (13) comprising two flexible arms extending towards each other, and the second organ (14) comprising a loop, the first coupling organ (13) and the second coupling organ (14) extending in a direction transversely each other, the first coupling organ (13) 30 being adapted for grappling the second coupling organ (14).

11. A toy vehicle (1) according to any of the preceding claims, wherein the chassis (10) comprises coupling members (30), which are adapted for detachably interconnecting the toy vehicle with one or more toy construction elements (40) comprising couplings members (30,33).

5 12. A toy construction system comprising at least one toy vehicle (1) according to any one or more of the preceding claims, the toy construction system comprising rail track construction elements (20) and toy construction elements (40), said rail track construction elements (20) and toy construction elements (40) comprise coupling members (30,33) for detachably interconnecting the elements (20,40), the rail track construction elements (20) comprises parallel extending rails (21), the distance between the rails (21) is smaller than the distance between the flexible flanges (17) in a direction transversely to the longitudinal direction of the toy vehicle (1), said toy vehicle (1) adapted for snap onto said rail track construction elements (20).

10

15

FIG. 1

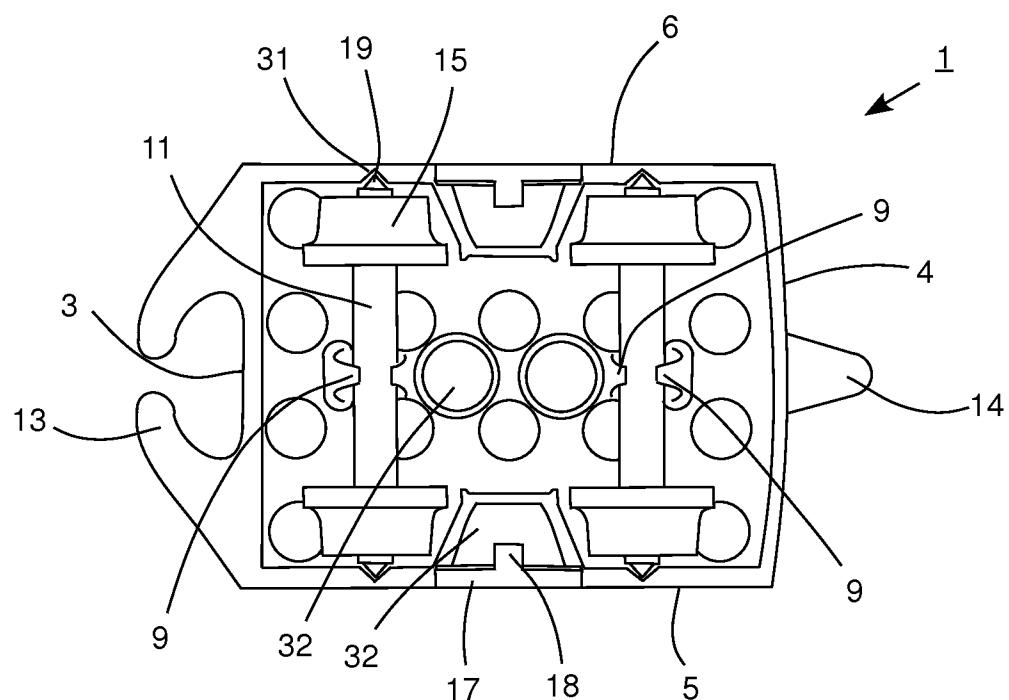


FIG. 2

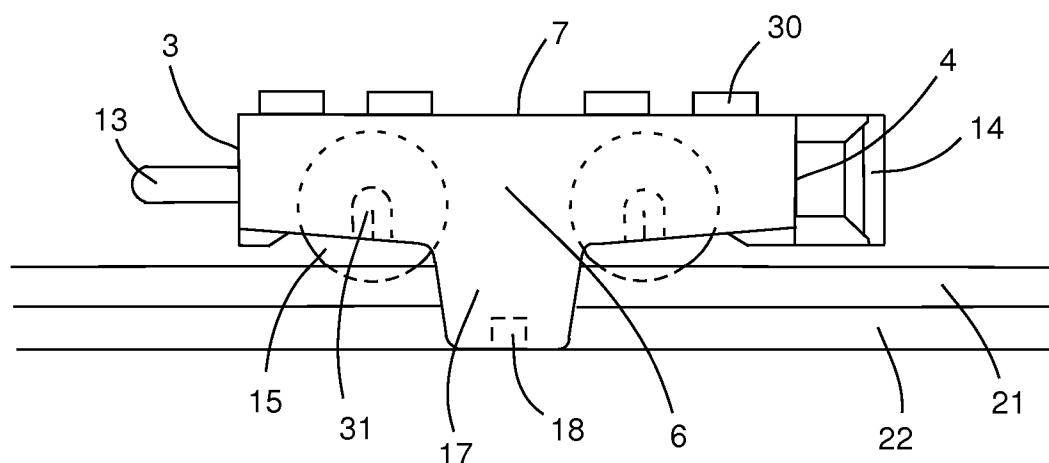


FIG. 3

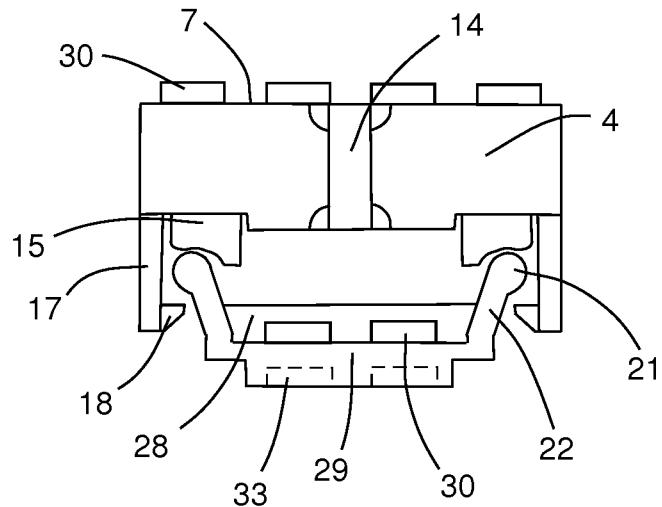
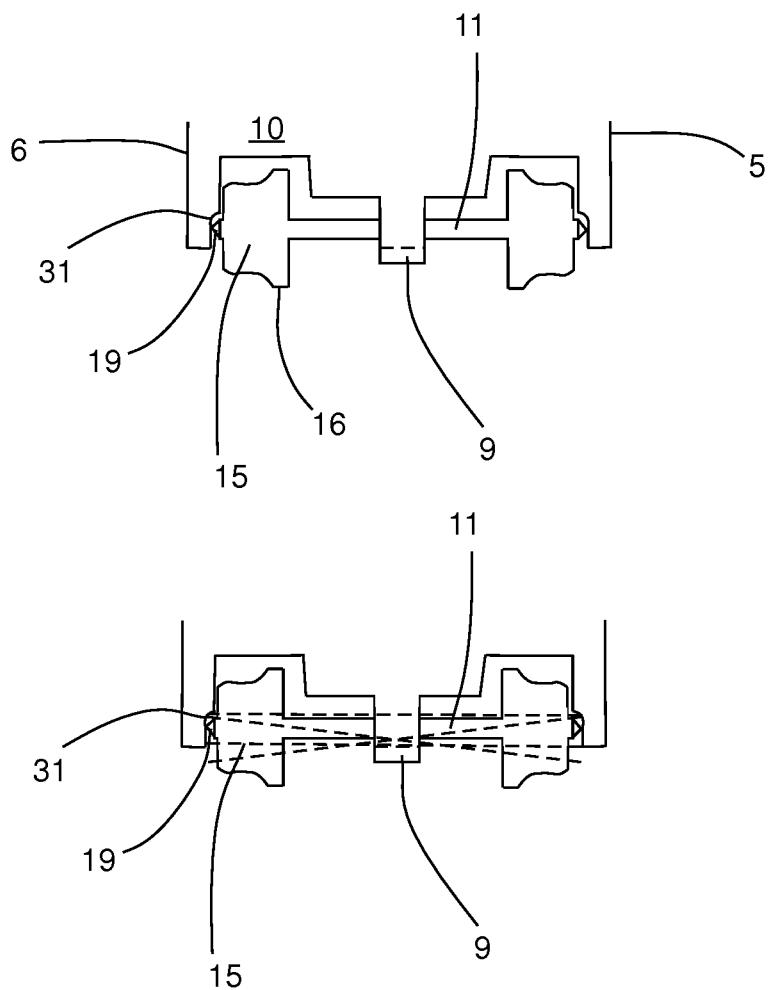



FIG. 4

3/3

FIG. 5

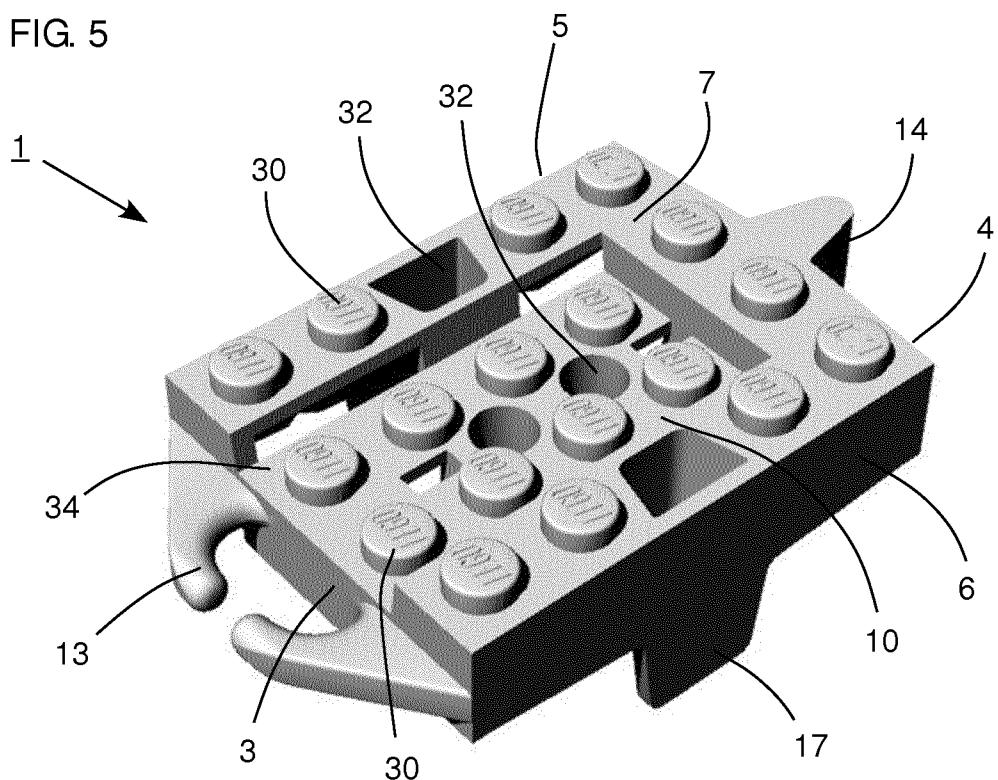
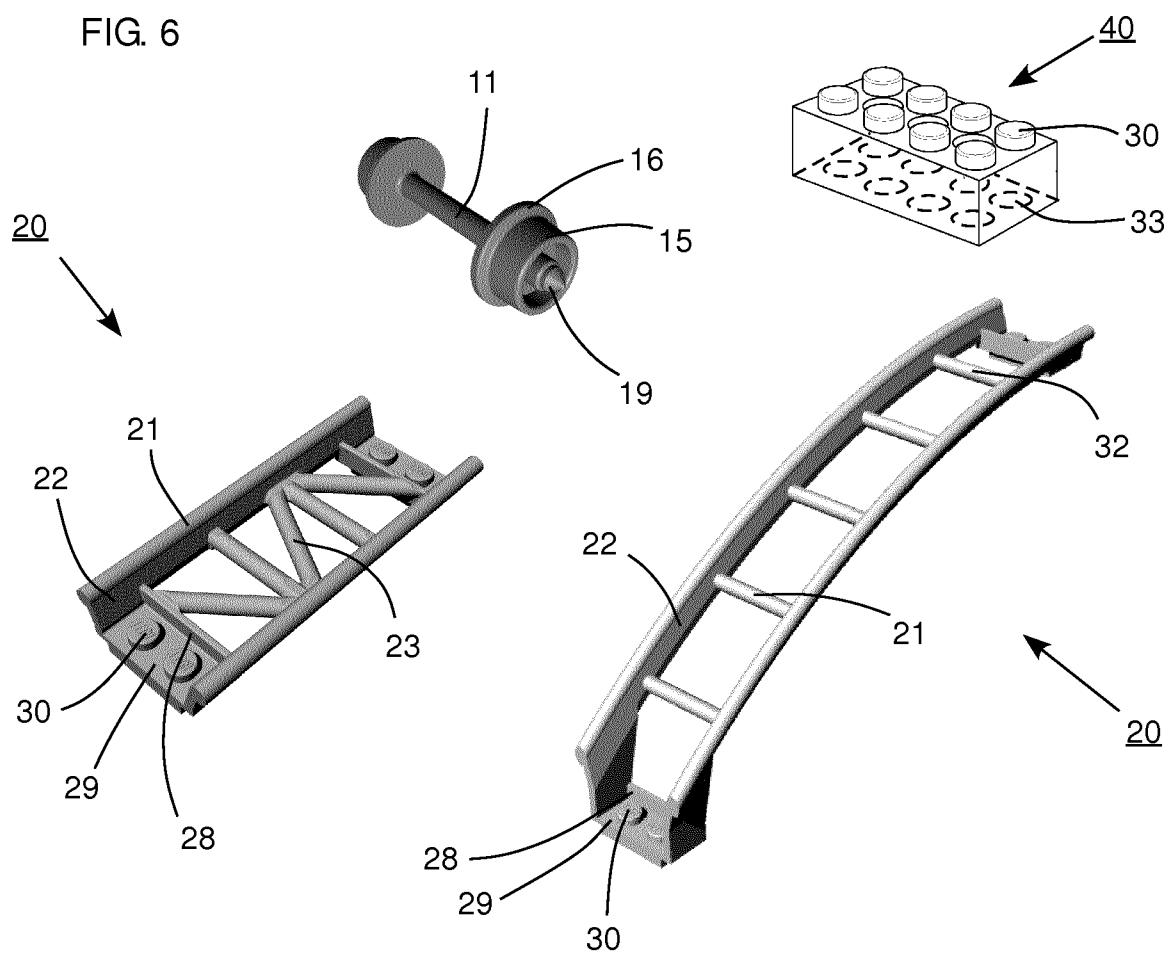



FIG. 6

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2017/084058

A. CLASSIFICATION OF SUBJECT MATTER
INV. A63H17/26 A63H19/22
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A63H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 269 098 A2 (LEGO AS [DK]) 1 June 1988 (1988-06-01)	1-6,8,9
Y	column 1, lines 47-53; figures 1-3 column 2, lines 19-41; figure 4 column 2, line 47 - column 3, line 11; figure 5 -----	7,10-12
Y	GB 1 302 499 A (RIKIHACHIRO KOIZUMI) 10 January 1973 (1973-01-10) page 2, lines 26-36; figures 2-4 -----	7,12
Y	US D 541 882 SI (PETERSEN CLAUS [DK]) 1 May 2007 (2007-05-01) figures -----	10,11
A	JP S56 75999 U (ALT0OLS HUIZHIYA) 20 June 1981 (1981-06-20) figures -----	1-10

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 8 March 2018	Date of mailing of the international search report 19/03/2018
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Bagarry, Damien

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/EP2017/084058

Patent document cited in search report	Publication date	Patent family member(s)			Publication date
EP 0269098	A2	01-06-1988	DE	3782142	DI 12-11-1992
			DE	3782142	T2 18-03-1993
			DK	567986	A 27-05-1988
			EP	0269098	A2 01-06-1988
			ES	2035844	T3 01-05-1993
			GR	3006187	T3 21-06-1993
			HK	3796	A 19-01-1996
			JP	2664384	B2 15-10-1997
			JP	S63206272	A 25-08-1988
			US	4854742	A 08-08-1989

GB 1302499	A	10-01-1973	NONE		

US D541882	SI	01-05-2007			
JP S5675999	U	20-06-1981	JP	S5675999	U 20-06-1981
			JP	S5742478	Y2 18-09-1982
