ACUPUNCTURE NEEDLE

United States Patent

Moen

Filed: Aug. 13, 1973

INVENTOR:

George A. Moen, 827 W. 26th Ave., Anchorage, Alaska 99503

Filed: Aug. 13, 1973

Inventor: George A. Moen, 827 W. 26th Ave., Anchorage, Alaska 99503

Filed: Aug. 13, 1973

2 Claims, 1 Drawing Figure

References Cited

UNITED STATES PATENTS

231,036 8/1880 Haller ................................ 128/329 UX
2,642,872 6/1953 Parker ................................ 128/329
2,874,809 3/1959 Treace ................................ 128/329 UX

OTHER PUBLICATIONS


Abstract

An improved acupuncture needle for insertion into a meridian point contained in the muscle of a human being to relieve pain. The invention is characterized in that at one end of said needle is a pointed portion and at the other end is a handle portion, and between said pointed and handle portions is a main body portion comprising a plurality of longitudinally spaced intermediate portions in the direction from said pointed portion to said handle portion having progressively increasing diameters, whereby said needle is strengthened and made more rigid for accurate placement in an acupuncture site.

3 Claims, 1 Drawing Figure
ACUPUNCTURE NEEDLE

Though relatively new to the United States, the ancient art of acupuncture has been practiced with remarkable success in the Far East for at least 3,000 years. From the vast experience of the Chinese, much has been learned concerning the placement of needles in specific points of the body to relieve pain, or for use as an anesthetic.

Extending longitudinally through the body of a human being are twelve principle meridian lines, each corresponding to different interior organs and terminating in the tips of the fingers and toes. Along the meridian lines are over 300 primary meridian points or puncture sites. These correspond to areas where nerves appear to surface from a muscle or an area where vessels and nerves are located relatively superficially, such as in areas between muscle and bone, or between bone and joint. The meridian points are nearly one-tenth of an inch in diameter.

Acupuncture needles are inserted into the puncture sites by rotation of the needles between the thumb and index finger together with the application of slight downward pressure. The speed and angle of insertion required depend upon the desired intensity of the stimulation. The needle generally reaches a depth of one-quarter to one-half of an inch and when properly inserted, the patient experiences a numb and hot sensation in the area designated for surgery. Deeper insertion, reinsertion, and rotation of the needles may be required to maintain or increase the effect of the stimulus.

It is believed that twirling of the needles creates a flood of painless sensations which race to higher nerve centers in the thalamus portion of the brain and spinal cord so that painful sensations from injury are jammed and cannot reach the same higher nerve centers.

Heretofore, the acupuncture needles in use have been fine slivers one one-hundredth of an inch in diameter made from stainless steel in lengths of up to 7 inches with wire wrapped around the blunt end.

It is necessary that the acupuncture needles be strong and relatively unbreakable. This will insure accurate placement of the needle into the puncture site as well as rendering the needle of sufficient quality to prevent breakage due to the rotation of the needle during insertion.

Accordingly, it is an object of the present invention to provide an improved acupuncture needle of increased strength which is particularly suitable for accurate placement in the puncture site. To this end, the acupuncture needle is characterized by a main body portion comprising a plurality of longitudinally spaced portions in the direction from the pointed portion to the handle portion having progressively increasing diameters, the handle portion being of greater diameter than the adjacent intermediate portion. The handle portion is of circular cross section and has a roughened surface to provide an improved grip for the fingers of the acupuncturist.

Other objects and advantages will become apparent from a study of the following specification when viewed in association with the accompanying single FIGURE drawing which is a detailed elevational view of the improved acupuncture needle.

Referring to the drawing, the unitary acupuncture needle 2 is formed of stainless steel and includes a pointed end 4 having a relatively small diameter of approximately one one-hundredth of an inch. In the longitudinal direction, the needle includes successive sections 6, 8, and 10 of progressively increasing diameter respectively, said handle terminating in a handle portion 12 of greater diameter. The handle 12 is threaded or knurled as at 14 to provide a roughened surface.

While in accordance with the Patent Statutes the preferred form and embodiment has been illustrated and described, it will be apparent that various changes and modifications may be made in the disclosed apparatus without deviating from the inventive concepts.

What is claimed is:

1. An acupuncture needle, comprising
   a unitary, solid rigid needle body formed of stainless steel and including
   a. a pointed portion at one end of said body;
   b. a handle portion at the other end of said body; and
   c. a plurality of longitudinally spaced intermediate portions arranged between said pointed and handle portions, successive ones of said intermediate portions in the direction from said pointed portion to said handle portion having progressively increasing diameters, respectively;
   d. said handle portion having throughout its entire length a uniform circular cross sectional configuration the diameter of which is greater than that of the adjacent intermediate portion;
   e. said handle portion having a roughened peripheral surface to permit rotation of the needle between a thumb and forefinger of a user during insertion of the pointed end of the needle into a selected acupuncture meridian point on a patient.

2. Apparatus as defined in claim 1, wherein the external surface up said handle portion is threaded.

3. Apparatus as defined in claim 1, wherein the external surface of said handle portion is knurled.

* * * * *