wo 2011/000745 A1 |10 0K 00O A OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization /) -sady
(19) World Intellectual Property Organization /g5 1IN AN VA 00 O OO OO A OO 1
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
6 January 2011 (06.01.2011) PCT WO 2011/000745 Al
(51) International Patent Classification: (74) Agents: HUCHET, Anne ct al.; 1-5 rue Jeanne d'Arc,
GO6F 17/30 (2006.01) F-92130 Issy-Les-Moulineaux (FR).
(21) International Application Number: (81) Designated States (unless otherwise indicated, for every
PCT/EP2010/058871 kind of national protection available). AE, AG, AL, AM,
. o AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(22) International Filing Date: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
23 June 2010 (23.06.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(26) Publication Language: Enghsh ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI
(30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
09447028.3 1 July 2009 (01.07.2009) EP SE, G, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(71) Applicant (for all designated States except US): THOM- . o
SON LICENSING [FR/FR]; lrue Jeanne d'Arc, 84) D.e51gnated. States (unle.ss othemzse indicated, for every
F-92443 Issy les Moulineaux Cedex (FR). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(72) Inventors; and ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(75) Inventors/Applicants (for US only): VANDER- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

HALLEN, Frank [BE/BE]; Pater Verboislaan 23,
B-3621 Lanaken (BE). GESQUIERE, Lieven [BE/BE];
Elisabethstraat 28, B-2880 Bornem (BE). STES, Bram
[BE/BE]; Wambachstraat 31, B-2018 Antwerpen (BE).

EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SL SK,
SM, TR), OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD FOR ACCESSING FILES OF A FILE SYSTEM ACCORDING TO METADATA AND DEVICE IMPLE-
MENTING THE METHOD

51

501~

5019
e
5001
50047 Ly
502

(\ L I’Lsoos

View FS builder Metadata FS builder
5006

5009 -

MVFS manager

LAN
ko

Network
I/F

Tndex data extractor

5011 506
5015

—

DBMS

L4

3 N\

505 5012

5014
R

Metadata extractor [*—

|
0 Router

}\/5()17

Ext 509
Network |,/

/F

5020

507

Ext
device I/F

5018

508

IS

[104
0 200

Fig. 5

(57) Abstract: The invention relates to the field of accessing data stored
in a file system and more particularly, to the optimization of accessing
data of a file system. To this effect, the invention proposes a method of
accessing files of a data file system according metadata related to the
files, and a device for implementing the method.

WO 2011/000745 A1 W00 00T DO T

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

Method for accessing files of a file system according to metadata and
device implementing the method.

1. Field of invention.

The invention relates to the field of accessing data stored in a file
system and more particularly to the optimization accessing of data in a file
system.

2. Technical background.

According to prior art, data files comprise audio, video, audio and
video, still images, text, interactive programs, etc. These data files are stored
in hierarchically organized data file systems, organizing the data files in
directories and subdirectories. In large data file systems comprising
thousands of files, a huge number of files exist, containing a vast amount of
data, and a large data file system quickly becomes difficult to manage. A way
of managing the huge amount of files and data in large data file systems is
by means of metadata. Metadata is data about data. Examples of metadata
are: file name, file type, file length, creation date, but also author, keywords
in a text document, album name of an image, etc. Metadata thus gives
information on one or more file(s) stored in the data file system. In such,
metadata can help user(s) or application(s) to find their way in a data file
system and to access it. When metadata is used for accessing files of a data
file system, metadata is extracted and index data is created that relates
extracted metadata to files of the data file system. This index data is then
stored for later use. The index data allows fast lookup of files based on
metadata. The process of creation of index data is also called indexing of a
data file system. Indexing thus is the process of scanning a data file system
in order to extract metadata and the relation of the metadata with the files of
the data file system and to store the metadata and the relation of the
metadata to the files of the data file system for use by a user and/or
application. From a large data file system important amounts of metadata
and file relational data are extracted. Extracting metadata and creation of
index data is not sufficient for easing the management of a large data file
system. Current tendency to interconnect devices with each a separate data
file system in a network adds to the complexity of the management of the
files stored on these devices. Shared network storage devices then offer the
advantage of allowing centralized storage of content shared between devices

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

connected into a network, for example organized in a LAN (Local Area
Network).

According to prior art, devices of such a network each have their own
indexing system. This implicates that each client does its own data file
system scanning and its own metadata and index storing. Then, index data
and metadata can not be shared among clients of such a network. This is a
waste of resources in terms of storage and processing needs.

According to prior art, the creation of user- and/or application defined
metadata is limited to metadata proposed by applications managing the
metadata, thereby limiting the power of the management of the data file
system for users and/or applications.

According to prior art, metadata is accessed via a dedicated API
(Application Programming Interface), thereby restricting access to metadata
and thus the access to files of the data file system according to metadata to
applications implementing the dedicated API.

According to prior art, there is no way to organize the layout of a data
file system according to related metadata.

Thus, the prior art does not allow an optimized access to files of a file
system according to metadata.

3. Summary of the invention.

The present invention aims at alleviating some of the inconveniences
of prior art.

More precisely, the invention allows optimized access to files in a file
system according to metadata through a so-called MVFS (Metadata-View
File System) that allows accessing files of a file system according to
metadata related to these files.

In order to optimize the access to files in a file system hereafter
referred to as ‘data file system’, the invention internally stores index data and
metadata for ‘private’ access by the MVFS in a database, and presents the
internally stored metadata ‘publicly’ to users and/or applications as a
metadata file system, hereafter referred to as ‘metadata file system’. To help
users and/or applications to browse their way through huge amounts of
metadata, the structure of the metadata file system reflects the structure of
the file system to which it relates. In addition, the metadata file system and
the metadata itself can be accessed by users and/or applications using

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

normal file system access methods. In order to further optimize the access to
files in a data file system, users and/or applications can organize the data in
the data file system by specific metadata, via so-called views. An example of
a view is a view based on metadata attribute ‘type of file’ and further refined
on metadata attribute value ‘type of file = music file’. The example view thus
allows a user or an application to list all music files in the data file system. In
order to save storage space and also for reasons of coherence, a view does
not directly contain the files that correspond to the view, but the view merely
comprises pointers to these files. These pointers can be implemented with
symbolic links. Using pointers to files, no file copy is needed, and in addition
a same file can be pointed to by multiple views without file duplication. The
contents of a view, that is the list of pointers to files of the data file system
can be specified in a view configuration by a user and/or application
according to metadata selection criteria. As is the case for metadata, which
is presented to users and/or applications as being part of the metadata file
system, views and view configurations are presented to users and/or
applications in a view file system, hereafter also referred to as ‘view file
system’, thereby giving users and/or applications access to the views and
view configurations through ‘normal’ file system access methods. As for the
metadata, view configurations are stored internally in a database by the
MVFES for ‘private’ use, and for each internally stored view configuration a
‘public’ version exists that can be modified by users and/or applications.

In order to optimize access to files of a file system according to
metadata, the invention proposes a method of accessing files of a data file
system according metadata related to the files, the method being
implemented by a file management device, the method being characterized
in that the metadata is represented to at least one client device as being
stored in a metadata file system, where the metadata file system is
organized according to a structure of the data file system,

at least one first file in the data file system being represented as at
least one first directory in the metadata file system, and

at least one metadata attribute related to the at least one first file in
the data file system, being represented as at least one second file in the
metadata file system, and

at least one value of the at least one metadata attribute being
represented as being stored in the at least one second file and

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

a view file system organizing files of the data file system according to
metadata related to the files in at least one second directory, which directory
comprises as content at least one pointer to at least one of the first file in the
data file system, the content being determined according to at least one
metadata selection criterion,

the method further comprising a step of accessing the files of the data
file system using the metadata and the view file system, the metadata file
system and the view file system as well as the metadata being accessed with
access methods used for accessing the data file system, and the data file
system, the metadata file system and the view file system being mounted on
a same root file system level.

According to a variant of the method of accessing files of a data file
system according metadata related to these files, the metadata file system
(32) and the view file system are accessible to the at least one client device
using a same set of file system access methods as those needed to access
the data file system.

According to a variant of the method of accessing files of a data file
system according metadata related to these files, the at least one metadata
selection criterion is comprised in at least one configuration file that is
accessible to the at least one client device in the view file system in a
subdirectory of which the name identifies the at least one metadata selection
criterion.

According to a variant of the method of accessing files of a data file
system according metadata related to these files, the at least one
configuration file comprises a metadata selection criterion that is represented
by a metadata attribute and a metadata attribute value.

According to a variant of the method of accessing files of a data file
system according metadata related to these files, the at least one
configuration file comprises a metadata sorting criterion that is represented
by a metadata attribute.

The invention also proposes a device for accessing files of a data file
system according to metadata related to the files, the device being

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

characterized in that it represents the metadata to at least one client device
as being stored in a metadata file system, where the metadata file system is
organized according to a structure of the data file system, the device
comprising:

means for giving access to the metadata via the metadata file system
where

at least one first file in the data file system is represented as at least
one first directory in the metadata file system, and where

at least one metadata attribute related to the at least one first file in
the data file system, is represented as at least one second file in the
metadata file system, and where

at least one value of the at least one metadata attribute is represented
as being stored in the at least one second file and

means for giving access to the files of the data file system via a view
file system organizing files of the data file system according to metadata
related to the files in at least one second directory, which directory comprises
as content at least one pointer to at least one of the first file in the data file
system, the content being determined according to at least one metadata
selection criterion

the metadata file system and the view file system as well as the
metadata being accessed with access methods used for accessing the data
file system, and the data file system, the metadata file system and the view
file system being mounted on a same root file system level.

According to a variant of the device for accessing files of a data file
system according to metadata related to the files, the device further
comprises a database comprising data used by the means for giving access
to the metadata and used by the means for giving access to the files of the
view file system.

4. List of figures.

More advantages of the invention will appear through the
description of particular, non-restricting embodiments of the invention. The
embodiments will be described with reference to the following figures:

- Figure 1 shows an example network infrastructure for prior art
access to files in a data file system according to related metadata
by devices connected into a local network;

WO 2011/000745 PCT/EP2010/058871

Figure 2 shows an example embodiment of the invention in a
network infrastructure that is compatible with the invention and that
includes several devices connected into a local network;

- Figure 3 shows how metadata is presented as a file system

5 according to a particular embodiment of the invention.

- Figure 4 shows how view data is presented as a file system
according to a particular embodiment of the invention and how the
view data is related to the data of the data file system.

- Figure 5 shows a device implementing the invention, such as

10 device 20 of figure 2, according a particular embodiment of the
invention.

- Figure 6 shows an algorithm of accessing files of a data file system
according to related metadata, implemented for example by device
20 of figure 2 according to a particular embodiment of the invention.

15

5. Detailed description of the invention.

Figure 1 shows an example network infrastructure for prior art
method of access to files in a data file system according to related metadata
by devices connected into a local network.

20 The infrastructure comprises:

- a storage server 10;

- a storage device 11 ;

- afirst device 13 ;

- a second device 14 ; and

25 - a local area network 12.

The devices 13, 14, as well as storage server 10 are connected to
the LAN 12 via respectively bidirectional connections 102, 103 and 101.
Storage server 10 is connected to storage device 11 via bidirectional
connection 100. Storage device 11 comprises data 111 organized in a data

30 file system and extracted metadata + index data on metadata 112 and 1183.
Bidirectional dotted arrows 1001 and 1002 indicate data- and control flows
respectively from device 13 to extracted metadata + index data on metadata
112 and vice versa and from device 14 to index data 113 and vice versa.

Device 13 and device 14 each have their own extracted metadata

35 and index data on storage space on storage device 11. Extraction of
metadata and generation of index data is done by device 13 over data 111
and is stored in storage space 112. Extraction of metadata and generation

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

of index data is done by device 14 over data 111 and is stored in storage
space 113. None of the devices 13 and 14 share extracted metadata and
index data, which is particular inefficient in terms of storage space, because
a large part of information is duplicated, which also reduces the storage
space available for data 111. It is also particularly inefficient in terms of
processing needs. This is because each device has to do its own extraction
of metadata and generation of index data. Then, when a change is made to
the data 111, this change is to be reflected in each metadata/index data.
This results in addition in synchronization problems of how a change can
quickly be reflected in each metadata/index data. In addition, a single
change creates several read/write accesses to storage device 11, to update
each of the metadata/index data. In addition, the metadata/index data not
being shared between devices 13 and 14, each of the devices 13 and 14 can
not benefit from an extraction of metadata and generation of index data
being already done by one of the other devices 13 or 14.

The above discussed prior art implementation is an example prior
art implementation. Other prior art implementations are possible, such as a
single device integrated with a storage device on which a data file system
and an index- and metadata are stored.

Figure 2 shows example embodiment of the invention in a
network infrastructure that is compatible with the invention.

The infrastructure comprises:

- gateway 20;

- storage device 21;

- a first device 23 ;

- a second device 24 ;

- a local area network 12; and

- an external network 15.

The devices 23, 24, as well as gateway 20 are connected to the
LAN 12 via respectively bidirectional connections 202, 203 and 201. Device
20 is connected to storage device 21 via bidirectional connection 200.
Storage device 21 comprises data 211 and extracted metadata + generated
index data + generated views indicated by “MVFS data” 213. Bidirectional
dotted arrows 2001 and 2002 indicate data- and control flows respectively
from client device 23 to extracted metadata + index data + generated views
213 and vice versa and from client device 24 to the same extracted
metadata + generated index data + generated views 213 and vice versa.

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

Device 20 is further connected to external network 15 via bidirectional link
104, which gives client devices 23 and 24 access to additional services
and/or storage provided by devices (not shown) connected to the external
network 15.

In contrast with the prior art of figure 1, client devices 23 and 24 of
figure 2 share storage space 213 on storage device 21.

The extraction of metadata, the generation of index data from
data 211, presentation of metadata file system and view file system is done
by file management device 20, which has the advantage of being an ‘always
on’ device, that can do the extraction of metadata and generation of index
data at any time when its resources are available, for example during
nighttime when there is no or little activity of client devices 23 and 24.

According to a variant embodiment of the invention, the extraction of
metadata and generation of index data is indifferently done by one of the
devices 20, 23 or 24, according to availability of resources of these devices.
This variant embodiment has the advantage to distribute the resources
necessary to extract metadata and to generate index data according to the
availability of the resources of each device 20, 23 or 24, and thus reduces
the processing needs of each of these devices.

The client devices 23 and 24 share extracted metadata and
generated index data, which is particular efficient in terms of storage space:
no information is duplicated for each client device and thus more space is
available on storage device 21 for data 211 when compared to prior art, and
which is also efficient in terms of processing needs: when a change is made
to data 211, this change is to be reflected in only one metadata/index data
storage 213, which avoids synchronization problems and which limits the
number of read/write accesses needed to update the metadata/index data
stored on storage device 21. In addition, the metadata/index data being
shared between client devices 23 and 24, the client devices 23 and 24 can
benefit of an extraction of metadata/generation of index data being already
done by the file management device 20, or according to a variant
embodiment of the invention, by one of the client devices 23 and 24.

According to a particular embodiment of the invention, the client
devices 23 and 24 are digital Set Top Box receivers for reception of digital
television and radio programs.

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

According to a particular embodiment of the invention, the client
devices 23 and 24 are devices that render digital video and/or audio content
such as devices with MP3 audio player or H.264 video player capacity.

According to a particular embodiment of the invention, the client
devices 23 and 24 are wireless devices connected to file management
device 20 via a wireless connection.

Figure 3 shows how metadata is presented in a file system 32
according to a particular embodiment of the invention.

Vertical bar 30 represents the root of the data file system 31. The
metadata file system 32 is constructed by the MVFS from internally stored
index data and metadata and is presented to users and/or applications as a
file system that is mounted on the root. The data file system 31 can for
example be stored on storage device 21 of figure 2 and is managed by
device 20 of figure 2.

Data file system 31 is organized in a hierarchical manner, with a
directory ‘a’ 311, directly under the file system root 30, and a subdirectory ‘b’
312 of directory ‘a’ 311, and a file x.txt’ 313 in the subdirectory ‘b’ 312. File
x.txt is further illustrated by 314 and comprises textual content ‘abed’.

The metadata file system 32 has a directory ‘meta’ 321 directly under
the file systems root 30. Directory ‘meta’ has a subdirectory ‘a’ 322 and
subdirectory ‘a’ has a subdirectory ‘b’ 323, which in turn has a subdirectory
‘X.txt’ 324.

Metadata file system 32 is thus organized according to the structure
of data file system 31, whereby each file in data file system 31 is represented
by a directory in the metadata file system 32, where the name of that
directory identifies the file.

Directory ‘a’ 322 of the metadata file system 32 corresponds to
directory ‘a’ 311 of the data file system 31. Subdirectory ‘b’ of the metadata
file system 32 corresponds to subdirectory ‘b’ 312 of data file system 31.
Subdirectory ‘x.txt’ 324 of meta-data file system 32 corresponds to file ‘x.txt’
313 of data file system 31.

In this metadata file system 32, a metadata attribute related to a file in
the data file system is represented as one or more files in directories of the
metadata file system. For example, file ‘x.txt’ 313 of the data file system 31
has related metadata ‘filetype’, which metadata is thus represented by file
filetype’ 325 in directory ‘x.txt’ 324 of the metadata file system 32. Thus, a
file in the metadata file system 32 represents a metadata attribute.

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

10

In this metadata file system 32, a metadata attribute value related to a
file in the data file system 31 is represented as a value in a metadata file. For
example, the metadata value of metadata attribute filetype’ for file x.txt’ 313
is ‘textfile’. Thus, the metadata value of metadata attribute filetype’ is
represented as textual content ‘textfile’ of file ‘filetype’ 325 under directory
X.ixt’ of the metadata file system, illustrated by 326 in figure 3.

This way, the metadata file system 32 is represented to a user and/or
application as a standard hierarchical file system, and accessing the
metadata file system 32 for a user and/or application requires no other
access methods than access methods to access data file system 31, such as
changing of directory, listing the contents of a directory, and reading the
content of files.

According to a particular embodiment of the invention, users and/or
applications are given unrestricted read/write access to the metadata file
system 32. This allows users and/or applications a maximum level of power
of expression with regard to the metadata file system 32.

According to yet another variant embodiment, the read/write access of
users and/or applications is restricted per user and/or application, thereby
allowing differentiation of access rights, for example an administrator of the
metadata file systems can have unrestricted access rights, whereas a
common user has access restricted to addition of metadata related to data in
the data file system 31 that is owned by him.

Figure 4 shows how views are created, presented and maintained in
a view file system 40 of the MVFS and how views are related to data file
system 31, according to a particular embodiment of the invention.

Data file system 31 from figure 3 is illustrated at the top of figure 4.
Mounted on the file system root is view file system 40 that is constructed by
the MVFS from internally stored view data.

This way, the view file system 40 is represented to a user and/or
application as a standard hierarchical file system, and accessing the view file
system 40 for a user and/or application requires no other access methods
than access methods to access data file system 31, such as changing of
directory, listing the contents of a directory, and reading the content of files.

The base directory of the view file system 40 is directory ‘view’ 401.
Under directory ‘view' 401 is a directory ‘config’ with two subdirectories,
namely directory ‘files-by-type’ 403 and directory ‘textfiles’ 406. Both of these

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

11

directories have files ‘cond.ini’ and ‘group.ini’, respectively 404 and 405 for
directory ‘files-by-type’ 403 and respectively 407 and 408 for directory
textfiles’ 406.

Directly under directory ‘view’ 401 is also a directory files-by-type’
409, with subdirectory ‘textfile’ 410. Subdirectory ‘type-text’ 410 comprises
symbolic link ‘a/b/x.txt’ 411 that points to file ‘x.txt’ 313 of data file system 31,
which is illustrated by dotted arrow 41.

Also directly under directory ‘view’ 401 is furthermore a directory
textfiles’ 412, which comprises link ‘a/b/x.txt’ that also points to file ‘x.txt’ 313
of file system 31, which is illustrated by dotted arrow 41.

The view file system 40 comprises a configuration part and a view
part. The configuration part allows users and/or applications to specify the
contents of a view and the configuration part is readable and writeable by a
user and/or application. The view part is read-only for a user and/or
application.

In this particular embodiment, the configuration part is illustrated by
directory ‘.config’ 402 and its subdirectories 403, respectively 406 and files
404, 405 respectively 407, 408. The view file system 40 further comprises a
view part that is illustrated by directory 409 ‘files-by-type’ with subdirectory
410 ‘textfile’ and link 411 ‘a/b/x.txt’ respectively by directory 412 ‘textfiles’ and
link 413 ‘a/b/x.txt".

When a user and/or application wants a view of the files in the data
file system 31 in which the files are organized according to metadata
selection criterion ‘metadata attribute = file type’, the user and/or application
creates a directory in the view file system 40 ‘/view/config/files-by-type’ 403.
Upon creation of this directory, the MVFS will create view configuration files
in this directory, such as ‘cond.ini’ 404 and ‘group.ini’ 405. The contents of
view configuration files 404 and 405 are writeable for a user and/or an
application but these files can not be deleted by a user and/or an application.
The file ‘cond.ini’ 404 allows a user and/or an application to specify a
metadata selection criterion that is to be satisfied in order for any file links to
appear in the view. If the file ‘cond.ini’ 404 is left empty, no file links will
appear in the view. The file ‘group.ini’ 405 allows a user and/or an application
to specify a grouping criterion for the links that appear in the view, according
to which the links will be organized in subdirectories of the view. If left empty,
no grouping will be done. After having created the /view/config/files-by-type
directory 4083, the user and/or application writes a metadata selection

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

12

criterion ‘file type = *’ to file ‘cond.ini’ 404, meaning that any types of files of
data file system 31 are to be presented in the view. In addition, if the user
and/or application wants to organize the files presented in the view according
to their file type, the user and/or application writes textual value ‘type’ to file
‘group.ini’ 405. The actions of the user and/or application will have as a
result that the MVFS will create user and/or application readable directory
files-by-type’ 409, with a subdirectory per type of file present in the data file
system 31. According to the example given here, there is only one type of file
present in the data file system 31, namely of type ‘textfile’. The MVFS thus
creates a subdirectory ‘textfile’ 410. In each particular subdirectory per type
of file, the MVFS then creates links to all the files that correspond to the
specific file type. According to the example given here, there is only one file
in the data file system that corresponds to file type ‘textfile’, namely file *x.txt’
313. The MVFS thus creates link ‘a/b/x.txt’ 411 in subdirectory ‘textfile’ 410.

Now how does the MVFS find the files in the data file system 31 that
correspond to a metadata search criterion? Using the above example, the
MVFS thus needs to find all the files in data file system 31 that have a
metadata attribute ‘filetype' and organize them according to metadata
attribute value. To do so, the MVFS uses internally stored meta- and index
data to find the files in the data file system that correspond to the metadata
search criterion. Thus the MVFS searches the meta- and index data for all
metadata attributes ‘filetype’. Each different file type found is then
represented by subdirectories in the view file system. It then searches the
meta- and index data for all specific file types found, and creates a pointer to
that file in the view file system 40 in the subdirectory corresponding to the
specific file type, such as subdirectory ‘textfile’ 410. Then it creates a pointer
to each file that is indexed in the meta- and index database 505 that has the
specific file type (= metadata attribute value having a specific value), the
poiinter being created from the path information that is stored in the meta-
and index data.

As a second example, suppose that a user and/or application wants to
create a view of the data file system 31 of all files in the data file system 31
that have metadata attribute filetype’ with value ‘textfile’. For this purpose,
the user and/or application creates a directory ‘/view/config/textfiles’ 412 in
view file system 40, upon which the MVFS automatically creates files
‘cond.ini’ 407 and ‘group.ini’ 408. Then the user and/or application writes
metadata search criterion file type = textfile” to the automatically created

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

13

‘cond.ini’ file 407. This results in automatic creation, by the MVFS, of
directory ‘textfiles’ 412 of link ‘a/b/x.txt’ 413 pointing to file ‘x.txt’ 313.

The above described embodiments are given as an example
illustrating the invention.

According to a particular embodiment of the invention, additional view
configuration files are created by the MVFS upon creation of a view by a user
and/or application, such as a view configuration file to specify an ordering
criterion, such as ascending or descending alphabetical order, or ordering
based on metadata attribute or metadata attribute value, such as file creation
date or a specific value of a file creation date, or a specific range of file
creation date.

The reader of the present document will understand that file system
names, file directory names and file names have been chosen for illustrative
purposes, and that other file system names, file directory names and file
names are compatible with the invention.

Other types of syntax for specification of metadata selection criteria
are possible and compatible with the invention. According to a particular
embodiment, a version of XML (Extended Markup Language) is used to
specify metadata search criteria. According to a particular embodiment, the
XPath (XML Path) query language is used to specify metadata selection
criteria.

According to a particular embodiment, an intermediate hard- or
software module is provided for user and/or applications, which simplifies the
operations for a user and/or application to create views. Such a module
further has the advantage to hide the implementation specificities of the view
file system. The module interfaces a user and/or application with the view file
system and uses the standard file system access methods to access the
view file system while hiding any complexity of the creation and management
of views from to the user and/or application.

With respect to figures 3 and 4, the following applies.

According to a particular embodiment of the invention, the internally
stored metadata and/or view configuration data is stored in a relational
database.

According to a variant embodiment, the internally stored meta- and
index data and/or view configuration data is stored in hash tables. A hash
table is a data structure that uses a so-called hash function to efficiently map
data identifiers (keys) to data values. The hash function is used to transform

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

14

the key to an index of an array element where data values are stored. Hash
tables provide the advantage that a data lookup is independent of the
number of elements stored in the table.

According to a particular embodiment of the invention, the MVFS
keeps track of modifications made by users and/or applications to the data
file system. It updates internally stored meta- and indexing data, its external
representations, being the metadata file system and the view file system,
accordingly to keep the external presentation of the data presented via the
metadata and view file systems coherent with the internally stored data.
Likewise, the MVFS keeps track of modifications by users and/or
applications to the metadata file system and, if needed, updates indexing
data and/or the view file system, which is for example needed when a user
and/or application adds new metadata.

The metadata and/or the view file system are presented as a file
system only when accessed by a user and/or an application. Thus, the
metadata file system and/or the view file system are said to be virtual. This
virtualization has the advantage to allow avoiding data duplication and thus
avoids data incoherency. The metadata and/or view file systems are thus
mere virtual presentations created from the internally stored data. All
previously described operations done by a user and/or application on the
metadata and/or view file system are then translated by the MVFS into
read/write operations on the internally stored index data and metadata.

Figure 5 shows a device implementing the invention, such as device
20 of figure 2, according a particular embodiment of the invention.

The device 20 comprises the following elements:

- arouter 510;

- alocal area network interface 504 for connection of the device
20 to a local network such as LAN 12 of figure 2, allowing the
transmission and the reception of data and requests such as
accesses to the three mentioned file systems from and to
devices such devices 23 and 24 of figure 2;

- a network interface 509, for connection of the device 20 to an
external network such as network 15 of figure 2; and

- an interface 508 for direct connection of an external device for
storing of the data file system, the metadata file system and
the view file system and index data and metadata from
database 505, such as storage device 21 of figure 2;

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

15

- an MVFS manager which handles accesses from devices
relating to the file systems and which commands the
functioning of elements 502-508;

- aview file system builder 502, for building and maintaining the
view file system;

- a metadata file system builder 503, for building and
maintaining the metadata file system;

- a DBMS (Data base Management System) 505, for storing of
index data, metadata and view configuration data;

- an index data extractor 506, for extracting index data from a
data file system; and

- a metadata extractor 507, for extracting metadata from a data
file system.

The elements of figure 5 are interconnected as follows.

MVFS manager 501 is connected to view file system builder 502 via
bidirectional connection 5001, to metadata file system builder 503 via
bidirectional connection 5005, to index data extractor 506 via bidirectional
connection 5003 and to metadata extractor 507 via bidirectional connection
5002 allowing it to send data and commands to the mentioned elements
502, 503, 506 and 507 and to receive data and command
acknowledgements from to the mentioned elements 502, 503, 506 and 507.
MVFS manager 501 is further connected to DBMS 505 via bidirectional
connection 5007, allowing it to store and retrieve data. DBMS is connected
to external device interface 508 via bidirectional connection 5014, allowing it
to save data from the database on external storage device 21 in storage
space 213 and to retrieve it. MVFS manager 501 is also connected to LAN
network interface 504 via bidirectional connection 5019 allowing it to
exchange data, commands and command acknowledgements with the
devices 23 and 24 connected to LAN 12.

View file system builder 502, metadata file system builder 503, index
data extractor 506 and metadata extractor 507 are all connected to DBMS
505 via respectively bidirectional connections 5009, 5008, 5010 and 5011,
allowing these elements to store and retrieve data.

View file system builder 502 and metadata file system builder 503 are
further connected to LAN network interface 504 via respectively bidirectional
connection 5006 and 5004, allowing these elements to exchange data with
the devices 23 and 24 connected to the LAN 12.

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

16

Index data extractor 506 and metadata extractor 507 are connected to
external device interface 508 via respectively connections 5015 and 5018,
allowing them to access the data stored in the data file system 31, which is
stored on external storage device 21. Metadata extractor 507 and Index data
extractor 506 are interconnected via bidirectional connection 5012, allowing
them to communicate in the process of extracting meta- and index data.

Users and/or applications have read/write access to the data file
system that is stored on external storage device 21 via LAN network
interface 504 and External device interface 508, that are interconnected via
bidirectional connection 5020.

As device 20 is also a router for routing packets between devices 23
and/or 24 connected to LAN 12, between devices in the external network 15
and in LAN 12, the device 20 comprises a router element 510 that
interconnects LAN network interface 504 with external network interface 509
via respectively bidirectional connections 5013 and 5017.

Finally, device 20 is connected to LAN 12 via bidirectional connection
201, to external network 15 via bidirectional connection 104 and to external
storage device 21 via bidirectional connection 200.

These elements work together as follows to implement the invention.
Metadata extractor 507 and index data extractor 506 extract metadata and
index data from a data file system stored on external device 21 that they
access via external device interface 508 and connections 5018 respectively
5015. The data that they extract is stored in DBMS 505, and the data to be
stored is transferred from metadata extractor 507 and index data extractor
506 via connections 5011, respectively 5010 to DBMS 505. DBMS 505
stores new data or updates existing data in its internal database according to
the commands and data that it receives from metadata extractor 5011 and
from index data extractor 5010. DBMS manages the storage of the database
on storage device 21, and so ensures that the data in the database is
protected from accidental erasure, for example caused by a power surge.
Once the metadata and index data are stored by the DBMS, the metadata
data extractor 507 and the index extractor 506 inform MVFS manager 501 of
the completion, via respectively connections 5002 and 5003. The MVFS
manager 501 then instructs metadata file system builder 503 via connection
5005 to build the metadata file system based on the information stored in the
database. For this purpose, the metadata file system builder reads the data

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

17

stored in the database by the DBMS 505, via connection 5008. When the
metadata file system builder has finished building the metadata file system,
which comprises storing of data of the metadata file system as it is built in
the database managed by the DBMS 505, the metadata file system builder
503 communicates to the MVFS manager 501 via connection 5005 that the
metadata file system has been built and is ready to be used. The device 20
is now ready to receive instructions and requests related to accessing of data
in the data file system according to related metadata from devices 23 and/or
24 connected to LAN 12. Devices 23 and/or 24 directly access the metadata
file system via metadata file system builder 503 through LAN network
interface 504 via connection 5004.

Modifications on metadata and on data of the data file system 31, for
example done by devices 23 and/or 24 of LAN 12, are monitored by
metadata and index data extractors 507 and 508, that communicate with the
DBMS 505 to update its database accordingly.

When device 23 and/or 24 send instructions to MVFS manager 501
related to the configuration and accessing of views, the MVFS manager 501
instructs the view file system builder to configure and present a view
according to the received instructions. View file system builder 502 stores
view configurations in the database by accessing the DBMS via connection
5009. Once a view is configured, view file system builder directly interfaces
with devices 23 and/or 24 to reply to read requests on the view, via
connection 5006 that connects view file system builder 502 to LAN interface
504.

The functioning as described above is ‘from scratch’ that is, no
metadata and index data is extracted yet, the database is not filled yet, and
the metadata file system is not built. The reader will understand that once
these actions are performed, they need not to be repeated upon each
powering on of the device 20, because the DBMS stores the information that
is needed to allow a quick startup by filling the database with already stored
data saved on external storage device 21. For a nominal functioning, i.e.
when the database managed by DBMS 505 is already filled, the MVFS
manager 501 only needs to update existing data and send the right
instructions to the elements 502-507 to execute that task. Time-consuming
functions such as extracting meta- and index data can be given a low-priority
so that the execution of these functions do not perturb the other functions of
device 20. These low-priority tasks can then be executed in process

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

18

background, for example during idle time, or can programmed to be
executed over nighttime, or in a standby state, or only when data is modified
that concerns meta- and index data, or only when a certain amount of data is
modified.

Of course, the embodiment of figure 5 is an example embodiment
illustrating a particular embodiment of the invention. The reader of this
document will understand that the invention can be implemented in various
different embodiments. For example, device 20 is not necessarily a gateway
implementing a router and interfacing devices 23 and/or 24 with an external
network, but a centralized server in a LAN that implements the method of the
invention. Likewise, the invention can be implemented in any device of a
LAN having the needed processing power to implement the method of the
invention as an algorithm executed on a processor, or equipped with the
necessary dedicated hardware to implement the invention, such as some or
all of the elements described in figure 5. The reader will also understand
that the invention can be implemented as described by a device connected
to a wired network such as LAN 12, but also on any type of wireless
networks. The reader will further understand that the device implementing
the invention is needs not necessary to be equipped with an external disk
such as depicted in figure 2, and that other variant embodiments are
compatible with the invention, such as diskless implementations with non-
volatile types of memory, or integrated disk storage in device 20, or external
networked storage disk directly connected to network LAN 12.

According to a particular embodiment, the invention is entirely
implemented in hardware, for example as a dedicated component (for
example as an ASIC, FPGA or VLSI) (respectively « Application Specific
Integrated Circuit », « Field-Programmable Gate Array » and « Very Large
Scale Integration ») or as distinct electronic components integrated in a
device or in a form of a mix of hardware and software.

According to a particular embodiment, a device implementing the
method of the invention is a personal computer, equipped or not with
dedicated hardware.

According to a particular embodiment, the elements that are needed
for the implementation of the functions according to the invention, such as
the elements of the particular embodiment of figure 5, are distributed over
several devices connected in a network, such as multiple set top boxes
boxes or multiple gateways or a mix of these, each of these devices

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

19

communicating with each other over the network in order to implement the
invention as one virtual device. Such an embodiment of the invention can be
useful for example to avoid using a centralized server or a gateway, through
using processing capabilities of existing equipment.

Figure 6 shows an algorithm of accessing files of a data file system
according to related metadata, implemented for example by device 20 of
figure 2 according to a particular embodiment of the invention.

The algorithm starts with a step 600 of initialization of variables
needed for its execution. Then, in a step 601, metadata is extracted from the
data file system 31, for example using metadata extractor 507 of figure 5 and
stored in a database, for example database 505. In step 602, index data is
extracted from the data file system, for example using index data extractor
506, and is stored in a database, for example in database 505. In a test step
603, it is verified if an access to the metadata file system 32 is requested by
a user and/or an application. If access is requested, step 604 is executed,
where access to the metadata file system 32 is given, using for example
metadata file system builder 503. Then, the algorithm iterates test step 603,
illustrated by arrow 610. If no access to the metadata file system 32 is
requested, test step 606 is executed, where it is verified if an access to the
view file system 40 is requested by a user and/or application. If access is
requested, step 607 is executed, where access to the view file system 40 is
given, using for example view file system builder 502. Then, the algorithm
reiterates test step 6083, illustrated by arrow 609. If no access to view file
system is requested, the algorithm again returns to test step 603, illustrated
by arrow 608.

According to a particular embodiment of the invention, steps 603-604
of testing and giving access to metadata file system and steps 606-607 of
testing and giving access to view file system are executed in a parallel
manner, giving simultaneous access to the metadata file system and to the
view file system. According to a particular embodiment, step 601 of
extraction of metadata is executed when metadata is modified in step 604 of
giving access to metadata file system, so that the metadata stored in
database 505 is kept updated.

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

20
CLAIMS

1. Method of accessing files of a data file system (31) according
metadata related to said files, said method being implemented by a file
management device (20), said method being characterized in that said
metadata is represented to at least one client device (23,24) as being stored
in a metadata file system (32), where said metadata file system (32) is
organized according to a structure of said data file system (31),

at least one first file (313) in said data file system (31) being
represented as at least one first directory (324) in said metadata file system
(32), and

at least one metadata attribute related to said at least one first file in
said data file system, being represented as at least one second file (325) in
said metadata file system (32), and

at least one value (326) of said at least one metadata attribute being
represented as being stored in said at least one second file (325) and

a view file system (40) organizing files of said data file system (31)
according to metadata related to said files in at least one second directory,
which directory comprises as content at least one pointer to at least one of
said first file in said data file system (31), said content being determined
according to at least one metadata selection criterion,

said method further comprising a step of accessing said files of said
data file system (31) using said metadata (32) and said view (40) file system,
said metadata file system and said view file system as well as said metadata
being accessed with access methods used for accessing said data file
system, and said data file system, said metadata file system and said view
file system being mounted on a same root file system level.

2. Method according to claim 1, characterized in that said metadata file
system (32) and said view file system (40) are accessible to said at least one
client device (23,24) using a same set of file system access methods as
those needed to access said data file system (31).

3. Method according to any of claims 1 or 2, characterized in that said at
least one metadata selection criterion is comprised in at least one
configuration file that is accessible to said at least one client device (23,24)

10

15

20

25

30

35

WO 2011/000745 PCT/EP2010/058871

21

in said view file system in a subdirectory of which the name identifies said at
least one metadata selection criterion.

4. Method according to claim 3, characterized in that said at least one
configuration file comprises a metadata selection criterion that is represented
by a metadata attribute and a metadata attribute value.

5. Method according to any of claims 3 to 4, characterized in that said at
least one configuration file comprises a metadata sorting criterion that is
represented by a metadata attribute.

6. Device (20) for accessing files of a data file system (31) according to
metadata related to said files, said device being characterized in that it
represents said metadata to at least one client device (23,24) as being
stored in a metadata file system (32), where said metadata file system (32) is
organized according to a structure of said data file system (31), said device
comprising:

means (503) for giving access to said metadata via said metadata file
system (32) where

at least one first file (313) in said data file system (31) is represented
as at least one first directory (324) in said metadata file system (32), and
where

at least one metadata attribute related to said at least one first file in
said data file system, is represented as at least one second file (325) in said
metadata file system (32), and where

at least one value (326) of said at least one metadata attribute is
represented as being stored in said at least one second file (325) and

means (502) for giving access to said files of said data file system (31)
via a view file system (40) organizing files of said data file system (31)
according to metadata related to said files in at least one second directory,
which directory comprises as content at least one pointer to at least one of
said first file in said data file system (31), said content being determined
according to at least one metadata selection criterion,

said metadata file system and said view file system as well as said
metadata being accessed with access methods used for accessing said data
file system, and said data file system, said metadata file system and said
view file system being mounted on a same root file system level.

5

WO 2011/000745 PCT/EP2010/058871
22

7. Device (20) of claim 6, characterized in that said device further
comprises a database (505) comprising data used by said means (503) for
giving access to said metadata and used by said means (502) for giving
access to said files of said view (40) file system.

WO 2011/000745

PCT/EP2010/058871
1/6
11
PRIOR ART A~
10
100) 11
Storage Server |, RS .
g 112
_
IDX device 1 113
IDX device 2
Storage device
1001~

AN 103
} \
Device 1 Device 2
/ ,
/S~ r~
13 14

Fig. 1

WO 2011/000745 PCT/EP2010/058871

e — ———
" ~

(’ External N 21

AN Network ! /J

© /211

Data

N U’\/
MVES data

Storage device

e ——
- —

203

Device 3 Device 4

/ /

~ ~

23 24

Fig. 2

WO 2011/000745 PCT/EP2010/058871

3/6

30

/J

File systems root

|---"310 RRSNAPEL
R P . ITPRY) 311) \{V
- directory “a” .
,/, \\
/’ . 661,99 3 12 \
p directory “b” %
' \
. A
; : 313 \
! file “x.txt |
|} l,
\\ 1
U
N, “abcd” 314 ;
\\\ Va4 ,/l
3207 /—:::::::::: _____ .
=" directory “meta” ~r321>~
| 322 LU
S directory “a” A~ ad
4 \\
4
’ . 323 \\
/! directory “b”~~ \
\
[1
1
' . 324\
H =—glirectory “x.txt” -~ '
! 1
| 1
I . . 325 !
' — file “filetype” ~~ !
\“ l’
. !
'\ Ttextfile” /
%\ rJ /
\ 4
N e
N 326 R
AN e

-
-
————————————

Fig. 3

WO 2011/000745 PCT/EP2010/058871

30

/J

File system root

——————————
———————
- -~
- ~

=310 TTe=sl 31
//\/310 TPRT) 311 O

. directory “a”’ N
I,’ M (15 g2 312 \\
/ directory “b” :

! file “XAXCAS e = —

-
~ -
-~ -
l

\
Y
‘————?———

\ “abcd” 314 /)

I~
[

-~
-~
-~
-~ L

———————————

=~ directory “view’ A401

o — directory “config” ~~ 402\ "N

’
N
’ \

/! directory “files-by-type’~s403"

.

-

File “cond.ini”’ A~_ 404
J File “group.ini)~_~ 405
directory “textfiles” A, 406

-
-

-

File “cond.ini”~_- 407
File “group.ini)~_ 408

directory “files—by—type”/v409

. 410
\ directory “textfile”

\NN
~

"\ , 411
% link:/a/b/X Xt N\l -

~

h________

~

-~

L d
”
e
\

~
L9

\‘\ —— directory “textfiles” 412, ’

413 -~

R link:/a/b/X.tXt 7 ol - -

t_-

~~~~~

-~ -
-~ -
——————————



WO 2011/000745 PCT/EP2010/058871

5/6
20
~
501 5002
> 0191 —L /J 5003
5001 | MVFS manager [*
5004 Ly— [~
502 " 503
(\ i 5005 e
™ View FS builder > Metadata FS builder
L 1
o oo oo
201 | vve —_
LAN \4 \4 \ 4 5010
) Network e » Index data extractor
DBMS
L 1/F — )
504 2 A /\/ 150 5Og\/
11
SO13 7 | 505 5014 12
| RS L 5015
] ' > Metadata extractor [*
5/]]() Router V\SOZ 0 ‘
A /\/
- ! 507
L 5017
"  Ext
Ext 509 device I/F L 5018
Network A~/ ,
I/F I
508

[ 1104 lﬁ\
v 200

Fig. 5



WO 2011/000745

600

601

PCT/EP2010/058871

6/6

Extraction of metadata

\ 4

602

Extraction of index data

603

604 —,

[
>
\

Access to metadata N

file system ?

y

Give access to metadata file
system

606

N

Access to view
file system ?

607 —
Give access to view file system

[ 609

A

Fig. 6



INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/058871

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the exient that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

BRANDT:

1-14, XP002557120

page 4, right-hand column, 1ine 6 — page
6, right-hand column, line 34

page 10, left-hand column, lines 10-45
page 11, left-hand column, lines 17-20

Ry -

X SASHA AMES, NIKHIL BOBB, KEVIN M. GREENAN, 1-7
OWEN S. HOFMANN, MARK W. STORER, CARLOS
MALTZAHN, ETHAN L. MILLER, SCOTT A.
"LiFS: An Attribute-Rich File
System for Storage Class Memories"
IN PROC. OF THE 23RD IEEE / 14TH NASA
GODDARD CONFERENCE ON MASS STORAGE SYSTEMS
AND TECHNOLOGIES (MSST ’06), COLLEGE PARK,
MD, MAY 2006, May 2006 (2006-05), pages

Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

*E" eatlier document bul published on or after the international
filing date

*L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*O* document referring 1o an oral disclosure, use, exhibition or
other means

*P* document published prior 1o the international filing date but
later than the priority date claimed

T

e

e

=@

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

document of particuiar relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, rstuch combination being obvious to a person skilled
in the art.

document member of the same patent family

Date of the actual compietion of the international search

14 July 2010

Date of mailing of the intemational search report

22/07/2010

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bykowski, Artur

Form PCT/I1SA/210 (sacond sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2010/058871

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X ALEXANDER HILLIGER VON THILE, INGO MELZER:
"Smart Files: Combining the Advantages of
DBMS and WfMS with the Simplicity and
Flexibility of Spreadsheets” .
DATENBANKSYSTEME IN BUSINESS, TECHNOLOGIE
UND WEB, 11. FACHTAGUNG DES GIFACHBEREICHS
"DATENBANKEN UND INFORMATIONSSYSTEME"
(DBIS), 2.-4. MARZ 2005 KARLSRUHE. GI
2005, [Online] 2 March 2005 (2005-03-02),
- 4 March 2005 (2005-03-04) pages 175-184,
XP002557121

Retrieved from the Internet:
URL:http://subs.emis.de/LNI/Proceedings/Pr
oceedings65/GI-Proceedings.65-11.pdf>
[retrieved on 2009-11-24]

page 178, 1ine 7 - page 179, last line
page 183, lines 10-15

X COHEN E S ET AL: "Version management in
Gypsy"

SOFTWARE ENGINEERING NOTES, ACM, NEW YORK,
NY, US,

vol. 13, no. 5,

1 November 1988 (1988-11-01), pages
201-215, XP002540031

ISSN: 0163-5948

page 206, left-hand column, line 7 - page
208, left-hand column, line 29

1-7

1’3’4’6’
7

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2




	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - wo-search-report
	Page 32 - wo-search-report

