FLASTIC CRATE WITH METAL STACKING EAR

INVENTOR

HOUSTON REHRIG

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5
PLASTIC CRATE WITH METAL STACKING EAR
Houston Rehrig, 100 Los Altos Drive, Pasadena, Calif., Filed Apr. 17, 1968, Ser. No. 722,028
Int. Cl. B65D 21/02, 7/44
U.S. Cl. 220—97

ABSTRACT OF THE DISCLOSURE

A molded plastic material handling crate having a metal stacking ear rigidly mounted on and projecting above each corner of the crate in position to project into openings in the corners of the bottom of other crates to facilitate stacking of a plurality of crates. The stacking ears each include a body adapted to extend around a corner and overlie a portion of the walls of the crate adjacent the corner. An ear portion projects from the body through an opening in the corner of the crate and upwardly therefrom within and above the corner of the crate to provide the stacking guide. The lower part of the body is rigidly attached to the walls of the crate adjacent the corner.

This invention relates to material handling crates, and more particularly to material handling crates having side walls molded from synthetic resin material (hereinafter referred to as plastic) with metal stacking ears rigidly mounted on and projecting above the corners of the crate.

Conventional metal handling crates constructed of wood, wire frame, and the like, have frequently employed metal stacking ears mounted on and projecting upwardly from the corners of the crate to facilitate stacking. Such stacking ears are designed to project into openings or recesses in the corners of the bottom of similar crates when the crates are stacked one upon another. Such conventional crates are illustrated, for example, in my prior Patent Nos. 2,903,150 and 2,952,382.

Crates suitable for use in handling relatively heavy loads, such as the milk crates illustrated in the above-mentioned patents, have recently been formed from molded plastic material. However, difficulty has been encountered in forming a stacking ear on the molded plastic crate to enable their use interchangeably with the existing supply of conventional wood or wire frame crates. Such stacking ears are frequently subjected to high impact loads, both in the vertical and lateral direction, and the plastic materials normally used to mold such crates do not have sufficient strength or impact resistance to withstand such loads applied to stacking ears mounted thereon by conventional means. Accordingly, the primary object of the present invention is to provide an improved molded plastic material handling crate having metal stacking ears.

Another object is to provide such a material handling crate in which the stacking ears are separately formed from sheet metal, and rigidly attached one to each corner of the material handling crate.

Other objects and advantages of the invention will become apparent from the following detailed description, taken with the drawings, in which:

FIG. 1 is a perspective view of an improved material handling crate embodying the present invention;

FIG. 2 is an enlarged fragmentary view of a portion of the material handling crate shown in FIG. 1, with certain parts broken away more clearly illustrated in other parts;

FIG. 3 is a view similar to FIG. 2, but showing the molded plastic structure only;

FIG. 4 is a fragmentary sectional view taken along line 4—4 of FIG. 2; and

FIG. 5 is a sectional view taken along line 5—5 of FIG. 2.

Referring now to the drawings in detail, a material handling crate according to the present invention is indicated in FIG. 1 by the reference numeral 10, and includes a pair of opposed, generally vertically extending side panels 11, 12 and a pair of opposed, generally vertically extending end panels 13, 14. The panels 11, 12, 13, and 14 molded from a single mass of plastic material, with the panels being integrally joined at the corners of the crate and extending therefrom in generally perpendicular relation to define a rectangular crate. A pair of integrally molded, vertically spaced flanges 15, 16 are formed around the crate adjacent the top outer periphery thereof, forming a substantially C-shaped channel around the periphery of the crate adjacent its top.

An endless reinforcing rod member 17 is positioned within in the channel between the flanges 15, 16 to reinforce the top of the crate in the manner similar to that illustrated in my U.S. Patent No. 3,341,060. A metal stacking member is mounted on each corner of the crate and projects upwardly therefrom above the flange 15, providing a guide to facilitate stacking of the crates one upon another. Since the stacking members are identical in construction, they have each been designated generally by the reference numeral 18, and identical reference numerals will be used throughout this description to refer to corresponding parts of the respective stacking members. Similarly, since the respective corners of the crate are identical to one another, at least insofar as the mounting of the stacking members are concerned, only the corner of the crate defined by the intersection of side panel 11 and end panel 14 will be described in detail, and identical reference numerals shall be employed to designate like parts of the respective corners of the crate.

A vertically extending reinforcing rib 20 is integrally molded with and extends outwardly from the corner of the crate, with the rib 20 terminating in a substantially horizontal platform 21 in vertically spaced relation with respect to the reinforcing rod 17. A pair of diagonal reinforcing webs 22, 23 extend upwardly from the platform 21, with the web 22 extending along and being integrally molded with the side panel 11, and web 23 being integrally molded with and extending along the outer surface of end panel 14. An elongated opening 24 is formed in wall 11 along the upper edge of web 22, and a similar opening 25 is formed in end panel 14. Reinforcing web 22 is integrally joined at its upper end with a second vertically extending reinforcing web 26 extending outwardly from the outer surface of panel 11, with the web 26 being integrally joined at its upper end with the flange 16. A recess 27 is formed in the side of web 26, the purpose of which will be more fully explained hereinafter. A similar vertically extending web 28, having a recess 29 formed therein, is integrally molded on the surface of end panel 14. An opening 30 is formed in the corner of the crate, with the opening extending around the corner into panels 11 and 14, between the webs 26 and 28, adjacent the top thereof. Opening 30 extends upwardly into the channel defined by the flanges 15 and 16, so that a portion of the flange 16 is removed at the corner of the crate.

Each of the stacking members 18 are formed from a single piece of sheet metal, and include a body portion 31 extending around the corner of the crate on the outer surface thereof, and a stacking ear portion 32 projecting through the opening 30 into the crate and upwardly above the upper surface of the flange 15. As is most clearly illustrated in FIG. 5, the body portion 31 is bent at sub-
stantially right angles along a vertical line at the corner of the crate, with its two sides 33, 34 overlying the outer surfaces of the side panel 11 and end panel 14, respectively adjacent the corner of the crate. An offset shoulder 35 is formed on the lateral vertical edge of side 33, with the shoulder 35 engaging the reinforcing web 26 and extending into the recess 27. A similar offset shoulder 36 is formed on the vertical side edge of side 34, with the shoulder 36 engaging the web 28 and extending into the recess 29. An outwardly turned, substantially horizontal foot 37 is integrally formed on the bottom of the body 31, with the foot 37 engaging and resting on the top horizontal surface of the platform 21 to provide vertical support for the stacking member.

A pair of tabs 38, 39, respectively, project through the openings 24, 25 and are deformed downwardly within the crate so that the tab 38 engages the inner surface of panel 11 and the tab 39 engages the inner surface of end panel 14. Tabs 38 and 39 retain the bottom of the body 31 in firm engagement with the outer surface of the corner of the crate. Reinforcing webs 22 and 23 reinforce their respective associated panels in the area of the tabs 38 and 39, and the tabs engaging the side of the opening also provide vertical support for the reinforcing element.

As shown in FIGS. 2 and 4 the stacking ear portion 32 of the stacking element 18 is offset inwardly with respect to the body portion 31, and projects upwardly therefrom within the corner of the crate to terminate above the top of the flange 15, with the projecting portion forming a guide for stacking a plurality of similar crates one upon another. As illustrated in FIG. 2, such crates are normally provided with an opening or recess at each corner of their bottom panel so that the stacking ears of a crate may project upwardly into another crate stacked thereon, with the four stacking ears cooperating to vertically align the superimposed crates. The stacking ear 32 projects through the opening 30 and engages the inner surface of the panels 11 and 14 at the corner immediately inboard of the reinforcing element 17 so that there is no danger of the stacking element being pulled out of the crate by reason of failure of the plastic material outboard of the stacking ear 32.

The stacking member 18 is assembled in the crate by first inserting the stacking ear 32 through the opening 30, then swinging the bottom of the body portion 31 inwardly toward the corner of the crate to project the tabs 38 and 39 through the openings 24, 25, respectively, and to position the foot 37 on the horizontal platform 21. In this position the stacking ear 32 is held firmly against the inner, upper corner of the crate and the body of the stacking element engages the outer surface of the corner of the crate. Also, the shoulders 35, 36 firmly engage the reinforcing ribs 27, 29 to provide additional lateral support for the stacking member. With the stacking member firmly retained in this position, the tabs 38, 39 are deformed downwardly into firm engagement with the inner surface of the associated panel so that the stacking element is rigidly and permanently locked in place.

A molded plastic crate employing a stacking element of the type described above may be used interchangeably with the conventional crates, and the stacking element and its associated support structure are sufficiently rigid and strong to withstand normal use throughout the life of the crate.

While I have disclosed a preferred embodiment of my invention, I wish it understood that I do not intend to be restricted solely thereto, but that I do intend to include all embodiments thereof which would be apparent to one skilled in the art and which come within the spirit and scope of my invention.

I claim:

1. In a material handling crate including a bottom panel, a side panel and an end panel extending upwardly from said bottom panel and laterally from one another at a corner of the crate, said side and said end panels being integrally joined at said corner and being molded from a single homogeneous mass of plastic material, the improvement comprising a stacking ear formed from sheet metal mounted on said crate at said corner, said stacking ear including a body extending around said corner and along a portion of the outer surface of said side and said end panels, means securing the lower portion of said body to said side and said end panels, an opening formed in said crate at said corner, and an ear portion integrally formed with said body, said ear portion extending through said opening and projecting upwardly therefrom within said crate at said corner and overlaying the inner surface of a portion of said side and said end panels and projecting upwardly thereabove.

2. The material handling crate defined in claim 1 further comprising reinforcing ribs integrally molded on and extending outwardly from said side and said end panels adjacent said corner, and means on said body engaging said reinforcing ribs.

3. The material handling crate defined in claim 1 further comprising a horizontally extending ledge integrally molded with said side and said end panels extending outwardly from said corner, and foot means on said body engaging said ledge, said ledge and said foot means cooperating to provide vertical support for said stacking ear.

4. The material handling crate defined in claim 1 wherein said means securing the lower portion of said body to said side and said end panels comprises a pair of openings formed one in said side panel and one in said end panel adjacent said lower portion, and a pair of tabs integrally formed with said body, said tabs extending one through each of said openings and engaging the inner surface of the respective panels.

5. The material handling crate defined in claim 4 further comprising an endless reinforcing rod member extending around the outer periphery of said crate adjacent the top thereof.

6. The material handling crate defined in claim 5 wherein said endless reinforcing rod member extends around said corner in outwardly spaced relation with respect to said ear portion, said reinforcing rod member reinforcing said side and end panels at said corner to prevent damage resulting from loads applied to said ear portion.

7. In a material handling crate including a generally rectangular bottom panel, a pair of opposed generally vertical side panels and a pair of opposed generally vertical end panels extending upwardly from said bottom panel, said side and said end panels being integrally molded from a single homogeneous mass of plastic material and joined at the corners of the crate, and an endless reinforcing rod member extending around the outer periphery of said crate adjacent the top thereof, the improvement comprising a stacking member formed from sheet metal and rigidly mounted on and projecting above the crate at each corner thereof, said stacking members each including a body extending around one corner of said crate and along a portion of the outer surface of the adjacent side and end panels and a stacking ear portion, means securing the lower portion of said bodies to the adjacent side and end panels, an opening formed in said side and end panels at each corner of the crate, said openings extending around said corners adjacent said endless reinforcing ring, said stacking ear portions each extending through one of said openings and projecting upwardly therefrom within said crate, said ear portions extending closely adjacent the inner surface of a portion of said side and said end panels and projecting upwardly thereabove.

8. The material handling crate defined in claim 7 further comprising reinforcing ribs integrally molded on and extending outwardly from said side and end panels.
adjacent each said corner, means on said body portions engaging and overlaying the adjacent reinforcing ribs, a ledge integrally molded with said side and end panels at each said corner, and foot means on said body portions for engaging the adjacent ledge, said ledge and said foot means cooperating to provide vertical support to said stacking members.

9. The material handling crate defined in claim 8 wherein said means securing the lower portion of said bodies comprises a pair of openings formed one in said side and one in said end panels at each said corner, and a pair of tabs formed on said lower portion of each said body, said tabs each extending through one of said openings and engaging the inner surface of one of said panels.