WO 02/071183 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A 0 000

(10) International Publication Number

12 September 2002 (12.09.2002) PCT WO 02/071183 A2

(51) International Patent Classification’: GO6F (74) Agent: MAGEN, Burt; Vierra Magen Marcus Harmon &
DeNiro LLP, 685 Market Street, Suite 540, San Francisco,

(21) International Application Number: PCT/US02/05119 CA 94105-4206 (US).
(22) International Filing Date: 21 February 2002 (21.02.2002) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(25) Filing Language: English CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK,
(26) Publication Language: English LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL,
(30) Priority Data: TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

60/272,147 28 February 2001 (28.02.2001) US

(84) Designated States (regional): ARIPO patent (GH, GM,

(71) Applicant: WILY TECHNOLOGY, INC. [US/US]; 875
Mahler Road, Burlingame, CA 94010 (US).

(72) Inventors: COBB, Jeffrey, R.; 131 Edgehill Drive, San
Carlos, CA 94070 (US). CIRNE, Lewis, K.; 602 Placitas
Avenue, Menlo Park, CA 94025 (US).

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

[Continued on next page]

(54) Title: DETECTING A STALLED ROUTINE

(57) Abstract: A system is disclosed that can determine whether a routine

get current time

access first item on list

FINISHED flag and
STALLED flag false?

348

[

set STALLED flag as true

l fsso

update reporting

l [352

remove item form list

yes

354

access next item on list

stalled. The system does not require the developer of the routine to add code
for the pourpose of detecting whether the routine is stalled. Futermore, the
l system can be used to monitor various routines at different levels of granular-
ity, such as at the thread level, method level, or other levels. One embodiemnt
of the present invetion allows a user to specify a method and an expected time
frame. Code for that method is modified to add additional code that imple-
ments a timing mechanism.. The timing mechanism is used to detect when
a thread enters that mehtod and does not return within an approximation fo
the expected time frame. Other embodiments are also within the scope of the
present invention.

w0 02/071183 A2 IR0 000 0 O A

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations" appearing at the begin-
upon receipt of that report

ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/071183 PCT/US02/05119

DETECTING A STALLED ROUTINE

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention is directed to technology for detecting a stalled

routine.

Description of the Related Art

As the Internet’ s popularity grows, more businesses are establishing a
presence on the Internet. These businesses typically set up web sites that run
one or more web applications. One disadvantage of doing business on the
Internet is that if the web site goes down, becomes unresponsive or otherwise is
not properly serving customers, the business is losing potential sales and/or
customers. Thus, there is a need to monitor live web applications and web sites
to make sure that they are running properly.

One particular scenario that web application developers seek to avoid is
a routine that stalls. A routine typically is started, performs a task and ends. A
stalled routine will start its task and either never complete its task or run so
slowly that the system is better off canceling the routine. For example, it may
be expected that a routine will take a fraction of one second to complete its task;
however, due to something going wrong, the routine is still running after 7
seconds. In this case, the routine is considered stalled. It is still possible that
the routine may finish. It is also possible that the routine will never finish.
Typically, a stalled routine is a bounded operation that has continued to be
active significantly past a reasonable time of completion, where the definition of
reasonable is operation dependent.

A stalled routine can degrade performance of a web site, degrade
performance of a web application, and cause an application to fail or cause a

web site to fail. Thus, there is a need to detect when a routine has stalled.

10

15

20

25

30

WO 02/071183 PCT/US02/05119

Some prior attempts to determine whether a routine has stalled have
involved the sofiware developer including source code in the routine that
informs another entity that the routine is still functioning in a normal manner.
This system, however, requires the source code to be manually edited to insert
the additional code. In some cases, the source code is not available and,
therefore, the technique cannot be used. Additioﬁally, the software developer is
respounsible for adding the code and many software engineers do not want to add
extra code that is unnecessary to the intended functions of the software.

Another prior attempt to determine whether a routine has stalled
involves determining whether a program is responding to user inputs. Such
functionality is common on many personal computer operating systems. While
these systems can determine whether an entire application is stalled, they are
unable to determine whether a routine within the application is stalled, if the
application is still responding to user inputs.

Thus, there is a need to detect when a routine has stalled that overcomes

the limitations of the prior art.

SUMMARY OF THE INVENTION

The present invention, roughly described, includes a system that can
determine that a routine is stalled. The system does not require the developer of
the routine to manually add code for the purpose of detecting whether the
routine is stalled. Furthermore, the system can be used to monitor various
routines at different levels of granularity, such as at the thread level, method
level, or other levels.

One embodiment of the present invention includes accessing existing
code for a first routine, automatically modifying the existing code to include
new code, and using the new code to determine if the first routine has stalled.
One exemplar implementation allows a user to specify a method and an
expected time frame. Code for that method is modified to add additional code

that implements a timing mechanism. The timing mechanism is used to detect

10

15

20

25

WO 02/071183 PCT/US02/05119

when a thread enters that method and does not return within an approximation
of the expected time frame.

Another embodiment of the present invention includes receiving an
indication that a particular routine is running, where the particular routine is one
of a plurality of routines that comprise a process, and automatically determining
whether the particular routine has stalled.

An exemplar implementation includes receiving an indication that a first
routine has started, starting a timing mechanism in response to that indication,
and receiving an indication that the first routine has completed, if the first
routine does actually complete. The timing mechanism is stopped in response
to receiving the indication that the first routine has completed. The system
reports that the first routine is stalled if the timing mechanism is not stopped
prior to a determination that the timing mechanism is overdue.

One exemplar use of the present invention is on web server and/or
application server used to implement a web site for an organization doing
business on the Internet.

The present invention can be accomplished using hardware, software, or
a combination of both hardware and software. The software used for the
present invention is stored on one or more processor readable storage media
including hard disk drives, CD-ROMs, DVDs, optical disks, floppy disks, tape
drives, RAM, ROM or other suitable storage devices. In alternative
embodiments, some or all of the software can be replaced by dedicated
hardware including custom integrated circuits, gate arrays, FPGAs, PLDs, and
special purpose computers.

These and other objects and advantages of the present invention will
appear more clearly from the following description in which the preferred
embodiment of the invention has been set forth in conjunction with the

drawings.

10

15

20

25

WO 02/071183 PCT/US02/05119

I

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram of the code modifier of the present

invention.

Figure 2 is a flow chart explaining the operation of the code modifier.

Figure 3 is a flow chart describing one embodiment of the operation of
the present invention.

Figure 4 is a flow chart describing one embodiment of start code.

Figure 5 is a flow chart describing one embodiment of stop code.

Figure 6 is a flow chart describing one embodiment of a process
performed by a timing mechanism.

Figure 7 is a flow chart describing one embodiment of an evaluation
process for a timing mechanism.

Figure 8 is a flow chart describing one embodiment of a process for
reporting.

Figure 9 is a block diagram of one embodiment of a computing system

that can be used to implement the present invention.

DETAILED DESCRIPTION

The present invention includes a system that can determine that a routine

is stalled. The system can be used to monitor various routines at various levels
of granularity, such as at the thread level, method level, or other levels. For
purposes of this patent document, a routine is a generic term that refers to any
sequence of operations. Thus, a routine can be a method, thread, process, any
combination of the above, or any subset of the above, depending on its usage.
For example, when stating that a particular routine is one of a plurality of
routines that comprise a process, that usage indicates that the word routine is not
meant to cover a process and is meant to cover threads, methods or other
suitable flows of control within a process. A discussion of a process, thread and

method follow.

10

15

20

25

30

WO 02/071183 ' PCT/US02/05119

A process is the context (i.e. namespace) for resource allocations
(threads, memory, open files, network connections, etc.) in which an operating
system places a running program. In general, entities within a process can
relatively cheaply share access to the resources of the process and entities in
different processes cannot share resources without heavyweight, expensive
services. For example, it is easy for two threads in the same process to access
the same memory.

A thread is a single sequential flow of control within a process, which
shares as much of the program environment so that minimal state needs to be
saved and restored when changing threads. At any given time during the
runtime of a thread, there is a single point of execution. A thread itself is not a
full process; it cannot run on its own. Rather, it runs within a process. It is
contemplated that a given process may have many threads running at the same
time. For example, many threads may comprise a process.

A method is a unit of code that is a subset of a program or process, and
that can be invoked to perform one or more specific tasks when that program or
process is run. A process can include executing many methods at the same time
or at different times. A thread can execute one or more methods in a sequential
manner. While multiple threads for a given process can run at the same time,
each thread can only execute one method at any given point in time.

For example, consider an application program that implements a
browser. When the application is started, a browser process is run on the
computer. The browser allows a user to scroll a page while downioading an
applet or image. The ability to scroll is performed by a first thread and the
ability to download is performed by another thread. The thread that downloads
may first perform a method for making a connection, followed by a method for
communicating and a method for opening a new file to store the downloaded
contents. |

One embodiment of the present invention allows a user to specify a

method and then detects when a thread enters that method and does not return

10

15

20

25

30

WO 02/071183 PCT/US02/05119

within an approximation of an expected time frame. Other embodiments of the
present invention monitor threads without regard to particular methods, monitor
methods without regard to threads, monitors any thread or a specific thread
running a specific method, monitor code routines (methods, threads, others,
etc.) below the process level, monitor other types of routines, etc.

One implementation of the present invention operates on Java code. For
example purposes, the remaining portions of this document provide examples
using Java code. However, the present invention applies to other programming
languages and formats as well. The examples below make use of the term
“method” in reference to the Java code. For purposes of this document,
“method” includes a Java method as well as other sets of instructions such as
procedures, functions, routines, subroutines, sequences, etc. in any
programming language, format, definition, etc.

Figure 1 shows a block diagram of the code modifier 10 of the present
invention. Code modifier 10 includes three inputs. The first input includes the
existing original code that is to be monitored. The second input to code
modifier 10 includes-a set of one or more rules. The rules are in a user created
file and instruct code modifier on how to modify the existing original code.
U.S. Patent No. 6,260,187, July 10, 2001, Lewis K. Cirne, incorporated herein
by reference in its entirety, describes exemplar rules and a system for modifying
code that can be used to implement the present invention. One rule that can be
used with code modifier 10 is the stalled routine rule, which instructs code
modifier 10 to modify the existing original code in order to monitor whether a
particular routine has stalled. In one embodiment, the rule identifies a method
in a class and a threshold time. The rule could also specify the type of reporting
requested. In other embodiments, there can be a generic rule for all profiling
and, therefore, the rule would need to specify which type of profiling is
requested (e.g. the stalled method tracer).

The third input to code modifier 10 includes additional code (e.g.

additional classes). The inputs to code modifier 10 are one or more files.

10

15

20

25

30

WO 02/071183 PCT/US02/05119

Alternatively, the inputs can be entered using a user interface or some other
input/output mechanism (e.g. a network comnection). The output of code
modifier 10 includes the enhanced code (e.g. the original classes after
modifications) and the appropriate additional classes used according to the
rules, all merged together in one or more output streams (files, network, etc.).
By merged together, it is meant that they are written to the same file (including
zip, jar, etc.), to the same directory, or to the same storage element.

Code modifier can be used to modify any type of code. In one
embodiment, code modifier is used to modify object code. Object code can be
generated by a compiler or an assembler. Alternatively, object code can be
generated manually. Object code can be machine executable or suitable for
processing to produce executable machine code. Modifying object code
includes adding new instructions to the object code and/or modifying existing
instructions in the object code. Modifying object code does not involve
accessing the source code. An example of modifying object code can be found
in U.S. Patent No. 6,260,187, incorporated herein by reference.

The examples below describe the modifying and monitoring of a
method. However, the present invention can also be performed on other types
of routines in addition to methods.

In one embodiment of the present invention, new functionality is added
to a method such that all or part of the new functionality is executed upon exit
from the method. Rather than add many copies of the exit code in different
places, the present invention adds exit code using “try” and “finally”
functionality. Consider the following example pseudo code for a method called

“foo” that includes a set of Java instructions:

public fool()

{

[Java instructions]

}

10

15

20

25

30

WO 02/071183 PCT/US02/05119

For example purposes, assume that a user wishes to monitor the method
foo() to determine whether it becomes stalled. To do this, in one embodiment,
code is inserted into the method to start a timing mechanism and code is
inserted into the method to stop the timing mechanism. One embodiment

conceptually adds code to the above method foo() as follows:

public foo()
StalledMethodTracer StalledMethodTracerl=
MethodTracerFactory.newStalledMethodTracer (par

ameters)

{

if (StalledMethodTracerl!=null)

{

StalledMethodTracerl.startTrace() ;

}
try {

[Java instructions]

} finally

{

if (StalledMethodTracerl !=null)

{

StalledMethodTracerl.finishTrace () ;

}

As can be seen, the new instruction
StalledMethodTracerl.startTrace () has been added to start the

monitoring function. In one embodiment, the instruction

10

15

20

25

30

WO 02/071183 PCT/US02/05119

StalledMethodTracerl.startTrace ()calls a Java method startTrace
which is part of the StalledMethodTracer class and is used to start the timing
mechanism, as described below. Additionally new code
StalledMethodTracerl.finishTrace () has been added that stops
the monitoring function. In one embodiment, the instruction
StalledMethodTracerl.finishTrace () «calls a Java method
finishTrace which is part of the StalledMethodTracer class and is used to stop
the timing mechanism, as described below. Rather than physically insert copies
of the instruction StalledMethodTracerl.finishTrace()at every
possible explic;it exit, the present invention conceptually encloses the [Java
instructions] within a “try” block and places the stop code within a “finally”
block. This implementation provides that the stop: code will be performed

[13

regardless of the exit from the “try” block, including intentional exits and
exceptions.

There are many ways to implement the methods used to start and stop
the timing mechanism of the present invention. In one embodiment, a generic
interface is created that defines a generic tracer for profiling. A generic abstract
class is created that implements the interface. The interface includes the
methods startTrace and finishTrace. The generic abstract class includes the
methods startTrace, finishTrace, dostartTrace and dofinishTrace. The method
startTrace is called to start a tracer, perform error handling and perform setup
for starting the tracer. The actual tracer is started by the method doStartTrace,
which is called by startTrace. The method finishTrace is called to stop a tracer,
and to perform error handling. The method finishTrace calls doFinishTrace to
actually stop the tracer. Within the generic abstract class, startTrace and
finishTrace are final and void methods, and doStartTrace and doFinishTrace are
protected, abstract and void fnethods. Thus, the methods doStartTrace and do
FinishTrace must be implemented in subclasses of the generic abstract class.

Each of the subclasses of the generic abstract class implements the actual

tracers. The class StalledMethodTracer is a subclass of the generic abstract

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-10-

class and provides its own version of the methods doStartTrace and
doFinishTrace. The parameters of one embodiment of the class
StalledMethodTracer includes data such as a threshold time, the name of the
method (e.g. foo), the name of the class, and other data depending upon the
implementation. More details of the methods doStartTrace and doFinishTrace
are discussed below.

The above example shows source code being instrumented. In one
embodiment, the present invention doesn’t actually modify source code.
Rather, the present invention modifies object code. The source code examples
above are used for illustration to explain the concept of the present invention.
The object code is modified to add the functionality of the “try” block and
“finally” block. In other embodiments, source code can be modified to
implement the present invention.

Figure 2 depicts a flow chart that describes how the existing code is
modified to add the functionality to monitor for a stalled routine. In step 96,
code modifier 10 receives the existing original object code. In one embodiment,
the received code is object code (also called byte code) and is stored in a class
data structure according to the Java Virtual Machine Specification. The term
code is used to refer to all of the instructions, variables, definitions, pointers,
addresses etc, that are stored in a class file and/or a class data structure. In step
98, the system receives the additional code. The additional code will include
the new classes that implement the timing mechanism and reporting functions
described herein. For example, the additional code would include the
StalledMethodTracer class described above.

In step 100, the system receives an identification of the methods to be
monitored. In one embodiment, for each method (or other type of routine) a
threshold time is identified. In one alternative, the threshold time is an
approximation of a longest expected time frame for the method to complete its
task. Alternatively, the threshold time can be a time for which an entity

concludes that if the method is running for that threshold time then it must be

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-11 -

stalled. For example, an entity may estimate that a method should finish its task
in a tenth of a second under ideal conditions and in two seconds under worst
case conditions, then the rule may be created with a threshold of two seconds or
a time frame a bit larger than two seconds (e.g. 3 seconds). The threshold time
is dependent on the method (or other routine) being monitored. As described
above, one embodiment of step 100 is receiving a rule. Other means for
performing step 100 can be used.

In step 102, the system accesses one of the methods specified in step
100. In step 104, one or more instructions are added to the method to call the
start code. In one embodiment, the start code is used to start the timing
mechanism described herein. In one embodiment, the one or more instructions
of step 104 are added at the beginning of the sequence of execution of the
method. These one or more instructions are used to create the timing
mechanism and to call another method which starts the timing mechanism; for
example, adding the pseudo instructions
StalledMethodTracerl=MethodTracerFactory.newStalledMe

thodTracer and StalledMethodTracerl.startTrace (). In other

embodiments, all (or less than all) of the instructions to start and/or implement

the timing mechanism are added. Other embodiments may not need to add the
code to create the timing mechanism. In step 106, one or more instructions are
added to call the stop code. In one embodiment, the stop code is used to stop
the timing mechanism described herein. In one embodiment, the one or more
instructions of step 106 are added at some or all of the exits of the sequence of
execution of the method and are used to call another method, which stops the
timing mechanism. One example of step 106 includes adding the pseudo
instruction StalledMethodTracer. finishTrace () and the try-finally
functionality, as described above. In other embodiments, all (or less than all)
of the instructions to stop and/or implement the timing mechanism are added.

In step 108, it is determined whether there are any more methods (or

other types of routines) that were identified in step 100 and were not modified

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-12-

yet. If so, the method loops to step 102 and the next method is accessed. If all
of the methods identified in step 100 have been modified, then, in step 110, the
code to start, stop and otherwise implement the timing mechanism is added to
the original code (as modified). For example, the code for the
StalledMethodTracer class can be added to the code for the modified version of
foo() from the above example.

Steps 102-110 are performed automatically. That is, they are performed
by a machine. Many previous attempts to modify code are manual, that is, they
require a human to manually modify the code.

More details of modifying the object code in accordance with the above
discussion (including adding the start code, stop code, and try-finally
functionality) can be found in U.S. Patent Application 09/795,901, “Adding
Functionality To Existing Code At Exits,” filed on February 28, 2001,
incorporated herein by reference. Other methods known in the art for

modifying code can also be used, for example, those found in U.S. Patent

© 5,193,180; U.S. Patent 6,021,272; Automatic Program Transformation with

JOIE, by Cohen, Chase, Kaminsky, USENIX Annual Technical Symposium,
June 1998; BIT: A Tool for Instrumenting Java Bytecodes, by Lee and Zom,
USITS 97, December 1997; Binary Component Adaption, by Keller and Holze,
University of California, Technical Report, December 1997, and EFL:
Machine-Independent Executable Editing, by Larus and Schnarr, SIGPLAN
Conference on Programming Language Design and Implementation, June 1995.
Figure 3 is a flow chart describing one embodiment of the operation of
the present invention. In many embodiments, the present invention will be
performed after the steps of Figure 2 and during the operation of an application,
process etc. The application, process etc. is likely to have many methods, some
or all of which have been identified for monitoring. In step 160, a method
which has been identified for monitoring starts to run. In one embodiment, that
method is part of an instance of a class that includes the method. In step 162, a

call to the start code is made. For example, the instruction

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-13 -

StalledMethodTracerl.startTrace() is executed. In some
embodiments, the start code is not a method. Rather it is another grouping of
code, etc. In step 164, the original code for the method is executed; for
example, the [Java instructions] for the method foo() can be executed.
If the method does not stall, then, in step 166, a call to the stop code is made.
For example, the instruction StalledMethodTracerl.finishTrace ()

is executed. In some embodiments, the stop code is not a method. Rather it is
another grouping of code, etc. If the original code stalls, step 166 may never be
executed.

Figure 4 describes one embodiment of the operation of the start code,
when called by step 162. The start code is used to start a timing mechanism.
There are many timing mechanisms that can be used with the present invention.
One example is a countdown timer that is provided with a threshold time and if
the countdown timer finishes counting to zero from the threshold time prior to
the method finishing, then the method being monitored is considered to be
stalled. Another timing mechanism includes determining a due time and
requesting the Operating System to contact/interrupt at the due time. Many
other timing mechanisms can also be used.

In the embodiment described below, a generic system is set up that
maintains a list of timing mechanisms. In one embodiment, the generic system
maintains a list of due times and repeatedly checks the list to see if any of the
due times are passed due. If a due time is passed due, then the method being
monitored that is associated with the due time is considered as being stalled.

In step 200 of Figure 4, the start code receives the threshold time. In
one embodiment, the start code explicitly receives the identification of the
method, which it is monitoring. In other embodiments, that information is
available to be accessed by the start code. In step 202, the start code determines
whether the list of due times is empty. In one implementation, if the list is
empty, then the list is null or non-existent. If the list is empty, the list is started

in step 204 (which in one embodiment includes creating the list). In step 206,

10

15

20

25

30

WO 02/071183 PCT/US02/05119

~14 -

the start code accesses the current time from the system. The current time can
typically be acquired from the Operating System using a system call, library
routine, etc. In step 208, the start code determines a due time. In one
embodiment, the start code adds the threshold time (received in step 200) to the
current time in order to determine the due time.

In one embodiment, the timing mechanism will maintain various data;
for example, a flag indicating whether the method (or other routine) being
monitored has been determined to be stalled (referred to as the STALLED flag)
and a flag indicating whether the method (or other routine) being monitored has
finished (referred to as the FINISHED flag). In one embodiment, these flags
are maintained by the object that includes the start code and the stop code. In
one embodiment, the start code and stop code are in a class that is instantiated to
create an object for the particular method being traced. In step 210, the
STALLED flag is set to false, which indicates that the method (or other routine)
being monitored has not been determined to be stalled. In step 212, the
FINISHED f{lag is set to false, which indicates that the method (or other routine)
being monitored has not finished. In step 214, the information for the method
(or other routine) being monitored that is currently under consideration is placed
on the list. In one embodiment, the list includes due times, an indication of the
method being monitored, and an indication of the object associated with
monitoring that method. In one implementation, the object associated with
monitoring the method is an instance of the StalledMethodTracer class.

Figure 5 describes one embodiment of the operation of the stop code.
As described above, the sequence of operations performed in Figure 5 are likely
to be performed when or after the method (or other routine) exits, which is
likely to mean that the method (or other routine) is not stalled. In step 270, the
stop code sets the FINISHED flag to true, indicating that the method (or other
routine) being monitored has finished. In step 272, the STALLED flag is
accessed. If the STALLED flag is true, indicating that the method (or other
routine) has been reported as being stalled (step 274), then the reporting

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-15-

mechanism is updated in step 276 to indicate that the method is no longer
stalled. In one embodiment, the reporting mechanism includes a counter that
indicates how many methods (or other routines) are currently stalled. Other
reporting mechanisms can also be used. The reporting of stalled routines will
bé discussed in more details below.

If, in step 274, it is determined that the STALLED flag was not set to
false, indicating that the method (or other routine) has been determined to be
stalled, then the due time (and other associated data) for that method is removed
from the list described above in step 278. If the list becomes empty due to
removing the due time (step 280), then the list functionality is shut down in step
282 to save system resources. Note that the shutting down of the list is an
optional feature that is not included in all embodiments.

Figures 6 and 7 describe the operation of using the list described above
to automatically determine whether a method (or other routine) has stalled. A
clock watching system waits for a pre-set time period (e.g. 7.5 seconds) in step
302 and then starts the evaluation process in step 304. After step 304, the
system loops back to step 302 and again waits for the pre-set time period. In
one embodiment, the system waits for the pre-set time period by continuously
watching the system clock until the pre-set time period elapsed. In another
embodiment, the systems requests that the operating system alert it at the end of
the pre-set timer period. The process of Figure 6 is automatic in the sense that
is continue to operate in an automated fashion.

Figure 7 describes the steps taken to perform one embodiment of the
evaluation process started in step 304. In step 340, the current time is acquired.
For example, the operating system can be queried regarding the system clock.
In step 342, the first item on the list of due times is accessed. In step 344, it is
determined whether the FINISHED flag and the STALLED flag are both set to
false for the method associated with the due time on the list currently being
accessed. If both flags are false, indicating that the method is not finished and

is not stalled, then it is determined whether the current time is past the due time

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-16 -

in step 346. If the current time is passed the due time, then the method is
considered to be stalled and the STALLED flag is set to true in step 348. In
step 350, the reporting mechanism is updated to reflect that the method is
stalled. In one embodiment, the reporting mechanism may not exist until there
is data to report and, if step 350 is the first time data is being reported, then the
reporting mechanism may need to be started. In step 352, the due time and
other associated data is removed from the list. In one embodiment, the due time
and associated data is never removed form the list, is removed form the list after
a much longer period of time (minutes, hours, days, etc.), can only manually be
removed from the list. In one embodiment, even after the due time is removed
form the list, the monitor object that includes the start code, stop code and state
data remains. In step 354, it is determined whether there are more items on the
list to evaluate. If there are no more items to evaluate, then the sequence of
steps of Figure 7 has completed. If there are more items to evaluate, then the
next item on the list is accessed in‘step 356 and the sequence continues at step
344. If, in step 344, it was determined that either the FINISHED flag was not
false or the STALLED flag was not false then it is assumed that either the
method already finished (so it cannot be stalled) or it has already been
determined to be stalled; therefore, the sequence of steps continues at step 354.
If, in step 346, it was determined that the current time is before the due time,
then the method is not determined to be stalled and the sequence of steps
continues at step 354. As described, the system may not necessarily determine
the exact time that a method stalls because it only checks at certain intervals
against an approximation of a time that the method should have been finished.
There are many ways to report that a method or other routine has stalled.
For example, a list can be kept of each instance of a stalled method, a report can
be generated/displayed/reported when a method stalls, the system can keep
track of the number of times a method stalls, the system can keep track of the
percentage of methods that are stalled, the system can keep track of the number

of instances of a method that are currently stalled, etc. A stalled method (or

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-17 -

other routine) can be used to trigger an event such as an email, page, dialog box,
printed report, the starting of a diagnostic program, etc. Many different types of
reporting mechanisms can be used with the current invention. No one reporting
mechanism is more suited for the current invention because the reporting
mechanism used is likely dictated by the needs of fhe user.

One example of a reporting mechanism is a counter. In one
embodiment, there is one counter for each method being monitored. The
counter will store the number of instances of that method that are currently
stalled. The counter will also include a log, which will keep a record of the time
when the counter is incremented or decremented, the operation performed
(increment or decrement), and an identification of the instance that caused the
operation. From the log information, the system can determine the total number
of stalls of instances of the method, the number of stalled instances of the
method at a given time, the number of stalled instances of the method during a
customizable time period, the identity of all instances that stalled, and many
other useful data values. In the embodiment that uses the counter, step 276 of
Figure 5 would decrement the counter because one of the methods thought to be
stalled is no longer determined to be stalled. Step 350 of Figure 7 would
increment the counter because another method was determined to be stalled.

Figure 8 describes one embodiment of how the system can report a
stalled routine using the counter described above. A counter object can be
created that implements the functionality described above. In one embodiment,
there is one counter object for each method being monitored and the value of
the counter reflects the number of instances of the method that are currently
stalled. In addition, a threshold can be set up for the counter object. If the
counter reaches that threshold, the counter reports to a user, client, etc. The
steps of Figure 8 are those that are performed by the counter object. In step
402, the counter object receives a request to increment or decrement the counter
and, in response, the counter is updated accordingly. In some embodiments, the

instance of the method being monitored and the current time is also provided.

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-18 -

Alternatively, the counter object can acquire the current time from the operating
system. In step 404, the counter logs the change by noting the time and the
identification of the instance of the method. In step 406, any requested metric
can be determined. That is, a user can request that the counter object keep track
of the total number of stalls, the number of stalled routines at a given time, or
other useful data values (described above or otherwise). The user can also set a
threshold for any of the metrics. These requested values are calculated in step
406. In step 408, it is determined whether any of the thresholds for the
calculated or stored data values are met. If so, the data associated with the
metric that met its threshold is reported, or all data (or another subset of the
data) is reported in step 410. Step 410 can include sending an email, sending a
page, displaying a dialog box, playing a sound, printing a document, writing to
a file, writing to report/log, reporting to a routine, displaying the data
graphically or any other suitable means for communicating the information to a
user in a meaningful manner.

Figure 9 illustrates a high level block diagram of a computer system
which can be used for various components of the present invention. The
computer system of Figure 9 includes one or more processors 550 and main
memory 552. Main memory 552 stores, in part, instructions and data for
execution by processor unit 550. If the system of the present invention is
wholly or partially implemented in software, main memory 552 can store the
executable code when in operation. The system of Figure 9 further includes a
mass storage device 554, peripheral device(s) 556, user input device(s) 560,
output devices 558, portable storage medium drive(s) 562, a graphics subsystem
564 and an output display 566. For purposes of simplicity, the components
shown in Figure 9 are depicted as being connected via a single bus 568.
However, the components may be connected through one or more data transport
means. For example, processor unit 550 and main memory 552 may be
connected via a local microprocessor bus, and the mass storage device 554,

peripheral device(s) 556, portable storage medium drive(s) 562, and graphics

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-19 -

subsystem 64 may be connected via one or more input/outpﬁt (I/O) buses. Mass
storage device 554, which may be implemented with a magnetic disk drive or an
optical disk drive, is a non-volatile storage device for storing data and
instructions for use by processor unit 550. In one embodiment, mass storage
device 554 stores the system software for implementing the present invention
for purposes of loading to main memory 552.

Portable storage medium drive 562 operates in conjunction with a
portable non-volatile storage medium, such as a floppy disk, to input and output
data and code to and from the computer system of Figure 9. In one
embodiment, the system software for implementing the present invention is
stored on such a portable medium, and is input to the computer system via the
portable storage medium drive 562. Peripheral device(s) 556 may include any
type of computer support device, such as an input/output (I/O) interface, to add
additional functionality to the computer system. For example, peripheral
device(s) 556 may include a network interface for connecting the computer
system to a network, a modem, a router, etc.

User input device(s) 560 provides a portion of a user interface. User
input device(s) 560 may include an alpha-numeric keypad for inputting alpha-
numeric and other information, or a pointing device, such as a mouse, a
trackball, stylus, or cursor direction keys. In order to display textual and
graphical information, the computer system of Figure 9 includes graphics
subsystem 564 and output display 566. Output display 566 may include a
cathode ray tube (CRT) display, liquid crystal display (LCD) or other suitable
display device. Graphics subsystem 564 receives textual and graphical
information, and processes the information for output to display 566.
Additionally, the system of Figure 9 includes output devices 558. Examples of
suitable output devices include speakers, printers, network interfaces, monitors,
ete.

The components contained in the computer system of Figure 9 are those

typically found in computer systems suitable for use with the present invention,

10

15

WO 02/071183 PCT/US02/05119

-20-

and are intended to represent a broad category of such computer components
that are well known in the art. Thus, the computer system of Figure 9 can be a
personal computer, mobile computing device, workstation, server,
minicomputer, mainframe computer, or any other computing device. The
computer éan also include different bus configurations, networked platforms,
multi-processor platforms, etc. Various operating systems can be used
including Unix, Linux, Windows, Macintosh OS, Palm OS, and other suitable
operating systems.

The foregoing detailed description of the invention has been presented
for purposes of illustration and description.. It is not intended to be exhaustive
or to limit the invention to the precise form disclosed. Many modifications and
variations are possible in light of the above teaching. The described
embodiments were chosen in order to best explain the principles of the
invention and its practical application to thereby enable others skilled in the art
to best utilize the invention in various embodiments and with various
modifications as are suited to the particular use contemplated. It is intended that

the scope of the invention be defined by the claims appended hereto.

10

15

20

25

WO 02/071183 PCT/US02/05119

221 -
CLAIMS
We claim:
1. A method for detecting whether a routine has stalled, comprising
the steps of:

accessing existing code for a first routine;
automatically modifying said existing code to include new code; and

using said new code to determine if said first routine has stalled.

2. A method according to claim 1, wherein:
said existing code is object code; and

said new code is object code.

3. A method according to claim 2, further comprising the step of:

receiving a rule, said rule identifies said first routine and an interval, said
step of automatically modifying is performed in response to said rule, said first
routine is considered to be stalled after a determination that said first routine has

been running for at least as long as said interval.

4. A method according to claim 1, wherein said step of
automatically modifying comprises the steps of:

adding code for a timing mechanism to said existing code;

adding code for starting said timing mechanism to said existing code;

adding code for stopping said timing mechanism to said existing code;

addirlg a first instruction to said first routine, said first instruction causes
the execution of said code for starting said timing mechanism; and

adding a second instruction to said first routine, said second instruction

causes the execution of said code for stopping said timing mechanism.

5. A method according to claim 4, wherein:

10

15

20 -

25

WO 02/071183 PCT/US02/05119

-22.

said second instruction is added such that it is executed at all exits of

said routine.

6. A method according to claim 4, wherein:

said first routine is a method.

7. A method according to claim 4, wherein:

said first routine is a thread.

8. A method according to claim 4, wherein:

said first routine is one of a plurality of routines that comprise a process.

9. A method according to claim 1, wherein said step of using
comprises the steps of:

receiving an indiqation that said first routine has started;

starting a ﬁming mechanism in response to said step of receiving;

receiving an indication that said first routine has completed, if said first
routine has completed,

stopping said timing mechanism in response to receiving said indication
that said first routine has completed; and

reporting. said first routine as ‘stalled if said timing mechanism is not

stopped prior to a determination that said timing mechanism is overdue.

10. A method according to claim 9, wherein said step of using
further comprises the steps of:

accessing a current time;

verifying that said first routine is not known to be stalled or completed;

accessing said due time; and

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-23 -

determining whether first due time is earlier than said current time, said
timing mechanism is overdue if said step of determining concludes that said

first due time is earlier than said current time.

11. A method according to claim 9, wherein said step of stopping
said timing mechanism comprises the steps of:

determining whether said first routine has been reported as being stalled;

changing said reporting to no longer indicate that said first routine is
stalled if said step of determining concludes that said first routine has been
reported as being stalled; and

stopping said timing mechanism if said first routine has not been

reported as being stalled.

12. A method according to claim 9, wherein:
said first routine is a thread executing a method, said indication that said

first routine has completed indicates that said thread has exited said method.

13. A method for detecting whether a routine has stalled, comprising
the steps of:

receiving an indication that a particular routine is running, said
particular routine is one of a plurality of routines that comprise a process; and

automatically determining whether said particular routine has stalled.

14. A method according to claim 13, wherein:

said particular routine is a thread.

15. A method according to claim 13, wherein:
said plurality of routines are threads;
at least two or more of said threads, including said particular routine, are

run concurrently.

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-24 -

16. A method according to claim 13, wherein:

said particular routine is a method

17. A method according to claim 16, further comprising the step of:

receiving an indication of said method, said step of determining whether
said particular routine is stalled includes detecting a situation when a thread
enters said method and does not return within an approximation of an expected

time frame.

18. A method according to claim 13, wherein:
said indication that a particular routine is running is an indication that
said particular routine has started; and
said step of determining whether said particular routine has stalled
comprises the steps of:
starting a timing mechanism in response to said step of receiving
an indication that a particular routine is running,
receiving an indication that said particular routine has completed,
if said particular routine has completed,
stopping said timing mechanism in response to receiving said
indicatfon that said particular routine has completed, and
reporting said particular routine as stalled if said timing
mechanism i1s not stopped prior to a determination that said timing

mechanism is overdue.

19. A method according to claim 18, wherein:

said indication that said particular routine has started is received from
within said particular routine; and

said indication that said particular routine has completed is received

from within said particular routine.

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-25-

20. A method according to claim 18, further comprising the step of:
automatically adding new code to existing code for said particular
routine, said new code performs said step of starting a timing mechanism,

stopping said timing mechanism and reporting.

21. A method according to claim 18, further comprising the step of:

automatically modifying existing object code for said particular routine
in order to add new object code to said existing object code for said particularﬁ
routine, said new object code performs said step of starting a timing mechanism,

stopping said timing mechanism and reporting.

22. A method according to claim 18, wherein said step of
determining whether said particular routine has started further comprises the
steps of:

accessing a current time;

‘verifying that said particular routine is not known to be stalled or
completed;

accessing a due time; and

determining whether due time is earlier' than said current time, said
timing mechanism is overdue if it is determined that said due time is earlier than

said current time.

23. A method according to claim 18, wherein said step of stopping
said timing mechanism comprises the steps of:

determining whether said particular routine has been reported as being
stalled;

changing said reporting to no longer indicate that said particular routine
is stalled if it is determined that said particular routine has been reported as

being stalled; and

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-26 -

stopping said timing mechanism if said particular routine has not been

reported as being stalled.

24. A method according to claim 18, wherein said step of starting
said timing mechanism comprises the steps of:

receiving a threshold;

accessing a current time;

determining a first due time based on said threshold and said current
time; and

adding a indication of said particular routine and said first due time to a
set of due times for other routines, said timing mechanism is overdue after said

timing imechanism determines that said due time has been exceeded.

25. A method according to claim 24, wherein said step of stopping
said timing mechanism comprises the steps of:

determining whether said particular routine has been reported as being
stalled;

changing said reporting to no longer indicate that said particular routine
is stalled if said particular routine has been reported as being stalled; and

removing said indication of said particular routine and said due time
from said set of items if said particular routine has not been reported as being

stalled.

26. A method according to claim 25, further comprising the step of:
repeatedly evaluating said set of due times to determine if any of said

due times have passed.

27. A method according to claim 26, wherein said step of repeatedly
evaluating comprises the steps of: '

accessing a current time;

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-27-

verifying that said particular routine is not known to be stalled or
completed;

accessing said first due time; and

determining whether first due time is earlier than said current time, said
timing mechanism is overdue if said step of determining concludes that said

first due time is earlier than said current time.

28. A method according to claim 27, further comprising the step of:

automatically modifying existing object code for said particular routine
in order to add new object code to said existing object code for said particular
routine, said new object code performs said steps of starting a timing

mechanism, stopping said timing mechanism and reporting.

29. A method according to claim 13, further comprising the step of:
reporting said particular routine as being stalled if said particular routine

was determined to be stalled.

30. A method according to claim 29, wherein:

said particular routine is an instance of a defined routine; and

said step of reporting includes incrementing a counter that represents a
number of instances of said defined routine that are currently stalled and
reporting said number of instances of said defined routine that are currently

stalled.

31. A method according to claim 29, wherein:
said particular routine is an instance of a defined routine; and
said step of reporting includes determining and reporting how many

instances of said defined routine were stalled at a specified time.

32. A method according to claim 29, wherein:

10

15

20

25

WO 02/071183 PCT/US02/05119

-28 -

said particular routine is an instance of a defined routine; and
said step of reporting includes receiving a customizable specified time
period and reporting how many instances of said defined routine were stalled

during said specified time period.

33. A method for detecting whether a thread has stalled, comprising
the steps of:
receiving an indication that a particular thread is running; and

determining whether said particular thread has stalled.

34. A method according to claim 33, further comprising the step of:

receiving an indication of a first method, said step of determining
whether said particular thread is stalled includes detecting a situation when said
thread enters said first method and does not return within an approximation of

an expected time frame.

35. A method according to claim 33, further comprising the step of:
automatically modifying existing object code in order to add new object

code, said new object code performs said step of determining.

36. A method according to claim 33, wherein:
said indication that a particular thread is running is an indication that
said particular thread has started; and
said step of determining whether said particular thread has stalled
comprises the steps of:
starting a timing mechanism in response to said step of receiving
an indication that said particular thread has started,
receiving an indication that said particular thread has completed,

if said particular thread has completed,

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-29 -

stopping said timing mechanism in response to receiving said
indication that said particular thread has completed, and

reporting said particular thread as stalled if said timing
mechanism is not stopped prior to a determination that said timing

mechanism is overdue.

37. A method according to claim 36, wherein said step of stopping
said timing mechanism comprises the steps of:

determining whether said particular routine has been reported as being
stalled;

* changing said reporting to no longer indicate that said particular routine
is stalled if it is determined that said particular routine has been reported as
being stalled; and

stopping said timing mechanism if said particular routine has not been

reported as being stalled.

38. A method according to claim 33, wherein:
said particular thread is one of multiple threads running concurrently and

which comprise a process.

39. A method for detecting whether a method has stalled, comprising
the steps of:
receiving an indication that a particular method is running; and

determining whether said method thread has stalled.

40. A method according to claim 39, further comprising the step of:

receiving an indication that identifies said particular method from a set
of methods, said step of determining whether said particular method is stalled
includes detecting a situation when a thread enters said particular method and

does not return within an approximation of an expected time frame.

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-30-

41. A method according to claim 39, further comprising the step of:
automatically modifying existing object code for said particular method
in order to add new object code, said new object code performs said step of

determining.

42. A method according to claim 39 wherein:
said indication that a particular method is running is an indication that
said particular method has started; and
said step of determining whether said particular method has stalled
comprises the steps of:
starting a timing mechanism in response to said step of receiving
an indication that a particular method is running,
receiving an indication that said particular method has
completed, if said particular method has completed,
stopping said timing mechanism in response to receiving said
indication that said particular method has completed, and
reporting said particular method as stalled if said timing
mechanism 1s not stopped prior to a determination that said timing

mechanism is overdue.

43. A method according to claim 42, wherein said step of stopping
said timing mechanism comprises the steps of:

determining whether said particular method has been reported as being
stalled;

changing said reporting to no longer indicate that said particular method
is stalled if it is determined that said particular method has been reported as
being stalled; and

stopping said timing mechanism if said particular method has not been

reported as being stalled.

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-31 -

44. A method according to claim 39, wherein
said particular method is one of multiple methods running concurrently

and which comprise a process.

45. A method for detecting whether a routine has stalled, comprising
the steps of: ~

receiving an indication that a first routine has started,;

starting a timing mechanism in response to said indication that said first
routine has started;

receiving an indication that said first routine has completed, if said first
routine has completed;

stopping said timing mechanism in response to receiving said indication
that said first routine has completed; and

reporting said first routine as stalled if said timing mechanism is not

stopped prior to a determination that said timing mechanism is overdue.

46. A method according to claim 45, further comprising the step of:
automatically adding new code to existing code for said first routine,
said new code performs said step of starting a timing mechanism, stopping said

timing mechanism and reporting.

47. A method according to claim 45, further comprising the step of:

automatically modifying existing object code for said first routine in
order to add new object code to said existing object code for said first routine,
said new object code performs said steps of starting a timing mechanism,

stopping said timing mechanism and reporting.

48. A method according to claim 45, further comprising the steps of:

accessing a current time;

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-32-

verifying that said first routine is not known to be stalled or completed;

accessing a due time for said first routine; and

determining whether said due time is earlier than said current time, said
timing mechanism is overdue if said step of determining concludes that said

first due time is earlier than said current time.

49. A method according to claim 45, wherein said step of stopping
said timing mechanism comprises the steps of:

determining whether said first routine has been reported as being stalled;

changing said reporting to no longer indicate that said first routine is
stalled if said first routine has been reported as being stalled; and

stopping said timing mechanism if said first routine has not been

reported as being stalled.

50. A method according to claim 45, wherein:

said first routine is an instance of a defined routine; and

said step of reporting includes incrementing a counter that represents a
number of instances of said defined routine that are stalled and reporting said

number of instances of said defined routine that are stalled.

51. A method according to claim 45, wherein:

said first routine is an instance of a defined routine;

said step of reporting includes receiving a customizable specified time
period and reporting how many instances of said defined were stalled during

said specified time period.

52. One or more processor readable storage devices having processor
readable code embodied on said processor readable storage devices, said
processor readable code for programming one or more processors to perform a

method comprising the steps of:

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-33.

accessing existing code for a first routine;
automatically modifying said existing code to include new code; and

using said new code to determine if said first routine has stalled.

53. One or more processor readable storage devices according to
claim 52, wherein:
said existing code is object code; and

said new code is object code.

54. One or more processor readable storage devices according to
claim 53, wherein said method further comprises the step of:

receiving a rule, said rule identifies said first routine and an interval, said
step of automatically modifying is performed in response to said rule, said first
routine is considered to be stalled after a determination that said first routine has

been running for at least as long as said interval.

55. One or more processor readable storage devices according to
claim 52, wherein:

said first routine is one of a plurality of routines that comprise a process.

56. One or more processor readable storage devices according to
claim 52, wherein said step of using comprises the steps of:

receiving an indication that said first routine has started;

starting a timing mechanism in response to said step of receiving;

receiving an indication that said first routine has completed, if said first
routine has completed,;

stopping said timing mechanism in response to receiving said indication
that said first routine has completed; and

reporting .said first routine as stalled if said timing mechanism is

not stopped prior to a determination that said timing mechanism is overdue.

10

15

20

30

WO 02/071183 PCT/US02/05119

-34 -

57. One or more processor readable storage devices according to
claim 52, wherein:

said first routine is a thread performing a method; and

said step of using includes determining whether said thread entered said

method and did not return within a predetermined time period.

. 58. An apparatus, comprising:
one or more storage devices; and
one or more processors in communication with said one or more storage
devices, said one or more processors perform a method comprising the steps of:
accessing existing code for a first routine,
automatically modifying said existing code to include new code,
and

using said new code to determine if said first routine has stalled.

59. An apparatus according to claim 58, wherein:
said existing code is object code; and

said new code is object code.

60. An apparatus according to claim 59, wherein said method further
comprises the step of:

receiving a rule, said rule identifies said first routine and an interval, said
step of automatically modifying is performed in response to said rule, said first
routine is considered to be stalled after a determination that said first routine has

been running for at least as long as said interval.

61. An apparatus according to claim 58, wherein:

said first routine is one of a plurality of routines that comprise a process.

10

15

20

25

WO 02/071183 PCT/US02/05119

-35.

62. An apparatus according to claim 58, wherein said step of using
comprises the steps of:

receiving an indication that said first routine has started;

starting a timing mechanism in response to said step of receiving;

receiving an indication that said first routine has completed, if said first
routine has completed;

stopping said timing mechanism in response to receiving said indication
that said first routine has completed; and '

reporting said first routine as stalled if said timing mechanism is not

stopped prior to a determination that said timing mechanism is overdue.

63. An apparatus according to claim 58, wherein:
said first routine is a thread performing a method; and
said step of using includes determining whether said thread entered said

method and did not return within a predetermined time period.

64. One or more processor readable stbrage devices having processor
readable code embodied on said processor readable storage devices, said
processor readable code for programming one or more processors to perform a
method comprising the steps of:

receiving an indication that a particular routine is running, said
particular routine is one of a plurality of routines that comprise a process; and

automatically determining whether said particular routine has stalled.

65. One or more processor readable storage devices according to
claim 64, wherein:

said particular routine is a thread.

10

15

20

25

WO 02/071183 PCT/US02/05119

-36 -

66. One or more processor readable storage devices according to
claim 64, wherein:

said particular routine is a method.

67. One or more processor readable storage devices according to
claim 66, further comprising the step of:

receiving an indication of said method, said step of determining whether
said particular routine is stalled includes detecting a situation when a thread
enters said method and does not return within an approximation of an expected

time frame.

68. One or more processor readable storage devices according to
claim 64, wherein:
said indication that a particular routine is running is an indication that
said particular routine has started; and
said step of determining whether said particular routine has stalled
comprises the steps of:
starting a timing mechanism in response to said step of receiving
an indication that a particular routine is running,
receiving an indication that said particular routine has completed,
if said particular routine has completed,
stopping said timing mechanism in response to receiving said
mdication that said particular routine has completed, and
reporting said particular routine as stalled if said timing
mechanism 1s not stopped prior to a determination that said timing

mechanism is overdue.

69. One or more processor readable storage devices according to

claim 68, wherein said method further comprises the step of:

10

15

20

25

WO 02/071183 PCT/US02/05119

-37-

automatically modifying existing object code for said particular routine
in order to add new object code to said existing object code for said particular
routine, said new object code performs said step of starting a timing mechanism,

stopping said timing mechanism and reporting.

70. One or more processor readable storage devices according to
claim 68, wherein said step of stopping said timing mechanism comprises the
steps of:

determining whether said particular routine has been reported as being
stalled;

changing said reporting to no longer indicate that said particular routine
is stalled if it is determined that said particular routine has been reported as
being stalled; and

stopping said timing mechanism if said particular routine has not been

reported as being stalled.

71. One or more processor readable storage devices according to
claim 64, wherein:

said particular routine is an instance of a defined routine; and

said step of automatically determining includes incrementing a counter
that represents a number of instances of said defined routine that are currently
stalled and reporting said number of instances of said defined routine that are

currently stalled.

72. An apparatus, comprising:
one or more storage devices; and
one or more processors in communication with said one or more storage

devices, said one or more processors perform a method comprising the steps of:

10

15

20

25

30

WO 02/071183 PCT/US02/05119

-38 -

receiving an indication that a particular routine is running, said
particular routine is one of a plurality of routines that comprise a
process, and

automatically determining whether said particular routine has

stalled.

73. An apparatus according to claim 72, wherein:

said particular routine is a thread.

74. An apparatus according to claim 72, wherein:

said particular routine is a method.

75. An apparatus according to claim 74, further comprising the step
of:

receiving an indication of said method, said step of determining whether
said particular routine is stalled includes detecting a situation when a thread
enters said method and does not return within an approximation of an expected

time frame.

76. An apparatus according to claim 72, wherein:
said indication that a particular routine is running is an indication that
said particular routine has started; and
said step of determining whether said particular routine has stalled
comprises the steps of:
starting a timing mechanism in response to said step of receiving
an indication that a particular routine is running,
receiving an indication that said particular routine has completed,
if said particular routine has completed,
stopping said timing mechanism in response to receiving said

indication that said particular routine has completed, and

10

15

20

25

WO 02/071183 PCT/US02/05119

-39-

reporting said particular routine as stalled if said timing
mechanism is not stopped prior to a determination that said timing

mechanism is overdue.

77. An apparatus according to claim 72, wherein said method further
comprises the step of:

automatically modifying existing object code for said particular routine
in order to add new object code to said existing object code for said particular
routine, said new object code performs said step of starting a timing mechanism, -

stopping said timing mechanism and reporting.

78. An apparatus according to claim 72, wherein said step of
stopping said timing mechanism comprises the steps of:

determining whether said particular routine has been reported as being
stalled;

changing said reporting to no longer indicate that said particular routine
is stalled if it i1s determined that said particular routine has been reported as
being stalled; and

stopping said timing mechanism if said particular routine has not been

reported as being stalled.

79. An apparatus according to claim 72, wherein:

said particular routine is an instance of a defined routine; and
said step of automatically determining includes incrementing a counter that
represents a number of instances of said defined routine that are currently
stalled and reporting said number of instances of said defined routine that are

currently stalled.

WO 02/071183 PCT/US02/05119
1/5

Figure 1

original code —»

code modifier |5 enhanced

rules ———» 10
code

additional code —————»

receive original code _~ 96

v

receive additional code |} 98 .

T Fig. 2
receive methods and time |} 100 .

|

v
access next method _~ 102
insert call to start code | 104
insert call to stop code |~ 106
108
more no |
methods? l o
yes It

add start code, stop code,
and timer code

WO 02/071183 PCT/US02/05119
‘ 2/5

commence running method |-~ 160
call start code |~ 162
run original code |~ 164
call stop code _~ 166
receive threshold |~ 200
202
: es
list empty/ y) [204
no start list
|
vy
get current time I*a 206
v
208

compute due time

A 4
set STALLED flag to false ~ |—~210

\ 4
set FINISHED flag to false [~ 212

] Fig. 4

add to list _—~214

WO 02/071183 ‘ PCT/US02/05119
3/5

set FINISHED flag to true |-~ 270

I Fig. 5

access STALLED flag _~272

true
STALLED flag?
276
278 f
remove from list [update reporting
list empty i f282

shut down list

Fig. 6
¥

302

wait for pre-set time period -
l 304

start evaluation process -

|

WO 02/071183

4/5

PCT/US02/05119

get current time

|_~340

'

access first item on list

| ~342

344

FINISHED flag and
STALLED flag false?

346

item passed
due time?

348

S

set STALLED flag as true

l [350

update reporting

l f352

remove item form list

Fig. 7

more items

no

fo evaluate?

356

S

access next item on list

WO 02/071183 PCT/US02/05119
5/5

counter increment/decrement | 402
v
log change |_~404
\ 4
determine mertrics |~ 406
- 408
Fig. 8 .

counter threshold met?

report data _~410 @

L

Fig. 9
out.put 558
devices
550 Memory
lnput 560
Devices
550~ Processor
Portable
Storage 562
Mass
554~ Storage
Graphics Output
Subsystem Display
556—1 Peripherals \ \
564 566
f568

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

