APPARATUS AND METHODS FOR IN SITU EMBOLIC PROTECTION

Inventors: Michael P. DeBruyne, Bloomington, IN (US); Andrew K. Hoffa, Bloomington, IN (US); Jeffry S. Melsheimer, Springville, IN (US); Sarah E. Reeves, Cory, IN (US)

Correspondence Address: BRINKS HOFER GILSON & LIONE/CHICAGO/COOK PO BOX 10395 CHICAGO, IL 60610

Assignee: Cook Incorporated, Bloomington, IN (US)

Appl. No.: 11/857,268

Filed: Sep. 18, 2007

Related U.S. Application Data

Provisional application No. 60/845,577, filed on Sep. 19, 2006.

Publication Classification

Int. Cl. A61M 29/00 (2006.01) A61F 2/06 (2006.01) A61F 2/84 (2006.01)

U.S. Cl. 606/200; 623/1.11; 623/1.13

ABSTRACT

The present invention provides apparatus and methods for treating a vascular condition by restoring patency to a vessel while reducing the likelihood that emboli become dislodged into the bloodstream. In a first embodiment, the apparatus comprises a graft having proximal and distal regions, a first support member attached to the distal region of the graft, and a second support member attached to the proximal region of the graft. The first and second support members may comprise first and second stents, respectively. The first stent is deployed distal to a vascular condition, and the second stent is deployed proximal to a vascular condition, such that the graft spans the length of the vascular condition to entrap emboli during treatment of the vascular condition. In an alternative embodiment, the first stent is adapted to be deployed within a vessel at a location distal to the vascular condition, and the graft is adapted to be everted to form a pocket adapted to entrap emboli dislodged during treatment of the vascular condition. The second stent then may be subsequently deployed proximal to the vascular condition, such that emboli trapped within the graft pocket are effectively sealed off from the bloodstream.
APPARATUS AND METHODS FOR IN SITU EMBOLIC PROTECTION

PRIORITY CLAIM

[0001] This invention claims the benefit of priority of U.S. Provisional Application Ser. No. 60/845,577, entitled “Apparatus and Methods for In Situ Embolic Protection,” filed Sep. 19, 2006, the disclosure of which is hereby incorporated by reference in its entirety.

BACKGROUND

[0002] The present invention relates generally to apparatus and methods for treating vascular conditions, and more specifically, by treating the vascular conditions by restoring patency to the vessel while reducing the likelihood that emboli become dislodged into the bloodstream.

[0003] Atherosclerosis and other obliterative diseases are prevalent among a significant portion of the population. In such diseases, atherosclerotic plaque forms within the walls of the vessel and blocks or restricts blood flow through the vessel. Atherosclerosis commonly affects the coronary arteries, the aorta, the iliofemoral arteries and the carotid arteries. Several serious conditions may result from the restricted blood flow.

[0004] Various procedures are known for treating stenoses in the arterial vasculature, such as the use of atherectomy devices, balloon angioplasty and stenting. During an atherectomy procedure, vascular plaque may be removed by inserting a catheter having a rotating cutting blade into the vessel and using the blade to shave away the plaque. During a balloon angioplasty procedure, a catheter having a deflated balloon attached thereto is positioned across a constricting lesion, and the balloon is then inflated to widen the lumen to partially or fully restore patency to the vessel.

[0005] Stenting involves the insertion of a usually tubular member into a vessel, and may be used alone or in conjunction with an angioplasty procedure. Stents may be self-expanding or balloon expandable. Self-expanding stents typically are delivered into a vessel within a delivery sheath, which constrains the stent prior to deployment. When the delivery sheath is retracted, the stent is allowed to radially expand to its predetermined shape. If the stent is balloon expandable, the stent typically is loaded onto a balloon of a catheter, inserted into a vessel, and the balloon is inflated to radially expand the stent.

[0006] One problem frequently encountered with atherectomy, angioplasty and stenting procedures is that pieces of plaque are often dislodged from the stenosis. Such pieces of plaque, referred to as emboli, may flow away from the stenosis into other areas of the vasculature and may be difficult to retrieve. Serious complications, such as heart attack and stroke, may occur where the emboli travel into the coronary, carotid or other arteries and vessels.

[0007] Several techniques exist for retrieving emboli during a medical procedure, such as deploying a filter within the vasculature distal to the stenosis prior to treatment of the stenosis to capture free-floating particles. Such embolic filtration devices may comprise a mesh or net material coupled to a plurality of expandable struts. The struts deploy radially outward into engagement with the vessel wall, and the net is configured to entrap emboli dislodged while the stenosis is treated.

[0008] Various problems exist with the use of such embolic filtration devices. For example, the net may not fully capture all embolic particles, especially relatively small fragments that may escape through the net. Further, when relatively large embolic particles are captured within the net and the filter device is retracted into the delivery system, e.g., a catheter, such larger particles may be difficult to retract within the confines of the delivery system.

[0009] In view of the foregoing, there is a need for apparatus and methods that effectively treat a vascular condition by restoring patency to the vessel while reducing the likelihood that emboli become dislodged into the bloodstream.

SUMMARY

[0010] The present invention provides apparatus and methods for treating a vascular condition, such as a stenosis within a vessel, by restoring patency to the vessel while reducing the likelihood that emboli become dislodged into the bloodstream.

[0011] In a first embodiment, the apparatus comprises a graft having proximal and distal regions, a first support member attached to the distal region of the graft, and a second support member attached to the proximal region of the graft. In this embodiment, the first and second support members comprise first and second stents, respectively. The first stent is adapted to be deployed within a vessel at a location distal to a vascular condition, and the second stent is adapted to be deployed within the vessel at a location proximal to the vascular condition, such that the graft spans the length of the vascular condition. The vascular condition then may be treated, e.g., by performing balloon angioplasty, and any emboli created during treatment of the vascular condition are effectively contained by the deployed graft.

[0012] The first and second stents may comprise either self-expanding or balloon-expandable stents. If self-expanding stents are employed, the apparatus may further comprise an introducer adapted to circumferentially enclose the first and second stents in a delivery state. If the first and second stents are balloon-expandable, the apparatus may further comprise a balloon catheter adapted to deliver and deploy the first and second stents into engagement with an intima of the vessel.

[0013] In an alternative embodiment, the apparatus comprises a graft having proximal and distal regions, a first stent attached to the distal region of the graft, and a second stent attached to the proximal region of the graft, wherein the first stent is adapted to be deployed within a vessel at a location distal to a vascular condition, and the graft is adapted to be everted to form a pocket adapted to entrap emboli dislodged during treatment of the vascular condition. In this embodiment, the first stent is deployed to engage an intima of the vessel at a location distal to a vascular condition. Then, the graft is everted by distally advancing the second stent with respect to the first stent, thereby forming a pocket distal to the vascular condition. The vascular condition then is treated, e.g., by performing balloon angioplasty, and any emboli dislodged during treatment of the vascular condition are entrapped within the pocket formed by the graft. Optionally, the emboli may be aspirated from the pocket. In a next step, the second stent is deployed at a location proximal to the vascular condition, thereby causing the graft to span and enclose the vascular condition, such that free-floating emboli will be trapped within the confines of the graft.
In a preferred embodiment, at least a portion of the graft comprises a collagenous extracellular matrix material to facilitate adhesion of the graft with an intima of the vessel. More preferably, the collagenous extracellular matrix material comprises small intestinal submucosa.

Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be within the scope of the invention, and be encompassed by the following claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.

Fig. 1-4 are side-sectional views showing apparatus and method steps that may be performed in accordance with a first embodiment of the present invention.

Fig. 5 is a side-sectional view illustrating an alternative method for deploying the first and second support members of Figs. 1-4.

Figs. 6-11 are side-sectional views showing apparatus and method steps that may be performed in accordance with an alternative embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the present application, the term “proximal” refers to a direction that is generally towards a physician during a medical procedure, while the term “distal” refers to a direction that is generally towards a target site within a patient’s anatomy during a medical procedure.

Referring now to Figs. 1-4, apparatus and methods for treating a vascular condition and reducing the migration of embolic particles are described. In Fig. 1, apparatus 20 comprises graft 26 having inner and outer surfaces, and also having proximal and distal regions. First and second support members comprise first and second stents 22 and 24, respectively. First stent 22 is attached to the distal region of graft 26, while second stent 24 is attached to the proximal region of graft 26. First and second stents 22 and 24 may be attached to graft 26 by suturing, using adhesive, or other known techniques. Further, both first and second stents 22 and 24 may be attached to the inner surface of graft 26, as shown in Figs. 1-4, or one or both stents may be attached to the outer surface of graft 26.

Graft 26 may be made of a suitable biocompatible material, such as woven Dacron, which is commonly employed in stent-grafts for the treatment of aneurysms. Alternatively, graft 26 may comprise Thoralon polyurethane. However, in a preferred embodiment, as explained below, graft 26 may comprise a collagenous extracellular matrix material (ECM), such as small intestinal submucosa (SIS), which may facilitate attachment of graft 26 to the intima of vessel V, as explained in detail below.

First and second stents 22 and 24 each comprise a reduced-diameter delivery state, as shown in Fig. 1, and further have an expanded state in which they are configured to expand radially outward to engage an inner lumen of vessel V, as generally shown in Figs. 2-4 and explained in greater detail below. Various types of stents may be used in conjunction with the present invention. For example, first and second stents 22 and 24 may be made from numerous metals and alloys, including stainless steel, nitinol, cobalt-chrome alloys, amorphous metals, tantalum, platinum, gold and titanium. The stents may also be made from non-metallic materials, such as thermosets, thermoplastics and other polymers. The structure of stents 22 and 24 may be formed in a variety of ways to provide a suitable intraluminal support structure. For example, first and second stents 22 and 24 may be made from a woven wire structure, a laser-cut cannula, individual interconnected rings, or any other type of stent structure that is known in the art.

First and second stents 22 and 24 may also be designed to be either balloon-expandable or self-expandable. In the embodiment of Figs. 1-4, first and second stents 22 and 24 are self-expandable and are formed from a shape-memory alloy, such as nickel-titanium (nitinol). In a delivery state, first and second stents 22 and 24 are radially constrained by introducer 40, which restricts radial expansion of first and second stents 22 and 24 until retracted proximally, as described in greater detail below.

Referring still to Fig. 1, apparatus 20 further preferably comprises core member 30 having proximal and distal regions. The distal region of core member 30 preferably comprises tapered end 33, which may be formed integrally with or attached to core member 30. Core member 30 may be formed of a suitable metal, for example, stainless steel, or another appropriate material, such as a biocompatible plastic.

In a first method step, apparatus 20 is delivered into vessel V having a vascular condition, such as stenosis S, as shown in Fig. 1. In the delivery state, first and second stents 22 and 24 are radially compressed around core member 30. First stent 22 preferably is disposed proximally adjacent to or abuts tapered end 33, as depicted in Fig. 1. First pushing member 42, which may be formed integral with or attached circumferentially around core member 30, is disposed just proximal to or abuts first stent 22. Second stent 24 is disposed longitudinally spaced apart from first stent 22. Second pushing member 44, which may be formed integral with or attached circumferentially around core member 30, is disposed proximal to or abuts second stent 24, as depicted in Fig. 1. All of the components, with the exception of tapered end 33, are enclosed by introducer 40, as shown in Fig. 1.

Apparatus 20 is delivered into vessel V using known techniques until first stent 22 is positioned distal to stenosis S, as shown in Fig. 1. The positioning may be performed using fluoroscopic guidance. Moreover, one of the components of apparatus 20 may comprise a radiopaque marker (not shown) to facilitate positioning of the device. Preferably, at least one radiopaque marker is disposed on first stent 22 and at least one marker is disposed on second stent 24.

When the desired positioning is achieved, introducer 40 is retracted proximally while core member 30 and first and second pushing members 42 and 44 remain steady. When introducer 40 is retracted proximally beyond first
stent 22, first stent 22 will expand radially outward into engagement with an inner surface of vessel V at a location distal to stenosis S, as depicted in FIG. 2. As introducer 40 is further retracted proximally, second stent 24 will expand radially outward into engagement with an inner surface of vessel V at a location proximal to stenosis S. This causes graft 26 to span the length of stenosis S and fully enclose or cover the stenosis, as depicted in FIG. 2. At this time, core member 30 and introducer 40 may be retracted proximally and removed from the patient’s vessel.

[0029] In a next step, a suitable medical device may be inserted into vessel V to treat the vascular condition while graft 26 effectively seals off stenosis S. For example, in FIG. 3, balloon catheter 50 having proximal and distal regions and balloon 52 disposed on the distal region is advanced into vessel V over wire guide 60. Balloon 52 is aligned with stenosis S and is inflated to dilate stenosis S, as shown in FIG. 3. The inflation of balloon 52 may be achieved using an inflation fluid injected through an inflation lumen (not shown), such as an anular inflation lumen, of balloon catheter 50.

[0030] After balloon angioplasty has been performed, balloon 52 is deflated and balloon catheter 50 and wire guide 60 are removed from the patient’s vessel. As shown in FIG. 4, first stent 22 remains securely disposed distal to stenosis S, second stent 24 remains securely disposed proximal to stenosis S, and graft 26 spans the length of stenosis S to effectively seal off the stenosis, and the patency within vessel V has been improved.

[0031] Advantageously, in accordance with one aspect, if any embolic particles are dislodged during the step of treating stenosis S, the embolii are effectively contained by graft 26, i.e., the embolii will not enter into the bloodstream. This technique is expected to significantly reduce the likelihood of adverse future occurrences, such as ischemic events.

[0032] If desired, a conventional stent (not shown) may also be placed across stenosis S to help ensure that patency is maintained within vessel V after the procedure. For example, the conventional stent may comprise a balloon-expandable stent introduced in a compressed state on balloon 52, such that when balloon 52 is radially expanded to perform angioplasty, the conventional stent is deployed and left inside vessel V. Alternatively, the conventional stent may be introduced and deployed by other means, e.g., using a self-expanding stent delivery system.

[0033] Referring now to FIG. 5, an alternative method for deploying first and second stents 22 and 24 is shown. In the embodiment of FIG. 5, first and second stents 22' and 24' are designed to be balloon-expandable. The apparatus comprises balloon catheter 70, which has proximal and distal ends and is configured to be advanced over wire guide 60. Balloon catheter 70 may comprise first and second balloons 72 and 74, which preferably are spaced apart by a distance designed to correspond approximately to the distance by which first and second stents 22' and 24' are spaced apart along graft 26.

[0034] In FIG. 5, first and second stents 22' and 24' are secured about first and second balloons 72 and 74, respectively, in a collapsed delivery state. First and second balloons 72 and 74 are then inflated, either simultaneously or sequentially, to radially expand first and second stents 22' and 24', respectively, as shown in FIG. 5. Once the stents engage the intima of vessel V and graft 26 effectively seals off stenosis S, first and second balloons 72 and 74 are deflated. One of the balloons, e.g., first balloon 72, then may be aligned with stenosis S and inflated to perform angioplasty on stenosis S. Optionally, the balloon that is intended to perform angioplasty on stenosis S may have a different size or configuration to facilitate the angioplasty procedure, e.g., first balloon 72 may comprise a greater longitudinal length than second balloon 74 to facilitate angioplasty, as shown in FIG. 5.

[0035] In still further alternative embodiments of the invention, in lieu of first and second stents 22 and 24, the support members coupled to graft 26 may comprise first and second inflatable rings. The inflatable rings may comprise tubular-shaped members that are adapted to be filled with a material such as a polymer, foam or liquid. A suitable introducer having a lumen in communication with the inflatable rings may be employed to inject the material into the rings, thereby causing the rings to expand into engagement with the intima of vessel V.

[0036] Alternatively, the support members coupled to graft 26 may comprise adhesive rings. The adhesive rings, which are coupled to the exterior surface of graft 26, may comprise tubular-shaped members comprising a suitable adhesive material disposed on an external surface of the rings. The adhesive rings may be balloon-expanded, for example, as shown in FIG. 5. When the external surface of the rings contact the intima of vessel V by balloon expansion, the adhesive secures the rings to the vessel wall.

[0037] Referring now to FIGS. 6-11, an alternative embodiment of the invention is described. The components in FIGS. 6-11 generally correspond to the components of FIGS. 1-4, except as noted below, and are represented by similar reference numerals, e.g., first stent 122, second stent 124 and graft 126 preferably are provided in accordance with first stent 22, second stent 24 and graft 26, respectively. Core member 130 is similar to core member 30, with a main exception that it comprises lumen 136 formed between its proximal and distal ends. Further, in the embodiment of FIGS. 6-11, introducer 140 comprises proximal and distal regions and comprises balloon 149 disposed on the distal region, as shown in FIG. 6.

[0038] In operation, apparatus 120 is introduced into a patient’s vessel V and positioned such that first stent 122 is disposed distal to stenosis S, as depicted in FIG. 6. In a next step, introducer 140 is retracted proximally beyond first stent 122 to allow first stent 122 to expand radially outward and engage an inner surface of vessel V, as shown in FIG. 7. At this time, introducer 140 preferably is further advanced proximally to expose a substantial portion of graft 126, as depicted in FIG. 7. However, introducer 140 is not advanced proximally over second stent 124 at this time.

[0039] Referring now to FIG. 8, in a next step, core member 130 and introducer 140 are advanced simultaneously in a distal direction. The simultaneous advancement of the components, while ensuring that second stent 124 does not expand, causes graft 126 to become everted and form pocket 155, as depicted in FIG. 8. At this time, lumen 136 within core member 130 permits oxygenated fluid to flow upstream to arterial vasculature during this segment of the procedure. Further, balloon 149 becomes partially or fully aligned with stenosis S.

[0040] Referring now to FIG. 9, in a further step, balloon 149 is inflated to treat stenosis S. Inflation fluid may be provided via inflation tube 162, which is disposed external
to introducer 140 and placed in fluid communication with balloon 149. Alternatively, inflation fluid may be provided via an inflation lumen formed within an exterior wall of introducer 140.

[0041] During treatment of stenosis S, embolic particles may become dislodged into vessel V. In accordance with one aspect, if any embolic particles are dislodged during the step of treating stenosis S, the emboli are effectively contained by pocket 155, which has been formed by the eversion of graft 126. The emboli will not enter into the bloodstream to flow upstream to arterial vasculature, which is expected to significantly reduce the likelihood of adverse future occurrences, such as ischemic events. Optionally, graft 126 may be slightly porous, thus acting more like a conventional filter and allowing for some blood perfusion.

[0042] Referring now to FIG. 10, in a next step, balloon 149 is deflated after satisfactory treatment of stenosis S. Then, core member 130 and introducer 140 are retracted simultaneously in a proximal direction, such that graft 126 is no longer everted and second stent 124 is disposed proximal to stenosis S. It should be noted that any embolic particles previously dislodged are still safely confined within vessel V because first stent 122 remains sealed against the vessel wall. Preferably, at this time, aspiration may be provided to vessel V to remove some or all of the emboli confined within pocket 155.

[0043] Introducer 140 is then further retracted proximally, while core member 130 and second pushing member 142 are held steady; to expose second stent 124 and allow its expansion against the inner wall of vessel V, as shown in FIG. 11. At this time, graft 126 is securely sealed against the inner wall of vessel V. Any embolic particles that had been confined within pocket 155, and not aspirated, are effectively sealed off between graft 126 and the intima of the vessel wall. As noted above, a conventional stent may be subsequently deployed to press against the inner surface of graft 126 to help maintain patency within vessel V.

[0044] Alternatively, a conventional balloon-expandable stent may be carried on the exterior surface of balloon 149. When balloon 149 is expanded, the balloon-expandable stent is deployed against the inner wall of vessel V. Subsequently, graft 26 is placed over stenosis S and the balloon-expandable stent. In effect, the balloon-expandable stent will be disposed between graft 26 and the inner wall of vessel V, at a location between first and second stents 122 and 124.

[0045] Preferably, grafts 26 and 126 in the above-described embodiments comprise a collagenous extracellular matrix material (ECM), such as small intestinal submucosa (SIS), which may facilitate attachment of grafts 26 and 126 to the intima of vessel V. Grafts 26 and 126 preferably are manufactured using a material, or comprise a coating, that facilitates attachment of an outer surface of the grafts to the intima of vessel V. In a preferred embodiment, reconstituted or naturally-derived collagenous materials can be used in the present invention. Such materials that are at least bioreabsorbable will provide an advantage in the present invention, with materials that are bioremodelable and promote cellular invasion and ingrowth providing particular advantage.

[0046] Suitable bioremodelable materials can be provided by collagenous ECMs possessing biotropic properties, including in certain forms angiogenic collagenous extracellular matrix materials. For example, suitable collagenous materials include ECMs such as submucosa, renal capsule membrane, dermal collagen, dura mater, pericardium, fascia lata, serosa, peritoneum or basement membrane layers, including liver basement membrane. Suitable submucosa materials for these purposes include, for instance, intestinal submucosa, including SIS, stomach submucosa, urinary bladder submucosa, and uterine submucosa.

[0047] As prepared, the submucosa material and any other ECM used may optionally retain growth factors or other bioactive components native to the source tissue. For example, the submucosa or other ECM may include one or more growth factors such as basic fibroblast growth factor (FGF-2), transforming growth factor beta (TGF-beta), epidermal growth factor (EGF), and/or platelet derived growth factor (PDGF). As well, submucosa or other ECM used in the invention may include other biological materials such as heparin, heparin sulfate, hyaluronic acid, fibronectin and the like. Thus, generally speaking, the submucosa or other ECM material may include a bioactive component that induces, directly or indirectly, a cellular response such as a change in cell morphology, proliferation, growth, protein or gene expression.

[0048] Submucosa or other ECM materials of the present invention can be derived from any suitable organ or other tissue source, usually sources containing connective tissues. The ECM materials processed for use in the invention will typically include abundant collagen, most commonly being constituted at least about 80% by weight collagen on a dry weight basis. Such naturally-derived ECM materials will for the most part include collagen fibers that are non-randomly oriented, for instance occurring as generally uniaxial or multi-axial but regularly oriented fibers. When processed to retain native bioactive factors, the ECM material can retain these factors interspersed as solids between, upon and/or within the collagen fibers. Particularly desirable naturally-derived ECM materials for use in the invention will include significant amounts of such interspersed, non-collagenous solids that are readily ascertainable under light microscopic examination with specific staining. Such non-collagenous solids can constitute a significant percentage of the dry weight of the ECM material in certain inventive embodiments, for example at least about 1%, at least about 3%, and at least about 5% by weight in various embodiments of the invention.

[0049] The submucosa or other ECM material used in the present invention may also exhibit an angiogenic character and thus be effective to induce angiogenesis in a host engrafted with the material. In this regard, angiogenesis is the process through which the body makes new blood vessels to generate increased blood supply to tissues. Thus, angiogenic materials, when contacted with host tissues, promote or encourage the infiltration of new blood vessels. Methods for measuring in vivo angiogenesis in response to biomaterial implantation have recently been developed. For example, one such method uses a subcutaneous implant model to determine the angiogenic character of a material. When combined with a fluorescence microangiography technique, this model can provide both quantitative and qualitative measures of angiogenesis into biomaterials.

[0050] Further, in addition or as an alternative to the inclusion of native bioactive components, non-native bioactive components such as those synthetically produced by recombinant technology or other methods, may be incorporated into the submucosa or other ECM tissue. These non-native bioactive components may be naturally-derived or recombinantly produced proteins that correspond to those
natively occurring in the ECM tissue, but perhaps of a different species (e.g. human proteins applied to collagensous ECMS from other animals, such as pigs). The non-native bioactive components may also be drug substances. Illustrative drug substances that may be incorporated into and/or onto the ECM materials used in the invention include, for example, antibiotics or thrombus-promoting substances such as blood clotting factors, e.g., thrombin, fibrinogen, and the like. These substances may be applied to the ECM material as a premade step, immediately prior to the procedure (e.g. by soaking the material in a solution containing a suitable antibiotic such as cefazolin), during or after engraftment of the material in the patient.

[0051] Submucosa or other ECM tissue that may be used in the invention is preferably highly purified, for example, as described in U.S. Pat. No. 6,206,931 to Cook et al. Thus, preferred ECM material will exhibit an endotoxin level of less than about 12 endotoxin units (EU) per gram, more preferably less than about 5 EU per gram, and most preferably less than about 1 EU per gram. As additional preferences, the submucosa or other ECM material may have a bioburden of less than about 1 colony forming units (CFU) per gram, more preferably less than about 0.5 CFU per gram. Fungus levels are desirably similarly low, for example less than about 1 CFU per gram, more preferably less than about 0.5 CFU per gram. Nuclease acid levels are preferably less than about 5 µg/mg, more preferably less than about 2 µg/mg, and virus levels are preferably less than about 50 plaque forming units (PFU) per gram, more preferably less than about 5 PFU per gram. These and additional properties of submucosa or other ECM tissue taught in U.S. Pat. No. 6,206,931 may be characteristic of the submucosa tissue used in the present invention.

[0052] If grafts 26 and 126 of the above-mentioned embodiments employ SIS material, then in order to pressurize the SIS material, it may be treated with a biodegradable solution such as polyvinylpyrrolidone (PVP). As will be apparent, the entirety of grafts 26 and 126 may be manufactured from an ECM material such as SIS, or alternatively, selected portions may be manufactured from the ECM material or may be selectively coated with the material to promote localized fusion with vessel V.

[0053] While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents. Moreover, the advantages described herein are not necessarily the only advantages of the invention and it is not necessarily expected that every embodiment of the invention will achieve all of the advantages described.

We claim:

1. A method suitable for providing embolic protection during a vascular procedure, the method comprising:
 providing a graft having proximal and distal regions, a first support member attached to the distal region of the graft, and a second support member attached to the proximal region of the graft;
 deploying the first support member to cause the first support member to engage an intima of the vessel at a location distal to a vascular condition; treating the vascular condition; and using the graft to entrap emboli dislodged during treatment of the vascular condition.
 2. The method of claim 1 further comprising evertting the graft by distally advancing the second support member with respect to the first support member, thereby forming a pocket distal to the vascular condition.
 3. The method of claim 1 further comprising deploying the second support member at a location proximal to the vascular condition, thereby causing the graft to span the length of the vascular condition and enclose the vascular condition.
 4. The method of claim 1 further comprising:
 providing an introducer having proximal and distal ends; using the introducer to circumferentially enclose the first and second support members in a delivery state; and proximally retracting the introducer with respect to the first and second support members to cause the first and second support members to self-expand into engagement with an intima of the vessel at locations distal to and proximal to the vascular condition, respectively.
 5. The method of claim 4 further comprising treating the vascular condition by performing balloon angioplasty on the vascular condition using a balloon disposed on an exterior surface of the introducer.
 6. The method of claim 1 further comprising placing a stent over the graft to secure the graft between the stent and the vascular condition.
 7. Apparatus suitable for providing embolic protection during a vascular procedure, the apparatus comprising:
 a graft having inner and outer surfaces, and further having proximal and distal regions;
 a first support member attached to the distal region of the graft; and
 a second support member attached to the proximal region of the graft,
 wherein the first support member is adapted to be deployed within a vessel at a location distal to a vascular condition, and the graft is adapted to be everted to form a pocket adapted to entrap emboli dislodged during treatment of the vascular condition.
 8. The apparatus of claim 7 wherein the first and second support members comprise first and second stents, respectively.
 9. The apparatus of claim 7 wherein the second support member is adapted to be deployed within a vessel at a location proximal to the vascular condition to cause the graft to span and enclose the vascular condition.
 10. The apparatus of claim 7 further comprising an introducer having proximal and distal ends, wherein the introducer is configured to circumferentially enclose the first support member, the second support member and the graft in a delivery state.
 11. The apparatus of claim 10 wherein the introducer comprises an external surface and a balloon disposed thereon, the balloon adapted to perform angioplasty on the vascular condition.
 12. The apparatus of claim 10 wherein the first and second support members comprise self-expanding support members that are adapted to be deployed when the introducer is retracted proximally beyond the respective first and second support members.
 13. The apparatus of claim 10 further comprising a core member having proximal and distal regions, wherein the first support member, the second support member and the
The apparatus of claim 13 further comprising a first pushing member abutting the proximal end of the first support member and a second pushing member abutting the proximal end of the second support member.

15. The apparatus of claim 7 wherein at least a portion of the graft comprises a material having a known porosity to permit oxygenated fluid flow upstream, while substantially or completely prohibiting the flow of emboli.

16. A method suitable for providing embolic protection during a vascular procedure, the method comprising:

providing a graft having proximal and distal regions, a first support member attached to the distal region of the graft, and a second support member attached to the proximal region of the graft;
deploying the first support member to cause the first support member to engage an intima of the vessel at a location distal to a vascular condition;
evert the graft by distally advancing the second support member with respect to the first support member, thereby forming a pocket distal to the vascular condition;
treating the vascular condition; and
using the graft to entrap emboli dislodged during treatment of the vascular condition.

17. The method of claim 16 further comprising deploying the second support member at a location proximal to the vascular condition, thereby causing the graft to span the length of the vascular condition and enclose the vascular condition.

18. The method of claim 16 further comprising:

providing an introducer having proximal and distal ends; using the introducer to circumferentially enclose the first and second support members in a delivery state; and proximally retracting the introducer with respect to the first and second support members to cause the first and second support members to self-expand into engagement with an intima of the vessel at locations distal to and proximal to the vascular condition, respectively.

19. The method of claim 18 further comprising treating the vascular condition by performing balloon angioplasty on the vascular condition using a balloon disposed on an exterior surface of the introducer.

20. The method of claim 16 further comprising placing a stent over the graft to secure the graft between the stent and the vascular condition.

* * * * *

* * * * *