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AN INTERMEDIATE REPRESENTATION FOR
MULTIPLE EXCEPTION HANDLING MODELS

TECHNICAL FIELD
The technical field relates to components of a compiler computer program. More
specifically the field relates to an intermediate representation of exception handling constructs

for compiling a program.

BACKGROUND

Generally speaking, a translator is a computer program that receives as its input a
program written in one computer programming language and produces as its output a program in
another programming language. Translators that receive as their input a high-level source
language (e.g., C++, JAVA, etc.) and generate as their output a low-level language such as
assembly language or machine language sometimes are more specifically referred to as
compilers. The process of translation within a compiler program generally consists of multiple
phases. FIG. 1 illustrates a flow chart showing one such break down of the multiple phases of a
compiler. The source program representation in source code is received at 110. Then at 120 the
lexical analyzer separates the characters of the source code into logical groups referred to as
tokens. The tokens may be key words in the syntax of the source language such as, IF or
WHILE, operators such as, +and — , identifiers and punctuation symbols. At 130, the syntax

analyzer groups the tokens together into syntactic structures such an expression or a statement.

At 140, an intermediate representation (IR) of the source code, including the exception handling

constructs, is generated to facilitate compiler back end operations such as code optimization at
150 and then code generation at 160. There can be multiple intermediate representations within
a compiler process. During the code optimization phase 150 various techniques may be directed
to improving the intermediate representation generated at 140 so that the ultimate object code
runs faster and uses less memory. During the final phase at 160, the code generator produces the
target program (object code) 170 to be executed by a processor.

Exception handling is invoked when a flaw in the source program is detected. Inthe
existing compiler frameworks, exception handling constructs within the source program are
processed separate from the main control flow of the intermediate representation. Traditionally,
exception handling constructs are not explicitly represented in the control flow of the
intermediate representation. In one well known technique, regions within the source code where
exception handling constructs are detected are delimited from the main control flow and thus not
subject to the same code optimization techniques as the main control flow. In yet another
method, the exception handling constructs are captured within a table outside of the main control

flow and the compiler back end processes them separately. Thus, there is a need for
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intermediate representation for exception handling constructs that allows such constructs to be
explicitly represented within the main control flow to take advantage of the same code
optimizations and code generation techniques (i.e., compiler back end) as the rest of the source
code.

Also, traditionally, intermediate representations have been specific to a source language.
Thus, compilers have to be aware of the specific exception handling models of the source
language associated with each representation. For our purposes, these exception handling
models can be typically characterized by four features. The first feature determines if the
exception is synchronous or asynchronous. A synchronous exception is associated with the
action of the thread of control that throws and handles it. In this situation, an exception is
always associated with an instruction of the thread. In other words, an exception handling action
is invoked by an instruction when some condition fails. However, an asynchronous exception is
injected into a thread of control other than thread that may have thrown and handled it.. In
Microsoft CLR, this may be caused by aborting a thread via a system APL. Such exceptions are
not associated to a particular instruction. The effect is to raise an exception in the thread at some
suitable point called a synchronization point.

Second, an exception may either terminate or resume the exception causing instruction.
In the case of a terminating exception the instruction is terminated and a filter, handler, or a
finalization action is initiated. However in the case of a resumption model the offending
instruction can be automatically resumed after some handling action is performed. The
Structured Exception Handling (SEH) constructs in C/C++ fall into this category. This requires,
typically, that the entire region including the exception cansing instruction be guarded as if all
memory accesses act like volatile accesses. Thus, disallowing any optimization of the memory
accesses.

Third, an exception handling model may be precise or imprecise. In precise exception
handling models relative ordering of two instructions needs to preserve observable behavior of
memory state. This means that a reordering of instructions cannot be performed if a handler or
another fragment of code will see different values of variables. Languages such as C#,
Microsoft CLR and C++ require a precise mechanism. In such models, the compiler may need
to reorder exception instructions relative to each other and any other instruction whose effect is
visible globally. In imprecise models, the relative order of instructions on exception effect is
undefined and a compiler is free to reorder such instructions. In either model, the order between
exception instructions and their handlers is always defined and is based on control dependencies.
Some languages like Ada have an imprecise exception model.

Fourth feature of an exception handling model is how handler association is performed
in various exception handling models. In most languages, including C++, C#, and Microsoft

CLR, handler association is lexical and performed statically. This means that it is statically
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possible to identify the start of the handler code and this is unique. As explained below this
attribute of statically identifying handler bodies may be used to generate the intermediate
representation of the exception handling instructions. Thus, there is a need for a single uniform
framework for intermediately representing exception handling constructs that is uniform across
multiple models for representing exception handling and is capable of accounting for the various

attributes of such models described above.

SUMMARY

As described herein, a uniform intermediate representation of exception handling
constructs may be used for expressing exception handling models of various languages. In one
aspect, a single set of instructions related to the intermediate representation are described herein
for expressing multiple different exception handling mechanisms. For example, a common set
of related instructions may be used to describe the control flow from a try region to a finally
region and then to outside of the finally region. In yet another aspect, control flow from a try
region to a catch region may be expressed using a common set of related instructions.
Furthermore, filters guarding the handler or catch region may also be expressed. Control flow
from a try region to the “except” region to pass the control back to the exception causing region
under certain conditions may also be expressed. Exception handling control flow related to
object destructors may also be expressed using the uniform intermediate representation of the
exception handling constructs.

In a further aspect, methods and systems are described herein for generating the uniform
intermediate representation for expressing control flow of exception handling constructs. In one
aspect, the intermediate representation may be generated by translating an intermediate language
representation of the source code file. Multiple different intermediate languages may be used to
generate the intermediate representation of exception handling constructs. In a further aspect,
the intermediate representation of the exception handling constructs may be used by software
development tools for such tasks as code generation, code optimization, analysis etc.

Additional features and advantages will be made apparent from the following detailed
description of illustrated embodiments, which proceeds with reference to accompanying

drawings.

BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is a flow chart representing the various processing phases of a typical compiler
and its components.
FIG. 2 is a block diagram illustrating a system for generating an intermediate
representation of exception handling instructions using a uniform exception handling framework

capable of representing multiple language specific exception handling models.
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FIG. 3A is a flowchart illustrating a method for generating an intermediate
representation of exception handling instructions using a uniform exception handling framework
capable of representing multiple language specific exception handling models.

FIG. 3B is a flowchart illustrating a method for reading an intermediate representation
of software and generating an executable version therefrom.

FIG. 4 is a block diagram of one embodiment of the system of FIG. 2 showing a
multiple IL readers for CIL and MSIL languages.

FIG. 5 is a diagram of one embodiment of a data structure for instructions in an
intermediate representation.

FIG. 6 is a listing of a pseudo code representation of unguarded exception causing
instructions.

FIG. 7 is a listing of an intermediate representation of the code of FIG. 6.

FIG. 8 is a listing of a pseudo code representation of a try code section with non-
exception causing instructions guarded by a finally block.

FIG. 9 is a listing of an intermediate representation of the code of FIG. 8.

FIG. 10 is a listing of a pseudo code representation of a try code section with exception
causing instructions guarded by a finally block.

FIG. 11 is a listing of an intermediate representation of the code of FIG. 10 along with
the appropriate handler labels.

FIG. 12 is a listing of a pseudo code representation of a try code section with exception
causing instructions guarded by two filters and two catch blocks.

FIG. 13 is a listing of an intermediate representation of the code of FIG. 12 along with
the appropriate handler labels and filters related to the catch blocks.

FIG. 14 is a listing of a pseudo code representation of a try code section with exception
causing instructions guarded by two filters, two catch blocks and a finalization code block.

FIG. 15 is a listing of an intermediate representation of the code of FIG. 14 along with
the appropriate handler labels and filters related to the catch and finalization blocks.

FIG. 16 is a listing of a pseudo code representation of a nested try code section guarded
by a catch block.

" FIG. 17 is a listing of an intermediate representation of the code of FIG. 16 along with
the appropriate handler labels and filters related to the nested and the outer catch and finalization
blocks.

FIG. 18 is a block diagram illustrating one method for translating exception handling
constructs from an intermediate language to another intermediate representation.

FIG. 19A is an illustration of a data structure of exception handling data table.

FIG. 19B is one illustration of a label map for mapping offsets to their labels.
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FIG. 19C is another illustration of a label map after protected blocks are mapped to their
respective offsets.

FIG. 20 is a flow chart of one method for using the exception handling data table and
the containment information between protected blocks and their handlers and destination blocks
for generating an intermediate representation.

FIG. 21 is a diagram showing one example of a range tree map for determining the
containment relationship between the protected blocks and their handlers and destination blocks.

FIG. 22 is a listing of a C++ program illustrating construction and destruction of local
objects.

FIG. 23 is a listing of a pseudo code representation for expressing the possible
exception handling paths during the constructions and destruction of objects.

FIG. 24 is a listing of an intermediate representation of the code of FIGS. 22 and 23.

FIG. 25 is a listing of a C++ program illustrating conditional construction of expression
temporary objects.

FIG. 26 is a listing of a pseudo representation for expressing the possible exception
paths for conditional construction and destruction of expression temporary objects.

FIG. 27 is a listing of an intermediate representation of the code of FIG. 26.

FIG. 28 is a listing of a C++ program that returns an object by value.

FIG. 29A is a listing of an intermediate representation of the possible exception paths
for destruction of objects by value shown in FIG. 28.

FIG. 29B is a continuation of the listing of FIG. 29A.

FIG. 30 is a listing of a C++ program throwing an object by value.

FIG. 31 is a listing of a pseudo code representation expressing the possible exception
paths of throwing value type objects shown in FIG. 30.

FIG. 32 is a listing of an intermediate representation of FIG. 31.

FIG. 33 is a listing of a pseudo code representation of a try code section guarded by an
except code block.

FIG. 34 is a listing of an intermediate representation of the code of FIG. 33.

FIG. 35 is a flow chart of an exemplary method for translating an intermediate language
expressed in post fix notation form to another intermediate representation.

FIG. 36 is a diagram of one implementation of data structures to build an intermediate
representation from reading code expressed in a post fix notation form.

FIG. 37 is a flow chart showing an exemplary method for using the data structures of
FIG. 36 to build an intermediate representation by reading code expressed in post fix notation
form.

FIG. 38A is a listing of an exemplary code section of FIG. 22 implemented using

postfix notation.
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FIG. 38B is the continuation of FIG. 38A.
FIG. 38C is the further continuation of FIGS. 38A and B. !
FIG. 39 is a block diagram illustrating the state of data structures of FIG. 36 during the

translation of the code of FIG. 38 to an intermediate representation.

DETAILED DESCRIPTION

Language independent intermediate representation of exception handling constructs

FIG. 2 illustrates a system 200 for implementing a uniform exception handling
intermediate representation 230 for multiple source languages (205-208) for code optimization
by the compiler back end 240. As shown in FIG. 2, the system 200 includes a intermediate
language (IL) representation 210-213 for each of the multiple source code representations 205-
208 which is parsed or read by an IL reader 220 which translates the multiple IL representations
210-213 to a single intermediate representation 230. The IL representation is a higher-level
intermediate representation than the intermediate representation 230 and may be expressed in
any number of wetl known intermediate languages such as MSIL (Microsoft CLR) (for C#,
Visual Basic, JScript, C, and FORTRAN) and CIL (for C++). Even though the system 200 for
generating a uniform exception handling framework for multiple languages is shown as having a
single IL reader process for multiple source languages, it is possible to implement multiple such
readers, each corresponding to one or more of the IL representations 210-213.

FIG. 3A illustrates a general overall method for using the IL reader 220 to generate a
uniform set of intermediate representations for exception handling constructs expressed in a
number of different source languages. At 310, the intermediate language representation of
software (e.g., an intermediate language representation of a source code file) is received by the
reader 220 and at 315, the file is read or parsed to identify exception handling constructs within
the IL code stream (320). Then at 330, the reader 220 (which can also be thought of as a virtual
machine) generates a single uniform intermediate representation of the exception handling
constructs identified previously at 320. Such an exception handling frame work can then be
used to simplify the processes of a compiler back end such as code optimizations and code
generation.

The uniform intermediate representation of the software having the exception handling
constructs can explicitly express exception handling control of the software. FIG. 3B shows a
method 350 for generating executable from the uniform intermediate representation of the
software. Such a method can be used, for example, by a compiler or other software development
tool when generating an executable version (e.g., machine-specific code or other object code) for
the software.
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At 360, the uniform intermediate representation is read (e.g., by a compiler or other
software development tool). For example, the uniform intermediate representation generated by
the method of FIG. 3A can be used. Other transformations, translations, or optimizations to the
uniform intermediate representation can be performed as desired.

At 370, a computer-executable version of the software is generated (e.g., by the
compiler or other software development tool). The computer-executable version of the software
implements the exception handling control flow of the software, based on the uniform
intermediate representation.

FIG. 4 illustrates another embodiment of a system for generating a simple and uniform
intermediate representation of exception handling constructs within multiple source languages
expressed in form of multiple IL representations. As shown in FIG. 4, the source language
group 410 supported within Microsoft’s NET framework (e.g., C#, C, Microsoft Visual Basic,
Jscript, and FORTRAN) are first translated to a MSIL representation 440. However, because of
its differences with other source languages C++ is expressed in another intermediate language
known as CIL 430. The control flow and the exception handling models within the CIL and
MSIL are expressed in fundamentally different ways and thus it may be necessary to provide
separate IL readers (435 and 445) for CIL and MSIL representations.

Both the readers 435 and 445 may use appropriate algorithms implemented within their
respective readers to parse or read their respective intermediate language code streams to express
the exception handling constructs or instructions or expressions within the intermediate language
code stream using a uniform framework of exception handling instructions 450 to be provided to
the back end 460. Part of the rest of this document below describes various components of such
a langnage independent exception handling instruction set. Furthermore, examples of exception
handling constructs within the intermediate language are shown translated to their respective
language independent intermediate representations. The document also describes algorithms and
methods for parsing the intermediate language and generating the intermediate representations of

exception handling constructs.

Exception causing instructions explicitly expressed within the main control flow of the
intermediate representation
Exception causing instructions are guarded by their handlers or finally regions. When
an instruction causes an exception the control flow may pass to a handler and sometimes the
handler may be conditionally selected based on the processing of filter instructions. Control
may flow to finally regions of code based on exceptions or directly, either way, it will be
processed and used to implement clean —up code. Finally, regions are always executed before
the control is exited out of the corresponding try region. This mechanism can be used for

implementing clean up code, such as closing of file handles, sockets, locks, etc. FIGS. 8 and 12
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illustrate pseudo code representing various exception handling related instructions. FIG. 12 for
example shows a try region guarded by two catch blocks. The choice of which of the two catch
blocks (in FIG. 12) is to be processed is dependent on the results of processing a filter block. As
a further example, FIG. 8 shows a try region guarded by a finally block.

As described with reference to FIG. 3, the intermediate language representations with
various models for expressing exception handling maybe analyzed to determine control flow
between the exception causing instructions and their respective handlers and continuations,
which may then be explicitly expressed within the same control flow as the rest of the
instructions that do not cause exceptions. One way to accomplish this is to build a control flow
representation using instructions with a modest memory allocation cost such as, one word per
instruction. The handlers may be represented by instructions that use an exception variable
which may be defined by an exception causing instruction. The handler or filter instructions can
then test the exception variable and branch to the handler body. or to another handler based on
the value or type of the exception object. Similarly, instructions guarded by a finally clause in
C+++ or C# have control flow edges or pointers to instructions that capture the continuation for
the target of the controt transfer out of the finally region. The end of a finally region in this case
may be modeled by an instruction that transfers control to the captured continuation at the start
of a finally region. These features of the intermediate representation will be described in further

detail below with reference to examples.

Format for Instructions

As noted above, the intermediate representation of exception handling constructs in the
intermediate language representation may be expressed at an instruction level. FIG. 5 shows one
such general implementation of a data structure for instructions or nodes (IR nodes) that will
allow the exception handling constructs to be expressed within the control flow of the
intermediate representation of the rest of the code. Specific intermediate representations of
exception handling instructions and their functionality is described later in the document.
Generally, IR instructions may be executable at various levels within a compiler component
hierarchy. They have an operator (op-code) field and a set of source (or input) operands, a set of
destination (or output) operands. These operands are typically references to symbol nodes. In
addition, each of the source and destination operands may be typed and the operator and the
types of the operand may be used to resolve any ambiguity. In the example instruction of FIG.
5, the operator at 504 has two source operands 506 and 507 and two destination operands 508
and 509.

The exception handling semantics may be represented by providing, each instruction
505 with a handler field 510 that points to a label instruction 520 which is the start of the handler
530 for that instruction 505. If the instruction cannot throw an exception then the handler field
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510 of the instruction is set to NULL. If the instruction can throw an exception but has no
handler then the compiler may build a special handler to propagate control out of the current
method.

A textual notation for describing the IR instruction 505 of FIG. 5 may be as follows:

CC, DST = OPER1 SRC1, SRC2; SHANDLER1

The handler label, if any, appears after the semi-colon. When the instruction does not
throw an exception, the handler field is set to NULL. This may be either specified by the
semantics of the instruction or found to be the case as a result of optimization or program

analysis. In that case, the instruction may be textually denoted as follows:

CC, DST2 = OPER1 SRCI1, SRC2;

In cases where there is no destination operand or result for an instruction the destination
and the “=" sign in the instruction description is omitted. For example, a conditional branch
instruction does not have any explicit destination operands and its may be represented textually

as follows:

CBRANCH SRC1, SRC1-LABEL, SRC2-LABEL;

Exception Handling Instructions
The following paragraphs describe the various exception handling related instructions of
the intermediate representation by describing their operations, their inputs and outputs.
Examples will illustrate how this instruction set can be used to generate an intermediate
representation of exception handling constructs of various models within the same control flow

as those instructions that are unrelated to exception handling.

Unwind

UNWIND | Propagate control out of the current method

Syntax | UNWIND x

Table 1

An UNWIND instruction is used to represent control flow out of the current method
when no matching handler for an exception is present. The unwind instruction is preceded by a
label, and is followed by an exit out of the method. The source operand (x) of the UNWIND

operation represents the thrown exception object. This makes the data flow explicit. There can
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be one or more unwind instruction in a method. However, having just one UNWIND per
method allows for savings in intermediate representation space for each method. Also the
handler field of an UNWIND instruction is usually set to be NULL.

FIGS. 6 and 7 illustrate the use of an UNWIND instruction in the intermediate
representation. FIG. 6 shows the pseudo code for an unguarded region that may cause an
exception. In the process of translating to the intermediate representation, the IL 220 reader will
be parsing the code in an intermediate language (210-213) representation and not the pseudo
code. However, the pseudo code is being used in these examples in order to simplify the
illustration of the control flow. For example, in FIG. 6 the expression x = a div b may cause an
exception if a divide by zero operation is attempted. Even if the original source code or its
intermediate language representation (e.g., in MSIL or CIL) fails to specify a handler for this
region the intermediate representation may provide a default handler which is usually an
UNWIND instruction. Thus, an intermediate representation for the code of FIG. 6 may be as
shown in FIG. 7. In the intermediate representation the exception causing instructions are shown
with their handler fields 710 filled out and pointing to the handler with a label SHANDLER
which marks the beginning of the UNWIND instruction. Now if an exception is caused the
UNWIND instruction will move the control flow out of the method.

Finalization
The control flow to and out of a finally region may be represented in the intermediate
representation by a set of instructions that are related, ¢.g., FINAL, FINALLY and
ENDFINALLY. The FINAL instruction in general handles the explicit transfer of control to a
finally region, whereas the FINALLY instruction can accept transfer from a FINAL instruction
or through an exception causing instruction with a handler. The ENDFINALLY instruction

represents the control flow out of a finally region.

FINAL | Branch to the start of a finally region

Syntax | FINAL Label, Continuation

Table 2
A FINAL instruction represents an explicit transfer of control to the start of a finally
instruction. The first source operand of this instruction is.the start label of the associated finally
instruction, and the second operand is the continuation label where conirol is transferred after the

finally region is executed. The handler field of a FINAL instruction is usually set to be NULL.

FINALLY | Accept control transfer from a final or exception handling instruction

Syntax | E, R= FINALLY
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Table 3

A FINALLY instruction has two destination operands. The first operand is the
exception variable. This models the data flow of the exception object. The second operand is a
label or a code operand for the continuation that is captured. When a FINALLY instruction is
executed as a result of an exception the captured continuation is the label of the lexically
enclosing handler, FINALLY label or UNWIND instruction. This continuation label is reflected
as the handler field of the matching ENDFINALLY (see below). The handler field of a
FINALLY instruction is usually set to NULL.

ENDFINALLY | Leave the finally region and branch to the continuation or unwind

Syntax | ENDFINALLY E, R, [case-list] ; SHANDLER

Table 4

An ENDFINALLY instruction has two or more operands. The first operand is the

* exception variable. The second operand is the continuation variable whose type is the type of a

label or a code operand. It also has a case list that is used to represent possible control transfers
for explicit final invocations in the program. An ENDFINALLY instruction must have its
handler field set to the label of the lexically enclosing outer finally or handler (i.e., a FILTER or
UNWIND instruction). If there is no exceptional control flow to the matching finally instruction
then the handler field may be NULL. Furthermore, the destination operands E and R of the
FINALLY instruction is the same as the source operands E and R of the ENDFINALLY
instruction. This ensures data dependence between the two instructions which can be used by
the back end components during code optimization.

FIGS. 8 and 9 illustrate an example of implementing a finally block from the IL
representation to the intermediate representation using the FINAL, and FINALLY and
ENDFINALLY instructions. FIG. 8 illustrates the pseudo code of a try block. No handler is
specified in the source code or its intermediate language representation. However, unlike the
previous example no default handler needs to be specified because the expressions 810 are not
exception causing instructions. Thus, control flows to the finally region only explicitly. The
intermediate representation for the code of FIG. 8 may be expressed as shown in FIG. 9. The
expressions 910 do not have handlers specified. The FINAL instruction 915 explicitly transfers
control to the finally region indicated by the label $FINALIZE which points to the finally block
920. Once the finally block is executed, control transfers to the continuation 12‘le1 indicated in
the FINAL instruction 915 which in this case is “$END.”

FIGS. 10 and 11 illustrate translation of yet another try-finally block to an intermediate
representation with FINAL, FINALLY and ENDFINALLY instructions. However, in this
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representation handlers are added to exception handling instructions. FIG. 10 shows the
instructions 1010 which may cause exceptions that are guarded by the finally block 1015. FIG.
11 illustrates the intermediate representation of the try finally block along with exception
handlers. The exception causing instructions at 1110 are assigned a handler label SFINALIZE
directed to the beginning of the finally instruction at 1115. In this example, two types of control
flows through the finally region is modeled. First, the FINALLY and the ENDFINALLY
instructions are executed through an exception causing operation at 1110. In that event, after the
ENDFINALLY instruction 1120 is executed, the control is passed to the region marked by the
$PROPAGATE label. This in effect captures the continuation on the exception path. However,
control flow to the finally region can also be transferred explicitly through the FINAL
instruction 1112. In that event, at the end of the ENDFINALLY instruction 1120 the
continuation is to the region marked by the SEND region which does not implement the
UNWIND instruction.

Yet another set of exception handling intermediate representation instructions for
representing a finalization control flow may be referred to as the FAULT and the ENDFAULT
instructions. They are similar to the FINALLY and the ENDFINALLY instructions, however,
unlike a FINALLY instruction control flow cannot be passed explicitly from FINAL instruction
to a FAULT instruction. Control to the FAULT instruction is branched to only through an

exception causing instruction.

FAULT | Handle a fauli.

Syntax | E=FAULT

Table 5

The ENDFAULT instruction terminates a related FAULT handler and throws the
exception to a specified handler. The handler field can be NULL if all exceptional control flow
to the corresponding FAULT instruction has been removed. In that case the fault handler is

unreachable and can be deleted.

ENDFAULT | Leave the fault region/handler and search for an exception handler.

Syntax | ENDFAULT E; SHANDLER

Table 6

Filter based handlers
Some intermediate languages (e.g., MSIL) implement a filter-based handler, whereby

different handlers are assigned to exception causing events based on a characteristic of the




WO 2005/006120 PCT/US2004/015965

10

15

20

25

13

exception causing event. Such control flow may be represented in a intermediate representation
using instructions to catch and filter exceptions and then to specify handlers to exceptions (e.g.,
FILTER, ENDFILTER and TYPEFILTER). As described below, TYPEFILTER instructions
may be a short form of the FILTER and ENDFILTER instructions.

FILTER | Catch and filter an exception.

Syntax | E = FILTER

Table 7

This instruction may be used to implement a general-purpose filter-based handler in
MSIL. This matches any exception and simply returns the exception object in the destination
operand of the instruction. The filter instruction is labeled, and is followed by an arbitrary
sequence of instructions that may or may not use the exception variable. A filter instruction
must eventually reach an ENDFILTER instruction without an intervening FILTER instruction.
The handler field of a FILTER instruction is usually NULL.

ENDFILTER | Terminate a non-resumption filter.

Syntax | ENDFILTER X, handler-label, filter-or-unwind-label

Table 8

An ENDFILTER instruction tests a Boolean operand (X) and if it is 1, branches to the

handler label otherwise it tries another filter or unwinds.

TYPEFILTER | Catch an exception of the given type.

Syntax | E = TYPEFILTER fhandler-label, filter-or-unwind-label

Table 9

A TYPEFILTER instruction tests if the type of the exception object is a subtype of the
type of the destination operand (which is statically known). If so, control is transferred to the
first label (the handler label). Otherwise, another filter or unwind instruction label is tried.
When the type filter matches, the destination operand is set to the exception object. The handler
field of a TYPEFILTER instruction is usually NULL.

Note that a TYPEFILTER instruction is a short form and in fact can be represented as a
combination of both FILTER and ENDFILTER operations as follows:
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t.0bj32 = FILTER;

e.Type = CHKTYPE t.obj32;

x.cc =CMPMNEQ) e.Type, 0.null;
ENDFILTER x.cc, SLABEL1, SLABEL2;

The FILTER instruction returns an exception object whose type is verified to be of
e.Type and if it is of e.Type then, x.cc is set to TRUE and to FALSE otherwise. Then at
ENDFILTER, the continuation is determined to be SLABEL1 or SLABEL2 depending on the
value of x.cc. The same expression can be represented as a TYPEFILTER instruction as

follows.
e.Type = TYPEFILTER $LABEL1, SLABEL2;

FIGS. 12 and 13 illustrate the implementation of a try—catch block using the filter based
ex;:eption handling instructions. FIG. 12 describes an exception causing try region 1210 being
guarded by two different handler regions 1220 and 1230. Filters at 1215 and 1225 determine
which handler to implement based on the type of the exception object refurned. FIG. 13
illustrates an intermediate representation of the try-catch pairs using the TYPEFILTER
instruction of the intermediate representation. The handler fields of both the exception causing
instructions 1310 is set to SHANDLER1 which points to the first filter 1315. If the exception
object is of the type DivideByZeroException, then control flows to the catch block labeled
$CATCHI. Ifnot then the control flows to the next filter 1325 referenced by the label
SHANDLER?2. Based on whether the type of the exception object is type Exception, control
flows either to the second catch block 1330 identified by the label $CATCH2 or to UNWIND
instruction 1335 identified by the label SPROPAGATE.

A MATCHANYFILTER instruction is a form of the filter based exception handling

instruction.

MATCHANYFILTER | Match any exception type.

Syntax | E= MATCHANYFILTER handler-label

Table 10

This filter always matches any exception unconditionally, and transfers control to a
valid label. This is equivalent to a FILTER-ENDFILTER pair where the first operand of the
ENDFILTER is always 1 and the second label is not specified. The handler field of a
MATCHANYFILTER instruction must be NULL. A MATCHANYFILTER instruction is also
a short form and can be represented using FILTER and ENDFILTER instructions as shown

below.
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e.Type =FILTER;
ENDFILTER 1.cc, SLABEL1, SLABEL2;
The equivalent MATCHANYFILTER instruction for the FILTER and ENDFILTER

combination above is as follows:
e.Type = MATCHANYFILTER SLABELI;

Representing a try block guarded by a filter-based
handler and a finalization

Yet another exception handling model has the control flowing from a try block to one or
more handler regions based on type of exception caused and then one or more finally regions.
FIGS. 14 and 15 illustrate one such example. FIG. 14 shows the pseudo code for the
intermediate language representation (e.g., MSIL) of a try block 1410 guarded by a pair of
handlers 1420 and 1430 and a finally block 1440. Filters 1415 and 1425 determine which of the
two handler blocks are processed based on the type of the exception object returned. Regardless
of the catch block traversed, the finally block will have to be touched before exiting the method.

FIG. 15 illustrates an intermediate representation of the control flow shown in FIG. 14
using the filter-based TYPFILTER instruction and the finalization instructions of FINAL,
FINALLY and ENDFINALLY. This example exhibits several interesting points that do not
occur in the previous examples. First, each handler 1520 and 1530 is terminated by an explicit
invocation of the finally instruction at 1521 and 1531 respectively. This reflects the semantics of
the original program as shown in FIG. 14 where control flows from the handlers 1420 and 1430
to the finally block 1440. Second, the filter 1525 that controls the last handler 1530 specifies the
label for the finally instruction and not the unwind instruction 1550. This ensures that if the last
filter is not matched it transfers control to the proper finally block. This point will be further '
illustrated in the examples for the nested cases of exception handling as well.

FIGS. 16 and 17 illustrate nested exception handling. FIG. 16 illustrates the pseudo
code for the intermediate language representation of a try-catch-finalty block nested within a try
part of the try-catch block. FIG. 17 illustrates the intermediate representation of sucha
exception control flow using the filter, handler and finalization instructions described above. As
shown in FIG. 16, the outer try block 1610 is guarded by two handler blocks with filters at 1620
and 1630. The nested try block 1615 is guarded by a catch block 1625 with a filter and a finally
block at 1635. There are several exception paths possible here based on several factors
including where within the source code the exception occurs. All these various exception paths
can be expressed using the intermediate representation exception instructions as shown in
FIG. 17. The exception causing instruction 1705 is guarded by the outer filter-based handler
block labeled SHANDLER1 1710 which may pass control on to yet another filter-based handler
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block labeled SHANDLER?2 1715. The exception causing instruction 1706 that is within the
immer try block 1615 is guarded not only by the inner filter-based handler block labeled
SHANDLER3 1720 but its exception path may also pass through the block labeled
$HANDLERI1 at 1710 and/or SHANDLER?2 at 1715. For example, if a DivideByZero exception
is caused at the expression within the inner try block at 1706 then the exception path reaches the
appropriate handler block at 1710 though the finalization block at 1725 by setting the handler
field of the ENDFINALLY block at 1726 to the SHANDLER1 label. This flow represents the
flow from try block 1615 to finally block 1635 and then to handler 1620.

A method for translating exception handling constructs from intermediate language code
to a lower-level intermediate representation

As shown in FIG. 2, the intermediate representation of the exception handling construct
using the instructions described above may be generated by an IL reader 220 which processes
code in a intermediate language to generate such a representation. A IL reader 220 may use any
number of different processes or algorithms and the choice or design of the algorithms may be
dependent in part on the intermediate language itself and more particularly its model for
representing exception handling constructs. For example, FIG. 4 shows an IL reader 445 suited
for reading the source code representation in the MSIL intermediate language and generating a
intermediate representation using the exception handling instructions described above.

FIG. 18 illustrates one possible method for generating an intermediate representation of
exception handling instructions. In some intermediate languages (e.g., MSIL) exception data
may be captured within a data structure separate from the main code stream. The IL reader
(translator) for such languages may receive as input an exception handling data table 1810 and
the main code stream in the intermediate language form 1820. Such data may then be read by an
IL reader at 1830 to determine the relationship between exception causing instructions and any
catch, finally or filter blocks associated with such instructions to generate the intermediate
representation at 1840.

For example, FIG. 19A illustrates a data table containing exception handling data that
may be available as part of an intermediate language representation of source code. The data
shown in FIG. 19A corresponds to the code segment illustrated in FIGS. 12 and 13. Asnoted
above, for sake of simplicity, FIG. 12 only shows the pseudo code of the intermediate language
representation. However, the IL reader will in fact be parsing or reading the intermediate
language code such as MSIL. The offsets 1240 to various instructions may be noted as shown in
FIG. 12. The IL reader will be aware of the offset pairs enclosing distinguishable blocks of
code. For example, the exception handling data of FIG. 19A notes the offset entries for the try
block 1210 at 1910, a type of block that it is (e.g., try-catch, try-finally, try-catch-finally etc.) at
1915 and the offset entries for its handler blocks at 1920. Similarly, the offsets entries for the
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finalization blocks, filter blocks, continuation blocks and other blocks on the exception paths of
instructions and their relationships to each other may be noted in form of offset entries as shown
in FIG. 19A.

However, as noted above, the exception instructions of intermediate representation uses
labels to mark or identify various cohesive blocks of code and these labels are used to build the
intermediate representation along with the control flow. Thus, IL reader uses the exception
handling data tables such as the one shown in FIG. 19A to generate the labels for building the
intermediate representation. FIG. 20 is one example of a method for processing input in the
form of an intermediate language code including captured exception handling data which is used
to generate an intermediate representation. At 2010, if there are no more methods to be parsed
or read within the code the translation process is stopped at 2015. If not, the current method and
its associated exception handling data table are read at 2020. At 2030, the exception handling
data including the offset ranges for each block of code is used to establish a containment
relationship between the blocks of code that may be protected and the blocks of code that form
its handlers, filters, finalization, continuations blocks etc.

For example, FIG. 21 illustrates building a tree data structure to map the containment
relationship between the various blocks of code shown in FIG. 12. First, the offset belonging to
the entire method 2110 is assigned a node on the tree. Then as each offset range in the exception
handling data (FIG. 19A ) is read they are assigned other relationships such as which ranges are
guarded by which handlers based on the information provided by the exception handling data.
For example, Try-Catch offset range 2120 is shown as containing the Try range 2130 that is
guarded by two handlers the first Catch at 2140 and a second Catch at 2150. This example
shows a single case of a try-catch block within a method but the tree structure can get much
larger as multiple blocks of code are nested within each other and the tree structure provides a
suitable way to represent such multiple containment relationships.

Returning now to FIG. 20, as the containment relationship between various blocks of
code is established (2030), at 2040, each of the handler and destination blocks (e.g., finally or
continuation, etc.) which may be identified only by their offset ranges can now be assigned
distinctive labels. For example, FIG. 19B illustrates the labels SHANDLER1 and SHANDLER2
being assigned to the two handler blocks identified in the code of FIG. 12. Returning again to
FIG. 20, at 2050, using the containment relationship of the various blocks of code the protected
blocks are assigned labels to their handlers and destination blocks as shown in FIG. 19C. This
allows the expression of the relationship between the protected blocks and their associated
handlers and destination block in form of labels in the intermediate representation expressions
described above. Once the protected blocks are mapped to their appropriate handlers and other
destination blocks, at 2060, the intermediate representation for the method is built by parsing the

code again. In this pass, each instruction is read, and if it is an exception causing instruction, its
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handler is identified using the range tree data structure built earlier. This process may be
repeated until all the methods within a program are translated to their intermediate

representation.

Intermediate representation of object construction and destruction as try-finally blocks

Some languages such as C++ allow a programmer to declare object (class) variables that
have local lifetimes within blocks or expressions where they are declared. The language
semantics requires that the corresponding object destructors be called when the block scope or
the expression scope is exited. These operations can be represented within the intermediate
representation as one or more sets of try-finally blocks. For example, FIG. 22 illustrates a
program using local objects. Statements S1 and S3 generate a call to the constructors for class]
and class2, respectively. The constructors for these classes and the statements S2 or S4 calling
on these objects might throw an exception. In that event, appropriate cleanup might be
necessary. If statement S1 throws an exception, the exception is propagated because no object
has yet been successfully created. If S2 or S3 throws an exception, the destructor for classl
needs to be called. However, if S4 throws an exception the destructor for class2 needs to be
called followed by the call to the destructor for class1. Since this example does not have a
handler, the exception is propagated to the caller of the method. These operations may be
expressed, conceptually, by the nested try-finally construct shown in FIG. 23. The constructor
for obj1 2310 is outside any of the try blocks. Thus, if an exception is thrown during the
constructor 2310 no objects need be destructed prior to exiting the method. However, if obj1 is
successfully constructed at 2310 then it has to be destructed passing through the finally block at
2320. However, if control reaches the inner try block at 2330 then both obj1 and obj2 have to be
destructed by passing through both the finally blocks 2320 and 2340. The intermediate
representation using the FINAL, FINALLY and ENDFINALLY instructions for these operations
may be as shown in FIG. 24. The two FINAL instructions 2410 and 2420 provide the explicit
entry to two sets of FINALLY and ENDFINALLY instructions represented at 2430 and 2440
respectively. Control flow may reach these instructions through exceptions as well in the event
an exception is caused during destruction of the second object. The destructor instruction for the
second object at 2435 has a handler label ($DTOR1) pointing to the FINALLY and
ENDFINALLY instructions 2440 containing the destructor for the first object at 2445. This is
so because if control flow has reached the destructor 2430 of the second object, then necessarily
the first object must have been constructed and so has to be destroyed before the method is
exited. Even if there are no exceptions thrown when destructing the second object, the first
object will still be destructed at 2440 (SDTOR1) prior to exiting the method.
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Intermediate representation of expression temporary objects

Some languages such as C++ allow creation of expression temporary objects. These
objects are created during expression evaluation and are destroyed after the expression
evaluation, typically after the evaluation of the statement containing the expression. If the
expression is a conditional expression, then objects created have to be destructed conditionally.
For example, FIG. 25 shows expression temporaries obj1(x) and obj2(x+1). The destructors for
these objects have to be called after the call to foo(). However, note that the creation of these
objects occurs conditionally depending on the value of the variable “x.” Thus, the destructor
instructions for these objects also have to be guarded by the same condition. This may be
expressed as a set of nested try-finally blocks as shown in the pseudo code of FIG. 26.
Depending on the value of “x” obj1 or obj2 is created at 2610 and 2620 respectively. Thus,
based on the same condition obj1 or obj2 have to be destructed at 2630 and 2640 respectively.

‘Unlike the previous example, here only one object is created at any given time. FIG. 27

illustrates one intermediate representation for this construct using multiple sets of FINAL,
FINALLY and ENDFINALLY instructions described above. Depending on the value of “x”, a
branch instruction 2710 points to the code for the constructor of obj1 at 2720 or to the code for
the constructor of obj2 at 2730. Also note that if an exception is thrown during the creation of
either of the objects at 2720 or 2730 the handler label is set to SPROPAGATE (2721 and 2731)
which marks a UNWIND instruction to pass the control outside of the method. Then again
depending on the object created, either objl is destructed at 2740 or obj2 is destructed at 2750
both such destructors are contained within a pair of FINALLY and ENDFINALLY instructions.
In this manner, conditional creation and destruction of expression temporary objects may be

represented using intermediate representation instructions.

Intermediate representation of the returning of objects by value

Some languages such as C++ permit returning objects by value. Before returning the
object, destructors are called on the locally created objects. For example, in FIG. 28 objects a
and b are locally created at 2810. If the destructors on any of these local objects throws an
exception, then the return objects rl at 2820 and 12 at 2830 should be destroyed before exiting
the method. The exception handling control flow for the code in FIG. 28 may be expressed in
the intermediate representation as shown in FIGS. 29A and 29B. Before returning the object rl
at 2910, the method has to call the destructors of locally created objects a, and b at 2920 and
2930, respectively. However, if any of these destructors 2920 or 2930 throw an exception, then
the destructor of the return object 2940 has to be called. Such a control flow may be represented
as shown in FIG. 29 using the appropriate sets of FINAL, FINALLY and END FINALLY
instructions. For example, the handler label ($final_al) of the destructor of object b at 2930
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points to label for the destructor of object a 2920 whose handler label ($final rl) in turn points
to destructor of the return object r1 at 2940. This ensures that if there is an exception caused
during destruction of objects a or b or both, the return object 11 is also destructed before exiting
the method. Note that at 2940, the destructor for rl is called if the flag $F1 is equal to “1”,
which is set to “1” at 2950 and remains set to “1” if the either object a or object b could not be
successfully destroyed. In this manner, return object rl is destructed if destruction of object a or
b is unsuccessful. The conditional destruction of the return object 12 is handled in the same

manner.

Intermediate representation of the throwing of objects by value

Some languages such as C++ permits throwing and catching objects by value,
i.e., values allocated on the stack. Simple primitive values like type “int” do not pose any issues.
However, throwing structs and classes allocated on the stack may /require calls to constructors
and destructors. FIG. 30 illustrates source code for throwing an object by value. Conceptually,
the operation may be represented in the pseudo code as shown in FIG. 31. In this example, a
copy of the local value is made and the copy constructor 3110 is called on the copy. When the
value is thrown at 3120 the destructor for the new copy of local value has to be passed so that
method receiving the value can call the destructor at a later time. A finally block 3130 guards all
exceptions and is responsible for calling destructors.

The try-finally block may be represented in the intermediate representation as a set of
FINAL, FINALLY and ENDFINALLY instructions and following instruction may be used to
represent throwing of value types which have copy constructors and destructors defined for them

within the copy instruction.

THROWVAL | Throws a value type as an exception

Syntax | THROWVAL E, Dtor ; SHANDLER

Table 11

This is a special form of throw that is used to throw value types which have copy
constructors or destructors defined for them. It has two operands. The first operand is a pointer
to the location that has the value being thrown, and the second operand is a function pointer that
performs the destruction. The semantics of this is that the thrown object is destructed when a
handler is found. This essentially keeps the local value type location live at runtime. This may
be used to model the C++ exception semantics for value types. The handler field of a THROW
instruction is usually not set to NULL. FIG. 32 illustrates an intermediate representation of the
code of FIGS. 30 and 31. The THROWVAL instruction 3210 is used to represent value

throwing and in this example, it is shown receiving the pointer to the location of the value being
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thrown 3220 and the pointer to its destructor 3230 to be used later by the methods receiving the
thrown object.

Intermediate representation of a try —except construct
Structured Exception Handling (SEH) extensions to languages such as C and C++
provide an exception handling construct expressed as a try-except block. FIG. 33 illustrates a
tfy-except block. Like a catch block with a filter, an except block specifies pointers to handlers
of an exception causing instruction based on the type of exceptions caused. However, except
blocks also allow for the possibility of resuming the execution of an instruction that caused the
exception. The following two intermediate representation expressions may be used to represent

such an exception control flow.

SEHENTER | Enter an SEH guarded region.

Syntax | - SEHENTER SHANDLER

Table 12

An SEHENTER instruction marks an entry to a try-except region. Its handler specifies
a control dependency to the handler and the body of the guarded region.

ENDRESUMEFILTER | Terminates a resumption filter.

Syntax | ENDRESUMEFILTER X, handler-label, ﬁltér—or—unwind—label,
resume-label

Table 13

An ENDRESUMEFILTER is similar to an ENDFILTER except that it may cause the
execution of the exception causing instruction to be resumed when the source operand has a
value of -1. FIG. 34 illustrates an intermediate representation for the try-except construct of
FIG. 33 using the SEHENTER, FILTER and ENDRESUMEFILTER expressions described
above. At 3410 the SEHENTER instruction is used to prefix the call to the body of try 3420.
Also, to ensure proper control dependencies among the operations in the try-except region the
handler to the SEHENTER expression is set to the FILTER instruction 3430 as is the call to the
exception causing instruction foo() at 3420. The ENDRESUME instruction is used to denote the
continuations of the exception path based on a value returned by the filter function 3450. If the
value “t” is 1, then the control passes to the handlerbody (SHANDLERBODY). If the value is
“0”, then the method is exited. However, if the value of t returned is “~1” then control returned
to SLABEL to resume the execution of the operation that caused exception in the first place.

Also, the representation of FIG. 34 provides one exception path, which has an exit directly from
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the SEHENTER instruction 3410. This ensures that only safe code-motion is done. In the same
representation, however, the call to the filter function at 3450 does not have a handler but a
handler such as an unwind instruction (not shown) may be set if the filter() function is likely to

cause an exception.

An alternative method for translating an intermediate language representation of
exception handling constructs from intermediate language code to a lower-level
intermediate representation

As noted in FIG. 4, a separate IL reader may be necessary for generating the
intermediate representation from different intermediate languages (e.g., CIL, MSIL etc.) in order
to conform to the exception handling models specific to that particular language. The following
section describes a method for generating an intermediate representation of exception handling
constructs from a language that expresses operations in form of post fix notation as does CIL.

Generally, in post-fix notation expressions; the operands of an operation are expressed
before the operator is expressed. For example, in the code for an ADD operation such as T = 5.+
3, a reader will encounter the code for the operands 5 and 3 before encountering the code for the
operator “+” (i.e., ADD). A translator for such code, which uses a post-fix notation form and
more particularly, one capable of translating such code in one pass may translate the code for the
operands first, and then build the translated code for the entire operation based on the code for its
operands or its children nodes (also referred to as sub-expressions of an expression).

FIG. 35 illustrates one overall method for generating an intermediate representation of
exception handling constructs from an intermediate language that uses post fix notation such as
CIL. At 3510, the input code is read node by node (i.¢., expression by expression). Then at
3520, because of the recursive nature of the post fix notation form a context for current node
within the rest of the code stream is determined. This context can later be used at 3530 to put
together the code for parent nodes based on the code for their children nodes.

Post-fix notation language may express exception information in form of operations
using selected operators, which may be processed by an IL reader in the manner of FIG. 35 to
generate the intermediate representation in form of the uniform framework of instructions (e.g.,
FINAL, FINALLY, and ENDFINALLY). FIG. 36 illustrates one way of implementing the
method of FIG. 34. FIG. 36 shows several data structures (e.g., 3610, 3620, 3630) to serve as
building blocks for containing the translated intermediate representation code which can later be
combined to together complete the intermediate representation form for a code section such as a
method. The data structures 3610 and 3630 may be implemented as conceptual stacks with their
own nodes having their own data structures. As the code in the intermediate language form
(e.g., CIL) is read and translated the intermediate representation code related to each sub-

operation, sub-expression, child node etc. may be stored within the data structures (e.g., 3610,
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3620, 3630). Then as the context or containment relationship for each operation is established or
at other appropriate times all the translated intermediate code is added together to generate the
complete translation.

In one such method, nodes read from intermediate language input are pushed on to the
evaluation stack 3610 where they may be evaluated. The evaluation of a node read from the
input may require popping of some nodes from the evaluation stack or EH stack, and pushing
new nodes onto the evaluation stack or EH stack. Generally, the evaluation stack 3610 may
contain intermediate code related to most of the main code stream. Some nodes from the
evaluation stack may. be then popped off the stack to build code for other nodes as the context or
containment relationship of the parent and children nodes are established. For example, getting
back to the simple add expression T = 5+3, when its established that 5 and 3 are operands for the
“4” operation, the nodes on the evaluation stack 3610 related to the constants 5 and 3 are popped
and the code for the add operation can be synthesized by composing the code of its children,
namely nodes representing 5 and 3. The translation algorithm uses and maintains the invariant
that nodes on evaluation stack have all attributes computed.

The DTOR code data structure 3620 may be thought of as a structure for encapsulating
the translated intermediate representation code sequences for all object destructors, catch blocks,
and finally blocks that appear in the body of a method. The exception handling (EH) stack 3630
is not used to contain code sequences, as such, but may be thought of as a stack of continuations
used to establish the relationship between the various sequences of code by building labels. The
EH stack establishes the nesting relationship among try, catch and finally regions. Each region
can be identified by the label associated with the region. Each node in the EH Stack has a
unique ID called the state. The notion of state is used to compute the number of objects
allocated in an expression evaluation. This information can be used later for such things as
determining the number of destructors that need to be added to the translated code and their
relationships to the rest of the code.

The data structure for each of the nodes on the evaluation stack 3610 may be as shown

below.
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Field Description

Opcode IL opcode of the node

IL Type The IL Type of the node as provided by the front end of the compiler

Opnd IR data structure representing the Opnd that is the result of evaluation of the node.
This field is empty when the node is read and the evaluation of the node computes
the Opnd field.

EHStart Integer representing the top of EH stack when node was read

EHEnd Integer representing the top of the EH stack when the node is evaluated. The

difference between EH Start and EH End numbers gives the nodes that were
pushed onto EH Stack during the evaluation of the expression. It is used for
generating Finally regions of expression temporaries of conditional expressions.

FirstInstr Points to the beginning of the translated code sequence related to the node
LastInstr Points the ending of the translated code sequence related to the node
Table 14

Only the “Opcode” and the “IL Type” fields may be provided by the front end of the
compiler the rest of the fields are filled during the translation process as the intermediate
representation code is generated. The Firstinstr and the LastInstr fields will allow the
concatenation and pre-pending of code. The entire DTOR code data structure 3620 may be
implemented similar to the data structure of one node of the evaluation stack 3610.

The EH stack nodes may have the following data structure for representing the

continuations on the exception path.

Field Description
Label A label to a finally block or a catch block
Flags Flags representing the EH flags
State Type Represents state type
State Id Represents the EH state id

Table 15

The label field points to a label instruction that can precede a Finally, or TypeFilter
instruction. The flag field may be used to identify the characteristics of the exception handling
operations being performed. For example, it may be used to identify whether destructor code to
be translated is for a temporary object such as an expression temporary or whether it is for an
object that can be destructed outside of the expressions within which it is constructed.

Within the context of the data structures for the nodes of the evaluation stack 3610,
DTOR code 3620 and the EH stack 3630 a method for generating intermediate representation as
shown in FIG. 35 may be described in further detail as shown in FIG. 37. The method of FIG.




WO 2005/006120 PCT/US2004/015965

10

15

20

25

30

35

25

37 is implemented for each method within the intermediate language stream being translated. At
3710, the translation data structures shown in FIG. 36 (e.g., 3610, 3620, and 3630) are
initialized. For example, the evaluation stack 3610 and the EH stack 3620 are initialized to be
empty. Also, an UNWIND node may be pushed on to the EH stack because all methods will at
least have one exception path continuation to the outside of the method and the current state of
the EH stack may also be initialized. Later at 3720 a node from the intermediate language code
is read and its EH state is initialized to the CurrentEHState. Again, states are used to maintain
the context of the code being read recursively. Later at 3740, the node is evaluated within the
existing context of the evaluation stack and the EH stack. The result of evaluation is the
definition of Opnd, FirstInstr and LastInstr fields of the node and a change in the context, (i.e.,
nodes can be pushed or popped of the evaluation stack or EH Stack and value of CurrentEHState
can be modified). Nodes on the evaluation stack represent the evaluated nodes, which have their
fields completely filled. Then at 3750, if the operation being evaluated is not an exit the next
node is read. However, if it is the exit of the method then at 3760, the translated code contained
within all the evaluated nodes on the evaluation stack 3610 are prepended and the code within
DTOR code data structure 3620 is concatenated to this result to yield the complete intermediate

representation code.

An example translation of intermediate language code in post-fix notation to a lower level
intermediate representation

The method of evaluation 3740 may be different for different operations as they are
encountered during the process of reading the intermediate language code. The following
example illustrates the method for evaluating some such operations in intermediate language
code. FIGS. 22 and 23 illustrate the pseudo source code for object constructors and destructors
in a language such as C++. FIG. 24 illustrates the code of FIGS. 22 and 23 translated to the
intermediate representation using the instructions such as FINAL, FINALLY, ENDFINALLY.
The post-fix notation intermediate language code being processed by the IL reader (i.e.,
translator) may be in the form shown in FIGS. 38A, 38B and 38C. Such code may be read and
translated to the intermediate representation (FIG. 24) using the methods described above with
reference to FIGS. 36 and 37.

FIG. 39 illustrates the process of translating the intermediate language code of FIGS.
38A, 38B and 38C containing object constructors and destructors using translation data
structures (e.g., 3905, 3915, 3925). At first, all the data structures are initialized to be empty.
Then as the code in FIGS. 38A, 38B and 38C is read each operation is evaluated and nodes are
pushed on to the evaluation stack 3905 or popped to generate code within the DTOR code data
structure 3925 and to manipulate the EH stack 3915. In this example, the constructor of object 1
is identified first at 3810, this is pushed as a node on to the evaluation stack at 3910. Later at
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3820, the code for the destructor of object 1 is encountered which is also temporarily pushed on
to the evaluation stack. When the reader encounters the Oppushstate operator at 3830 then it is
known that the destructor 3820 and constructors 3810 were operands of the Opushstate operator
3830. It is also known that the destructor code is a handler so needs to be placed within the
DTOR code data structure 3925. Thus, the top node on evaluation stack 3905 related to
destructor of object 1 is popped and eventually appended to the DTOR code data structure 3925
along with a label identifying the block. The DTOR code data structure 3925 is also appended
with the FINALLY and ENFINALLY instructions with the appropriate continuations as shown
in FIG. 39. The EH stack 3915 would have been initialized to have a node 3920 with a label
preceding the UNWIND instruction, but now a new node 3940 is added to the EH stack and its
label is set to the label added to the block of code containing FINALLY and ENDFINALLY
instructions. Up to this point the intermediate code related to the exception paths and
continuations have been determined. The code for object 2 is evaluated in a similar manner.
Later at 3840 when the Opdtoraction operator is encountered the intermediate code related to
explicit entry (i.e., FINAL instruction) into the finally region is built as shown at 2410 and 2420.
FIG. 39 shows the state of the evaluation stack 3905, the DTOR code data structure 3925, and
the EH stack 3915 after the intermediate language code of FIG. 38 upto the point where the
OPpushstate instruction 3830 has been evaluated. Thus, all the code necessary for stitching
together the code for intermediate representation is contained within the data structures 3905,
and 3925 and their various nodes, which can be added to form the complete translated code.
Although, the method for evaluating and stitching together code for the various operators may be
different, the various data structures described above may be used within the context of each

individual operator and its function and form to generate the desired intermediate representation.

Alternatives

Having described and illustrated the principles of our invention with reference to the
illustrated embodiments, it will be recognized that the illustrated embodiments can be modified
in arrangement and detail without departing from such principles. Although, the technology
described herein have been illustrated via examples using compilers, any of the technologies can
use other software development tools (e.g., debuggers, optimizers, simulators and software
analysis tools). Also, it should be understood that the programs, processes, or methods
described herein are not related or limited to any particular type of computer apparatus. Various
types of general purpose or specialized computer apparatus may be used with or perform
operations in accordance with the teachings described herein. Actions described herein can be
achieved by computer-readable media comprising computer-executable instructions for
performing such actions. Elements of the illustrated embodiment shown in software may be

implemented in hardware and vice versa. In view of the many possible embodiments to which
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the principles of our invention may be applied, it should be recognized that the detailed
embodiments are illustrative only and should not be taken as limiting the scope of our invention.
Rather, we claim as our invention all such embodiments as may come within the scope and spirit

of the following claims and equivalents thereto.
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CLAIMS
We claim:
1. A method of processing a uniform intermediate representation of software

comprising exception handling constructs, the method comprising:

reading the uniform intermediate representation of software comprising exception
handling constructs; wherein the uniform intermediate representation explicitly expresses
exception handling control flow of the software; and

generating a computer-readable version of the software implementing the exception

handling control flow based on the uniform intermediate representation.

2. The method of claim 1, wherein the uniform intermediate representation
comprises:

a first instruction for expressing transfer of control to a finalization code block;

a second instruction for expressing acceptance of control transfer into the finalization
code block; and

a third instruction for expressing transfer of control out of the finalization code block.

3. The method of claim 2, wherein the finalization code block comprises code

related to destructor of an object.

4. The method of claim 2, wherein the finalization block comprises code related to

destructor of an expression temporary object.

5. The method of claim 2, wherein destination operands of the second instruction

is the same as source operands of the third instruction.

6. The method of claim 2, wherein the first instruction for expressing explicit
transfer of control to the finalization code block further comprises:

a label indicative of a beginning of the finalization code block to be used for expressing
transfer of control to the finalization block; and

a label indicative of a continuation for control transfer after exiting the finalization code
block.

7. The method of claim 2, wherein the second instruction for expressing

acceptance of control transfer into the finalization code block is preceded by a label indicative of
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a beginning of the finalization code block and transfer of control to the finalization block is
indicated by the use of the label.

8. The method of claim 2, wherein the third instruction for expressing transfer of
control out of the finalization code block comprises fields for indicating different continuations
for control transfer out of the finalization code block based on whether entry into the finalization

code block was explicit or due to an exception.

9. The method of claim 1, wherein the uniform intermediate representation
comprises:

a first instruction for catching an exception and returning an exception object related to
the exception; and

a second instruction for specifying a handler for the exception based on a type value of

the exception object.

10. The method of claim 9, wherein the second instruction for specifying the
handler comprises:

at least one Boolean source operand for indicating the type value of the exception
object;

at least one source operand indicating a label preceding a code block related to the
handler to which control flow will pass if the Boolean source operand is true; and

at least one source operand indicating a label preceding a code block related to a

continuation to which control flow will pass if the Boolean source operand is false.

11. The method of claim 1, wherein the uniform intermediate representation
comprises:

an instruction for specifying a handler for an exception based on a type value of an
exception object related to the exception, wherein a destination operand of the instruction
comprises a predetermined exception object, a first source operand of the instruction comprises a
label indicative of a code block related to the handler and second source operand comprises a

label indicative of a code block related to a continuation.

12. The method of claim 11, wherein the instruction is operative for comparing the
type value of the exception object to a type value of the predetermined exception object and if
there is a match, passing control flow to the code block related to the handler label and if there is

no match, then passing control flow to the code block related to the continuation label.
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13. The method of claim 1, wherein the uniform intermediate representation
comprises:

a first instruction for indicating entry into a try-except region; and

a second instruction for selecting one of a plurality of control flow paths for exception
handling based on a type value related to the exception, wherein the plurality of control flow
paths available for selection includes a path related to resumption of execution of an instruction

causing the exception.

14. The method of claim 13, wherein the second instruction for selecting one of the
plurality of control flow for exception handling comprises:

an operand indicative of the type value of the exception;

an label operand indicative of a handler code block;

an label operand indicative of a continuation code block; and

an label operand indicative of the exception causing instruction.

15. A system for implementing uniform exception handling intermediate
representations for multiple source code languages, the system comprising:

an intermediate language reader for obtaining an intermediate language representation
of a source code file and generating a uniform intermediate representation of exception handling
constructs of the source code based on the intermediate language representation;

wherein the uniform intermediate representation explicitly expresses exception handling

control flow of the source code.

16. The system of claim 15 further comprising a compiler for generating object

code based on the uniform intermediate representation.

17. The system of claim 15, wherein the uniform intermediate representation of the
exception handling constructs comprises a first instruction for expressing explicit transfer of
control to a finalization code block, a second instruction for expressing acceptance of control
transfer into the finalization code block, and a third instruction for expressing transfer of control

out of the finalization code block.

18. The system of claim 17, wherein destination operands of the second instruction

is the same as source operands of the third instruction.

19. The system of claim 17, wherein the finalization code block comprises code

related to destructor of an object.
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20. The system of claim 17, wherein the finalization block comprises code related
to destructor of an expression temporary object.
21. The system of claim 17, wherein the first instruction for expressing explicit

transfer of control to the finalization code block further comprises a label indicative of the
begimning of the finalization code block and a label indicative of a continuation for control

transfer after exiting the finalization code block.

22. The system of claim 17, wherein the second instruction for expressing
acceptance of control transfer into the finalization code block is preceded by a label indicative of
the beginning of the finalization code block and transfer of control to the finalization block is
indicated by the use of the label.

23. The system of claim 17, wherein the third instruction for expressing transfer of
control out of the finalization code block comprises fields for indicating different continuations
for control transfer out of the finalization code block based on whether entry into the finalization

code block was explicit or due to an exception.

24, The system of claim 23, wherein the continuation for control transfer out of the
finalization code block after an explicit entry matches a continuation specified by the first

instruction.

25. The system of claim 15, wherein the uniform intermediate representation of the
exception handling constructs comprises a first instruction for catching an exception and
returning an exception object related to the exception and a second instruction for specifying a

handler for the exception based on a type value of the exception object.

26. The system of claim 25, wherein the second instruction for specifying the
handler comprises:

at least one Boolean source operand for indicating the type value of the exception
object;

at least one source operand indicating a label preceding a code block related to the
handler to which control flow will pass if the Boolean source operand is true; and

at least one source operand indicating a label preceding a code block related to a

continuation to which control flow will pass if the Boolean source operand is false.
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27. The system of claim 15, wherein the uniform intermediate representation of the
exception handling constructs comprises at least one instruction for specifying a handler for an
exception based on a type value of an exception object related to the exception, wherein a
destination operand of the instruction comprises a predetermined exception object, a first source
operand of the instruction comprises a label indicative of a code block related to the handler and

a second source operand comprises a label indicative of a code block related to a continuation.

28. The system of claim 27, wherein the instruction is operative for comparing the
type value of the exception object to a type value of the predetermined exception object and if
there is a match, passing control flow to the code block related to the handler label and if there is

no match, then passing control flow to the code block related to the continuation label.

29. The system of claim 15, wherein the uniform intermediate representation of the
exception handling constructs comprises 2 first instruction for indicating entry into a try-except
region; and a second instruction for selecting one of a plurality of control flow paths for
exception handling based on a type value related to the exception, wherein the plurality of
control flow paths available for selection includes a path related to resumption of execution of an

instruction causing the exception.

30. The system of claim 29, wherein the second instruction for selecting the control
flow path for exception handling comprises:

an operand indicative of the type value of the exception;

an label operand indicative of a handler code block;

an label operand indicative of a continuation code block; and

an label operand indicative of the exception causing instruction.

31. The system of claim 30, wherein a handler for the first instruction for indicating

entry into the try-except region is the same as a handler for the exception causing instruction.

32. A computer readable storage medium having stored thereon an intermediate
representation of exception handling constructs of source code, the intermediate representation
of exception handling constructs comprising:

a first instruction for expressing explicit transfer of control to a finalization code block;

a second instruction for expressing acceptance of control transfer into the finalization
code block; and

a third instruction for expressing transfer of control out of the finalization code block.
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33. The computer readable storage medium of claim 32, wherein the first
instruction for expressing explicit transfer of control to the finalization code block further
comprises a label indicative of the beginning of the finalization code block and a label indicative

of a continuation for control transfer after exiting the finalization code block.

34. The computer readable storage medium of claim 32, wherein the second
instruction for expressing acceptance of control transfer into the finalization code block is
preceded by a label indicative of the beginning of the finalization code block and transfer of
control to the finalization block is indicated by the use of the label.

35. The computer readable storage medium of claim 34, wherein the transfer of

controt is explicit.

36. The computer readable storage medium of claim 34, wherein the transfer of

control is due to an exception.

37. The computer readable storage medium of claim 32, wherein the third
instruction for expressing transfer of control out of the finalization code block comprises fields
for indicating different continuations for control transfer out of the finalization code block based

on whether entry into the finalization code block was explicit or due to an exception.

38. The computer readable storage medium of claim 37, wherein the continuation
for control transfer out of the finalization code block after an explicit entry matches a

continuation specified by the first instruction.

39. The computer readable storage medium of claim 32, wherein destination

operands of the second instruction are the same as source operands of the third instruction.

40. The computer readable storage medium of claim 32, wherein control flow to
the finalization block is expressed by a related set of FINAL, FINALLY and ENDFINALLY

instructions.

41. The computer readable storage medium of claim 32, wherein the finalization

code block comprises code related to destructor of an object.

42. The computer readable storage medium of claim 32, wherein the finalization

code block comprises code related to destructor of an expression temporary object.
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43, The computer readable storage medium of claim 42, wherein the expression
temporary object is created upon a condition being true and the control is transferred to the

finalization code block upon the same condition being true.

44. A computer readable storage medium having stored thereon an intermediate
representation of exception handling constructs of source code, the intermediate representation
of exception handling constructs comprising:

a first instruction for catching an exception and returning an exception object related to
the exception; and

a second instruction for specifying a handler for the exception based on a type vatue of

the exception object.

45, The computer readable medium of claim 44, wherein the second instruction for
specifying the handler comprises:

at least one Boolean source operand for indicating the type value of the exception
object;

at least one source operand indicating a label preceding a code block related to the
handler to which control flow will pass if the Boolean source operand is true; and

at least one source operand indicating a label preceding a code block related to a

continuation to which control flow will pass if the Boolean source operand is false.

46. The computer readable medium of claim 45, wherein the continuation code

block is related to another filter.

47, The computer readable medium of claim 45, wherein the continuation related

code block comprises an unwind instruction.

48. A computer readable storage medium having stored thereon an intermediate
representation of exception handling constructs of source code, the intermediate representation
of exception handling constructs comprising:

an instruction for specifying a handler for an exception based on a type value of an
exception object related to the exception, wherein a destination operand of the instruction
comprises a predetermined exception object, a first source operand of the instruction comprises a
label indicative of a code block related to the handler and second source operand comprises a

label indicative of a code block related to a continuation.
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49, The computer readable storage medium of claim 48, wherein the instruction is
operative for comparing the type value of the exception object to a type value of the
predetermined exception object and if there is a match, passing control flow to the code block
related to the handler label and if there is no match, then passing control flow to the code block

related to the continuation label.

50. A computer readable storage medium having stored thereon an intermediate
representation of exception handling constructs of source code, the intermediate representation
of exception handling constructs comprising:

a first instruction for indicating entry into a try-except region; and

a second instruction for selecting one of a plurality of control flow paths for exception
handling based on a type value related to the exception, wherein the plurality of control flow
paths available for selection includes a path related to resumption of execution of an instruction

causing the exception.

51. The computer readable storage medium of claim 50, wherein the second
instruction for selecting the control flow path for exception handling comprises:

an operand indicative of the type value of the exception;

an label operand indicative of a handler code block;

an label operand indicative of a continuation code block; and

an label operand indicative of the exception causing instruction.

52. The computer readable storage medium of claim 50, wherein a handler for the
first instruction for indicating entry into the try-except region is the same as a handler for the

exception causing instruction.

53. A system for implementing uniform exception handling intermediate
representations for multiple source code languages, the system comprising:

means for reading an intermediate language representation of a source code file and
generating a uniform intermediate representation of exception handling constructs of the source
code based on the intermediate language representation;

wherein the uniform intermediate representation explicitly expresses exception handling

control flow of the source code.
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void foo(int a, int b, int ¢, int d)
{

X =adivb;

X =cdivd;

}

1€

o

2

a.int32, b.int32, ¢.int32 d.int32 = ENTER foo
x.int32 = DIV a.int32, b.int32; SHANDLER
x.int32 = DIV c.int32, d.int32; SHANDLER
EXIT

$HANDLER:
UNWIND
EXIT

710
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FIG. 8

void foo(int a, int b, int ¢, int d)
{

’Ery 810
X=a+b;
X=x+c*d;

}

finally 815

{

X=x+1,

}

}

a.int32, b.int32, c.int32 d.int32 = ENTER foo

x.int32 = ADD a.int32, b.int32; 910

t.int32 = MUL c.int32, d.int32; 4/

x.int32 = ADD x.int32, 1.int32;

FINAL $FINALIZE, $END—~_P15
$FINALIZE: 920

e.0bj32, r.code = FINALLY; 4/

x.int32 = ADD x.int32, 1.int32;

ENDFINALLY e.obj32, r.code, $END;
$END:

EXIT;
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FIG. 10

void foo(int a, int b, int ¢, int d)
{
try

X =adiv b;
X = c div d;>1010

}
finally 1015
{
X=x+1;
}

a.int32, b.int32, ¢.int32 d.int32 = ENTER foo
x.int32 = DIV a.int32, b.int32; $FINALIZE
x.int32 = DIV ¢.int32, d.int32; $FINALIZE
FINAL $FINALIZE, $END ~-1112
$FINALIZE:
e.0bj32, r.code = FINALLY;~-1115
x.int32 = ADD x.int32, 1.int32;
ENDFINALLY e.obj32, r.code, $END; $PROPAGATE 1120
$END:
EXIT;
$PROPAGATE:
UNWIND
EXIT;

1110
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«
1 void foo(int a, int b, int ¢, int d)
2
3 try 1210
4 <
5 x=adiv b;
6 x=cdivd;
7}
8 catch (System.DivideByZeroException f) ~—1215
9
10 f) =1 1220
11 d=1; <

atch (System.Exception e) ~-1225

<

LG G G G Gy
~Nooh wN
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2.int32, b.int32, c.int32 d.int32 = ENTER foo
X.int32 = a.int32 DIV b.int32; SHANDLER1

x.int32 = ¢.int32 DIV d.int32: SHANDLER1 ~ 1510
GOTO $END$
$HANDLER1: 1315

F.DivideByZeroException = TYPEFILTER $CATCH1,
HANDLER2;
$CATCH1: 1320
b.int32 = ASSIGN 1.int32: <
d.int32 = ASSIGN 1.int32:
GOTO $END
$HANDLER?2: . 1325
E.Exception = TYPEFILTER $CATCH2, $PROPAGATE:
$CATCH2: 1330
CALL bar(); SPROPAGATE 4/
GOTO $END
$PROPAGATE:
UNWIND 1335
EXIT:
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void foo(int a, int b, int ¢, int d)

{
t
Y 1410

{ x = adiv b; 4/

x=cdivd; 1415

<

}
catch (System.DivideByZeroException f)
{ 1420

b=1; _/

d=1, 1425

}
catch (System.Exception e) 4/
{ba ) 1430
O

} <
finally 1440
{

x=x+1,; Aﬁ/

}
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FIG. 15

a.int32, b.int32, c.int32 d.int32 = ENTER foo
x.int32 = a.int32 DIV b.int32; $HANDLER1 1510
X.int32 = ¢.int32 DIV d.int32; SHANDLER1
FINAL $FINALIZE, $END

$HANDLER1:

F.DivideByZeroException = TYPEFILTER $CATCH1, ~-~1515
$HANDLER?2;
$CATCH1: 1520

b.int32 = ASSIGN 1.int32; A/

d.int32 = ASSIGN 1.int32;
FINAL $SFINALIZE, $END; ~-1521

$HANDLER2:

E.Exception = TYPEFILTER $CATCH2, $FINALIZE; ~-~1525
$CATCH2: 1530

CALL bar(); $FINALIZE é/

FINAL $FINALIZE, $END 1531
$FINALIZE: ' 1540

e.0bj32, r.code = FINALLY; ‘/

x.int32 = ADD x.int32, 1.int32; =

ENDFINALLY e.obj32, r.code, SEND; $PROPAGATE
SPROPAGATE: 1550

UNWIND

EXIT; 4{ 560

$END:
EXIT; A/
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try
{
x=adivb; /1 81
1610 try 1615
{
\‘ x=cdivd; //S2
}
catch (System.Foo) 1625
{
x=xdivy /I S3 @/
}
finally 1635
{ .
X=2; Il S4 ﬁ/
}
}
catch (System.DivideByZeroException f)
{
b=1; nss 1620
d=1; A/
}
catch (System.Exception e)
{ 1630
bar(); /l S6
\ <
y=y+2; Il S7
}
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y.int32 = ADD y.int32, 1.int32 /1 SO
x.int32 = a.int32 DIV b.int32; $HANDLER1™-~1705 /1 1
x.int32 = ¢.int32 DIV d.int32; $HANDLER3 ~-1706 I S2
FINAL $FINALIZE, $S7;

SFINALIZE: 1725
e0, r0 = FINALLY 4/
x.int32 = ASSIGN 2.int32; /1 S4
ENDFINALLY €0, r0, $S7; $HANDLERT-1726

$HANDLERS:
e1 = TYPEFILTER $CATCHS3, $FINALIZE

$CATCHS3: ‘\
x.int32 = DIV x.int32, v.int32; $FINALIZE 1720 /1 S3
FINAL $FINALIZE, $S7; 1710

$HANDLER1: <«
e2 = TYPEFILTER $CATCH1, $HANDLERZ;

$CATCH1:
b.int32 = ASSIGN 1.int32; /] S5
d.int32 = ASSIGN 1.int32;
GOTO $S7; 1715

$HANDLER2:
e3 = TYPEFILTER $CATCH2, $PROPAGATE;

$CATCH2:
CALL bar(); SPROPAGATE; /] S6
GOTO $S7

$PROPAGATE:
UNWIND
EXIT:

$S7:
y.int32 = ADD y.int32, 1.int32 Il S7
GOTO $END;

$END:
EXIT;
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/'1915 /-1910 /-1920
ENTRY INFO TAG PROTECTED | DESTINATION/HANDLER
BLOCK BLOCK
1 TRY CATCH 3-7 8-12
2 TRY CATCH 3-7 13-16
FIG. 19
DESTINATION/HANDLER LABEL
BLOCK OFFSET -
8-12 HANDLER 1
13-16 HANDLER 2
FIG. 19C
PROTECTED BLOCK | DESTINATION/HANDLER LABEL
OFFSET BLOCK OFFSET
3-7 8-12 HANDLER 1
3-7 13-16 HANDLER 2
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FIG. 20

2015
/_

Yes —» EXIT

IF NO MORE
METHODS?

Y

READ IL CODE STREAM AND ASSOCIATED EH CLAUSES \

2020

DETERMINE CONTAINMENT RELATIONSHIP BETWEEN
OFFSETS OF PROTECTED CODE BLOCKS AND THEIR
RELATED DESTINATION OR HANDLER BLOCKS \

2030
¥
ASSIGN A LABEL FOR IDENTIFYING THE OFFSETS OF
EACH DESTINATION OR HANDLER BLOCK \
2040

Y

USE THE OFFSET CONTAINMENT RELATIONSHIP WITHIN
THE METHOD TO MAP THE OFFSETS OF THE
PROTECTED BLOCKS TO THE LABELS OF THEIR \
APPROPRIATE DESTINATION AND HANDLER BLOCKS | 9050

A

BUILD THE INTERMEDIATE REPRESENTATION FOR THE
’ INSTRUCTION IN THE METHOD \

2060




WO 2005/006120

FIG. 21

METHOD
1-17

TRY CATCH
1-17

17/34

PCT/US2004/015965

2150



WO 2005/006120

FIG. 22

18/34

PCT/US2004/015965

void proc()

{
class1 obj1; // S1
obj1.foo(); // S2
class2 obj2; // S3
obj2.bar(); // S4

}
void proc()
{ 2310
ctori (&obj1); «—"
try
obj1.foo();
ctor2(&obj2);
try
2330
obj2.bar(); <«
}
finally
2340
dtor2(80bj2); —"
}
}
finally
{ 2320
dtor1(&obj1) «—"
}

}
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FIG. 24

ENTER proc
CALL class1, & obj1 $PROPAGATE
CALL foo, & obj1 $DTOR1
CALL class1,&_obj2 $DTOR1
CALL bar, &_obj2 $DTOR2
FINAL $DTOR2, $NEXT; ~2410
SNEXT:
FINAL $DTOR1, $SEND 2420
$DTOR2:
e, r = FINALLY
CALL DTOR2(&0bj2); $DTOR1 2435
ENDFINALLY e, r, $DTOR1, SNEXT
$DTOR1:
€2, r2 = FINALLY 2440
CALL DTOR1(&obj1); $PROPAGATE f\»244i/
ENDFINALLY ef, r2, $PROPAGATE, $END
$PROPAGATE:
UNWIND
EXIT;
$END:
EXIT,;

2430

FIG. 25

void proc(int x)
{

foo(x ? obj1(x) : obj2(x+1));
} ‘
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FIG. 26

void proc()
{
try
{
t1 =x ? ctor(&obj1,x) : NULL;~—2610
try
{
2 = x ? NULL : ctor(&obj2,x+1) 2620
foo(x 711 :12);
}
finally
{
if (x) dtor(&obj1); ~~2630
}
}
finally
{
if (Ix) dtor(&obj2); ~—2640
}
!
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X
t140

$L4:

1134
2720 {435

e 141
$t142

$L5:
137
2730 1138
e 1139
tv141-
$t142

$L6:
t145

$L11:

$OBJ1:
ri
t144

$LO:

Y
$L10: 2740

$0BJ2:
r2
{143

SL7:

N\
$L8: 2750

$PROPAGATE:

$L12:

ENTER proc
CMP(NE) x, 0
CBRANCH(NE) 1140, $L4, $L5 ~-2710

CALL ctor, &objl, _x; SPROPAGATE~

ASSIGN 1134 2721
ASSIGN [t135)

ASSIGN 1

GOTO $L6

ADD x, 1 2731

CALL ctor, &obj2, t137; $PROPAGATE
ASSIGN t138

ASSIGN [t139)

ASSIGN 0

GOTO $L6

ASSIGN tv141-
CALL bar, t145
FINAL $OBJ1, $L11

FINAL $0BJ2, $L12

—& FINALLY

CMP(EQ) $t142, 0
CBRANCH(EQ) 144, $L9, $L10

CALL dtor, &objl $PROPAGATE
GOTO $L10

—» ENDFINALLY; rl, [L11), $PROPAGATE

—»FINALLY

CMP(EQ) $t142, 1
CBRANCH(EQ) t143, $L7, $L8

CALL dtor, &obj2 $PROPAGATE
GOTO $L8

—»ENDFINALLY; r2, [$L12), SPROPAGATE

UNWIND
EXIT

EXIT
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FIG. 28

Obj foo(int x)
{
Obj a, b;~-2810
bar();
if (x==0)
{
return Obj(1); ~—2820

else

return Obj(2); ~—2830

}
¥
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FIG. 29A

Obj foo(int x)
{
CALL ctor (&a); $unwind;
CALL ctor (&b); $final_a;
bar(); $final_b;
if (x==0)
{
CALL ctor Obj (&r1,1) ; $final_b;~—2960
$f1 =1, ~-2950
FINAL $final_b1; L2
L2:
FINAL $final_a1, L1
L1:
$f1 = 0;
FINAL $final_r1, Lret
Lret:
return r1; ~~2910
!
CALL ctor Obj(&r2, 2); $final_b;
$f2=1;
FINAL $final_b2, L3
L3:
FINAL $final_a2, L4
L4:
$f2 = 0;
FINAL $final_r2, Lret2
Lret2:
return r2;
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FIG. 29B

$final_b:

e, R =FINALLY

DTOR (&b); $final_a;

ENDFINALLY e, R, $final_a;
$final_a:

e, R=FINALLY

CALL DTOR (&a); $unwind,;

ENDFINALLY e, R, HANDLER:$unwind;
$final_b1:

e, R = FINALLY

CALL DTOR (&b); $final_a1; ~—2930

ENDFINALLY e, R, [L2], $final_a1;
$final_a1:

e, R = FINALLY

CALL DTOR (&a); $final_r1; ~—2920

ENDFINALLY e, R, [L1]; $final_r1;
$final_b2:

e, R = FINALLY

CALL DTOR (&b); $final_a2;

ENDFINALLY e, R,[L3]; $final_a2;
$final_a2:

e, R = FINALLY

CALL DTOR (&a); $final_r2;

ENDFINALLY e, R, [L4]; $final_r2;
$final_r1:

e, R =FINALLY

if ($f1 == 1) CALL DTOR (&r1);$unwind;™-2940

ENDFINALLY e, R, [Lret1]; $unwind;
$final_r2:

e, R=FINALLY

if ($f2 == 1) CALL DTOR (&r2); $unwind;

ENDFINALLY e, R,[Lret2]; $unwind;
}
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FIG. 30

void proc()

{
class1 obj1; // S1 - create an obj of type Class1
obj1.foo(); // S2 - calling a method on obj.1
throw foo; // S3

}
void proc()
{
class1 obj1; /1 81
class1 temp;
try {
obj1.foo(); 3110 /] 82
temp.copy_ctor(obj1);// /
special_throw(&temp, &dtor_of _class1) 1S3~
} 3120
finally {
dtor_of _class1(obj1); N
} } 3130
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FIG. 32
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ENTER proc

CALL ctor1(&obj1); $SPROPAGATE
CALL foo(&obj1); $DTOR1

CALL copy_ctor(&temp, &obj1); $DTOR1
FINAL $DTOR1;

$DTORI: 3220 3230
€2, 12 = FINALLY
CALL DTOR(&obj1); SPROPAGATE
ENDFINALLY e, 12, SPROPAGATE, $END
$PROPAGATE:
UNWIND
EXIT;
$END:
EXIT;

THROWVAL &temp, &dtor_of class1; SPROPAGATE

| 8
3210

FIG. 33

void proc()
{
__try{
foo();
} __except(filter()) {

body();
}

next();
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FIG. 34
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ENTER proc

SLABEL:
SEHENTER; $HANDLER™-3410
CALL foo(); $HANDLER™-3420
GOTO $NEXT;

$HANDLER: ~-3430
x = FILTER
t = CALL filter();~—3450

$HANDLERBODY: »
CALL body(); $SPROPAGATE
GOTO $NEXT;

SNEXT:
CALL next();
EXIT;

$END:
EXIT;

ENDRESUMEFILTER t, SHANDLERBODY, $END, $LABEL

\-3440
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FIG. 37
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FIG. 38A

>>> |L for function ?proc@@YAXXZ:

OPpragma pragma(31)  PR_PRAGSTAT Pragma Status: 0x00800000
OPpragma pragma(32)  PR_INLINE Inline Status: 0x0010

OPpragma pragma(2) PR_FILENAME Filename key(0x20)

OPpragma pragma(1) PR_LINENUMBER Line(22)

OPpragma pragma(35)  PR_WARNING 10:0FF; 16:ERR; 72:ERR; 86:0FF,;
93:0FF; 120:0FF; 205:0FF; 206:0FF; 217:0FF; 228:0FF; 231.0FF; 246:0FF;

OPblock

OPblock

OPname(?proc@@ YAXXZ) symbol(0x288)

OPentry

OPeolist . . . ,

#+e+% fnction entry says proc has no parameters *******

FkEE CtOI' call for class“i‘ dedeededodede e dede R B dede R dodedededodo e dede e dede dovde

OPblock

OPpragma pragma(1) PR_LINENUMBER Line(23)
OPname(??0class1@@QAE@XZ) symbol(0x25f)- 3810

OPname(obj1) symbol(0x28a)

OPconstant integer size(4) align(3) constant(0|0x0)
OPfield address size(4) align(3)

OPconstant integer size(4) align(3) constant(0]0x0)
OPfield address size(4) align(3) Const

OPextract address size(4) align(3) Const

OPmfunc address size(4) align(3)

OPfunction address size(4) align(3) Const functype(20)
OPeolist

R R T T R T T T T T e e

*kE dtor Ca" for CiaSS'I L T R R R Ea e E T L s S e
OPname(??1class1@@QAE@XZ) symbol(0x260)
OPname(obj1) symbol(0x28a) 3820
OPconstant integer size(4) align(3) constant(0|0x0)
OPfield address size(4) align(3)

OPconstant integer size(4) align(3) constant(0|0x0)
OPfield address size(4) align(3) Const

OPextract address size(4) align(3) Const
OPmfunc address size(4) align(3)

OPfunction void size(0) align(1) functype(20)
OPeolist

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
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FIG. 38B

OPpushstate address size(4) align(3) EH Flags 0x00000011 \

3830
OPexpression

OPpragma pragma(1) PR_LINENUMBER Line(24)
OPname(?foo@class1@@QAEXXZ) symbol(0x261)
OPname(obj1) symbol(0x28a)

OPconstant integer size(4) align(3) constant(0|0x0)
OPfield address size(4) align(3)

OPconstant integer size(4) align(3) constant(0]0x0)
OPfield address size(4) align(3) Const

OPextract address size(4) align(3) Const ™

OPmfunc address size(4) align(3)

OPfunction void size(0) align(1) functype(20)
OPeolist

OPexpression

OPpragma pragma(1) PR_LINENUMBER Line(25)
OPname(??0class2@@QAE@XZ) symbol(0x274)
OPname(obj2) symbol(0x28b)

OPconstant integer size(4) align(3) constant(0|0x0)
OPfield address size(4) align(3)

OPconstant integer size(4) align(3) constant(0[0x0)
OPfield address size(4) align(3) Const

OPextract address size(4) align(3) Const

OPmfunc address size(4) align(3)

OPfunction address size(4) align(3) Const functype(20)
OPeolist

OPname(??1class2@@QAE@XZ) symbol(0x275)
OPname(obj2) symbol(0x28Db)

OPconstant integer size(4) align(3) constant(0]0x0)
OPfield address size(4) align(3)

OPconstant integer size(4) align(3) constant(0]0x0)
OPfield address size(4) align(3) Const

OPextract address size(4) align(3) Const

OPmfunc address size(4) align(3)

OPfunction void size(0) align(1) functype(20)
OPeolist
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FIG. 38C
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OPpushstate address size(4) align(3) EH Flags 0x00000011
OPexpression

OPpragma pragma(1) PR_LINENUMBER Line(26)
OPname(?bar@class2@@QAEXXZ) symbol(0x276)
OPname(obj2) symbol(0x28b)

OPconstant integer size(4) align(3) constant(0]0x0)
OPfield address size(4) align(3)

OPconstant integer size(4) align(3) constant(0|0x0)
OPfield address size(4) align(3) Const

OPextract address size(4) align(3) Const

OPmfunc address size(4) align(3)

OPfunction'void size(0) align(1) functype(20)

OPeolist

OPexpression

OPpragma pragma(1) PR_LINENUMBER Line(27)
OPdtoraction cnt(2) EH Flags 0x00000031
OPexpression 1'3840
OPgoto symbol(0x289)

OPendblock icon(2)

OPlabel symbol(0x289)

OPexit

OPendblock icon(1)

OPendblock icon(0)
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