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(57) Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for en-
coding and decoding information. In one aspect, methods of encoding information in an encoder include the actions of receiving a
signal representing information using a collection of discrete digits, converting, by an encoder, the received signal into a time-
based code, and outputting the time-based code. The time-based code is divided into time intervals. Each of the time intervals of
the time-based code corresponds to a digit in the received signal. Each digit of a first state of the received signal is expressed as a
event occurring at a first time within the corresponding time interval of the time-based code. Each digit of a second state of the re-
ceived signal is expressed as a event occurring at a second time within the corresponding time intervals of the time-based code,
the first time is distinguishable from the second time. All of the states of the digits in the received signal are represented by events
in the time-based code.
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ENCODING AND DECODING INFORMATION

BACKGROUND

This specification relates to encoding and decoding information.

An encoder is a device that converts information from a first representation into a
second representation. Encoders can be included in many different systems and devices,
including data communication devices, data storage devices, data compression devices, data
encryption devices, and combinations of these and other devices. An encoder can be paired
with a decoder that can reconstruct the information. The encoded and decoded information
can be communicated in signals and/or stored on a data storage device.

Biological neurons, and other biological neural systems, can encode information and
communicate using electrochemical signaling. For example, biological neural systems can
encode information in action potentials of approximately equal amplitude. Biological neural
systems include synapses that act as electrochemical transducers that convert electrochemical
signals into electrical conductance changes. Even a single neuron may receive several
thousand clectrochemical signals as inputs on its branches (called “dendrites”). These inputs
cause voltage changes across a cell membrane which are merged in a time-dependent
manner. This merging of inputs follows passive (linear), active (non-linear), cable (decaying
over time), and electro-chemical (diffusion) laws. Under certain circumstances, such inputs

can be merged into a train of successive action potentials.

SUMMARY

This specification describes technologies relating to encoding and decoding
information.

In general, one innovative aspect of the subject matter described in this specification
can be embodied in methods of encoding information in an encoder that include the actions
of receiving a signal representing information using a collection of discrete digits,
converting, by an encoder, the received signal into a time-based code, and outputting the
time-based code. The time-based code is divided into time intervals. Each of the time
intervals of the time-based code corresponds to a digit in the received signal. Each digit of a

first state of the received signal is expressed as a event occurring at a first time within the
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corresponding time interval of the time-based code. Each digit of a second state of the
received signal is expressed as a event occurring at a second time within the corresponding
time intervals of the time-based code, the first time is distinguishable from the second time.
All of the states of the digits in the received signal are represented by events in the time-
based code.

Other embodiments of this aspect include corresponding systems, apparatus, and
computer programs, configured to perform the actions of the methods, encoded on computer
storage devices.

Another innovative aspect of the subject matter described in this specification can be
embodied in systems that include an input for receiving a signal representing information
using a collection of discrete digits, an encoder that encodes the received signal, and an
output for providing the time-based code to another system or device. The encoder includes
a state detector configured to detect the states of the digits in the received signal and a
translator configured to translate the states of the digits in the received signal into a time-
based code, the time-based code comprising a collection of time intervals each assigned a
respective digit in the received signal, each of the time intervals comprising an event, the
timing of the event within each of the time intervals characterizing the state of a respective
assigned digit.

Other embodiments of this aspect include corresponding methods and computer
programs, configured to perform the actions of the methods, encoded on computer storage
devices.

Another innovative aspect of the subject matter described in this specification can be
embodied in a methods for decoding a time-based code signal that include the actions of
receiving a time-based code signal at a decoder, detecting the timing of the events within the
time intervals, and outputting a signal that represents the information expressed in the time-
based code signal using a collection of discrete digits. The time-based code signal is divided
into time intervals, cach of the time intervals of the time-based code signal comprises an
event, and the timing of the events within the time intervals express the information content

of the time-based code signal.
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Other embodiments of this aspect include corresponding systems, apparatus, and
computer programs, configured to perform the actions of the methods, encoded on computer
storage devices.

Another innovative aspect of the subject matter described in this specification can be
embodied in systems for decoding a time-based code signal that include an input that
receives a time-based code signal, a event detector configured to detect timing of the events
within the time intervals of the time-based code signal, a translator configured to translate the
timing of the events within the time intervals of the time-based code into states of a
collection of digits, and an output configured to provide a signal comprising the digits. The
time-based code signal is divided into time intervals, each of the time intervals of the time-
based code signal comprises an event, and the timing of the events within the time intervals
express the information content of the time-based code signal.

Other embodiments of this aspect include corresponding methods and computer
programs, configured to perform the actions of the methods, encoded on computer storage
devices.

The details of one or more implementations of the subject matter described in this
specification are set forth in the accompanying drawings and the description below. Other
features, aspects, and advantages of the subject matter will become apparent from the

description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 A is a schematic representation of an encoder/decoder system.

FIG. 1B is a flow chart of a process for encoding and decoding information.

FIG. 2A is a schematic representation of a system in which information can be
encoded.

FIG. 2B is a schematic representation of an implementation of a time encoder.

FIG. 3 is a schematic representation of a process of time encoding.

FIG. 4 is a schematic representation of another implementation of a time encoder.

FIG. 5 is a schematic representation of time encoding with a time encoder that detects
the beginning and end of data transmission in a signal.

FIG. 6 is a schematic representation of another implementation of a time encoder.
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FIG. 7 is a schematic representation of encoding a header at the beginning of data
transmission in a signal.

FIG. 8 is a schematic representation of another implementation of a time encoder.

FIG. 9 is a schematic representation of time encoding of a signal that includes more
that two states.

FIG. 10 is a schematic representation of an implementation of a system in which
information can be encoded.

FIG. 11 is a schematic representation of an implementation of a multichannel
encoder.

FIG. 12 is a schematic representation of a system in which information can be
encoded, compressed, and stored/transmitted and then accessed/received, decoded and
uncompressed.

FIG. 13 is a schematic representation of an implementation of decoder.

FIG. 14 is a schematic representation of a process of decoding a signal in which
information is encoded by the timing of the occurrence of events within time intervals.

FIG. 15 is a schematic representation of another implementation of a decoder.

FIG. 16 is a schematic representation of decoding a signal in which information is
encoded by the timing of the occurrence of events within time intervals with a decoder that
detects the beginning and end of data transmission in a signal.

FIGS. 17 and 18 arc schematic representations of other implementations of decoders.

FIG. 19 is a schematic representation of decoding a signal in which information is
encoded by the timing of the occurrence of events within time intervals into a signal that
includes more that two states.

FIG. 20 is a schematic representation of an implementation of a decoding system.

FIG. 21 is a schematic representation of a multichannel decoder system.

FIG. 22 is a schematic representation of an implementation of system in which
information can be encoded.

FIG. 23 is a schematic representation of one implementation of a compressing
encoder.

FIGS. 24, 25, 26, 27 are schematic representations related to different

implementations of integrators.
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FIG. 28 is a schematic representation of a binary-to-analog converter.

FIG. 29 is a schematic representation of weighting the amplitude of individual events
in a time series of events as a function of the timing of other events in the time series.

FIG. 30 is a schematic representation of one implementation of a signal that can be
output from a compressing encoder.

FIG. 31 is a schematic representation of a data storage device.

FIG. 32 is a schematic representation of an implementation of system in which
information can be decoded.

FIG. 33 is a schematic representation of one implementation of an expanding
decoder.

FIG. 34 is a schematic representation of a weighting device.

FIG. 35 is a schematic representation of weighting the amplitude of individual events
in a time series of events as a function of the timing of other events in the time series.

FIG. 36 is a schematic representation of a time series scanner.

FIG. 37 is a schematic representation of an expanding decoder.

FIG. 38 is a schematic representation of an implementation of system in which
information can be encoded, and decoded.

FIG. 39 is a flow chart of a process for constructing a collection of binary-to-analog
converters.

FIG. 40 is a flow chart of a process for calibrating a weighting device.

FIG. 41 is a flow chart of a process for creating an encoder/decoder pair.

Like reference numbers and designations in the various drawings indicate like

clements.

DETAILED DESCRIPTION
FIG. 1 A is a schematic representation of an encoder/decoder system 3.
Encoder/decoder system 3 is a collection of components for encoding and decoding
information. Encoder/decoder system 3 can be, e.g., a data communication system, a data
storage system, a data compression system, a data encryption system, or a combination of

these or other systems. An encoder can be paired with a decoder that can reconstruct the
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information. The encoded and decoded information can be communicated in signals and/or
stored on a data storage device.

Encoder/decoder system 3 includes an encoding transmitter system 6 and a decoding
receiver system 9. Encoding transmitter system 6 includes an input 8, an encoder-
compressor 10, a transmitter 12, and an output 14. Input 8 of encoding transmitter system 6
can be connected to receive information in a signal 21. Input 8 and output 14 are physical
structures through which signals are respectively received into and transferred out of
encoding transmitter system 6. Signal 21 includes information. Encoder-compressor 10 is a
component that encodes and compresses at least some of the information in signal 21.

Encoder-compressor 10 includes a state encoder 23, a time based encoder 25, an
amplitude weighting component 27, and a compressor 29. State encoder 23 is a component
that encodes at least some of the information in signal 21 into a signal 24 which represents
information in a collection of discrete digits. The digits can represent information using
different states. For example, signal 24 can represent information in binary digits or bits (i.c.,
using a pair of states) or in decimal digits (i.c., using ten states). State encoder 23 is
connected to provide signal 24 to time-based encoder 25.

Time-based encoder 25 is a component that encodes signal 24 into time-based code
26 in which the timing of events within intervals represents information. One or both of state
encoder 23 and time-based encoder 25 can include a segmenter that divides a single signal
into a collection of smaller units. As a consequence of this division, amplitude weighting
component 27 receives a collection of time-based codes 26. Time-based encoder 25 is
connected to provide the collection of time-based codes 26 to amplitude weighting
component 27,

Amplitude weighting component 27 is a component which is configured to weight the
amplitudes of events within each time-based code 26 according to the timing of at least some
of the other events in that time based code 26. In some implementations, amplitude
weighting component 27 can weight the amplitudes of events according to the timing of
predecessor events. Amplitude weighting component 27 need not add new information to
time-based codes 26 but rather can represent at least some of the existing information in cach

time-based code in another dimension, namely, the amplitudes of the events. Amplitude
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weighting component 27 is connected to provide a collection of amplitude-weighted time
based codes 28 to compressor 29.

Compressor 29 is a component that is configured to compress a collection of
amplitude-weighted time based codes 28. Compressor 29 can compress the amplitude-
weighted time based codes 28 by integrating them to generate a one-dimensional code 31.
One-dimensional code 31 can represent at least some of the information in amplitude-
weighted time based codes 28 in one dimension. For example, one-dimensional code 31 can
represent the information using the timing of events. In some implementations, the
integration can be a non-linear integration. Compressor 29 is connected to provide one-
dimensional code 31 to transmitter 12.

Transmitter 12 is configured to transmit one-dimensional code 31 in a signal 30 that
can be stored or otherwise processed. For example, the signal 30 can be stored in a memory
structure (not shown). Alternatively, the signal 30 can be transmitted to a receiving device
that decodes the signal. In the example shown, the signal 30 is conveyed from output 14 of
encoding transmitter system 6 to input 16 of decoding receiver system 9.

Decoding receiver system 9 includes an input 16, a receiver 32, an expander-decoder
34, and an output 20. Input 16 of decoding receiver system 9 can be connected to receive
signal 30. Signal 30 includes one-dimensional code 31. Input 16 and output 20 are physical
structures through which signals are respectively received into and transferred out of
decoding receiver system 9. Receiver 32 is configured to receive signal 30 and convey one-
dimensional code 31 to expander-decoder 34.

Expander-decoder 34 is a component that expands and decodes at least some of the
information in signal 29. Expander-decoder 34 includes a weighting expander 37, an
amplitude decoder 39, a time-based code decoder 41, and a state decoder 42. Weighting
expander 37 is a component that is configured to expand one-dimensional code 31 into one
or more collections of weights 43. Collections of weights can be generated according to the
dimension used to represent information in signal 29 (e.g., the timing of events in signal 29).
For example, weights can be generated for each event in signal 29 according to the timing of
predecessor events within signal 29. Each event in the one-dimensional code can be
associated with a single weight in each collection of weights. In some implementations,

weighting expander 37 weights the amplitudes of cach event using the weights and outputs
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amplitude-weighted versions of one-dimensional code 31 as weight collections 43. In other
implementations, weighting expander 37 outputs an ordered lists of weights that discards the
dimension used to represent information in signal 29 (e.g., discards the timing of events in
signal 29) as weight collections 43. Weighting expander 37 is connected to convey
collections of weights 43 to amplitude decoder 39.

Amplitude decoder 39 is a component that is configured to decode weight collections
43 into a collection of one or more time-based codes 45 in which the timing of events within
intervals represents information. Amplitude decoder 39 is connected to convey one or more
time-based codes 45 to time-based code decoder 41. Time-based code decoder 41 is a
component that decodes at least some of the information in the one or more time-based codes
45 into one or more signals 47 which represents information in a collection of states. For
example, signals 47 can represent information in binary (i.c., using a pair of discrete states)
or in decimal (i.e., using ten discrete states). Time-based code decoder 41 is connected to
convey signals 47 to state decoder 42. State decoder 42 is a component that is configured to
decode signals 47 that represent information in a collection of digits into a signal 50. Signal
50 can include at least some of the information included in signal 21.

One or more of amplitude decoder 39, time-based code decoder 41, and state decoder
42 can include an aggregator that assembles a collection of smaller digits into a larger
collection of digits. For example, in some implementations, amplitude decoder 39 can
include a time-based code aggregator that assembles multiple time-based codes into a single
time-based code 45. As another example, in some implementations, time-based code
decoder 41 can include an aggregator that assembles multiple signals which represents
information in a collection of discrete digits into a single signal 47 that represents
information in a collection of discrete digits. As yet another example, in some
implementations, state decoder 42 can include an aggregator that assembles signals into a
single signal 50.

FIG. 1B is a flow chart of a process 70 for encoding and decoding information.
Process 70 can be performed in isolation or in conjunction with other activities. For
example, process 70 can be performed at stage 4130 in process 4100 (FIG. 41). Process
3900 can be performed by an encoder/decoder system, such as encoder/decoder system 3

(FIG. 1A).
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In process 70, data is encoded into a collection of digits (stage 72) and the digits are
encoded into a time-based code (stage 74). The time-based code represents information
using the timing of events within intervals. The amplitudes of the events within the time-
based code are weighted according to the timing of other events in the time based code (stage
76). For example, the events can be weighted according to the timing of predecessor events
in that time based code. Amplitude weighting need not add new information to the time-
based code but rather can represent at least some of the existing information in the time-
based code in another dimension, namely, the amplitudes of events.

The amplitude-weighted time-based codes can be compressed into a one-dimensional
code (stage 78). The one-dimensional code can represent at least some of the information in
amplitude-weighted time based codes in one dimension, ¢.g., using the timing of events.

In a receiving device, the one-dimensional code can be expanded into collections of
amplitudes (stage 80). Each event in the one-dimensional code can be associated with a
single weight in cach collection of weights. In some implementations, the collections of
amplitudes can be a list of amplitudes without any timing information. In other
implementations, the one-dimensional code itself can be weighted by multiple collections of
amplitudes to yield multiple amplitude-weighted versions of the (formerly) one-dimensional
code.

The amplitudes can be decoded into a time-based code (stage 82) which in turn can
be decoded into one or more signals that represent information in a collection of digits (stage
84). The one or more signals that represent information in a collection of digits can
themselves be decoded into another representation (stage 86).

Time Encoder

FIG. 2A is a schematic representation of a system 100 in which information can be
encoded. System 100 includes a time encoder 105 that includes an input 110 and an output
115. Input 110 and output 115 are physical structures through which signals are respectively
received into and transferred out of time encoder 105. Time encoder 105 is a component that
encodes information by causing events to occur at particular times within time intervals of an
output signal. Time encoder 105 can, in effect, express the information content of an input
signal in an output format in which the timing of events within intervals represents the

information content of the input signal. Time encoder 105 can be used in conjunction with
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other devices. For example, time encoder 105 can be used as time-based encoder 25 (FIG.
1A).

Input 110 of time encoder 105 can be connected to receive information 120 in a
signal 125 received from a data communication path. Signal 125 represents information 120
in an ordered, finite set of discrete digits. For example, in some implementations, input
information 120 can be expressed in binary digits as a series of high (i.c., “1”) and low (i.e.,
“0”) states, as shown. Input 110 can be a serial or parallel binary data port. Signal 125 can
be conveyed on a wired or wireless data communication path.

Output 115 of time encoder 105 can be connected so as to transfer information
encoded in a signal 135 conveyed to a system or a medium 140. The information in signal
135 is expressed by the times at which events occur within intervals of signal 135. The
timing of events within these intervals represents all of the information within signal 125.
For example, as described further below, events occurring at first times within time intervals
can express digits having high states within signal 125, whereas events occurring at second
times within time intervals can express digits having low states within signal 125. The first
times are distinguishable from the second times.

The system or medium 140 to which signal 135 is conveyed varies according to the
operational context of system 100. For example, if system 100 is part of a data transmission
system, system or medium 140 can include a data transmitter. As another example, if system
100 is part of a data storage system, system or medium 140 can include a write head that can
write information into a data storage device.

In operation, time encoder 105 receives signal 125 onto input 110. Time encoder 105
encodes information 120 in signal 125 by expressing input information 120 in signal 135
with events timed to occur at distinguishable times within different intervals. Time encoder
105 outputs signal 135, which includes the timed events, to system or medium 140.

FIG. 2B is a schematic representation of an implementation of time encoder 105. The
illustrated implementation of time encoder 105 includes a state detector 205, an event timing
circuit 210, and an event generator 215. State detector 205 is a component that detects states
of digits in signal 125 which represent input information 120. For example, in
implementations where input information 120 is expressed in a series of binary digits, state

detector 205 can be a bit detector that distinguishes between the binary “1” and “0” states.
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State detector 205 is connected between input 110 and event timing circuit 210. Indications
of the detected states 220 are conveyed to event timing circuit 210.

Event timing circuit 210 is a component that is configured to specify the timing of
events within intervals of an output signal 135. Event timing circuit 210 includes a clock
225, a counter 230, an interval reset 235, and a timing selector 240. Clock 225 provides a
clock output signal 242 to counter 230. Counter 230 is connected to receive the clock output
signal 242 and to output a dynamic count of the clock signal 245. The dynamic count 245 is
coupled to interval reset 235 and timing selector 240. Interval reset 235 can include a
comparator (not shown) that compares the dynamic count of the clock signal with a threshold
count representative of an interval duration. Such a comparison can determine when an
interval has passed. Interval reset 235 provides a reset signal 250 in response to the passing
of an interval. Counter 230 receives the reset signal 250 and can reset the count of the clock
signal in response to the reset signal. The resetting of counter 230 can thus demarcate
intervals of a duration of the threshold count.

Timing selector 240 receives both the dynamic count of the clock signal 245 and the
indications of the states 220 detected by state detector 205. Timing selector 240 can include
a switch 255 and a comparator 260. Comparator 260 includes a pair of inputs 265, 270.
Input 265 receives the dynamic count of the clock signal 245 output by counter 230. Input
270 receives a switch output signal 275 from switch 255. Switch 255, and the other switches
described herein, can be implemented as, e.g., an electro-mechanical switch, one or more
transistors, or machine-readable instructions.

Switch 255 includes a high reference 280 and a low reference 285. High reference
280 embodies the times within an interval at which events representing digits having high
states in signal 125 are to occur. Low reference 285 embodies the times within an interval at
which events representing digits having low states in signal 125 are to occur. Switch 255
receives the indications of the states 220 detected by state detector 205. Switch 255 switches
between applying high reference 280 and low reference 285 to input 270 of comparator 260
in response to the indications of the states detected by state detector 205. In particular, in
response to an indication that state detector 205 has detected a low state, switch 255 switches
to connect low reference 285 to input 270. In response to an indication that state detector

205 has detected a high state, switch 255 switches to connect high reference 280 to input 270.
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Comparator 260 compares the count of the clock signal output by counter 230 to the
provided low reference 285 or high reference 280 and outputs comparison results 290.

Event generator 215 is a component that is configured to generate events in output
signal 135. Event generator 215 is connected to receive the results 290 of the comparisons
from comparator 260 and time the generation of events based on the results of the
comparisons. For example, event generator 215 can be a pulse generator that generates
pulses in response to transitions in the results 290 that arise from the clock signal output by
counter 230 transitioning past the given low reference 285 or high reference 280. The
occurrence of such events within the intervals demarcated by interval reset 235 is thus timed
to encode the states of the digits within signal 125 and thus can be referred to as “data
events.” Event generator 215 provides the generated events 295 to output 115.

Timing selector 240 is also connected to receive the interval reset signal 250. Timing
selector 240 can advance to the next digit and reset the comparison by comparator 260 in
response to the reset signal 250. In some implementations, state detector 205 is also
connected to receive the interval reset signal 250 (see dashed line input to state detector 205).
State detector 205 can, ¢.g., time the provision of indications of the detected states to timing
selector 240 in response to the reset signal 250 and thereby advance to the next digit.

In operation, time encoder 105 receives signal 125 on input 110. State detector 205
detects states in the digits of signal 125 that represent input information 120 and outputs a
signal characterizing those digits (i.e., the indications of the states 220). Timing selector 240
receives the signal describing those digits and generates outputs (i.c., results output 290) that
are timed to occur within intervals in correspondence with the states. In particular, first
states in signal 125 produce transitions in the results 290 occurring at a first time within
corresponding time intervals and second states in signal 125 produce transitions in the results
290 occurring at a second time within corresponding time intervals. The timing of these
transitions is set by low reference 285 and high reference 280.

In response to transitions in the results 290, event generator 215 generates events 295
which are provided to output 115. The timing of the events follows the timing of the
transitions in the results 290. Interval reset 235 demarcates the intervals to advance timing

selector 240 from the state of one digit in signal 125 to the next and to reset the comparisons
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that generate transitions in the results 290. Every digit in signal 125 (including low “0”
states) is thus represented by a correspondingly timed event in an interval.

FIG. 3 is a schematic representation of a process of time encoding. The illustrated
time encoding can be performed by a time encoder such as time encoder 105 (FIGS. I and 2).
In the illustrated implementation, information 120 is expressed in binary digits as a series of
high digits 305 and low digits 310.

Time encoding encodes information 120 into a time-based code signal 135. Time-
based code signal 135 includes a collection of time intervals 320, each of which corresponds
to a digit 305, 310 within signal 125. Each time interval 320 includes a respective data event
325. The timing of data events 325 within individual time intervals 320 indicates the state of
a digit 305, 310 corresponding to that time interval 320. For example, in the illustrated
implementation, data events 325 in intervals 320 corresponding to high state digits 305 occur
at times 330 near the beginning of those intervals 320. Data events 325 in intervals 320
corresponding to low state digits 305 occur at times 335 near the middle of those intervals
320. Times 330 are distinguishable from times 335.

In different implementations, different features of events, including data events 325,
can be identified and treated as the time at which the events occur. For example, in the
illustrated implementation, data events 325 are pulses that transition from a baseline (i.c., a
“resting”) state 340 to a high (i.e., an “excited”) state 345 and then return to the baseline
resting state 340. In some implementations, the initial transitions from baseline state 340 to
high state 345 can be identified and treated as the times at which data events 325 occur. In
other implementations, the return transitions from high state 345 to baseline state 340 can be
identified and treated as the times at which data events 325 occur. In some implementations,
data event 325 are transient pulses in that the initial and return transitions are so close in time
that they are indistinguishable to, e.g., time encoder 105. The time at which a transient data
event 325 occurs is identified based on the apparent coincident occurrence of the initial and
return transition.

In the illustrated implementation, the shapes of different data events 325 are
indistinguishable from one another and different data events 325 can be distinguished only
by virtue of their timing. Further, in some implementations, data events 325 can be “binary

events” in that they occur at one of only two possible times in the interval. When occurring

13



10

15

20

25

30

WO 2011/012614 PCT/EP2010/060875

at those times, they are at the same signal level (e.g., high) but their timing within the interval
is attributable to the states of the digits they represent.

In the illustrated implementation, time intervals 320 all have the same duration and
occur sequentially. The sequence of time intervals 320 corresponds to the sequence of the
corresponding digits 305, 310 in signal 125. In other words, the first time interval 320 (and
its event 325) of time-based code signal 135 corresponds to the first digit 305 in signal 125,
the second time interval 320 (and its data event 325) of time-based code signal 135
corresponds to the second digit 310 in signal 125, and so on. This correspondence is
represented by dashed arrows 350.

FIG. 4 is a schematic representation of another implementation of time encoder 105.
In addition to state detector 205, event timing circuit 210, and event generator 215, the
illustrated implementation of time encoder 105 also includes a start/stop detector 405.
Start/stop detector 405 is a component that is configured to detect the beginning and end of
data transmission in signal 125. For example, start/stop detector 405 can recognize one or
more headers or footers in signal 125.

Start/stop detector 405 can be connected to input 110. Start/stop detector 405 outputs
indications 410 of the beginning and end of data transmission in signal 125 to event
generator 215 and to other portions of time encoder 105 (e.g., to event generator 215). Event
generator 215 can generate beginning and end events (e.g. as part of events 295) in response
to the indications output by start/stop detector 405. A beginning event is an event that occurs
at a time that demarcates the beginning of data output in results 290 and allows the timing of
a first interval and a first data event to be determined. An end event is an event that occurs at
a time that demarcates the end of data output in results 290. In some implementations, one or
both of beginning events and end events can be used to reset time-dependent processes, as
described further below. The beginning and end events generated by event generator 215 are
output as events 295 and provided to output 115.

The indications of the beginning and end of data transmission in signal 125 output by
start/stop detector 405 can be conveyed to and used by other portions of time encoder 105 to
time the output of beginning events, end events, and data events by event generator 215. For
example, one or more of clock 225, counter 230, and interval reset 235 can be disabled for an

interval that is associated with a beginning event (¢.g., to allow for the
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processing/disregarding of a header in the information 120). As another example, the
progression of timing selector 240 from digit to digit or the detection of states by state
detector 205 can be disabled for an interval that is associated with a beginning event.

FIG. 5 is a schematic representation of time encoding with a time encoder that detects
the beginning and end of data transmission in a signal. For example, the illustrated time
encoding can be performed by a time encoder such as time encoder 105 that includes a
start/stop detector 405 (FIG. 4). In the illustrated implementation, signal 125 includes a
header 505 (illustrated as an “X”) and a footer 510 (illustrated as a “Y”"). Header 505 and
footer 510 thus frame information 120 within signal 125.

Time encoding encodes information 120 into time-based code signal 135, as
described above referring to FIG. 3. Time-based code signal 135 includes header interval
515 and a footer interval 520. Header interval 515 includes a header event 525 that occurs at
a time 535 within header interval 515. Footer interval 520 includes a footer event 530 that
occurs at a time 540 within footer interval 520. Header interval 515 and header event 525
demarcate the start of time-based code signal 135. Footer interval 520 and footer event 530
demarcate the end of time-based code signal 135. The demarcation of the start of time-based
code signal 135 can be used to determine the timing of the first event 325 within the first
interval 320. For example, the first event 325 occurs a time 545 after the header event 525.
The timing of the first event 325 within the first interval 320 can be determined using the
duration of interval 515 and time 545. For example, in implementations where the duration
of interval 515 is the same at intervals 320, the detection of event 525 can be used as a reset
signal to reset an interval.

In the illustrated implementation, events 525, 530 are pulses that transition from
baseline state 340 to high state 345 and then return to the baseline state 340. In some
implementations, the shapes of events 525, 530 can be indistinguishable from one another
and from the shapes of data events 325. In these implementations, events 325, 525, 530 can
be distinguished only by virtue of their timing and position. For example, event 525 can be
recognized as the first event. In some implementations, intervals 515, 520 both have the
same duration as each other and as time intervals 320.

FIG. 6 is a schematic representation of another implementation of time encoder 105.

In addition to state detector 205, event timing circuit 210, and event generator 215, the
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illustrated implementation of time encoder 105 also includes a header/footer encoder 605.
Header/footer encoder 605 is a component that is configured to encode a header located at
the beginning of data transmission in signal 125, and a footer located at the end of data
transmission in signal 125, or both with information. In some implementations, the
information with which a header or a footer is encoded can be received, ¢.g., in the header or
footer of signal 125. For example, header/footer encoder 605 can encode a header or footer
with information that identifies the signal received at input 110 or with information that
characterizes aspects of the signal received at input 110. For example, the signal received at
input 110 can be identified according to, ¢.g., the source and destination of the received
signal, the type of information in the received signal, and the relationship between the
received signal and other signals. Aspects of the received signal that can be characterized
include the location of a floating point within the received signal, the sign of a number within
the received signal, and error-checking information. Header/footer encoder 605 can encode a
header or a footer with such information by triggering the introduction of one or more events
into a header or a footer region associated with the input signal 125.

Header/footer encoder 605 can be connected to input 110. Header/footer encoder 605
outputs one or more signals 610 that identify or characterize information in the header or
footer and provides the signals 610 to event generator 215. Event generator 215 can generate
events that are timed to occur within the header or footer of signal 125 in response to the
indications output by header/footer encoder 605. The events 295 generated by event
generator 215 are provided to output 115.

In some implementations, the identifying or characterizing information in signals 610
can also be output to other portions of time encoder 105. This information can be used in a
variety of ways including, e.g., error checking and triggering and/or resetting the demarcation
of intervals and the generation of data events.

FIG. 7 is a schematic representation of encoding a header at the beginning of data
transmission in a signal. For example, the illustrated encoding can be performed by a time
encoder such as time encoder 105 that includes a header/footer encoder 605 (FIG. 6). The
information can be encoded by one or more events that occur within header interval 515 or

footer interval 520 in signal 135.
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In the illustrated implementation, header interval 515 includes a header event 705.
Header event 705 occurs at a time 710 within header interval 515. The timing of header
event 705 within header interval 515 can be determined, for example, by measuring time
span 710 between time 535 and time 710.

In some implementations, header interval 515 can itself be divided into multiple
subintervals, each of which can include one or more informational events. Different
subintervals can be assigned to encode different identifying and characterizing information.
For example, a first subinterval can include an event, the timing of which indicates whether a
number encoded in signal 135 is positively or negatively signed. As another example, a
collection of subintervals can include informational events, the timing of which indicate the
position of the information encoded in signal 135 within a larger collection of information
(c.g., after segmentation, as described further below).

In the illustrated implementation, header event 705 is a pulse that transitions from
baseline state 340 to high state 345 and then returns to the baseline state 340. In some
implementations, the shapes of header events 705 can be indistinguishable from one another,
from the shapes of events 525, 530, and from the shapes of data events 325. In these
implementations, events 705, 325, 525, 530 can be distinguished only by virtue of their
timing and position.

In some implementations, a footer at the end of data transmission in a signal can be
encoded with one or more informational events. In some implementations, both a header and
a footer can be encoded with one or more informational events.

FIG. 8 is a schematic representation of another implementation of time encoder 105.
The illustrated implementation of time encoder 105 includes a state detector 205 and an event
timing circuit 210 that are adapted for operation with signals 125 that encode information
with digits having more than two possible states. For example, signal 125 can encode
information in quaternary or decimal digits.

State detector 205 is configured to detect the states of digits in signal 125 and convey
indications of the detected states to event timing circuit 210. Event timing circuit 210
includes a timing selector 240 that is connected to receive these indications and configure
switch 255 in response. In particular, switch 255 includes a collection of more than two

references 805 that cach are associated with respective states (i.c., times within an interval at
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which events representing a corresponding state of the digits in signal 125 is to occur). For
example, the first reference 805 can be associated with a first time within an interval, the
second reference 805 can be associated with a second time within an interval, and the N’th
reference 805 can be associated with the N’th time within an interval.

Switch 255 is configured to apply the appropriate reference 805 to input 270 of
comparator 260 in response to the indications of the states detected by state detector 205.
Comparator 260 compares the count of the clock signal output by counter 230 to the
appropriate reference 805 and outputs results 290 of'the comparisons. The various states of
the digits in signal 125 thus result in transitions occurring at distinguishable times within
corresponding time intervals, with the timing of these transitions set by references 805.

FIG. 9 is a schematic representation of time encoding of a signal that includes digits
having more that two possible states. The illustrated time encoding can be performed by a
time encoder such as time encoder 105 (FIG. 8). In the illustrated implementation,
information 120 is expressed in signal 125 using digits having four different possible states,
namely a digits 905 having a first state (i.e., “A’s”), digits 910 having a second state (i.e.,
“B’s”), digits 915 having a third state (i.c., “C’s”), and digits 920 having a fourth state (i.c.,
“D’s”). In other implementations, information 120 can be expressed in digits having a
different number of possible states (¢.g., digits having 10 different possible states that express
information 120 in decimal) or in digits having a very large number of possible states or a
continuous continuum of possible (e.g., a nearly analog or analog continuum of possible
states). In some implementations, digits having four possible states can be used to express
genetic information and represent four nucleic acids.

Time encoding encodes information 120 into a time-based code signal 135. Time-
based code signal 135 includes a collection of time intervals 320, cach of which corresponds
to a digit 905, 910, 915, 920 within signal 125. Each time interval 320 includes a respective
data event 325. The timing of data events 325 within individual time intervals 320 indicates
the state of digits 905, 910, 915, 920 corresponding to that time interval 320. For example, in
the illustrated implementation, data events 325 in intervals 320 corresponding to digits 905 of
the first state occur at times 930 near the end of intervals 320. Data events 325 in intervals
320 corresponding to digits 910 of the second state occur at times 935 near the middle of
intervals 320. Data events 325 in intervals 320 corresponding to digits 915 of the third state
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occur at times 940 before the middle of intervals 320. Data events 325 in intervals 320
corresponding to digits 920 of the fourth state occur at times 945 near the beginning of
intervals 320. Times 930, 935, 940, 945 are distinguishable from one another.

In other implementations, a time encoder can be implemented as digital circuitry that
receives as an input a sequence of symbols from a predetermined set of symbols and
produces as output a time encoded output signal, in which each time interval in the time
encoded output signal includes a single pulse at a time within the interval determined by the
corresponding input symbol. The digital circuitry can be controlled by a programmed
computer, or include an embedded computer. In some implementations, each input symbol is
mapped to a unique character having a length in binary digits (i.e., bits) N that is the same as
the number of different possible input symbols, and where all the bits are the same except
one, so that the position of the distinct bit in the character identifies the symbol to which the
character corresponds. The input sequence of symbols is thus mapped to an input sequence
of characters, which can be input into a shift register. The output of the shift register is
clocked so that N bits appear in every time interval 320. This output is coupled to a pulse
generator so that the appearance of the distinct bit causes an output pulse to be generated at
the output of the time encoder. In some such implementations, the time encoder includes
circuitry that transforms an analog input signal into a sequence of symbols. If headers,
footers, and synching is desired in the output signal, the corresponding input symbols can be
added as a prefix or postfix, as the case may be, to the actual signal to be transmitted, in
accordance with a convention or protocol adopted by the encoder and the downstream
decoders.

FIG. 10 is a schematic representation of an implementation of system 100, namely, a
system 1000 in which information can be encoded. System 1000 includes a neural
processing component 1005 to which signal 135 is transmitted from time encoder 105.
Neural processing component 1005 is a component constructed of neural tissue or having a
design inspired by the design and function of neural tissue. Thus, neural processing
component 1005 can be implemented using “wet” nerves and other neural components (e.g.,
as a biological neural network or the brain or other neural tissue of a living organism) or
neural processing component 1005 can be implemented using semiconductor devices (e.g., as

an artificial neural network implemented using hardware or software). In some
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implementations, combinations of semiconductor devices and wet neural components can
implement neural processing component 1005.

As shown, time encoder 105 outputs signal 135, which includes timed events, to
neural processing component 1005. In implementations where neural processing
components 1005 are implemented using “wet” neural components, the properties of signal
135 can be tailored for compatibility with wet neural components. For example, events
within signal 135 can be tailored to mimic the amplitude and time characteristics of action
potentials.

In some implementations, neural processing component 1005 can include multiple
clements that receive signal 135. For example, in neural processing components 1005
implemented using “wet” neural components, multiple nerves can receive signal 135. As
another example, in neural processing components 1005 implemented using semiconductor
components, multiple neural network inputs can receive signal 135.

In operation, time encoder 105 can encode the information 120 in signal 125 into a
form that is understood by neural processing component 1005, namely, signal 135 with
events timed to occur at distinguishable times within intervals in a sequence of intervals.
Time encoder 105 can thus act as an interface between binary (and other) digital data
processing and the statistical processing and pattern recognition provided in neural
processing component 1005. For example, time encoder 105 can be included in a neural
prosthesis that stimulates nerves with, e.g., auditory, visual, or other sensory information
encoded in signal 135.

FIG. 11 is a schematic representation of an implementation of system 100, namely,
one including a multichannel encoder 1100 in which information can be encoded. System
1100 includes a collection of time encoders 105, a data segmenter 1105, an input 1110, and a
collection of one or more outputs 1115.

Input 1110 receives information 120 in a signal 125 on a data communication path.
Input 1110 provides a signal 1117 that conveys information in signal 125 to an input 1120 of
data segmenter 1105. Data segmenter 1105 is a component that divides (or “fragments”) a
signal into smaller units. Data segmenter 1105 includes an input 1120 and one or more

outputs 1125.
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Data segmenter 1105 divides the relatively large collection digits in signal 125 into a
collection of smaller collection of digits that cach represent a proper subset of information
120. In some implementations, the segments can be a contiguous portion of the digits in
signal 125. In other implementations, the segments can include non-contiguous digits. In the
illustrated example, the signal 125 received by data segmenter 1105 represents information
120 in an ordered, finite set of discrete digits, ¢.g., a collection of bits. Data segmenter 1105
divides signal 125 into a collection of smaller segments that cach represents a proper subset
of information 120 in an ordered, finite set of discrete digits. Data segmenter 1105 provides
the segments 1120 from one or more outputs 1125 to inputs 110 of corresponding time
encoders 105. Each time encoder 105 encodes the information in a received segment by
timing the occurrence of events within time intervals of a respective output signal 135. The
timing of events within the intervals in each output signal 135 represents all of the discrete
digits within each segment.

Time encoder 105 outputs respective output signals 135 from outputs 1115 of
multichannel encoder 1100. In some implementations, output signals 135 are provided to the
a single system or medium 140 at a same time. For example, in implementations where the
time-based code of output signals 135 each include a header interval 515 and header event
525, header events 525 in the respective output signals occur at the same moment in time.
System or medium 140 can include a collection of inputs, cach of which is connected to a
corresponding output 1115 to receive a corresponding output signal 135, as described further
below.

In operation, data segmenter 1105 receives signal 125 on input 1120. Data segmenter
1105 performs a data segmentation process on signal 125 and generates a collection of
segments. The segments are each input into a respective input 110 of a time encoder 105.
Each time encoder 105 encodes the information in the respective segment by expressing the
information with events timed to occur at distinguishable times within different intervals.
Each time encoder 105 outputs a respective signal 135 which conveys signal 135 to outputs
1115 of the multichannel encoder 1100 and to system or medium 140.

FIG. 12 is a schematic representation of a system 1200 in which information can be
encoded, compressed, and stored/transmitted and then accessed/received, decoded and

uncompressed. System 1200 can include one or more of the implementations of system 100
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described above, as well as a decoder 1205 that includes an input 1210 and an output 1215.
Input 1210 and output 1215 are physical structures through which signals are respectively
received into and transferred out of decoder 1205. Decoder 1205 is a component that
decodes a signal in which information is encoded by the timing of the occurrence of events
within time intervals. Decoder 1205, in effect, translate, a time-based signal in which the
timing of events within intervals represents the information content into an output format that
represents that information in an ordered, finite set of discrete digits.

Input 1210 of decoder 1205 can be connected to receive a signal 1220 in which
information is encoded by the timing of the occurrence of events within time intervals.
Signal 1220 can be output from system or medium 140 onto a data communication path. The
exact nature of information transfer from system or medium 140 to decoder 1205 via signal
1220 depends on the operational context of system 1200. For example, if system 1200 is part
of a data transmission system, system or medium 140 can include a data transmitter that
outputs signal 1220 to a data receiver in decoder 1205. As another example, if system 1200
is part of a data storage system, decoder 1205 can include, e.g., a read head that can read
information from a data storage medium 140. Signal 1220 can be conveyed, e.g., on a wired
or wireless data communication path.

After translation into an output format, decoder 1205 outputs a signal 1230 that
includes the decoded information 1225. The decoded information 1225 can be expressed in
an ordered, finite set of discrete digits, e.g., in binary digits as a series of high and low states,
as shown. Output 1215 can be of the form of one or more serial or parallel binary data ports.

In operation, decoder 1205 receives signal 1220 from system or medium 140 on input
1210. Signal 1220 expresses information with events timed to occur at distinguishable times
within different intervals. Decoder 1205 decodes information 1225 and outputs signal 1230
that includes the decoded information 1225.

Decoder 1205 can be used in conjunction with other devices, outside of system 1200.
For example, decoder 1205 can be used as time-based decoder 41 (FIG. 1A).

FIG. 13 is a schematic representation of an implementation of decoder 1205. The
illustrated implementation of decoder 1205 includes an event detector 1305, a time-to-state
translator circuit 1310, and a state selector circuit 1315. While reference is made to circuits,

one or more of the components of the decoder can be implemented in firmware or software.
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Event detector 1305 is a component that can detect events—and their timing— in signal
1220. The structure of event detector 1305 can reflect the nature of events in signal 1220.
For example, when the events in signal 1220 are pulses, event detector 1305 can be a pulse
detector. Event detector 1305 is connected to receive signal 1220 from input 1210 and a
signal indicative of the time within an interval 1325 from an interval timing circuit 1320.
Event detector 1305 is connected to output the times 1325 within intervals at which events
are detected.

Interval timing circuit 1320 includes a clock 1330, a counter 1335, and an interval
reset 1340. Clock 1330 provides an output clock signal 1345 to counter 1335 which in turn
produces a dynamic count 1332 of the clock signal. The dynamic count 1332 is provided to
both event detector 1305 and to interval reset 1340. Interval reset 1340 can include a
comparator (not shown) that compares the dynamic count of the clock signal with a threshold
count representative of an interval duration. Such a comparison can determine when an
interval has passed. Interval reset 1340 provides as an output a reset signal 1350 to counter
1335. Counter 1335 is reset in response to the reset signal 1350. The resetting of counter
1335 demarcates intervals of a duration of the threshold count.

The reset signal 1350 output by interval reset 235 can be conveyed to and used by
other portions of decoder 1205 to time, e.g., the translation of events by time-to-state
translator 1310 and selection and output of digits by state selector 1315. For example,
time-to-state translator 1310 can include one or more switches that reset translations and the
output of the results of translations in response to the reset signal 1350. As another example,
state selector 1315 can trigger off of the reset signal 1350 to ensure that a single digit is
selected and output for each interval.

In response to detection of an event, event detector 1305 outputs an indication of the
time within an interval 1325 at which an event is detected. These indications are received by
time-to-state translator 1310. In the implementation shown, time-to-state translator 1310
includes a high bit detector 1355 and a low bit detector 1360 that are both connected to
receive the indications of the times within intervals at which events are detected.

In some implementations, high bit detector 1355 includes a pair of comparators 1356,
1358 and an AND gate 1359. Comparator 1356 is connected to compare the times within

intervals at which events are detected to a first reference ref 1. Comparator 1358 is
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connected to compare the times within intervals at which events are detected to a second
reference ref 2. References ref 1, ref 2 are thresholds that indicate the carliest and latest
times within an interval at which a detected event is considered to be in a first state (c.g., a
high bit). If a bit is detected at a time that is after the time indicated by ref 1 and before the
time indicated by ref 2, the outputs of both comparators 1356, 1358 are set. AND gate 1359
also produces an output 1365 (e.g., a high signal) indicating that the timing of the event
detected by event detector 1305 is within an interval.

In the implementation shown, low bit detector 1360 includes a pair of comparators
1361, 1363 and an AND gate 1364. Comparator 1361 is connected to compare the times
within intervals at which events are detected to a first reference ref 3. Comparator 1363 is
connected to compare the times within intervals at which events are detected to a second
reference ref 4. References ref 3, ref 4 are thresholds that indicate the carliest and latest
times within an interval at which a detected event is considered to be in a second state (e.g., a
low bit). If an event is detected at a time that is after the time indicated by ref 3 and before
the time indicated by ref 4, the outputs of both comparators 1361, 1363 are set. AND gate
1364 also provides an output 1370 indicating that the timing of the event detected by event
detector 1305 is within an interval.

State selector 1315 is a component that is configured to select the states of digits for
output in signal 1230 on output 1215. In some implementations, the digits can be binary bits.
State selector 1315 is connected to receive the translations (i.c., outputs 1365, 1370). Based
on the received translations, state selector 1315 outputs state information 1215. The digits
can be output in parallel or in series.

In operation, event detector 1305 receives signal 1220 in which information 1225 is
encoded by the timing of the occurrence of events within time intervals. Event detector 1305
detects the timing of the events within their respective intervals and outputs a description of
that timing 1325. Time-to-state translator circuit 1310 translates times within an interval to
the discrete digits to be output from decoder 1205 in signal 1230 by comparing the times at
which events were detected by event detector 1305 to the times allocated to the states. In
particular, events detected within a first range of times defined by references ref 1, ref 2
result in set signals on output 1365. Events detected within a second range of times defined

by references ref 3, ref 4 result in set signals on output 1370. State selector circuit 1315
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receives the results of those comparisons and selects states of digits for output onto output
1215 in accordance with those results.

FIG. 14 is a schematic representation of decoding a signal in which information is
encoded by the timing of the occurrence of events within time intervals. The decoding can
be performed, ¢.g., by a decoder such as decoder 1205 (FIG. 12).

Decoding translates information encoded in time-based code signal 1220 into a signal
1230 that represents information 1225 in an ordered, finite set of discrete digits. In the
illustrated implementation, information 1225 is expressed in signal 1230 in binary as a serics
of high binary digits 1405 (i.e., “1’s”) and low binary digits 1410 (i.e., “0’s”).

Time-based code signal 1220 includes a collection of time intervals 1420, each of
which corresponds to a digit 1405, 1410 within signal 1230. Each time interval 1420
includes a respective data event 1425. The timing of data events 1425 within individual time
intervals 1420 indicates the state of the digit 1405, 1410 corresponding to that time interval
1420. For example, in the illustrated implementation, data events 1425 in intervals 1420
corresponding to high state digits 1405 occur at times 1430 near the beginning of those
intervals 1420. Data events 1425 in intervals 1420 corresponding to low state digits 1405
occur at times 1435 near the middle of those intervals 1420. Times 1430 are distinguishable
from times 1435.

In the illustrated implementation, data events 1425 are pulses that transition from a
bascline (i.c., a “resting”) state 2140 to a high (i.e., an “excited”) state 1445 and then return
to the baseline resting state 1440. In some implementations, the initial transitions from
baseline state 2140 to high state 1445 can be identified and treated as the times at which data
events 1425 occur. In other implementations, the return transitions from high state 1445 to
baseline state 2140 can be identified and treated as the times at which data events 325 occur.
In some implementations, data event 1425 are transient pulses in that the initial and return
transitions are so close in time that they are indistinguishable to, e.g., time encoder 1205.
The time at which a transient data event 1425 occurs is identified based on the apparent
coincident occurrence of the initial and return transition.

In some implementations, the shapes of different data events 1425 can be
indistinguishable from one another and different data events 1425 can be distinguished only

by virtue of their timing. Further, in some implementations, data events 1425 can be binary
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events in that they occur in only two possible times, namely, at a first time or at a second
time within an interval.

In the illustrated implementation, time intervals 1420 all have the same duration and
occur sequentially. The sequence of time intervals 1420 corresponds to the sequence of the
corresponding digits 1405, 1410 in signal 1430. In other words, the first time interval 1420
(and its event 1425) of time-based code signal 1220 corresponds to the first digit 1405 in
signal 1230, the second time interval 1420 (and its data event 1425) of time-based code
signal 1220 corresponds to the second digit 1410 in signal 1230, and so on. This
correspondence is represent by dashed arrows 1450.

FIG. 15 is a schematic representation of another implementation of decoder 1005. In
addition to event detector 1305, time-to-state translator circuit 1310, state selector circuit
1315, and interval timing circuit 1320, the illustrated implementation of decoder 1005 also
includes a start/stop detector 1505. Start/stop detector 1505 is a component that is
configured to detect one or both of the beginning and the end of data transmission in signal
1220. For example, start/stop detector 1505 can recognize one or more of a header event, a
header interval, a footer event, and a footer interval in signal 1220.

Start/stop detector 1505 can be connected to input 1210 to receive signal 1220 (as
shown). In some implementations, start/stop detector 1505 can detect one or both of the
beginning and end of data transmission in signal 1220 by detecting beginning and end events
in signal 1220. Start/stop detector 1505 outputs indications 1510 of one or both of the
beginning and end of data transmission in signal 1220 to interval reset 1340 and to other
portions of decoder 1205. Interval reset 1340 can reset itself—and the demarcation of
intervals— in response to the indications output by start/stop detector 1505. Start/stop
detector 1505 can thereby synchronize interval reset 1340 to the timing of intervals and
events within signal 1220.

In some implementations, the indications of the beginning and end of data
transmission in signal 1220 output by start/stop detector 1505 can be conveyed to and used
by other portions of decoder 1205. For example, in some implementations, state selector
1315 can demarcate one or both of the beginning and end of signal 1220 using a header event

and a footer event in response to the indications output by start/stop detector 1505.
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FIG. 16 is a schematic representation of decoding a signal in which information is
encoded by the timing of the occurrence of events within time intervals with a decoder that
detects the beginning and end of data transmission in a signal. For example, the illustrated
decoding can be performed by a decoder such as decoder 1205 that includes a start/stop
detector 1505 (FIG. 15). In the illustrated implementation, signal 1230 includes a header
1605 (illustrated as an “X”) and a footer 1610 (illustrated as a “Y”’). Header 1605 and footer
1610 thus frame signal 1230.

Decoding decodes time-based code signal 1220 into signal 1230, as described above
referring to FIG. 14. Time-based code signal 1220 includes header interval 1615 and a footer
interval 1620. Header interval 1615 includes a header event 1625 that occurs at a time 1635
within header interval 1615. Footer interval 1620 includes a footer event 1630 that occurs at
a time 1640 within footer interval 1620. Header interval 1615 and header event 1625
demarcate the start of time-based code signal 1220. Footer interval 1620 and footer event
1630 demarcate the end of time-based code signal 1220. The demarcation of the start of
time-based code signal 1220 can be used to determine the timing of the first event 1625
within the first interval 1620. For example, the first event 1625 occurs a time period 1645
after the header event 1625. The timing of the first event 1625 within the first interval 1620
can be determined using the duration of interval 1615 and time 1645.

In the illustrated implementation, events 1625, 1630 and 1425 are pulses that
transition from baseline state 1640 to high state 1445 and then return to the baseline state
1640. In some implementations, the shapes of events 1625, 1630 can be indistinguishable
from one another and from the shapes of data events 1425 and events 1425, 1625, 1630 can
only be distinguished by virtue of their timing. Further, in some implementations, intervals
1615, 1620 both have the same duration as each other and as time intervals 1420.

FIG. 17 is a schematic representation of another implementation of decoder 1205. In
addition to event detector 1305, time-to-state translator circuit 1310, state selector circuit
1315, interval timing circuit 1320, and start/stop detector 1305, the illustrated
implementation of decoder 1005 also includes a header/footer decoder 1705. Header/footer
decoder 1705 is a component that is configured to decode information encoded in the header
of a signal 1220, information encoded in the footer of a signal 1220, or information encoded

in both.
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Header/footer decoder 1705 is connected to input 1210 to receive signal 1220 and any
header events or footer events included in signal 1220. In some implementations, ¢.g., where
the duration of header interval and footer intervals is the same as the duration of intervals
1420, header/footer decoder 1705 can be connected to receive indications 1510 of one or
both of the beginning and end of data transmission in signal 1220 and to event detector 1305
to receive a dynamic count 1325 of the time within an interval of a size specified by interval
reset. In implementations, ¢.g., where the duration of header interval and footer intervals
differs from the duration of intervals 1420, header/footer decoder 1705 can be connected to
the output of another interval timing circuit, include internal start/stop detection components,
or otherwise determine the time at which informational events occur within a header, a
footer, or both.

Header/footer decoder 1705 outputs indications of the informational content of
informational events that occur within a header or a footer as an output 1710. State selector
1315 can receive the indications and output discrete digits 1015 according to the indications.
For example, in some implementations, state selector 1315 can select a sequence of digits
that identifies the source and destination of signal 1230, the type of information in signal
1230, and the relationship between signal 1230 and other signals.

In some implementations, the indications output by header/footer decoder 1705 can
be conveyed to and used by other portions of decoder 1205. For example, error checking
information can be conveyed to and used by an error checking component within decoder
1005. As another example, the indications output by header/footer decoder 1705 can be
conveyed to translator circuit 1310 and used, e.g., to sct the number of digits that are to be
detected or to change the times within an interval at which a detected event is considered to
correspond with a certain state.

FIG. 18 is a schematic representation of another implementation of decoder 1205.
The illustrated implementation of decoder 1205 includes a translator circuit 1310 and a state
selector circuit 1315 that are suited for decoding signals in which information is encoded by
the timing of the occurrence of events within time intervals into signals that encode
information with digits having more than two possible states. For example, decoder 1205

can decode a time based code signal 1220 into a signal 1230.
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In response to detection of an event, event detector 1305 outputs an indication of the
time within an interval at which an event is detected. These indications 1325 are received by
time-to-state translator 1310. Time-to-state translator 1310 includes a collection of state
detectors 1805, 1810, 1815, 1820 that are all connected to receive the indications of the times
within intervals at which events are detected.

Each state detector 1805, 1810, 1815, 1820 is connected to compare the times within
intervals at which events are detected to references that that embody the carliest and latest
times within an interval at which a detected event is considered to be of the corresponding
state. In response to detecting that the timing of an event within an interval is within a
corresponding range, cach state detector 1805, 1810, 1815, 1820 outputs an indication 1825,
1830, 1835, 1840. State detectors 1805, 1810, 1815, 1820 thus translate times within an
interval to one of the states of the digits in signal 1230 that is to be output from decoder
1005.

State selector 1315 is connected to receive the translations (e.g., indications 1825,
1830, 1835, 1840), and based on the received translations, state selector 1315 outputs digits
having the states to output 1215.

In operation, event detector 1305 receives signal 1220 in which information 120 is
encoded by the timing of the occurrence of events within time intervals. Event detector 1305
detects the timing of the events within their respective intervals and outputs a description of
that timing (e.g., indications 1325). Time-to-state translator circuit 1310 translates times
within an interval to the states to be output from decoder 1305 in signal 1330 by comparing
the times at which events were detected by event detector 1305 to the times allocated to the
states. State selector circuit 1315 receives the results of those comparisons (e.g., indications
1825, 1830, 1835, 1840) and sclects states of digits for output to be provided to output 1215
in accordance with those results.

FIG. 19 is a schematic representation of decoding a signal in which information is
encoded by the timing of the occurrence of events within time intervals into a signal that
includes digits having more that two possible states. For example, the illustrated decoding
can be performed by a decoder such as decoder 1205 shown in FIG. 18. In the illustrated
implementation, time-based code signal 1220 includes a collection of time intervals 1420,

cach of which corresponds to a digit 1905, 1910, 1915, 1920 within signal 1230. Each time
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interval 1420 includes a respective data event 1425. The timing of data events 1425 within
individual time intervals 1420 indicates the state of the digit 1905, 1910, 1915, 1920
corresponding to that time interval 1420. For example, in the illustrated implementation,
data events 1425 in intervals 1420 corresponding to digits 1905 of the first state occur at
times 1930 near the end of intervals 1420. Data events 1425 in intervals 1420 corresponding
to digits 1910 of the second state occur at times 1935 near the middle of intervals 1420. Data
events 1425 in intervals 1420 corresponding to digits 1925 of'the third state occur at times
1940 before the middle of intervals 1420. Data events 1425 in intervals 1420 corresponding
to digits 1905 of the fourth state occur at times 1945 near the beginning of intervals 1420.
Times 1930, 1935, 1940, 1945 are distinguishable from one another.

Decoding decodes time-based code signal 1220 into signal 1230. Information is
expressed in signal 1230 using digits having four different discrete potential states, namely
digits 1905 having the first state (i.e., “A’s”), digits 1910 having the second state (i.c.,
“B’s”), digits 1915 having the third state (i.e., “C’s”), and digits 1920 having the fourth state
(i.e., “D’s”). In other implementations, signal 1230 can express information in digits having
a different number of possible states (e.g., digits having 10 different possible states that
express information in decimal) or in digits having the a very large number or continuous
continuum of possible states (¢.g., a nearly analog or analog continuum of states). In some
implementations, signal 1230 can express genetic information, namely, four nucleic acids,
using four different possible states.

In other implementations, a decoder can be implemented as digital circuitry that
receives as an input an ordered collection of bits that are grouped into binary characters of a
predetermined length of N binary digits (i.e., bits), in which only one bit is distinct from the
others, and produces as output a sequence of output symbols. The digital circuitry can be
controlled by a programmed computer, or include an embedded computer. In some such
implementations, the decoder includes circuitry that transforms the sequence of symbols into
an analog output signal.

FIG. 20 is a schematic representation of an implementation of decoding system 2000.
System 2000 can be a stand alone system or part of a larger system, such as system 1200
(FIG. 12). System 2000 includes a neural processing component 140, 1005 from which
signal 1220 is received by decoder 1205. Signal 1220 encodes information by the timing of
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the occurrence of events within time intervals. In some implementations, neural processing
component 140, 1005 can include multiple elements that contribute to the events in signal
1220. For example, in neural processing components 140, 1005 implemented using “wet”
neural components, multiple nerves can contribute to the events in signal 1220. As another
example, in neural processing components 140,1005 implemented using semiconductor
devices, multiple neural network outputs can contribute to the events in signal 1220.

In operation, decoder 1205 can decode the signal 1220 into a signal 1230 which
expresses information 1225 in an ordered, finite set of discrete digits. Decoder 1205 can thus
act as an interface between the statistical processing and pattern recognition functions
provided by neural processing component 1205 and binary (and other) digital data processing
devices. For example, decoder 1205 can be included in a motor or other prosthesis that
receives nerves’ spike trains with, e.g., control or other information, encoded in signal 1220.

FIG. 21 is a schematic representation of an implementation of system for decoding
signals in which information is encoded by the timing of the occurrence of events within time
intervals, namely, a multichannel decoder system 2100. Multichannel decoder system 2100
can be used in isolation or in conjunction with other devices. For example, multichannel
decoder system 2100 can be used as time-based decoder 41 (FIG. 1A).

System 2100 includes a collection of decoders 1205, a data aggregator 2105, a
collection of inputs 2110, and an output 2115. Inputs 2110 receive a respective time based
code signal 1220. Time based code signals 1220 each include a collection of intervals that
themselves include events. The timing of events within these intervals encodes information.
In some implementations, different time based code signals 1220 can all be received from the
same single system or medium 140, as shown.

The time based code signals 1220 are provided from inputs 2110 to corresponding
inputs 1210 of decoders 1205. Decoders 1205 are thus each connected to receive a
respective time based code signal 1220. Decoders 1205 decode the information in signals
1220 and output decoded signals 2125. In the decoded signals, at least some of the
information content of signals 1220 is expressed in an ordered, finite set of discrete digits,
e.g., in a collection of high and low bits.

Decoded signals 2125 are provided to one or more inputs 2130 of data aggregator

2105. Data aggregator 2105 also includes an output 2135. Data aggregator 2105 is a
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component that aggregates a relatively small collection of digits into a larger collection of
digits. In the illustrated implementation, data aggregator 2105 is connected to aggregate the
received decoded signals into an output signal 1230 that expresses information 1225 in an
ordered, finite set of discrete digits. Output signal 1230 is provided from output 2135 of data
aggregator 2105 to output 2115 of system 2100.

In operation, each decoder 1205 receives a respective time based code signal 1220
from system or medium 140. Decoders 1205 decode their respective time based code signals
1220 into signals that express the information content in an ordered, finite set of discrete
digits. Data aggregator 2105 is connected to receive signals 1220, aggregates them, and
outputs them in an output signal 2145.

FIG. 22 is a schematic representation of an implementation of a system 2200 in which
information can be encoded. System 2200 includes a multichannel encoder 1105 and a
compressing encoder 2205.

Compressing encoder 2205 is a component that compresses multiple input signals
into a single output signal 2220. Compressing encoder 2205 includes a collection of one or
more inputs 2210 and an output 2215. One or more inputs 2210 are connectable to receive
time based code signals from output 1115 of a multichannel time encoder 1105.
Compressing encoder 2205 compresses the received time based code signals and outputs a
compressed signal 2220 on output 2215 to a system or medium 140.

System 2200 can be used in isolation or in conjunction with other devices. For
example, system 2200 can be used as time-based encoder 25, amplitude weighting
component 27, and compressor 29 (FIG. 1A).

FIG. 23 is a schematic representation of one implementation of a compressing
encoder 2205. Compressing encoder 2205 is a component that encodes information from a
collection of signals in which information is encoded by the timing of the occurrence of
events within time intervals into a signal that includes a timed series of events such as signal
2220 (FIG. 22).

In the implementation shown, encoder 2205 includes a collection of different
binary-to-analog converters 2305, an integrator 2310, a collection of inputs 2315, and an
output 2320. Binary-to-analog converters 2305 each include a respective input 2325 and an
output 2330. Input 2325 of cach binary-to-analog converter 2305 is connected to receive a
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respective signal 135 in which information is encoded by the timing of the occurrence of
events within time intervals from corresponding input 2315.

Each input 2315 and corresponding binary-to-analog converter 2305 pair forms an
encoding channel 2340. Compressing encoder 2205 is thus a parallel combination of
multiple encoding channels 2340. Signals 135 can have the same information, can have
different information content, or can have combinations of the same and different
information content.

Each binary-to-analog converter 2305 is a component that is configured to weight the
amplitude of individual events in an input time series of events as a function of the timing of
other events in the input time series. In some implementations, the events can be weighted
using a non-linear function. In some implementations, the compressing encoder 2205
includes at least two different binary-to-analog converters 2305. Differing binary-to-analog
converter 2305 can weight events using different time-sensitive parameters, different time
sensitivities, or combinations of these or other factors. In some implementations, every
binary-to-analog converter 2305 in encoder 2205 will differ from every other binary-to-
analog converter 2305 in encoder 2205. In some implementations, the collection of binary-
to-analog converters 2305 in encoder 2205 is the complete set of binary-to-analog converters
constructed using a process such as process 3900 (FIG. 39). As a consequence of such
differences, when the same signal in which information is encoded by the timing of the
occurrence of events within time intervals is input into different binary-to-analog converters
2305, different signals that include the weighted events at relative times that correspond to
the timing of the unweighted events within the input signal will be output by the different
binary-to-analog converters 2305.

Each binary-to-analog converter 2305 outputs a signal 2345 that can include the
weighted events at relative times that correspond to the timing of the unweighted events
within the input signal over output 2330. Signals 2345 are provided to a respective input
2350 of integrator 2310. In implementations where integrator 2310 is implemented using
“wet” neural components, the properties of signals 2345 can be tailored for compatibility
with wet neural components. For example, events within signals 2345 can be tailored to

mimic the amplitude and time characteristics of action potentials.
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Integrator 2310 includes a collection of inputs 2350 and an output 2355. Integrator
2310 is a component that integrates the signals received at inputs 2350 to generate a signal
that is provided to output 2355. Integrating these signals combines and compresses them into
a single signal. In some implementations, integrator 2310 can be a non-linear integrator in
that different signals received at different inputs 2350 contribute to different extents to the
signal provided to output 2355. In some implementations, integrator 2310 can be a linear
integrator in that different signals received at different inputs 2350 contribute to the same
extent to the signal provided to output 2355. In some implementations, as described further
below, integrator 2310 is modeled after one or more neurons or nodes in the brain or other
neural processing device. For example, the single signal output 2360 provided on output
2355 of integrator 2310 can represent the all-to-all interactions of the different signals
received at inputs 2350.

Output 2355 couples signal 2360 to output 2320 of compressing encoder 2205.
Output 2320 provides signal 2365 to a system or medium 140.

FIGS. 24,25, 26, 27 are schematic representations related to different
implementations of an integrator 2310, namely an integrator 2400, an integrator 2500, an
integrator 2600, and an integrator 2700. Integrator 2400 is a non-branched node of a neural
processing system. Integrator 2500 is a node of a neural processing system that has multiple
branches. Integrators 2600, 2700 are a network of nodes of a neural processing system.
Integrators 2400, 2500, 2600, 2700 can be constructed in hardware, in software, in wet neural
components, or in combinations of these components.

As shown, integrator 2500 includes a collection of branches 2505. In some
implementations, branches 2505 have identical properties. In other implementations,
different branches 2505 have different properties. For example, different branches 2505 can
have different cable properties.

As shown, integrators 2600, 2700 cach include a collection of nodes 2605 joined by a
collection of links 2610. Links 2610 can include, ¢.g., feedforward links, feedback links,
recurrent links, or combinations thereof. Integrator 2700 includes a pair of outputs 2355.
Both outputs 2355 provide results of combining and compressing the signals received at
inputs 2350. However, in general, outputs 2355 will output different signals that result from

different combinations and compressions of the signals received at inputs 2350. As a result,
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two different signals can be output from a compressing encoder and conveyed to a system or
medium 140. These two different signals can also be stored or decoded in parallel using the
described systems and techniques. Although such parallel storage and decoding might
decrease data storage density or require additional processing, the fidelity of storage and
decoding can be checked and, if necessary, improved by comparing the results of parallel
decoding.

In operation, integrators 2400, 2500, 2600, 2700 can integrate input signals according
to one or more models. For example, in some implementations, integrator 2400 can integrate
according to an integrate-and-fire model. Such a model includes a capacitor C in parallel
with a resistor R driven by a current /(z) and provides that:

T, a =V(t)+R-I(?)

dt Equation 1
In this model, the signals on inputs 2350 are integrated by a linear summation of amplitudes
of cach signal at any moment in time (i.e. the voltages of each input signal (RxI(t)) are
summed). The voltage signals decay exponentially with a time constant T,,. A threshold
voltage can be sclected, above which a binary state can be signaled in output 2355.

In other implementations, integrators 2400-2700 can integrate according to a
conductance based integrate-and-fire neuron model provided by:

Cmcii—lt/:Zgj(V—Vj)+lext Equation 2

where g; is the conductance for a particular ionic species, V-V; is the Nernst Potential of the
conductance, and 7, is an external applied current.

In this model, the signals on inputs 2350 are integrated by a non-linear summation of
amplitudes of cach signal at any moment in time, achieved by one or more conductances g
that scale the amplitude of the signals (Iex) depending on the total voltage reached at any
moment in time. Amplitudes of each signal also decay exponentially with a time constant Tn,
which may vary if conductance is made to vary. A threshold voltage can be selected, above
which a binary state can be signaled in output 2355.

In some implementations, integrator 2500 can operate according to a model in which
a conductance-based evolution of voltages is extended to include decaying of voltages within

cables, which is described by the Telegraphers Equation which is given by:
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2
T%-A}M:

ot ox?

where A is a length constant determined by properties of the branches, x is a digitized unit of

Vv, =V Equation 3

length along the branches, and V7 is the voltage at equilibrium.

In this model, the signals on inputs 2350 are integrated using either Equation 1 or
Equation 2 above and by a further lincar summation where cach signal on inputs 2350 can
propagate along the physical branches of the system to all other inputs 2350. While decaying
in amplitude according to the length constant A as the signal propagates, each signal on
inputs 2350 contributes to some extent to the amplitude at each inputs 2350. The amplitude
of any one signal at input 2350 is therefore the amplitude of that signal plus the sum of all
amplitudes of other signals on inputs 2350 after cach has uniquely decayed while
propagating to the location of the example input 2350. A threshold voltage can be selected,
above which a binary state can be signaled in output 2355.

In some implementations, integrators 2600, 2700 can operate according to a neural
network model in which all nodes are interconnected either directly or indirectly through
other nodes. In such integrators, any node can serve as output. In some implementations,

integrators 2600, 2700 can operate according to a model given by:

Cm%:Zgj(V—Vj)+zn:’li(t) Equation 4
where [;(1) is the current injected by input 7 at time 7 and where there are # inputs to a neuron.
In this model, the signals on inputs 2350 are integrated by networking processing
clements 2605 that are each modeled by cither Equations 1, 2, or 3 above, which creates
additional internal inputs 2610 to each element 2605, thus allowing an arbitrary non-linear
and parallel summation of all inputs 2350 to produce output 2355. Any one of the processing
elements 2605 can be selected to signal binary states of the network as output 2355.
Integrators 2400, 2500, 2600, 2700 can be used as compressor 29 (FIG. 1A).
FIG. 28 is a schematic representation of a binary-to-analog converter 2305.
Binary-to-analog converter 2305 can be used, e.g., in an encoder, in a time series scanner, or
in a weighting device. Binary-to-analog converter 2305 can thus, in some implementations,

be a reference binary-to-analog converter as described further below,.
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Binary-to-analog converter 2305 is a component that is configured to weight the
amplitude of individual events in an input time series of events as a function of the timing of
other events in the input time series. In some implementations, the events can be weighted
using a non-linear function. For example, binary-to-analog converter 2305 can use multiple
time-sensitive parameters to generate individual weights for each individual event based on
the timing of predecessor events within an input signal. Binary-to-analog converter 2305 can
apply the generated weights to individual events, e.g., by multiplying the events by the
weights and outputting the weighted events at relative times that correspond to the timing of
the unweighted events within the input signal.

Binary-to-analog converter 2305 includes an input 2325 and an output 2330. Input
2325 receives a signal 2805 that includes a times series of events. For example, input 2325
can receive a time based code signal 135 or a signal output from a compressing encoder
2205. Output 2330 provides a signal 2810 that includes the weighted events at relative times
that correspond to the timing of the unweighted events within the input signal.

In some implementations, binary-to-analog converter 2305 can include a reset
mechanism that resets the weighting of the amplitude of individual events to a known state.
The reset mechanism can be triggered, ¢.g., by the presence of a footer event 530 within a
footer interval 520 of a signal 135 (FIG. 5). Resetting the weighting of can halt the evolution
of time-sensitive parameters and return these parameters to known values. In other
implementations, binary-to-analog converter 2305 can quiesce without a trigger, e.g., over
time.

In some implementations, the parameters used by binary-to-analog converter 2305
can appear in time-dependent differential equations. For example, binary-to-analog
converter 2305 can use three time-sensitive parameters (U, Tq, Tr in the equations below) and
one time-insensitive parameter (A in the equations below) to generate individual weights. In
some implementations, the amplitude Ay of the k™ event in the signal in which events (1, ...,

k) are separated by times (A, ..., A1) can be given by:
A =A-u, -y, Equation 5

A .
u, =U+u, ,(1-U) eXp(’c—H) Equation 6
S
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Ay
T

d

Yy, =1+ (‘V k1 ~ U — 1 exp( J Equation 7

where W and L are hidden dynamic variables (1 € [0,1]; (v € [0,1]) with initial values of v
=1 and p; = U for the first event. The variable y can represent, e.g., the fraction of resources
available at the time of cach event. The variable U can represent, e.g., the fraction of
resources used by cach event. In some implementations, both variables can evolve with each
event and provide that the amplitude of the response to cach event in a signal is different and
reflects the temporal history of events in that signal.

The manner in which these dynamic variables evolve and the time period over which
each response accumulates information about the temporal history of the signal depends on
the values of'the time-sensitive parameters (U, T4, Tr). The parameter U can set the maximal
resources available for the first event, which fractionates the maximal response possible
(given by A). Thus A;=AU. The parameter T4 is a time constant for recovery of the
resources after use. The parameter T is a time constant for recovery from a facilitation of
by some amount (typically p).

By assigning different values to parameters U, Tq4, Ty, different binary-to-analog
converters 2305 will generate different sequences of amplitudes in response to an identical
input sequence of events. In some implementations, more complex time-sensitivities can be
achieved using double or higher order exponentials for one or both of parameters Tq4, Tr. In
some implementations, more complex time-sensitivities can be achieved using a time-
sensitive function to render one or both of T4, Tr and by making U a stochastic variable or
function linked to the parameters themselves.

In some implementations, binary-to-analog converters 2305 can be implemented as
described in one or more of the following: United States Patent Publication 2003/0208451;
United States Patent 5,155,802; United States Patent 5,537,512; United States Patent
6,363,369; and United States Patent 4,962,342, the contents of all of which are incorporated
herein by reference. For example, binary-to-analog converters 2305 can be implemented as a

device that includes a network of signal processors interconnected by one or more processing
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junctions that dynamically adjust response strength according to the temporal pattern of
events in signal 2805 and hence simulates a “dynamic synapse” as described in United States
Patent 6,363,369. The processing junctions can receive and process a prejunction signal
from one signal processor in the network to produce a junction signal which causes a
postjunction signal to a second signal processor in the network. Each processing junction
can be configured so that the junction signal has a dynamic dependence on the prejunction
signal.

FIG. 29 is a schematic representation of weighting the amplitude of individual events
in a time series of events as a function of the timing of other events in the time series. The
illustrated weighting can be performed by a binary-to-analog converters such as
binary-to-analog converter 2305 (FIG. 28). In the illustrated implementation, signal 135 is a
time-based code signal that encodes information by the timing of the occurrence of events
within time intervals. For example, signal 135 can be a time-based code signal output from a
decoder 105 (FIGS. 1,2, 4, 6, 8). Signal 135 is weighted to form a weighted time signal
2900.

Weighted time signal 2900 includes a sequence of time intervals 2905 each of which
includes a respective event 2910. Events 2910 occur at times 2915 within respective
intervals 2905.

In the illustrated implementation, events 2910 are pulses that transition from a
bascline (i.c., a “resting”) state 2920 to a high (i.e., an “excited”) state 2925 and then return
to the baseline resting state 2920. The level of high state 2925 differs for different events
2910. The level of high state 2925 is the amplitude of event 2910 and a result of the
weighting. The level of high state 2925 (i.e., the amplitude of each event 2910) embodies the
timing of that event 2910 within signal 135 and the timing of other events 2910 within signal
135. In other words, information encoded by the timing of two or more events 2910 within
signal 135 is embodied within the amplitudes of each event 2910. As described above, in
some implementations, the amplitudes of each event 2910 can embody the timing only of
predecessor events 2910.

In the illustrated implementation, the weighting of the events in time-based code
signal 135 changes the amplitude of those events while retaining within-interval and

within-signal timing information. In particular, the illustrated weighted time signal 2900
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includes a collection of time intervals 2905, each of which corresponds to a respective
interval 320 in signal 135. This correspondence is represented by arrows 2930. In the
illustrated implementation, some events 2910 are increased in amplitude relative to
respective corresponding events 205 and some events 2910 are decreased in amplitude
relative to respective corresponding events 205.

Corresponding time intervals 2905, 320 cach include a respective event 2910, 325
that encodes information. The position of events 2910, 320 within the respective of
corresponding time intervals 2905, 325 is the same. For example, when an event 320 occurs
at the beginning of a time interval 325, event 2910 in the corresponding time interval 2905
also occurs at the beginning of that interval. As another example, when an event 320 occurs
at the middle of a time interval 325, event 2910 in the corresponding time interval 2905 also
occurs at the middle of that interval. In the illustrated implementation, the duration of
corresponding intervals 2905, 325 is the same. Further, the order of corresponding intervals
2905, 325 with respect to other intervals 2905, 325 within a respective signal 2900, 135 is the
same.

FIG. 30 is a schematic representation of one implementation of a signal 2365. Signal
2365 can be output from a compressing encoder 2205 of a device such as a transmitter of a
cell phone or the head of disc drive. Signal 2365 can be a one-dimensional signal and can be
one-dimensional signal 29 (FIG. 1A).

Signal 2365 includes a timed series of events 3005. Events 3005 are separated from
one another by time spans 3010. The duration of time spans 3010 embodies the integration
of the amplitude sequences that includes weighted events, ¢.g., weighted time signal 2900.

In the illustrated implementation, events 3005 are pulses that transition from a
bascline (i.c., a “resting”) state 3015 to a high (i.e., an “excited”) state 3020 and then return
to the baseline resting state 3015. In some implementations, the shapes of different events
3005 can be indistinguishable from one another and different events 3005 can be
distinguished only by virtue of their timing.

The number of time spans 3010 for a given signal 2365 within a unit time can be
selected to conform with a predetermined probability distribution. In some implementations,
the probability distribution can be asymmetrical and skewed, e.g., to the left of its median. In

some implementations, the standard deviation of the probability distribution can be
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approximately equal to the square root of the mean of the probability distribution. For
example, in some implementations, the number of time spans 3010 within a unit time can be
Poisson distributed.

In some implementations, signal 2365 can be added to, superpositioned with, or
otherwise transmitted along with additional information. For example, events 3005 can be
added to a modulated or shifted analog or digital signal and hence resemble noise in that
signal. Such implementations are particularly relevant to covert or encrypted data
communication. For example, events 3005 can be transmitted along with a frequency
modulated analog signal that itself conveys unremarkable information such as, e.g., a radio
broadcast. To the uninformed observer, events 3005 would appear to be noise on this second
signal. The information content encoded by events 3005 can thus be disguised.

FIG. 31 is a schematic representation of a data storage device 3100. Data storage
device 3100 is a component in which information can be stored and from which the stored
information can be accessed. For example, data storage device 3100 can be an optical disc, a
magnetic disc, a magnetic tape, a record album, a punch card, a bar-coded label, or other data
storage device.

Data storage device 3100 includes a collection of detectable physical manifestations
3105. Physical manifestations 3105 are structural elements that can be detected or sensed by
a data storage device reader. For example, physical manifestations 3105 can be the pits or
bumps of an optical disc that are detectable by an optical disc reader. As another example,
physical manifestations 3105 can be magnetized elements of magnetic disc or tape that are
detectable by a magnetization sensor. As another example, physical manifestations 3105 can
be the features of a record album that are detectable by the stylus of a record player.

Physical manifestations 3105 are arranged and positioned in sequence along paths
3110. Paths 3110 guide data storage and access and can be, e.g., tracks, grooves, a magnetic
tape, or the length of a bar code. The physical manifestations 3105 along cach path 3110 are
separated from one another by distances 3115. The lengths of distances 3115 can be scaled
to correspond to the times between events in a signal. For example, lengths of distances
3115 can be scaled to correspond to the duration of time spans 3010 in signal 2365 (FI1G. 30).

During writing of data into data storage device 3100, the speed of relative motion

between paths 3110 of data storage device 3100 and a data storage device writer can
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transform the times between events in such signals into the position of physical
manifestations 3105 along paths 3110. During reading of data from data storage device
3100, the speed of relative motion between paths 3110 of data storage device 3100 and a data
storage device reader can transform the position of physical manifestations 3105 along paths
3110 back into times between events in such signals. In some implementations, the speed of
relative motion during reading and writing need not be constant but can vary, e.g., based on
the position of a path 3110 on data storage device 3100.

The number of lengths of distances 315 within a unit length can be selected to
conform with a predetermined probability distribution. In some implementations, the
probability distribution can be asymmetrical and skewed, e.g., to the left of its median. In
some implementations, the standard deviation of the probability distribution can be
approximately equal to the square root of the mean of the probability distribution. For
example, in some implementations, the number of lengths of distances 315 within a unit
length can be Poisson distributed.

In operation, a data storage device writer can receive a signal that characterizes a
timed series of events, such as signal 2365. The data storage device writer can write physical
manifestations 3105 along one or more paths 3110 on data storage device 3100 such that the
lengths of distances 3115 scale to correspond to the times between events in the signal. Data
storage device 3100 can maintain or “store” the physical manifestations 3105 and the lengths
of the distances 3115 that separate physical manifestations 3105.

In accessing the stored information, a data storage device reader can measure the
lengths of the distances 3115 that separate physical manifestations 3105 along one or more
paths 3110 on data storage device 3100. The measurements can be converted into a signal
that characterizes a timed series of events, such as signal 2365 (FIG. 30). For example, the
data storage device reader can output signal 2365 such that duration of time spans 3010 scale
to correspond to the lengths of the distances 3115. In some implementations, the data storage
device reader and the data storage device writer can be the same device.

FIG. 32 is a schematic representation of an implementation of system in which
information can be decoded, namely, a system 3200. System 3200 includes a multichannel

decoder 2100 and an expanding decoder 3205.

42



10

15

20

25

30

WO 2011/012614 PCT/EP2010/060875

Expanding decoder 3205 is a component that expands one or more input signals into a
collection of output signals. Expanding decoder 3205 includes an input 3210 and a
collection of one or more outputs 3215. Input 3210 receives a signal 2365 from a system or
medium 140. Expanding decoder 3205 expands signal 2365 and outputs a collection of one
or more signals in which information is encoded by the timing of the occurrence of events
within time intervals on one or more outputs 3215 to multichannel decoder 2100.

System 3200 can be used in isolation or in conjunction with other devices. For
example, system 3200 can be used as weighting expander 37, amplitude decoder 39, and
time-based decoder 41 (FIG. 1 A).

FIG. 33 is a schematic representation of one implementation of an expanding decoder
3205. Decoder 3205 is a component that decodes information in a signal that includes a
timed series of events into a time-based code signal in which information is encoded by the
timing of the occurrence of events within time intervals. Decoder 3205 can thus decode a
signal such as signal 2365 (FIG. 30) into a signal such as signal 1220 (FIG 12).

In addition to input 3210, and one or more output 3215, decoder 3205 includes a
weighting device 3310 and a time series scanner 3315. Weighting device 3310is a
component for weighting events in a signal that includes a timed series of events. Time
series scanner 3315 is a component that scans for a time series that, when input into an
appropriately referenced binary-to-analog converter, yields a time-based code signal in which
information is encoded by the timing of the occurrence of events within time intervals.

Input 3210 of expanding decoder 3205 receives signal 2365. Signal 2365 includes a
timed series of events. Weighting device 3310 is coupled to input 3210 and also includes an
output 3335. Output 3335 provides a net series of amplitude events 3340.

Time series scanner 3315 includes an input 3345 and is coupled to output 3215 of
decoder 3305. Input 3345 receives events 3340 and outputs a time-based code signal in
which information is encoded by the timing of the occurrence of events within time intervals.
For example, output 3215 can provide a signal 135 to a system or a medium.

Expanding decoder can be used in isolation or in conjunction with other devices. For
example, expanding decoder can be used as weighting expander 37 and amplitude decoder 39

(FIG. 1A).
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FIG. 34 is a schematic representation of a weighting device 3310. Weighting device
3310 is a component for weighting events in a signal that includes a timed series of events.
For example, weighting device 3310 can weight events 3005 of signal 2365 (FIG. 30). As
described further below, the weights with which weighting device 3310 weights the events
can be selected to based on the success in representing a mathematical or other operation on a
particular signal on an input channel 2340 of'a compressing encoder 2205 (FIG. 23). For
example, in some implementations, the weights with which weighting device 3310 weights
the events can be sclected to perform one or more of data compression and encryption
operations on signals on input channel 2340, text processing operations on signals on input
channel 2340, number processing operations on signals on input channel 2340, image
processing operations on signals on input channel 2340, and signal processing operations on
signals on input channel 2340. Weighting device 3310 can be part of expanding decoder
3205 (FIG. 33).

Weighting device 3310 includes an input 3210, an output 3335, a collection of
binary-to-analog converters 2305, a collection of multipliers 3440, a collection of weights
3445, and a summer 3465. Input 3210 receives signal 2365 that includes a timed series of
events. Input 3210 distributes signal 2365 to inputs 2325 of binary-to-analog converters
2305. Each binary-to-analog converter 2305 weights the amplitude of individual events in an
input time series of events as a function of the timing of other events in the input time series.
For example, each binary-to-analog converter 2305 can use multiple time-sensitive
parameters to generate individual weights for each individual event based on the timing of
predecessor events within signal 2365. In general, cach binary-to-analog converter 2305
applies the generated weights to individual events, e.g., by multiplying the events by the
weights and outputting the weighted events at relative times that correspond to the timing of
the unweighted events within signal 2365.

In some implementations, the collection of binary-to-analog converters 2305 can be
constructed using a process such as process 3900 (FIG. 39). In some implementations, the
set of binary-to-analog converters 2305 in weighting device 3310 can be the complete set of
binary-to-analog converters constructed using process 3900.

Each binary-to-analog converter 2305 includes output 2330 onto which the weighted

timed series of events 3430 is output. The weighted timed series of events 3430 are provided
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as an input to a respective multiplier 3440. Multipliers 3440 are components that are
configured to multiply a weighted timed series of events by another weight 3445. As
described further below, weights 3445 can be determined during a training process. For
example, cach weight 3445 can be determined according to the success of a corresponding
binary-to-analog converter 2305 in representing a particular signal 135 input into a channel
2340 of an compressing encoder 2205. As another example, weights 3445 can be determined
according to the success of a respective binary-to-analog converter 2305 in representing a
mathematical or other operation on a particular signal 135 input into a channel 2340 of an
compressing encoder 2205.

Each weight 3445 can be received by a multiplier 3440 on a respective input 3450.
Weights 3445 can be stored, ¢.g., at one or more data storage devices. Multipliers 3440 arc
components that scale the weighted timed series of events 3430 received on input 3435
according to weight 3445. Multipliers 3440 can scale the weighted timed series of events
linearly or non-linearly. For example, in some implementations, multipliers 3440 can use
weights 3445 as scalar weights and multiply the weighted events in each timed series by a
corresponding weight 3445. In some implementations, multipliers 3440 can use weights
3445 to scale that various weighted events in each timed series nonlinearly or otherwise.

Each multiplier 3440 outputs the scaled and weighted timed series of events 3455
over an output 3450 which is coupled to inputs 3460 of a summer 3465. Summer 3465 is a
component that sums these scaled and weighted events 3455 at each time in the input scaled
and weighted timed series to generate a net series of amplitude events 3470.

In some implementations, summer 3465 can include a dynamic threshold for
generating an amplitude event in net series 3470. A dynamic threshold is a threshold that
changes. The dynamic threshold can be a lower cutoff for the inclusion of an amplitude
event in net series 3470. In other words, if the sum of scaled and weighted events at a first
time is below the lower cutoff, this sum is not included in net series 3470 even though the
sum is not zero. The dynamic threshold can be changed to control the number of amplitude
event in net series 3470. For example, the dynamic threshold can be changed to ensure that
the number of amplitude events in net series 3470 is identical to the number of events in
input signal 2365. In some implementations, summer 3465 first sums scaled and weighted

events at each time in the input scaled and weighted timed series, and then the dynamic
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amplitude is gradually lowered until the number of amplitude events in net series 3470 is
identical to the number of events in signal 2365. This allows the same dynamic threshold to
apply for the entire net series 3470.

In the illustrated implementation, the amplitude events within net series 3470 are
separated by non-uniform periods. This is not necessarily the case. Instead, summer 3465
can output the amplitude events within net series 3470 without timing information. In light
of the dynamic thresholding described above, summer 3465 can in effect output a list of the
amplitudes of the largest amplitude events as net series 3470 without describing the timing
between those events. The order of the amplitudes in such a list can correspond to the order
in which such events occurred.

FIG. 35 is a schematic representation of weighting the amplitude of individual events
in a time series of events as a function of the timing of other events in the time series. The
illustrated weighting can be performed by a binary-to-analog converters such as
binary-to-analog converter 2305 (FIG. 28). In the illustrated implementation, signal 2365
includes a timed series of events 3005 that are separated from one another by time spans
3010. The duration oftime spans 3010 embodics the integration of the amplitude sequences
that includes weighted events. Signal 2365 can thus be output, e.g., from an integrator such
as one of'integrators 2310, 2400, 2500, 2600, 2700.

Signal 2365 is weighted to form a weighted time signal 3500. Weighted time signal
3500 includes a collection of events 3505 that are separated from one another by time spans
3510.

In the illustrated implementation, events 3505 are pulses that transition from a
bascline (i.c., a “resting”) state 3520 to a high (i.e., an “excited”) state 3525 and then return
to the baseline resting state 3520. The level of high state 3525 differs for different events
3505. The level of high state 3525 is the amplitude of event 3505 and a result of the
weighting. The level of high state 3525 (i.e., the amplitude of each event 3505) embodies the
timing of that event 3505 within signal 2365 and the timing of at least some of the other
events 3505 within signal 2365. In other words, information encoded by the timing of two or
more events 3505 within signal 2365 is embodied within the amplitudes of each event 3505.
As described above, in some implementations, the amplitudes of each event 3505 can

embody the timing only of predecessor events 3505.
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In the illustrated implementation, some events 3505 are increased in amplitude
relative to respective corresponding events 2365 and some events 3505 are decreased in
amplitude relative to respective corresponding events 2365.

Time spans 3510 between the occurrence of events 3505 within weighted time signal
3500 are scaled to time spans 3010 between occurrence of events 3005 within 2365. In the
illustrated implementation, time spans 3510 are one-to-one scaled to time spans 3010. In
other words, the time span 3010 that separates a first pair of events 3005 is identical to the
time span 3510 that separates a pair of events 3505 that corresponds to the first pair.

FIG. 36 is a schematic representation of a time series scanner 3315. Time series
scanner 3315 is a component that scans for a time series that, when input into an
appropriately referenced binary-to-analog converter, yields a time-based code signal in which
information is encoded by the timing of the occurrence of events within time intervals. For
example, time series scanner 3315 can scan for a time-based code signal 135 that
approximates or is the same as the time-based code signal 135 input into a channel 2340 of a
compressing encoder 2205 (FIG. 23).

Time series scanner 3315 includes an input 3345 and an output 3215. Input 3345
receives net series 3470 of amplitudes or amplitude events. Input 3345 conveys net series
3470 to an input 3620 of an amplitude buffer 3625. Amplitude buffer 3625 is a component
that buffers the amplitudes in net series 3470 for comparison by a comparator 3635. In some
implementations, amplitude buffer 3625 can include a cache or other memory that stores the
magnitudes of the amplitudes or amplitude events of net series 3470. In implementations in
which net series 3470 includes timing information, amplitude buffer 3625 can include
components for removing the timing information from net series 3470 without losing the
amplitude information. Amplitude buffer 3615 includes an output 3630 that provides the
buffered amplitudes to an input 3640 of comparator 3635.

Comparator 3635 also includes an input 3645 and an output 3650. Comparator 3635
is a component that compares amplitudes on input 3640 with amplitudes on input 3645 and
generates an indication of the result of the comparison on output 3650. The result of the
comparison embodies the differences between the amplitudes on inputs 3640, 3645. For
example, when the differences between the amplitudes on inputs 3640, 3645 are very small,

output 3650 can output a small signal.
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Comparator 3635 compares amplitudes buffered in amplitude buffer 3615 with
amplitudes output from a reference binary-to-analog converter 2305. Although shown as a
single component, comparator 3635 can include a collection of comparators that are
connected to compare individual amplitudes, ¢.g., in parallel. In other words, a first
comparator can compare a first amplitude buffered in amplitude buffer 3625 with a first
amplitude output from reference binary-to-analog converter 2305, a second comparator can
compare a second amplitude buffered in amplitude buffer 3625 with a second amplitude
output from reference binary-to-analog converter 2305, and so on. The results of the
individual comparisons by such a collection of comparators can be output to a collection of
one or more outputs.

The output or outputs 3660 of comparator 3635 are provided to an input 3665 of a
time-based code permuter 3670. Time-based code permuter 3670 is a component that
permutes a time-based code in response to the feedback by output/s 3660. In particular,
time-based code permuter 3670 permutes a time-based code to minimize the differences
between the amplitudes on inputs 3640, 3645 of comparator 3635. Time-based code
permuter 3670 outputs a candidate time based code 3675 over an output 3680. As described
further below, the candidate time based code is proposed as a solution approximating a time-
based code signal 135 input to a channel 2340 of a compressing encoder 2205 (FIG. 23). For
example, time-based code permuter 3670 can use successive approximation to generate
candidate time based codes 3675.

Code 3675 is provided to an input 2325 of reference binary-to-analog converter 2305.
Reference binary-to-analog converter 2305 is a component that can weight the amplitude of
individual events of the candidate time based code as a function of the timing of other events
in the candidate time based code, e.g., using multiple time-sensitive parameters to generate
individual weights for each individual event based on the timing of predecessor events within
the time based code. Reference binary-to-analog converter 2305 can output weighted events
at relative times that correspond to the timing of the unweighted events within the candidate
time based code or without timing information. In other words, reference binary-to-analog
converter 2305 can output an ordered list of amplitude weights without describing the timing

between those events in the input candidate time based code. In some implementations,

48



10

15

20

25

30

WO 2011/012614 PCT/EP2010/060875

reference binary-to-analog converter 2305 can include a buffer, a cache, or other memory
that stores the magnitudes of the weights or weighted amplitudes.

In some implementations, reference binary-to-analog converter 2305 can be identical
to a binary-to-analog converter 2305 of compressing encoder 2205 (FIG. 23). For example,
the time-sensitive parameters used by reference binary-to-analog converter 2305 in time
series scanner 3315 can be identical to the time-sensitive parameters used by binary-to-
analog converter 2305 in the channel 2340.

In some implementations, time-based code permuter 3670 can also include a
comparator that compares the feedback provided by outputs 3660 to a threshold level that
embodies an acceptable amount of difference between the amplitudes on inputs 3640, 3645
of comparator 3635. Time-based code permuter 3670 can permute the candidate time based
code until the acceptable amount of difference is reached. In other words, in
implementations where fidelity is very important, the threshold level can be more stringent
and set to require that the difference between the amplitudes on inputs 3640, 3645 of
comparator 3635 be relatively small or zero. Under such circumstances, time-based code
permuter 3670 will generally perform relatively more permutations. In implementations
where fidelity is less important and factors such as, ¢.g., speed are more important, the
threshold level can be less stringent and set to allow the difference between the amplitudes
on inputs 3640, 3645 of comparator 3635 to be relatively large. Under such circumstances,
time-based code permuter 3670 will generally perform relatively fewer permutations. In
some instances, the acceptable amount of difference between the amplitudes on inputs 3640,
3645 of comparator 3635 may be reached after more or fewer permutations than generally
required. For example, time-based code permuter 3670 may, by happenstance, output a
candidate time based code after very few permutations that satisfies even a very stringent
threshold level. In some implementations, the stringency of the threshold can be tunable,
¢.g., by a user, for operation in different contexts.

In response to the feedback from outputs 3660 reaching or crossing the threshold
level, time-based code permuter 3670 can output a selection signal 3685 over an output 3690.
Selection signal 3685 is an indication that the difference between the amplitudes on inputs
3640, 3645 of comparator 3635 has reached an acceptably small level. The selection signal
3685 can be set so as to effectuate the close of a switch 3690, thereby connecting output 3215
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with code 3675. This conveys the candidate time based code 3675 to output 3215 for output
to system or medium 140 in signal 135.

FIG. 37 is a schematic representation of an expanding decoder 3205, namely, a
multichannel expanding decoder 3700. Decoder 3700 is a component that decodes
information in a signal that includes a timed series of events into a time-based code signal in
which information is encoded by the timing of the occurrence of events within time intervals.
Decoder 3700 can thus decode a signal such as signal 2365 (FIG. 30) into a collection of
signals 135. Decoder 3700 can be used in isolation or in conjunction with other devices. For
example, decoder 3700 can be used as weighting expander 37 and amplitude decoder 39
(FIG. 1A).

Decoder 3700 includes a collection of weighting devices 3310, a collection of time
series scanner 3315, an input 3710, and a collection of one or more outputs 3715. Each
weighting device 3310 is paired with a corresponding time series scanner 3315. These pairs
can form a collection of decoding channels 3717 in decoder 3700. Decoder 3700 is thus a
parallel combination of multiple decoding channels 3717, each of which forms a separate
expanding decoder 3205.

In decoder 3700, each weighting device 3310 can weight events using an associated
set of binary-to-analog converters 2305 and an associated set of weights 3445. In some
implementations, at least some of the binary-to-analog converters 2305, at lecast some of the
weights 3445 of different weighting devices 3310, or both will differ. For example, in
implementations where the set of binary-to-analog converters 2305 is a complete set of
binary-to-analog converters 2305 constructed using a process such as process 3900 (FIG. 39),
the same binary-to-analog converters 2305 can be included in all weighting devices 3310 in
multichannel expanding decoder 3700. However, at least some of the weights 3445 of
different weighting devices 3310 will differ. For example, in some implementations, many
weights 3445 of different weighting devices 3310 will be zero or close to zero, but some
weights 3445 will not. As a consequence of these differences, when the same timed series of
events is input into different weighting devices 3310, cach weighting device 3310 will
generally output different net series of amplitude events. This is not necessarily the case,

however, as happenstance may result in different weighting devices 3310 outputting the same
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net series of amplitude events despite different binary-to-analog converters 2305 and weights
3445.

In decoder 3700, each time series scanner 3315 can scan for a time-based code signal
using different components. For example, each time series scanner 3315 can include a
different reference binary-to-analog converter 2305. For example, the reference binary-to-
analog converter 2305 in each time series scanner 3315 can be identical to binary-to-analog
converter 2305 of a channel 2340 of a compressing encoder 2205 (FIG. 23).

As a consequence of the different components in different time series scanners 3315,
different time series scanners 3315 generally output different time series even in response to
the same net series of amplitude events being received on inputs 3345. Further, the
differences between different time series scanners 3315 will yield different time series even
in instances where, through circumstance, the same time series is output by different time
series scanners 3315. Also, different time series scanners 3315 may occasionally yield the
same time series in response to different net series of amplitude events being received on
inputs 3345.

Input 3710 of decoder 3700 receives a signal 2365. Signal 2365 includes a timed
series of events. Input 3700 distributes signal 2365 to inputs 3210 of weighting devices
3310. The same single signal 2365 is thus input into different weighting devices 3310 in the
collection.

The one or more outputs 3215 of each time series scanner 3315 produce a time-based
code signal 3725 in which information is encoded by the timing of the occurrence of events
within time intervals. Each signal 3725 conveys a time-based code to a respective output
3715 of the decoder 3700. One or more outputs 3715 provide time-based code signals 135 in
which information is encoded by the timing of the occurrence of events within time intervals
to, e.g., a system or medium 140.

FIG. 38 is a schematic representation of an implementation of a system in which
information can be encoded and decoded, namely, a system 3800. System 3800 includes
system 2200 (FIG. 22) and system 3200 (FIG. 32). System 3800 can be, ¢.g., a data storage
system, a communications system, and/or a data compression system. System 3800 can be

used in isolation or in conjunction with other devices. For example, system 3800 can be used
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as time-based encoder 25, amplitude weighting component 27, compressor 29, weighting
expander 37, amplitude decoder 39, and time-based decoder 41 (FIG. 1A).

In system 3800, multichannel time encoder 1105 receives signal 125 and outputs a
collection of time based code signals on outputs 1115. The time based code signals are
received by one or more inputs 2210 of compressing encode, which compresses the received
time based code signals and outputs a compressed signal 2220 on output 2215 to system or
medium 140. Expanding decoder 3205 receives signal 2365 from system or medium 140 at
input 3210. Expanding decoder 3205 expands signal 2365 and outputs a collection of one or
more signals in which information is encoded by the timing of the occurrence of events
within time intervals on one or more outputs 3215 to multichannel decoder 2100.
Multichannel decoder 2100 receives the signals, and decodes and aggregates them into
output signal 1230 that expresses information in an ordered, finite set of discrete digits.

FIG. 39 is a flow chart of a process 3900 for constructing a collection of binary-to-
analog converters. For example, process 3900 can be used to construct binary-to-analog
converters 2305 in a weighting device 3310 (FIG. 34). As another example, process 3900 can
be used to construct binary-to-analog converters in a compressing encoder 2205 (FIG. 23).
As another example, process 3900 can be used to construct reference binary-to-analog
converters in time series scanner 3315 (FIG. 26). Process 3900 can be performed in isolation
or in conjunction with other activities. For example, process 3900 can be part of a process
4100 (FIG. 41) for creating an encoder/decoder pair. Process 3900 can be performed by one
or more data processing devices.

As described previously, a set of binary-to-analog converters can use multiple
time-sensitive parameters to generate individual weights for individual events in a time series
of events based on the timing between events in an input signal. In some implementations,
the weights can be generated based on the timing of predecessor events within the input
signal. At stage 3905 arange of possible values for each time-sensitive parameter is
assigned. For example, the time-sensitive parameters can be constrained to be within the
same normalized range, ¢.g., between zero and one.

A number of discrete values within each range can be identified (stage 3910). In
some implementations, the discrete values can be distributed within each range so that they

are all separated from their nearest neighbor by a single distance. For example, for a time-

52



10

15

20

25

30

WO 2011/012614 PCT/EP2010/060875

sensitive parameter that has been assigned a range of between zero and one, five separate
values of zero, 0.25, 0.5, 0.75, and one can be identified. In some implementations, the
discrete values are not uniformly distributed within each range but rather distributed
according to their use in the binary-to-analog converters. For example, the values of a time-
sensitive parameter that appears in a non-linear function can be distributed according to the
position of the time-sensitive parameter in the non-linear function. In some implementations,
the number of discrete values within cach range can be selected to be about the same as or
larger than the number of weighting device 3310 and time series scanner 3315 pairs within a
multichannel expanding decoder 3700 (FIG. 37).

One of the identified discrete values for each parameter used by a binary-to-analog
converter is selected (stage 3915). The values can be selected using a random or a non-
random process. In some implementations, a selected value of a given parameter can be
excluded from again being selected for that parameter. In effect, this would require the
constructed binary-to-analog converters to all have different values of cach parameter. In
these implementations, if there are N discrete values within cach range of Y different
parameters, a number (N*Y) possible combinations of values can be sclected.

In some implementations, the same value can be selected multiple times for multiple
binary-to-analog converters. For example, binary-to-analog converters can be constructed
using an exhaustive combinatorial combination of the identified values. For example, if
there are N discrete values within each range of Y different parameters, a number (N)
possible combinations of values can be selected.

In some implementations, the same value can be selected multiple times for multiple
binary-to-analog converters but the combinatorial combination of the identified values need
not be exhaustive. For example, if there are N discrete values within each range of Y
different parameters, a number greater than (NY) but less than (N¥) possible combinations of
values can be selected.

A binary-to-analog converter can be constructed using the selected values (stage
3920). A check can be made to determine if the desired number of binary-to-analog
converters has been constructed (stage 3930). In some implementations, the desired number
of binary-to-analog converters will be sufficiently large so that, for a single input time series

of events, almost any possible weighted time series for a given set of parameters and their
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ranges can be generated by some linear superposition of the one or more outputs of the
binary-to-analog converters in the collection. If the desired number of binary-to-analog
converters has not yet been constructed, the process returns to select additional parameter
values and construct an additional binary-to-analog converter (steps 3915, 3920). If the
desired number of binary-to-analog converters has been constructed, a device can be
assembled using the constructed binary-to-analog converters (stage 3935).

FIG. 40 is a flow chart of a process 4000 for calibrating a weighting device. For
example, process 4000 can be used to calibrate weighting devices such as weighting device
3310 (FIG. 34). Process 4000 can be used in isolation or in conjunction with other activities.
For example, process 4000 can be part of a process 4100 (FIG. 41) for creating an
encoder/decoder pair. Process 4000 can be performed, for example, by one or more digital
data processing devices.

One or more known time-based code signals can be input into the channels of a
multichannel encoder (stage 4005). For example, the system can input one or more known
time-based code signals 135 (FIG. 3) into inputs 2315 of compressing encoder 2205 (FIG.
23). In some implementations, the same time-based code signal 135 can be input into all
channels.

The output signal of the multichannel encoder as well as the amplitude-weighted time
series for each channel in the multichannel encoder can be identified (stage 4010). In some
implementations, system can store a description of the amplitude-weighted time series and
the output of the multichannel encoder. For example, in some implementations, the system
can store the output signal from the multichannel encoder in a data storage device 3100 (FIG.
31).

The output signal from the multichannel encoder is provided as an input into an
uncalibrated multichannel expanding decoder (step 4015). The multichannel decoder is
uncalibrated in that has not been calibrated to operate in conjunction with the multichannel
encoder that produced the particular output signal (i.e., the multichannel encoder from which
the output signal is received in step 4010).

The net series of amplitude events for each channel of the multichannel expanding
decoder is identified and compared to the amplitude-weighted time series of a corresponding

channel (stage 4020). In some implementations, such comparisons can include measuring
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the amplitudes of events but discarding the timing of the events for both the net series of
amplitude events and the amplitude-weighted time series for a given channel. For example,
in some implementations, the system can form a sequential list of the amplitudes of the
events in the amplitude-weighted time series and a sequential list of the amplitudes of the
events in the net series of amplitude events. These lists do not describe the timing of the
events in the either the amplitude-weighted time series or the net series of amplitude events.
The amplitudes in the list can, however, be compared to determine the differences. In
general, the results of the comparison are expressed on a channel-by-channel basis.

However, in some implementations, the results of the comparison can be expressed in a value
embodying the comparison of multiple channels.

In some implementations, the net series of amplitude events is compared with the
result of a mathematical or other operation performed on the amplitude-weighted time series
of a corresponding channel. For example, if a weighting device is to be calibrated to
multiply a particular channel by two, the amplitude-weighted time series of that channel can
first be multiplied by two and the result of that multiplication compared with the net series of
amplitude events. The weights can then be used to perform the mathematical or other
operations. For example, weights can be selected to perform one or more of data
compression and encryption operations, text processing operations, number processing
operations, image processing operations, and signal processing operations. In some
implementations, different channels in a single device can use weights that perform different
operations.

A determination is made whether the differences between the net series of amplitude
events and the amplitude-weighted time series of corresponding channels are sufficiently
small (stage 4025). For example, in some implementations, the system performing process
4000 can compare the differences to a threshold that embodices an acceptable level of
differences on a channel-by-channel basis. In some implementations, the stringency of the
threshold can be tunable, e.g., by a user, for operation in different contexts.

In response to determining that the differences between the net series of amplitude
events and the amplitude-weighted time series of corresponding channels are not sufficiently
small, the weights of weighting devices are adjusted (stage 4030). In some implementations,

the weights are adjusted on a channel-by-channel basis. For example, the system can identify
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the weights of the weighted timed series of events output by individual binary-to-analog
converters 320 that most closely resemble the amplitude-weighted time series. The weights
345 that arc associated with those weighted timed series of events can be increased. As
another example, the system can identify the weights of the weighted timed series of events
output by individual binary-to-analog converters 320 that differ the most from the amplitude-
weighted time series. The weights 345 that are associated with those weighted timed series
of events can be decreased.

In some implementations, the input of the output signal from the multichannel
encoder into the multichannel decoder can be repeated after incremental adjustments in the
weights. The results of comparisons between successive net series of amplitude events with
the amplitude-weighted time series of a corresponding channel can be taken as an indication
whether the incremental adjustments have been appropriate. In other words, if the net series
of amplitude events more closely resembles the amplitude-weighted time series for a given
channel, the adjustments to that channel can be taken as favorable and further adjustments
made. For example, weights can be further increased or decreased as the case may be.

On the other hand, if the differences between the net series of amplitude events and
the amplitude-weighted time series increase, the adjustments to a channel can be taken as
unfavorable and the weights returned to their previous values or changed in a different
direction. For example, weights that were initially increased can be decreased and weights
that were initially decreased can be increased.

One or more new time-based code signals are selected (stage 4035) in response to
determining that the differences between the net series of amplitude events and the
amplitude-weighted time series of corresponding channels are not sufficiently small. In
some implementations, the new time-based code signals can be selected according to the
differences between the new time-based code signals and the former time based code signals.
For example, new time-based code signals that differ greatly from the former time based
code can be preferentially selected. In other implementations, the new time-based code
signals can be selected at random. The process can continue and input the one or more new
time based codes into the channels of the multichannel encoder (stage 4005).

In response to determining that the differences between the net series of amplitude

events and the amplitude-weighted time series of corresponding channels are sufficiently
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small, the weights of the weighting device can be fixed (stage 4040). After fixing the
weights, the multichannel decoder is calibrated to operate in conjunction with the
multichannel encoder that produced the particular output signal (i.c., the multichannel
encoder from which the output signal is received in step 4010).

FIG. 41 is a flow chart of a process 4100 for creating an encoder/decoder pair.
Process 4100 can be used in isolation or in conjunction with other activities. For example,
process 4100 can include one or more of process 3900 (FIG. 39) and process 4000 (FIG. 40).
Process 4100 can be performed by one or more digital data processing devices.

Process 4100 begins by constructing a collection of binary-to-analog converters
(stage 4105). The binary-to-analog converters can be constructed in hardware, in software,
or in combinations of hardware and software. The construction of the binary-to-analog
converters can include a process such as process 3900 (FIG. 39).

An encoder using the binary-to-analog converters is assembled (stage 4110). In some
implementations, each channel of the assembled encoder can include a different one of the
binary-to-analog converters.

A collection of time series scanners is assembled using the same binary-to-analog
converters (stage 4115). In some implementations, cach time series scanner can include one
of the binary-to-analog converters that appears in a channel of the encoder. The binary-to-
analog converters in the time series scanners can act as reference binary-to-analog
converters. The correspondence between the binary-to-analog converters in the channels of
the encoder and the binary-to-analog converter in each time series scanner can be noted and
used, e.g., in calibrating the weights of weighting devices.

A collection of weighting devices is assembled using the collection of
binary-to-analog converters (stage 4120). In some implementations, the same
binary-to-analog converters that are used to assemble the encoder and the collection of time
series scanners are used to assemble the collection of weighting devices. In other
implementations, completely different binary-to-analog converters are used to assemble the
collection of weighting devices. In other implementations, combinations of the same and
different binary-to-analog converters are used to assemble the collection of weighting

devices.
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In some implementations, binary-to-analog converters can appear (at least initially) in
each weighting device. For example, in some implementations, the complete set of
binary-to-analog converters that are constructed appear in each weighting device. As
described further below, the weights that are used to weight the output of a binary-to-analog
converters can be calibrated to zero, which in effect removes the binary-to-analog converter
from the weighting device. In hardware implementations, binary-to-analog converters whose
output is weighted to zero can be physically removed from a weighting device.

The weights in the weighting devices are calibrated (stage 4125). The calibration of
the weights in the weighting devices can include a process such as process 4000 (FIG. 40).

The process 4100 encodes, compresses, or stores information using the encoder, the
collection of time series scanners, and the collection of weighting devices (stage 4130).

Embodiments of the subject matter and the operations described in this specification
can be implemented in digital electronic circuitry, or in computer software, firmware, or
hardware, including the structures disclosed in this specification and their structural
equivalents, or in combinations of one or more of them.

Aspects of the subject matter described in this specification can be implemented as
one or more computer programs, i.c., one or more modules of computer program instructions,
encoded on a computer storage medium for execution by, or to control the operation of, data
processing apparatus. For example, lines and signals that convey information can be
implemented as variables or objects that are passed between computer program components
(e.g., computer programs, software modules, subroutines, procedures, and functions) to
convey information. Detectors, comparators, timers, switches and selectors can be
implemented as computer program components that cooperate to perform operations.

For example, the encoding/compressing operations performed by encoder-compressor
10 (FIG. 1A) can be implemented in accordance with the following instructions.

ENCODING-COMPRESSING
//Convert a sequence of binary numbers to a wave vector with binary digits
(BinarySignal)
Function file2binary(str)
String str
Make/o/n=(strlen(str)) in_BinarySignal
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in_BinarySignal[ ]=str2num(str[p])
End

PCT/EP2010/060875

/ Convert a single vector of binary numbers to a set of Binary waves (Bytes)

Function binary2bytes()
NVAR numChannels = numChannels
WAVE in_BinarySignal

Variable/G numBits = numpnts(in_BinarySignal)

Variable n,i
String in_Byte
// Initialize

numChannels=numBits/g§

1=0; n=1
do
in_Byte ="in_Byte"+num2str(n)
Duplicate/o/R=[1,(it+7)] in_BinarySignal in Byte w
Duplicate/o in_Byte w $in_Byte
i+=8
n+=1

While(n<numChannels+1)
End
//Convert Bytes to nBinary
Function bytes2nBinary()
NVAR timelInterval
NVAR numChannels = numChannels
NVAR dt=dt
Variable n,i,j
String in_Byte
String in_nBinary
//initialize
dt = timelnterval

n=1
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do
// Input Waves
in_Byte ="in_Byte"+num2str(n)
Duplicate/o $in_Byte in Byte w
InsertPoints 0,1, in_Byte w
in_Byte w[0]=1 //add start bit
InsertPoints 9,1, in_Byte w
in_Byte w[9]=0 //add stop bit
// Output Waves

_n

in_nBinary

Make/o/n=(numpnts(in_Byte w)*2)in nBinary out

// Operation

in_nBinary out=0

1i=0

j=0

do
if(in_ Byte w[i]==1)
in_nBinary out[j]=I
else; in_nBinary out[j+1]=1
endif
it=1
j+=2

while(i<numpnts(in_Byte w))

// Output

Duplicate/o in_nBinary out $in_nBinary

in_nBinary"+num2str(n)

SetScale/P x 0,(0.5*%dt),"", $in_nBinary

n+=1
While(n<numChannels+1)
End

PCT/EP2010/060875

// Convert nBinary to Analog Amplitudes on Binary Times (aAmps_bTimes)

Function nBinary2iBAC 1()

60



10

15

20

25

30

WO 2011/012614

NVAR numChannels = numChannels
Variable n,i,j
Variable Ase, Use, u, D, F
Variable R, E
Variable clapsedTime
String in_nBinary
String iBAC
String iIBAC r
// Initialize
n=1
Do
// Input waves

_n

in_nBinary = "in_nBinary"+num?2str(n)
Duplicate/o $in_nBinary in_nBinary w,iBAC r w
iBAC = "iBAC"+num2str(n)

Duplicate/o $iBAC ibac w

Make/o/n=0 EventTimes
Findlevels/Q/D=EventTimes in_nBinary w |

// Output waves

iBAC r="IBAC r"+num2str(n)

// Initialize BACs

PCT/EP2010/060875

Asc =ibac_w[0]; Use =ibac_w[1]; D =ibac_w[2]; F =ibac_w[3]; R=1; u=Use

// Operation

E = Ase*u*R

iBAC r w[0]=E

i=1:;j=0

do
if(in_nBinary w[i]==0)
iIBAC r w[i]=0; else

clapsedTime = (EventTimes[j+1]/1000)-(EventTimes[j]/1000)

u = Use+((u*(1-Use))*exp(-clapsedTime/F))
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R = [+((R-R*u-1)*exp(-clapsedTime/D))
E = Ase*u*R
iBAC r w[i]=E
j+=1
endif
i+=1
while(i<numpnts(in_nBinary w))
// Output
wavestats/q iIBAC r w
iBAC r w=iBAC r w/v_max
Duplicate/o iBAC r w $IBAC r
n+=1
While(n<numChannels+1)
End
I
// Integrate and Compress iBAC responses
Function Compress()
NVAR tau = tau
NVAR IntDep = IntDep
NVAR numChannels = numChannels
Variable dt
Variable i,n,m
// Get dt

T

in_nBinary = "in_nBinary"+num?2str(1)
Duplicate/o $in_nBinary temp w
temp w=0

dt = pnt2x(temp_w, 1)-pnt2x(temp_w, 0)

//Activate analog device

i=1
Do
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Analoglntegration()
i+=1
While(i<numpnts(sumAmps))
Wavestats/Q sumAmps
sumAmps = sumAmps/v_max
//Output wave
aEventsMessage = sumAmps*thresholdFunction()
End

PCT/EP2010/060875

As another example, the expanding/decoding operations performed by expander-decoder 34

(FIG. 1A) can be implemented in accordance with the following instructions.

EXPAND AND DECODE

//Convert Time Events into Analog Amplitudes
Function aEventMessage20BAC ()

NVAR numChannels = numChannels

NVAR num oBACs

Variable n,i

Variable Ase, Use, u, D, F

Variable R, E

Variable clapsedTime

String o BAC

String o BAC r

WAVE aEventMessage = aEventMessage

// Extract times

Findlevels/Q aEventMessage 1

Make/o/n=0 aTimesMessage
Findlevels/Q/D=aTimesMessage, aEventMessage 1
Make/o/n=(V_LevelsFound) o BAC r w
//Calculate o0BAC responses

n=1

Do
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// load o BAC

oBAC ="oBAC"+num2str(n)
Duplicate/o $0BAC 0BAC w

// create analog amp output wave
oBAC r="0BAC r"+num2str(n)
// Initialize o0 BAC

PCT/EP2010/060875

Ase = 1;Use =oBAC w[1];D=0BAC w[2];F =0BAC w[3];u=Use;R=1

//Calculate Amplitudes

clapsedTime = (aTimesMessage[i]/1000)-(aTimesMessage[i-1]/1000)

i=0
do
if(i==0)
E = Ase*u*R;0BAC r w[i]=E
else
u = Use+((u*(1-Use))*exp(-clapsedTime/F))
R = [+((R-R*u-1)*exp(-clapsedTime/D))
E = Ase*u*R
oBAC r w[i]=E
endif
i+=1

while(i<numpnts(oBAC r w))
Duplicate/o o0BAC r w $0BAC r
n+=1
While(n<num oBACs+1)
End

I 7T

// Differentially Scale Qutputs
Function oBAC r20BAC s()
NVAR numChannels

NVAR num oBACs

Variable n,m
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String o BAC r

String o BAC r_error

String o BAC 1 s

/Mnitialize

oBAC r="0BAC r"+num2str(1)
Duplicate/o $o0BAC roBAC r s w
//Convert oBAC rto oBAC s

n=1

Do

oBAC r s="0oBAC r s"+tnum2str(n)

oBAC r s w=0
m=1

Do

oBAC r="0BAC r"+num2str(m)
Duplicate/o $oBAC roBAC r w

PCT/EP2010/060875

oBAC r error ="0oBAC r_error"+num2str(n)+" "+num2str(m)

Duplicate/o $o0BAC r error o BAC r error w

Wavestats/Q oBAC r_error w
oBAC r w=oBAC r w/error w

oBAC r s w=0BAC r s w+oBAC r w

m+=1
While(m<num oBACs+1)
Wavestats/Q o BAC r s w

oBAC r s w=0BAC r s w/v_max

Duplicate/o o0BAC r s w$oBAC r s

n+=1

While(n<numChannels+1)

End

//Convert oBAC responses to out_nBinary
Function oBAC s2out nBinary()

NVAR numChannels = numChannels
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NVAR dt=dt

Variable n,i

Variable rTPL 1
Variable rTPL 2

Variable targetAmp
Variable Ase,Use,D,F

String rBAC

String o BAC 1 s

String out_nBinary

//Make output waves

oBAC r s="0oBAC r s"+tnum2str(1)
Duplicate/o $o0BAC r s o BAC s w
Make/o/m=(numpnts(0BAC s w)) rBAC r w, out nBinary w

//convert all output channels

n=1

Do

//Initialize waves

rBAC ="rBAC"+tnum2str(n)
Duplicate/o $SrBAC rBAC w

oBAC r s="0oBAC r s"+tnum2str(n)

Duplicate/o $o0BAC r s o BAC s w
out nBinary
// Initialize rBAC parameters

Ase = 1;Use =rBAC w[l];D=rBAC w[2];F =rBAC w[3]

—n

// Assign start bit

out nBinary w[0]=1

//loop for each time Interval

i=2
Do

out nBinary w[i]=1

out nBinary w[i]=0

out_nBinary"™+num2str(n)
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rBACResponse(Use,D.,F)
rTPL_1=rBAC r wli]
out nBinary w[i]=0

out nBinary w[i]=1
rBACResponse(Use,D.,F)
rTPL 2=rBAC r wli]
//target amplitude
targetAmp=oBAC s wl[i]

//select tpl for closest amp match

if(abs(targetAmp-rTPL_1)<abs(targetAmp-rTPL 2))

out nBinary w[i]=1
out nBinary w[i]=0
else
out nBinary w[i]=0
out nBinary w[i]=1
endif
i+=2
While(i<numpnts(out_nBinary w))
/! Assign end bit

out nBinary w[numpnts(out nBinary w)-2]=I

//Output nBinary

Duplicate/o out nBinary w $out nBinary

//set scale to the same as input
SetScale/P x 0,dt,"", $out nBinary
nt+=1
While(n<numChannels+1)
End
NN
/I Get rBAC response
Function r BACResponse(Use,D,F)
Variable Use,D,F
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NVAR numChannels = numChannels
Variable n,i

Variable R, E.Ase, u

Variable clapsedTime

WAVE out nBinary w =out nBinary w
WAVE tBAC r w=rBAC r w

//make out_nBinary times wave

Make/o/n=0 out_times w

Findlevels/Q/D= out_times_w, out nBinary w1

// Initialize o0BAC
Ase = 1;u=Use,R=1
// Initialize rBAC response wave
rBAC r w=0
//Calculate Amplitudes
1i=0
Do
if(i==0)
E = Asc*u*R
rBAC r w[i]=E

else

clapsedTime = (out_times w[i])-(out times wJ[i-1])
u = Use+((u*(1-Use))*exp(-clapsedTime/F))
R = [+((R-R*u-1)*exp(-clapsedTime/D))

E = Asc*u*R
rBAC r w[i]=E
endif
i+=1
while(i<numpnts(out_times w))
End
s
/I Convert to Bytes
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Function out_nBinary2out Byte()
NVAR numChannels = numChannels
Variable n
String out_nBinary
String out Byte
/Mnitialize
n=1
Do
out Byte = "out Byte"+num2str(n)

out nBinary = "out nBinary"+num2str(n)

Duplicate/o $out_nBinary out nBinary w

DeletePoints 0,1,0ut nBinary w

DecletePoints numpnts(out nBinary w)-1,1,out nBinary w

Duplicate/o out nBinary w, $out Byte

n+=1

While(n<numChannels+1)

End

NN

/ Convert Bytes to Binary Signal
Function out_outByte2out BinarySignal()
NVAR numChannels = numChannels
Variable n

String out Byte

String out BinarySignal
ConcatBytes()

End

PCT/EP2010/060875

A computer storage medium can be, or be included in, a computer-readable storage

device, a computer-readable storage substrate, a random or serial access memory array or

device, or a combination of one or more of themThe computer storage medium can also be,

or be included in, one or more separate physical components or media (¢.g., multiple CDs,

disks, or other storage devices).
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The operations described in this specification can be implemented as operations
performed by a data processing apparatus on data stored on one or more computer-readable
storage devices or received from other sources.

The term “data processing apparatus” encompasses all kinds of apparatus, devices,
and machines for processing data, including by way of example a programmable processor, a
computer, a system on a chip, or multiple ones, or combinations, of the foregoing. The
apparatus can include special purpose logic circuitry, ¢.g., an FPGA (ficld programmable
gate array) or an ASIC (application-specific integrated circuit). The apparatus can also
include, in addition to hardware, code that creates an execution environment for the computer
program in question, e.g., code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, a cross-platform runtime environment, a
virtual machine, or a combination of one or more of them. The apparatus and execution
environment can realize various different computing model infrastructures, such as web
services, distributed computing and grid computing infrastructures.

A computer program (also known as a program, software, software application,
script, or code) can be written in any form of programming language, including compiled or
interpreted languages, declarative or procedural languages, and it can be deployed in any
form, including as a stand-alone program or as a module, component, subroutine, object, or
other unit suitable for use in a computing environment. A computer program may, but need
not, correspond to a file in a file system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in question, or in multiple coordinated
files (e.g., files that store one or more modules, sub-programs, or portions of code). A
computer program can be deployed to be executed on one computer or on multiple computers
that are located at one site or distributed across multiple sites and interconnected by a
communication network.

The processes and logic flows described in this specification can be performed by one
or more programmable processors executing one or more computer programs to perform
actions by operating on input data and generating output. The processes and logic flows can

also be performed by, and apparatus can also be implemented as, special purpose logic
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circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application-specific
integrated circuit).

Processors suitable for the execution of a computer program that perform activities in
the processes described herein include, by way of example, both general and special purpose
microprocessors, and any one or more processors of any kind of digital computer. Generally,
a processor will receive instructions and data from a read-only memory or a random access
memory or both. The essential elements of a computer are a processor for performing
actions in accordance with instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more mass storage devices for storing
data, ¢.g., magnetic, magneto-optical disks, or optical disks. However, a computer need not
have such devices. Moreover, a computer can be embedded in another device, ¢.g., a mobile
telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console,
a Global Positioning System (GPS) receiver, or a portable storage device (¢.g., a universal
serial bus (USB) flash drive), to name just a few. Devices suitable for storing computer
program instructions and data include all forms of non-volatile memory, media and memory
devices, including by way of example semiconductor memory devices, ¢.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable
disks; magneto-optical disks; and CD-ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, special purpose logic circuitry.

While this specification contains many specific implementation details, these should
not be construed as limitations on the scope of the invention or of what may be claimed, but
rather as descriptions of features specific to particular embodiments of the invention. Certain
features that are described in this specification in the context of separate embodiments can
also be implemented in combination in a single embodiment. Conversely, various features
that are described in the context of a single embodiment can also be implemented in multiple
embodiments separately or in any suitable subcombination. Moreover, although features
may be described above as acting in certain combinations and even initially claimed as such,
one or more features from a claimed combination can in some cases be excised from the
combination, and the claimed combination may be directed to a subcombination or variation

of a subcombination.
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Similarly, while operations are depicted in the drawings in a particular order, this
should not be understood as requiring that such operations be performed in the particular
order shown or in sequential order, or that all illustrated operations be performed, to achieve
desirable results. In certain circumstances, multitasking and parallel processing may be
advantageous. Morcover, the separation of various system components in the embodiments
described above should not be understood as requiring such separation in all embodiments,
and it should be understood that the described program components and systems can
gencrally be integrated together in a single software product or packaged into multiple
software products.

EMBODIMENTS

The methods, systems, and apparatus, including computer programs encoded on a
computer storage medium, for encoding and decoding information described herein can be
embodied in one or more of the following embodiments.

Embodiment 1. A method of interfacing between digital data processing and the
statistical processing and pattern recognition provided in a neural processing component and
encoding information in an encoder, comprising:receiving a signal representing information
using a collection of discrete digits; converting, by an encoder, the received signal into a
time-based code, wherein: the time-based code is divided into time intervals,cach of the time
intervals of the time-based code corresponds to a digit in the received signal, each digit ofa
first state of the received signal is expressed as a event occurring at a first time within the
corresponding time interval of the time-based code, each digit of a second state of the
received signal is expressed as a event occurring at a second time within the corresponding
time intervals of the time-based code, the first time is distinguishable from the second time,
andall of the states of the digits in the received signal are represented by events in the time-
based code; andoutputting the time-based code to the neural processing component.
Embodiment 2. The method of embodiment 1, wherein:the received signal is a binary
representation of the information; andthe digits of the received signal comprise bits in the
binary representation. Embodiment 3. The method of any of embodiments 1 to 2, wherein:
cach digit of the first state of the binary representation is expressed as an event occurring in
the middle of the corresponding time interval of the time-based code; andeach digit of the

second state of the binary representation is expressed as an event occurring at one of the
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beginning or the end of the corresponding time interval of the time-based code.

Embodiment 4. The method of any of embodiments 1 to 3, wherein except for the times of
occurrence, the events expressing the digits of the first state are indistinguishable from the
events expressing the digits of the second state. Embodiment 5. The method of any of
embodiments 1 to 4, wherein the events each comprise a pair of transitions from low to high
and from high to low. Embodiment 6. The method of any of embodiments 1 v 5, wherein the
events are binary. Embodiment 7. The method of any of embodiments 1 to 6, wherein
outputting the time-based code comprises outputting the time-based code to a neural
processing component implemented using wet neural components, wherein the properties of
the time-based code are tailored for compatibility with the wet neural components.
Embodiment 8. The method of any of embodiments 1 to 7, wherein converting the received
signal into the time-based code comprises adding a start header to the time-based code, the
start header demarcating the start of the time-based code and corresponding to a header in the
received signal. Embodiment 9. The method of any of embodiments 1 to &, wherein
converting the received signal into the time-based code comprises adding a stop footer to the
time-based code, the stop footer demarcating the end of the time-based code and
corresponding to a footer in the received signal. Embodiment 10. The method of any of
embodiments 1 to 9, wherein the time intervals are all of a single duration. Embodiment 11.
The method of any of embodiments 1 to 10, wherein the time intervals are serially ordered in
a same sequence as corresponding digits in the received signal. Embodiment 12. The
method of any of embodiments 1 to 11, wherein converting the received signal into the time-
based code comprises: converting every digit of the first state of the received signal into
events occurring at the first time; andconverting every digit of the second state of the binary
representation into events occurring at the second time.

Embodiment 13. A system for interfacing between digital data processing and the
statistical processing and pattern recognition provided in a neural processing component, the
system comprising:an input for receiving a signal representing information using a collection
of discrete digits; an encoder that encodes the received signal, the encoder comprising:a state
detector configured to detect the states of the digits in the received signal, anda translator
configured to translate the states of the digits in the received signal into a time-based code,

the time-based code comprising a collection of time intervals each assigned a respective digit
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in the received signal, each of the time intervals comprising an event, the timing of the event
within each of the time intervals characterizing the state of a respective assigned digit; an
output for providing the time-based code to another system or device; anda neural processing
component connected to receive the time-based code. Embodiment 14. The system of
embodiment 13, wherein the neural processing component is implemented using wet neural
components and the properties of the time-based code are tailored for compatibility with the
wet neural components. Embodiment 15. The system of any of embodiments 13 to 14,
wherein:the received signal comprises a binary signal; andthe state detector comprises a bit
detector configured to detect the state of bits in the binary signal. Embodiment 16. The
system of any of embodiments 13 to 15, wherein the translator comprises an event generator,
the event generator configured and connected to generate the events of the time-based code.
Embodiment 17. The system of embodiment 16, wherein the event generator comprises a
pulse generator, wherein shapes of pulses expressing first states are indistinguishable from
shapes of pulses expressing second states. Embodiment 18. The system of embodiment 16,
wherein the event generator is further configured to generate a header event demarcating the
start of the time-based code and corresponding to a header in the received signal.
Embodiment 19. The system of any of embodiments 13 to 18, further comprising a start/stop
detector configured and connected to detect the beginning and the end ofthe received signal.
Embodiment 20. The system of any of embodiments 13 to 19, further comprising an interval
timing component, the interval timing component demarcating the passing of the time
intervals of the time-based code. Embodiment 21. The system of embodiment 20, wherein
the interval timing component is configured to demarcate the passing of time intervals of a
single duration.

Embodiment 22. A method for interfacing between the statistical processing and
pattern recognition functions provided by neural processing component and digital data
processing devices and decoding a time-based code signal, the method comprising:receiving
a time-based code signal from a neural processing device at a decoder, wherein: the time-
based code signal is divided into time intervals,cach of the time intervals of the time-based
code signal comprises an event, andthe timing of the events within the time intervals express
the information content of the time-based code signal; detecting the timing of the events

within the time intervals; andoutputting a signal that represents the information expressed in
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the time-based code signal using a collection of discrete digits. Embodiment 23. The method
of embodiment 22, further comprising:converting events occurring within a first time range
of the intervals of the time-based code signal into a discrete digit of a first state in the output
signal; andconverting events occurring within a second time range of the intervals of the
time-based code signal into a discrete digit of a second state in the output signal.
Embodiment 24. The method of embodiment 23, wherein the output signal comprises a
binary signal. Embodiment 25. The method of any of embodiments 22 to 24, further
comprising detecting a start of data content of the time-based code signal. Embodiment 26.
The method of embodiment 25, wherein detecting the start of the data content comprises
detecting a header event of the time-based code signal. Embodiment 27. The method of
embodiment 26, further comprising determining a time between the header event and the first
event after the header event. Embodiment 28. The method of embodiment 25, further
comprising synchronizing the detection of the times at which the events occur within the time
intervals with the start of data content of the time-based code signal. Embodiment 29. The
method of any of embodiments 22 to 28, wherein receiving the time-based code signal
comprises receiving the time-based code signal from a neural processing device implemented
using wet neural components. Embodiment 30. The method of any of embodiments 22 to 29,
further comprising:receiving a second time-based code signal at a second decoder, wherein:
the second time-based code signal is divided into time intervals,each of the time intervals of
the second time-based code signal comprises an event, andthe timing of the events within the
time intervals express the information content of the second time-based code signal;
detecting, at the second decoder, the timing of the events within the time intervals;
andoutputting, from the second decoder, a signal that represents the information expressed in
the second time-based code signal using a second collection of discrete digits;
andaggregating the collection of discrete digits and the second collection of discrete digits
into a second signal. Embodiment 31. The method of any of embodiments 22 to 30, wherein
the events of the time-based code signal have indistinguishable shapes.

Embodiment 32. A system for interfacing between the statistical processing and
pattern recognition functions provided by neural processing component and digital data
processing devices and decoding a time-based code signal, the system comprising:a neural

processing component;an input to which the neural processing component is connected and
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that receives a time-based code signal, wherein: the time-based code signal is divided into
time intervals,cach of the time intervals of the time-based code signal comprises an event,
andthe timing of the events within the time intervals express the information content of the
time-based code signal;a event detector configured to detect timing of the events within the
time intervals of the time-based code signal;a translator configured to translate the timing of
the events within the time intervals of the time-based code into states of a collection of digits;
andan output configured to provide a signal comprising the digits. Embodiment 33. The
system of embodiment 32, wherein the translator comprises a collection of comparators that
receive the detected timings of the events and compare the detected timings of the events
with time ranges within the intervals. Embodiment 34. The system of any of embodiments
32 to 33, wherein the neural processing component is implemented using wet neural
components. Embodiment 35. The system of any of embodiments 32 to 34, wherein the
translator is configured to translate the events within the time intervals of the time-based
code into a binary signal. Embodiment 36. The system of any of embodiments 32 to 35,
wherein the event detector comprises a pulse detector. Embodiment 37. The system of any
of embodiments 32 to 36, further comprising an interval timing component, the interval
timing component demarcating the passing of the time intervals of the time-based code.
Embodiment 38. The system of embodiment 37, wherein the interval timing component
comprises a comparator configured to compare a time count with a reference. Embodiment
39. The system of embodiment 38, wherein the reference is constant and the time intervals
are all of a same single length. Embodiment 40. The system of embodiment 37, further
comprising a start detector configured to detect a start of the time-based code signal.
Embodiment 41. The system of any of embodiments 32 to 40, wherein the start detector is
coupled to the interval timing component and provides a reset signal to the interval timing
component, the reset signal resetting the demarcation of the passing of the time intervals.
Thus, particular embodiments of the invention have been described. Other
embodiments are within the scope of the following claims. In some cases, the actions recited
in the claims can be performed in a different order and still achieve desirable results. In
addition, the processes depicted in the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achicve desirable results. In certain

implementations, multitasking and parallel processing may be advantageous.
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What is claimed is:
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CLAIMS

1. A method comprising:

receiving, at an input, a time-based code signal, wherein the time-based code signal is
divided into time intervals and each of the time intervals of the time-based code signal
includes an event, the occurrence of the events within the intervals being timed to represent
information;

weighting the amplitude of at least some of the events in the time-based code signal
as a function of the timing of other events in the time-based code signal to generate an
amplitude sequence that includes weighted events; and

outputting the amplitude-weighted time based code.

2. The method of claim 1, wherein weighting the amplitude of the events adds no

new information to the time-based code signal.

3. The method of any preceding claim, wherein weighting the amplitude of the
input events comprises weighting a first input event as a function of the weighted amplitude

of an immediately preceding input event.

4. The method of any preceding claim, wherein weighting the amplitude of the
input events comprises weighting the amplitude of a first input event by multiplying a time

passed since an immediately preceding input event with a time-sensitive parameter.

5. The method of any preceding claim, wherein weighting the amplitude of the
input events further comprises weighting the amplitude of the input events as a function of a

stochastic variable.

6. The method of any preceding claim, further comprising resetting the
weighting the amplitude of the events to a known state in response to a footer event in the

time-based code.

7. A system comprising:
a time encoder configured to encode information in a collection of time-based code

signals, the time-based code signals each being divided into time intervals and each of the
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time intervals including an event, the occurrence of the events within the intervals being
timed to represent information;

a compressing encoder comprising a collection of converter devices each connected
and configured to receive and weight the amplitudes of events in a respective time-based

code signal as a function of characteristics of other events in the respective time-based code.

8. The system of claim 7, wherein the encoder comprises a reset mechanism, the
reset mechanism configured to reset the weighting of the amplitudes of the events in the

converter devices to a known state.

9. The system of any of claims 7-8, wherein the encoder comprises an integrator

connected and configured to integrate the amplitude-weighted time-based codes into a signal.

10.  The system of any of claims 7-9, wherein the integrator is configured to

integrate the amplitude-weighted time-based codes into a one-dimensional signal.

11.  The system of any of claims 7-10, wherein the integrator is configured to
integrate the amplitude-weighted time-based codes into a signal in which numbers of time

spans between events within a unit time are Poisson distributed.

12.  The system of any of claims 7-11, wherein the weighting of the converter

devices adds no new information to the time-based code signal.

13.  The system of any of claims 7-12, wherein the weighting of each event is a
non-linear function of times of occurrence of predecessor events in the time-based code

signal.

14. A machine-implemented method comprising:

receiving, at an input, a collection of amplitude-weighted sequences of events,
wherein the amplitude weights are a function of the timing of other events in each sequence
of events;

integrating interactions amongst the time sequences to generate an integral
representing those interactions;

adjusting a threshold value in response to a number ofthe events in the amplitude-
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weighted sequences of events; and
outputting, at an output, output events in response to the integral reaching the
threshold value, the timing of each output event thereby indicating the timing ofthe integral

reaching the dynamic threshold value.

15. The method of claim 14, wherein:

the number of input events in cach amplitude-weighted sequence of events is the
same; and

the method further comprises adjusting the dynamic threshold values so that a number

of the output events equals the number of the input events.

16.  The method of any of claims 14-15, wherein, except for the timing of the

output events, the output events are indistinguishable from one another.

17. The method of any of claims 14-16, wherein each of the amplitude-weighted

sequences of events starts at a same time.

18. The method of any of claims 14-17, wherein outputting the output events

comprises transitioning from low to high and from high to low.
19.  The method of any of claims 14-18 in combination with any of methods 1-6.

20. A system comprising:
an integrator connected and configured to receive a collection of amplitude-weighted
sequences of events, wherein the amplitude weights are a function of the timing of other
events in each sequence of events, the integrator comprising a comparator connected to
receive a signal characterizing the integration, wherein the comparator is configured to
compare the signal characterizing the integration with a dynamic threshold
value, and
in response to the signal characterizing the integration reaching the dynamic
threshold value, output an output event and reset the comparison between the signal

characterizing the integration and the dynamic threshold value.
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21.  The system of claim 20, wherein the integrator further comprises an event

counter configured to count the number of the input events in the time sequences.

22.  The system of any of claims 20-21, wherein the integrator further comprises a
threshold value adjuster connected to receive a count of the input events in the time
sequences, the threshold value adjuster connected and configured to adjust the dynamic
threshold value in response to the count of the number of the input events in the time

sequences.

23.  The system of any of claims 20-22, wherein, except for the timing of the

output events, the output events are indistinguishable from one another.

24, The system of any of claims 20-23, further comprising a transmitter

configured to transmit the output events output by the comparator.

25.  The system of any of claims 20-24, further comprising a data write device

configured to write the output events to a data storage device.
26.  The system of any of claims 20-25 in combination with any of systems 7-13.

27. A data storage device comprising detectable physical manifestations encoding
information, the physical manifestations spaced in accordance with an encoding scheme, the
spacing between the physical manifestations thereby representing the content of the encoded

information.

28.  The data storage device of claim 27, the spacing between the physical

manifestations conforming with a predetermined a probability distribution.

29.  The data storage device of claim 28, wherein the probability distribution is

asymmetrical and skewed.

30.  The data storage device of claim 29, wherein the probability distribution is
skewed to the left of the median of the probability distribution.

81



10

15

20

25

WO 2011/012614 PCT/EP2010/060875

31.  The data storage device of claim 30, wherein the standard deviation of the
probability distribution is approximately equal to the square root of the mean of the

probability distribution.

32.  The data storage device of claim 31, wherein the probability distribution is a

Poisson distribution.

33.  The data storage device any of claims 27-32, wherein, except for the spacing
between the physical manifestations, the physical manifestations are indistinguishable from

one another.

34.  The data storage device any of claims 27-33, wherein a number of physical

manifestations is equal to a number of bits stored on the data storage device.

35.  The data storage device any of claims 27-34, wherein cach physical
manifestation comprises a pair of transitions, the first transition from a first state to a second

state and the second transition from the second state back to the first state.

36.  The data storage device any of claims 27-35, wherein the spacing between
physical manifestation is scaled to the time between the output of output events by the

system of any of claims 20-26.

37. A method comprising:

receiving a time series of events, the events occurring at non-uniform intervals within
the input time series, the timing of the input events within the input time series encoding
information; and

generating multiple collections of weights, each weight in each collection
corresponding to a respective input event in the input time series, the weights in cach
collection being a function of the timing of multiple events in the received time series; and

outputting the collections of weights.

38. The method of claim 37, wherein the intervals between events in the received
time series scale to the spacing between physical manifestations of the data storage device

any of claims 27-36.
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39.  The method of any of claims 37-38, wherein:

the method further comprises multiplying the events in the input time series by the
amplitude weights, converting the input time series into a collection of amplitude-weighted
time series of weighted events; and

outputting the collections of weights comprises outputting the collection of
amplitude-weighted time series of weighted events, wherein at least some of the weights in

cach collected differ for each non-zero input time series.

40.  The method of any of claims 37-39, wherein outputting the collections of

weights comprises outputting lists of weights without time information.

41.  The method of any of claims 37-40, wherein generating the collections of
weights comprises generating a first weight corresponding to a first event in the time series

as a non-linear function of the timing of events preceding the first event in the time series.

42.  The method of any of claims 37-41, wherein the method further comprises

calibrating the generation of the collections of amplitude weights.

43.  The method of any of claims 37-42, further comprising:
resetting the generation of amplitude weights to a known state; and

receiving a second subsequent input time series.

44.  The method of any of claims 37-43 in combination with the method of any of
claims 1-6 or 14-19.

45. A decoder device comprising:

an input connectable to receive an input time series of events, the events in the input
time series occurring at non-uniform intervals, the timing of the input events within the input
time series encoding information;

a collection of converter devices cach configured to uniquely convert the input time
series into a collection of amplitudes, each amplitude being a function of the timing of
multiple input events in the input time series; and

a collection of outputs, cach connectable to output a respective series of amplitudes,
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wherein the amplitudes vary but the number of the amplitudes is the same as the number of
the events in the input time series,
wherein at least some of the amplitudes generated by different weight generators

differ for each non-zero input time series.

46.  The decoder of claim 44, further comprising a reset mechanism, the reset

mechanism configured to reset the converter devices to a known state.

47.  The decoder of any of claims 44-45, further comprising:

a collection of data storage devices storing a collection of weights; and

a collection of multipliers, each of the multipliers connected and configured to
multiply one of the collections of amplitudes by a respective weight; and

a summer configured to sum the products of the collections of amplitudes and the

respective second weights.

48.  The decoder of any of claims 44-47, wherein each of the converter devices
comprises a network of signal processors interconnected by one or more processing junctions
that dynamically adjust response strength according to the temporal pattern of events in the

input time series to generate the collection of amplitudes.

49.  The decoder of any of claims 44-48, in combination with any of claims 7-13
or 20-26.
50. A device comprising:

an input connectable to receive an input series of amplitudes;

a comparator connected to compare the input series of amplitudes with an second
series of amplitudes and generate a signal indicative of a difference between the input series
of amplitudes and the second series of amplitudes;

a converter device configured to convert a time series into the second series of
amplitudes, cach amplitude in the second series being a function of the timing of multiple
events in the time series input into the converter device;

a permuter configured to permute the time series input into the converter device; and

an output connectable to output a time series input into the converter device in
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response to the signal indicative of the difference between the input series of amplitudes and

the second series of amplitudes falling below a threshold value.

51.  The device of claim 50, wherein the converter device comprises a network of
signal processors interconnected by one or more processing junctions that dynamically adjust
response strength according to the temporal pattern of events in the input time series to

generate the second series of amplitudes.

52.  The device of an of claims 50-51, further comprising a buffer to store the

input series of amplitudes.

53.  The device of an of claims 50-52, further comprising a second buffer to store

the second series of amplitudes.

54.  The device of an of claims 50-53, wherein the comparator comprises a
collection of comparators cach connected to compare a single amplitude of the input serics

with a single amplitude of the second series of amplitudes.

55. The device of an of claims 50-54, in combination with any of claims 44-48, 7-

13, or 20-26.

56. A method comprising:

receiving an input series of amplitudes;

comparing the amplitudes of the input series with amplitudes of a second series of
amplitudes to generate a signal indicative of a difference therebetween;

in response to the difference signal, permuting a time series input into a device, the

device generating the second series of amplitudes in response to the input time series.

57.  The method of claim 56, further comprising outputting a time series in

response to the difference signal dropping below a threshold.

58.  The method of any of claims 56-57, further comprising storing the amplitudes
of the input series and the amplitudes of the second series in one or more buffers for the

comparison.
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59.  The method of any of claims 56-58, in combination with the method of any of
claims 37-44, 1-6, or 14-19.
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