6/014733 A1 | IV 2000 OO O

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 February 2006 (09.02.2006)

(10) International Publication Number

WO 2006/014733 Al

(51) International Patent Classification : GO6F 9/40,
HO4L 12/24
(21) International Application Number:
PCT/US2005/025741

(22) International Filing Date: 21 July 2005 (21.07.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/590,405 22 July 2004 (22.07.2004) US
11/186,280 20 July 2005 (20.07.2005) US

(71) Applicant (for all designated States except US): COM-
PUTER ASSOCIATES THINK, INC. [US/US]; One
Computer Associates Plaza, Islandia, NY 11749 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): LY, An, V. [US/US];
4235 Placid Drive, Sarasota, FL. 34243 (US). PADMAN-
ABHAN, Arun [IN/US]; 6813 Waterton Drive, Riverview,
FL 33569 (US). CHEN, Edward, F. [US/US]; 1183 Fraser
Pine Blvd., Sarasota, FL. 34240 (US).

(74) Agent: STALFORD, Terry, J.; Fish & Richardson P.C.,
1717 Main Street, Suite 5000, Dallas, TX 75201-4605
(US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR PROVIDING ALERTS FOR HETEROGENEOUS JOBS

130

/

104
\ JOB
D ” COMMUNICATION SCHEDULER
| ™| JOB A, SUCCESS, 100 |
T | JOBB, FALED, 351 |
| JOB C, SUCCESS, 104 | 137
| I

JOB D, FAILED, 201

JOB E, SUCCESS, 99
L J

106a

JOBA
RUNNING
100

| 150a

SCHEDULES TO

MAINFRAME
PLATFORM

SCHEDULES TO,_ “r(sTRIBUTED

PLATFORM

~-150b

(57) Abstract: This disclosure provides a system and method for summarizing jobs for a user group. In one embodiment, a job
manager is operable to invoke an alert filter. The alert filter is compatible with a plurality operating environments. One or more
properties of a first job associated with a first operating environment is identified. One or more properties of a second job associated
& with a second operating environment is identified. The first operating environment and the second operating environment are het-
& erogeneous. A first alert object is generated in response to a first match between the alert filter and the identified properties of the
first job. A second alert object is generated in response to a second match between the alert filter and the identified properties of the

second job.

10

15

20

25

WO 2006/014733 PCT/US2005/025741

SYSTEM AND METHOD FOR PROVIDING ALERTS FOR
HETEROGENEOQOUS JOBS

RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application No.
60/590,405 filed July 22, 2004 and U.S. application entitled “System and Method for
Providing Alerts for Heterogeneous Jobs” filed July 20, 2005.

TECHNICAL FIELD
This invention relates to enterprise job scheduling and, more particularly, to a

system and method for providing alerts for heterogeneous jobs.

BACKGROUND

There are numerous heterogeneous operating environments for jobs,
applications or other processes. Typically, each of these operating environments
comprise one of disparate operating systems including UNIX, Windows or Windows
Server, Linux, z/OS or other mainframe OS, and others. Generally, these jobs or
applications, whether enterprise or consumer, are compatible or optimized for one of
these heterogeneous operating systems. Some properties of these jobs are similar
across the heterogeneous systems, while others are unique to each operating system,
job type, or job dependencies. For example, the status property of a job residing in an
enterprise job scheduler for a mainframe system may indicate one of the following
example states: “Abend,” “Requeued,” “JCL Error,” and others. But the status of a
second job residing in an enterprise job scheduler for a Unix-based system may
indicate one of the following example states: “Exited,” “Running,” “Suspended,”

“Failed,” and such.

SUMMARY
This disclosure provides a system and method for summarizing jobs for a user
group. In one embodiment, a job manager is operable to invoke an alert filter. The
alert filter is compatible with a plurality operating environments. One or more
properties of a first job associated with a first operating environment is identified. One

or more properties of a second job associated with a second operating environment is

1

10

15

20

25

WO 2006/014733 PCT/US2005/025741

identified. The first operating environment and the second operating environment are
heterogeneous. A first alert object is generated in response to a first match between
the alert filter and the identified properties of the first job. A second alert object is
generated in response to a second match between the alert filter and the identified
properties of the second job.

The details of one or more embodiments of the disclosure are set forth in the
accompanying drawings and the description below. Particular features, objects, and
advantages of the disclosure will be apparent from the description and drawings and

from the claims.

DESCRIPTION OF DRAWINGS

FIGURE 1 illustrates a job filtering system in accordance with one
embodiment of the present disclosure;

FIGURES 2A-E illustrate various configurations of an enterprise system for
executing jobs in heterogeneous operating environments;

FIGURE 3 illustrates one embodiment of the job manager of FIGURE 1;

FIGURES 4A-F illustrate an example alert filter object of FIGURE 1 and
associated processing in accordance with one embodiment of the present disclosure;

FIGURES 5A-F are example displays for presenting various properties of
heterogeneous jobs as executed in the system of FIGURE 1 in accordance with one
embodiment of the present disclosure;

FIGURES 6A-E are example displays associated with alert filter objects of
FIGURE 1 in accordance with one embodiment of the present disclosure;

FIGURE 7 is a flowchart illustrating an example method for processing a job
request in one of a plurality of heterogeneous environments in accordance with one
embodiment of the present disclosure; and

FIGURE 8 is a flowchart illustrating an example method for filtering jobs in
response to a user request in accordance with one embodiment of the present

disclosure.

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

DETAILED DESCRIPTION

FIGURE 1 illustrates a job management system 100 for generating job alerts in
an enterprise in accordance with one embodiment of the present disclosure. Generally,
job management system 100 identifies environment-independent alert filter objects
142, determines one or more matches between alert filter objects 142 and job objects
140, and generates alert objects 144 in accordance with alert filter objects 142. As a
result, job management system 100 may monitor properties of jobs 150 in
heterogeneous operating environments 106 and notify a user or application of, for
example, a job’s transition to a certain state. Job management system 100 may
provide event notification in response to state transitions of jobs 150 in heterogeneous
operating environments 106. Heterogeneous operating environments 106 may include
job schedulers that are at least partially incompatible so monitoring and managing
alerts across these heterogeneous job schedulers can be difficult. For example,
operating environment 106a may include a job scheduler for a mainframe system that
indicates a job failure as “JCL Error” and operating environment 106b may include a
job scheduler for a Unix-based system that indicates a job failure as “Failed.” In
overcoming these difficulties, a user (directly or indirectly) invokes alert filter objects
142 to identify transitions in disparate job properties. Generally, users may include
any user of system 100 or one of its components such as, for example, job scheduling
personnel with the ability to schedule jobs, forecast future scheduling requirements,
analyze and measure the effectiveness of the job flow, automated job management
policies, and/or manage jobs on distributed networks.

At a high level, system 100 is all or a portion of the enterprise that includes or
is communicably coupled with server 102, one or more clients 104, and a plurality of
heterogeneous operating environments 106. For example, system 100 may be
associated with the entire enterprise, a geographical or logical location within the
enterprise, or any other portion of the enterprise. It will be understood that the
enterprise may be a corporation, non-profit organization, government agency, or any
other person or entity that includes, utilizes, or receives the results from multiple
computing devices and operating environments 106. In other words, job management
system 100 is typically a distributed client/server system that allows users of clients

104 to submit jobs 150 for execution on any of the plurality of operating environments

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

106. But system 100 may be any other suitable environment without departing from
the scope of this disclosure. Generally, “dynamically,” as used herein, means that
certain processing is determined, at least in part, at run-time based on one or more
variables. Whereas the term “automatically,” as used herein, generally means that
appropriate processing is substantially performed by at least part of job management
system 100. It should be understood that “automatically” further contemplates any
suitable administrator or other user interaction with system 100 without departing from
the scope of this disclosure.

Returning to the illustrated embodiment, system 100 includes, invokes,
executes, references, or is communicably coupled with a plurality operating
environments 106. Each operating environment 106 is any system or subsystem
operable to at least partially or fully execute or process jobs 150. For example, each
operating environment 106 is one of a plurality of heterogeneous environments
including Unix, Linux, Windows, or mainframe environments, as well as others. In
another example, an operating environment 106 may represent a particular application.
Moreover, each operating environment 106 may include one server or may be
distributed across a plurality of computers. For example, illustrated system 100
includes three operating environments 106a, 106b, and 106¢ respectively. In this
example, first operating environment 106a is server environment executing UNIX,
second operating environment 106b is a mainframe environment executing z/OS, and
third operating environment is a distributed processing environment including a
plurality of clients executing Windows. In another example, two operating
environments 106 may be executing the same operating system, but may include
different storage capabilities, file systems, or computing devices. In yet another
example, two operating environments 106 may be substantively similar or identical,
except for executing two disparate cyclical releases or versions of the same operating
system. As illustrated in FIGURES 2A-E, each operating environment 106 typically
includes one or more job schedulers 137, each of which may be tailored to, designed
for, or at least partially compatible with job executing in the associated operating
environment 106. In this case, “operating environment 106” and “job scheduler 1377
may be used interchangeably as appropriate. Of course, illustrated operating
environments 106 are for example purposes only. Indeed, while illustrated separately,

server 102 may represent, include, or execute one of the operating environments 106

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

or one of the operating environments 106 may include or utilize server 102 without
departing from the scope of the disclosure.

Ilustrated server 102 includes memory 120 and processor 125 and comprises
an electronic computing device operable to receive, transmit, process and store data
associated with system 100. For example, server 102 may be any computer or
processing device such as, for example, a blade server, general-purpose personal
computer (PC), Macintosh, workstation, Unix-based computer, or any other suitable
device. Generally, FIGURE 1 provides merely one example of computers that may be
used with the disclosure. For example, although FIGURE 1 illustrates one server 102
that may be used with the disclosure, server 102 can be implemented using computers
other than servers, as well as a server pool. Server 102 may be adapted to execute any
operating system including Linux, UNIX, Windows Server, z/OS or any other suitable
operating system. But, the present disclosure contemplates servers other than general
purpose computers as well as servers without conventional operating systems.
According to one embodiment, server 102 may also include or be communicably
coupled with a web server and/or a data server.

Memory 120 may include any memory or database module and may take the
form of volatile or non-volatile memory including, without limitation, magnetic media,
optical media, random access memory (RAM), read-only memory (ROM), removable
media, or any other suitable local or remote memory component. In the illustrated
embodiment, illustrated memory 120 includes job objects 140, alert filter objects 142,
and alert objects 144, but may also include any other appropriate data such as a job
history, normalization policies, a security or audit log, print or other reporting files,
HTML files or templates, and others. Job objects 140 are representations of enterprise
jobs and their associated properties. These jobs may be update or report batch jobs,
database processing utilities, commands, or other tasks. Each job object 140
comprises at least a mapping of property names to values that represent the
parameters, variables, output format, or other details of the associated job. For
example, job object 140 typically comprises at least a job identifier and a pointer or
other reference to the appropriate or associated operating environment 106. The
environment pointer may be automatically, dynamically, or manually populated based
on operating system compatibility, data storage location, application, utilization,

priority, department or business rules, geography, other criteria or characteristics, or

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

any combination thereof. In another example, each job object may include job
predecessor, job successor, triggers, calendar, VRM requirements, dataset
predecessors, user requirements, and network predecessors. In certain embodiments,
the constituent data may be dynamically populated based on the particular type of job.
For example, in the case of a distributed job, job object 140 may include two or more
identifiers of the associated operating environments, while a standalone job merely
includes one environment pointer. Job object 140 may be in any appropriate logical or
physical format including an executable, a Java object, text, Structured Query
Language (SQL), eXtensible Markup Language (XML), and such. Indeed, job object
140 may be a default job or a particular instance of a job as appropriate. Moreover,
job object 140 may be keyed on or associated with a user, a user or security group, a
department, or any other variable or property. In addition, job object 140 may include
normalized properties or any properties operable to be normalized.

Alert filter objects 142 include any parameters, variables, algorithms,
instructions, rules, objects or other directives for filtering transitions of jobs 150 to
specific states in heterogeneous operating environments 106. For example, alert filter
object 142 may be used to identify jobs objects 140 whose properties have transitioned
to or from specified states and to generate alert objects 144 in response to an event.
Such an event may include completion of a specific job or jobset, failure of a specific
job or jobset, failure rate of a job type exceeding a threshold, or any other suitable
event. As aresult, alert filter objects 142 may provide a non-intrusive way to generate
alerts based on the state of jobs and other objects in associated job schedulers. In some
embodiments, alert filter objects 142 may comprise one or more tables stored in a
relational database described in terms of SQL statements or scripts. In another
embodiment, alert filter objects 142 may store or define various data structures such as
Java objects, text files, XML documents, comma-separated-value (CSV) files, internal
variables, SQL, or one or more libraries. An alert filter object 142 may comprise one
table, file, or object or a plurality of tables, files, or objects stored on one computer or
across a plurality of computers in any appropriate format. Moreover, alert filter
objects 142 may be local or remote without departing from the scope of this disclosure
and store any type of appropriate data. Alert filter objects 142 may be dynamically
created by server 102, a third-party vendor, or any suitable user of server 102, loaded

from a default file, or received via network 112. In the case of a user creating alert

6

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

filter object 142, the user may be able to view alerts from jobs 150 that match specified
criteria across operating environments 106. In other words, the user may be able to
limit alerts that are processed and/or presented by server 102 to those relevant to the
user’s task regardless of the particular processing environment, operating environment,
or application. Alert filter object 142 may be associated with a specific job, a type of
job, a job-scheduler type, a specific operating environment 106, a specific job
scheduler, or other suitable elements in the enterprise.

In the illustrated embodiment, each alert filter objects 142 implements filtering
directives using filter criteria 146 and includes an alert template 148 for generating
alert objects 144. In some embodiments, filter criteria 146 are compared to job
properties encapsulated in job objects 140 in order to determine matches. Filter
criteria 146 typically includes one or more values that are compared against one or
more job properties (e.g., status) contained in job objects 140. In some embodiments,
prior to comparing with filter criteria 146, server 102 may normalize the one or more
job properties. In this case, the filter criteria 146 may be compared with job properties
from heterogeneous operating environments 106. For example, one or both of the job
properties indicating a job failure from mainframe operating environment 106a and
UNIX-based operating environment 106b, respectively, may both be converted to the
normalized property “Failure.” After normalization, server 102 may compare filter
criteria 146 to the normalized job properties from both operating environments 106a
and 106b for determining whether to generate alert objects for each operating
environment 106. In the case that the job properties are not normalized, filter criteria
146 may be associated with a specific job scheduler and/or operating environment 106.
For example, filter criteria 146 may be associated with UNIX-based operating
environment 106b and may only be used to generate alerts for that operating
environment 106b. Filter criteria 146 may include values to match against one or
more of the following properties: name of job, name of jobset, status of job, name of
operating environment 106, or others. In some embodiments, filter criteria 146
includes one or more tuples for comparing with job properties. Alert filter object 142
may require that all tuples are matched or one or more tuples are matched before
associated alert objects 144 are generated. Each tuple may include a property name,
an operator, and a value. (discussed in more detail below) In this case, the operator

instructs server 102 how to compare the value with the associated job property. For

7

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

example, the operator may be a greater than sign indicating that filter criteria 146
matches a job property if the job property exceeds the value. The operator may be an
equal to sign, a less than sign, a greater than or equal sign, a less than or equal to sign,
or any other logical or mathematical operator. In the event that filter criteria 146 is
matched, server 102 may use alert template 148 to generate alerts representing
transitions of job states. Alert template 148 may comprise a script, executable,
template or any other suitable description such that server 102 may quickly instantiate
an appropriate alert object 144. In some embodiments, alert template 148 is a class
definition for one or more alert object 144. In other words, alert template 148 may
include properties that are used to efficiently create, instantiate, or invoke one or more
alert objects 144. The properties included in template 148 may be determined by a
user of system 100 and/or a process running in system 100. In some embodiments, a
user of system 100 selects or inputs these properties through GUI 116 when generating
alert filter object 142.

Typically based on alert template 148, server 102 instantiates at least one alert
object 144. Alert objects 144 are representations of enterprise alerts and their
associated properties. As discussed above, the alerts may be a transition in a job state
such as, for example, success of a specific job or jobset, failure of a specific job or
jobset, or other events. Each alert object 144 typically comprises a mapping of
property names to values that represent the parameters, variables, or other details of
the associated alert. For example, alert object 144 typically includes at least a job
identifier and a pointer or other reference to the appropriate or associated operating
environment 106. In some embodiments, each alert object 144 includes one or more
the following properties: identification number, class name, severity level, queue
name, timestamp, description, and others. In certain embodiments, the constituent data
may be dynamically populated based on the particular type of alert. For example, in
the case of a jobset, alert object 144 may include two or more job identifiers. Alert
object 144 may be in any appropriate logical or physical format including an
executable, a Java object, text, SQL, XML, and such. For example, alert object 144
may be an instantiated object based on a class defined in any appropriate object-
oriented programming language such as C++, Java, or any other suitable language.

Server 102 also includes processor 125. Processor 125 executes instructions

and manipulates data to perform the operations of server 102 such as, for example, a

8

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

central processing unit (CPU), a blade, an application specific integrated circuit
(ASIC), or a field-programmable gate array (FPGA). Although FIGURE 1 illustrates a
single processor 125 in server 102, multiple processors 125 may be used according to
particular needs and reference to processor 125 is meant to include multiple processors
125 where applicable. In the illustrated embodiment, processor 125 executes job
manager 130, which performs at least a portion of the management of heterogeneous
jobs 150 and/or the normalization of their properties.

Job manager 130 could include any hardware, software, firmware, or
combination thereof operable to allow users access to operating environments 106,
submit jobs 150, query the status or other job properties, normalize some or all of these
properties, or any other appropriate job management processing. For example, job
manager 130 may be written or described in any appropriate computer language
including C, C++, Java, J#, Visual Basic, assembler, Perl, any suitable version of 4GL,
another language, or any combination thereof. It will be understood that while job
manager 130 is illustrated in FIGURE 1 as a single multi-tasked module, the features
and functionality performed by this engine may be performed by multiple modules.
For example, job manager 130 may be a job scheduler and a plurality of adapters 135
(see FIGURE 2). In another example, job manager 130 may comprise a connection
listener 304, a request controller 308 communicably coupled with a plurality of job
parsers and managers, a view controller 314, a session manager 318, a template
manager 320, an adapter manager 322, and a profile manager 324 (as shown in more
detail in FIGURE 3). Further, while illustrated as internal to server 102, one or more
processes associated with job manager 130 may be stored, referenced, or executed
remotely such as GUI 116 and one or more agents residing in the appropriate operating
environments 106. Moreover, job manager 130 may be a child or sub-module of
another software module (not illustrated) without departing from the scope of this
disclosure. In certain embodiments, job manager 130 may include or be
communicably coupled with an administrative workstation 104 or graphical user
interface (GUI) through interface 114. In these embodiments, job manager 130 may
run as a persistent process (e.g., a daemon or service) operable to listen on a particular
port through or in interface 114.

Server 102 may also include interface 114 for communicating with other

computer systems, such as clients 104, over network 112 in a client-server or other

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

distributed environment. In certain embodiments, server 102 receives job submissions
or customizations from internal or external senders through interface 114 for storage in
memory 120 and/or processing by processor 125. Generally, interface 114 comprises
logic encoded in software and/or hardware in a suitable combination and operable to
communicate with network 112. More specifically, interface 114 may comprise
software supporting one or more communications protocols associated with
communications network 112 or hardware operable to communicate physical signals.

Network 112 facilitates wireless or wireline communication between computer
server 102 and any other local or remote computer, such as clients 104. Ilustrated
network 112 comprises two sub-nets or virtual LANS, 112a and 112b, respectively.
Indeed, while illustrated as two networks, network 112 may be a continuous network
without departing from the scope of this disclosure, so long as at least portion of
network 112 may facilitate communications between job manager 130 and one or
more of the operating environments 106. In other words, network 112 encompasses
any internal or external network, networks, sub-network, or combination thereof
operable to facilitate communications between various computing components in
system 100. Network 112 may communicate, for example, Internet Protocol (IP)
packets, Frame Relay frames, Asynchronous Transfer Mode (ATM) cells, voice,
video, data, and other suitable information between network addresses. Network 112
may include one or more local area networks (LANSs), radio access networks (RANS),
metropolitan area networks (MANSs), wide area networks (WANS), all or a portion of
the global computer network known as the Internet, and/or any other communication
system or systems at one or more locations.

Client 104 is any local or remote computing device operable to receive job
submissions 150 and present output (such as properties or reports) via a GUI 116. Ata
high level, each client 104 includes at least GUI 116 and comprises an electronic
computing device operable to receive, transmit, process and store any appropriate data
associated with system 100. It will be understood that there may be any number of
clients 104 communicably coupled to server 102. For example, illustrated clients 104
include one directly coupled client 104 and two communicably coupled clients to the
illustrated server 102. Further, “client 104,” “job owner,” and “user” may be used
interchangeably as appropriate without departing from the scope of this disclosure.

Moreover, for ease of illustration, each client 104 is described in terms of being used

10

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

by one user. But this disclosﬁre contemplates that many users may use one computer
or that one user may use multiple computers to submit or review jobs 150 via GUI
116. As used in this disclosure, client 104 is intended to encompass a personal
computer, touch screen terminal, workstation, network computer, kiosk, wireless data
port, wireless or wireline phone, personal data assistant (PDA), one or more processors
within these or other devices, or any other suitable processing device or computer. For
example, client 104 may comprise a computer that includes an input device, such as a
keypad, touch screen, mouse, or other device that can accept information, and an
output device that conveys information associated with the operation of server 102 or
clients 104, including digital data, visual information, or GUI 116. Both the input
device and output device may include fixed or removable storage media such as a
magnetic computer disk, CD-ROM, or other suitable media to both receive input from
and provide output to users of clients 104 through the display, namely GUI 116.

GUI 116 comprises a graphical user interface operable to allow the user of
client 104 to interface with at least a portion of system 100 for any suitable purpose.
Generally, GUI 116 provides the user of client 104 with an efficient and user-friendly
presentation of data provided by or communicated within system 100. For example,
GUI 116 may be a front-end of job manager 130 and provide functionality to monitor
jobs and alerts, as well as a summary of the jobs and alerts. GUI 116 may provide an
alternate to a Business Scheduling View (BSV) graphical interface for monitoring,
Further, GUI 116 may help the user by providing certain advantages including ease-of-
use, compatibility with Java and non-Java browser platforms, and performance.
Conceptually, the user logs into job manager 130 through GUI 116, which then
presents a list of jobs or job schedulers 137. By selecting a particular job scheduler,
GUI 116 displays the list of active jobs on that scheduler with the appropriate
normalized or raw properties. Using GUI 116, the user can define filters in order to
configure his (or his group’s) view to a specific set of jobs and/or job properties. After
configuration, the user can save this view for later reuse. When a view is saved for
later use, it may show up on a list of available, pre-configured views during login.
This feature may give the user the ability to quickly see the same type of information
from where he left off last time. Alternatively, the user can start on a new view by
selecting from the list of job schedulers in the view. From an example “Job Status”

view, the user can select a job 150 and zoom into its details, thereby easily locating or

11

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

viewing the specific properties for each desired job 150. The user can also manage job
150 using this particular view of GUI 116. For example, the user can start, stop, or
suspend the job, often according to the particular job scheduler 137 capabilities. In
addition to the Job Status view, GUI 116 may provide “Alert” and “Dashboard” views.
The example Alert view may show alerts that have been generated by job manager 130
or job scheduler 137 in response to a particular filter. In the Alert view, the alert
objects 144 may be sorted based a property. For example, when displayed via GUI
116 in a tabular format, alert objects 144 may be sorted according to the severity level
property or column. In the event that the number of alert objects 144 is large, the Alert
view may provide a scrolling function to enable a user to scroll between alert objects
144. In addition, the user of GUI 116 may perform actions on alert objects 144. For
example, the Alert view may enable a user to acknowledgement and closure actions
allowing the user or application to acknowledge or close alarms. In this example, the
state property of an alarm object may start as open, until it is acknowledged or closed.
The example Dashboard view may provide a statistical summary of the jobs and alerts.
Moreover, the filters may be applied in the Dashboard view to set the overall severity
level of the view. When multiple filters are applied to the Job Status, Alert, or
Dashboard views, information from various heterogeneous job schedulers may be
collected into one view. This view shows the selected job and all its direct
dependencies including its immediate predecessors, successors, triggers, resource and
other requirements, and the current status of each. The consolidated data is often
presented in a single way in an example “Enterprise” view. Thus, the Job Status, Alert
and Dashboard views (as well as others) may be types or children of certain Enterprise
views. Another view may be a Map view, which graphically displays the details of a
selected job or jobset. Yet another view may be a Server Configuration view, in which
the administrator or other authorized user can add, edit, and delete servers or operating
environments 106 that are available to job manager 130. This view does not typically
create back-end servers. Instead, it creates or populates the configuration information
to access the environments 106 based on information supplied by the user. Of course,
this configuration information may be automatically retrieved, received, or polled as
appropriate. Each view may be static and or dynamic as appropriate. Generally, static
views do not change over time, while dynamic views automatically change at a regular

update interval or dynamically update according to other criteria. In certain

12

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

embodiments, GUI 116 may also present a “Credentialed User” view, allowing the
user or administrator to add, edit, and delete credentialed users. The credentialed user
information provides login credentials to back-end servers or operating environments
106. Credentialed wusers are set up to simplify access to the back-end
servers/environments 106 and to provide an additional level of security. The portal
user ID may be used as a key to access the credentialed user information. In addition
to the portal user ID, the system administrator can set an environment password, which
can be different than the Portal password. This feature is for users who have access to
multiple back-end servers with the same user ID but different passwords for each. In
addition, for each user ID in the credentialed user information, an alias ID can be
established. The alias ID can be either a group ID (one-to-many or many-to-one) or
can be a user’s personal ID for the back-end server. The alias ID has an associated
password for the back-end server. In addition, a group user/group ID can be set to
provide the credentials.

Regardless of the particular view or data, GUI 116 may comprise a plurality of
customizable frames or windows having interactive fields, pull-down lists, and buttons
operated by the user. In one embodiment, GUI 116 presents information associated
with jobs 150, including job status, and associated buttons and receives commands 170
from the user of client 104 via one of the input devices. This information may be
presented in tabular, graphical, and any other suitable format. Moreover, it should be
understood that the term graphical user interface may be used in the singular or in the
plural to describe one or more graphical user interfaces and each of the displays of a
particular graphical user interface. Therefore, GUI 116 contemplates any graphical
user interface, such as a generic web browser or touch screen, that processes
information in system 100 and efficiently presents the results to the user. Server 102
can accept data from client 104 via the web browser (e.g., Microsoft Internet Explorer
or Netscape Navigator) and return the appropriate HTML or XML responses using
network 112. For example, server 102 may receive a job submission from client 104
using the web browser, execute the particular job 150 in the appropriate operating
environment 106, and present the results in the web browser.

In one aspect of operation, a user logs into job manager 130 using GUI 116 and
is presented with the following example functionality or views: Administration,

Monitoring, Configuration, and Event Management. Both the Administration and

13

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

Monitoring views normally includes an applet deployed in an HTML page. The
Configuration view is provided by a series of HTML pages that communicate with a
Configuration servlet or process. The applets graphically display the objects defined
in the job management system. The applet communicates with the appropriate servlet
or process to send and receive data to the job management system. Event Management
provides web-enabled access to the log facility. Job manager 130 may use the Jacada
Terminal Emulator (JTE) to provide host emulation capabilities. In certain
embodiments, the user may be provided access to certain functionality based on
assignments to Portal workgroups. Based on the particular functionality selected by
the user, job manager 130 may invoke a particular module from a Server/Web Server
tier. This example level includes applets, servlets, servlet engines, and adapters.

Each servlet serves as a central point of communication and management
between the GUI 116 (Applet and/or Portlet) and the one or more operating
environments 106. The servlet is generally operable to expose a callable interface to
GUI 116 to allow the end-user to configure and monitor jobs. The servlets, in turn, are
operable to forward those calls into the various adapters that link with the particular
environment 106. The servlets may be further operable to control client sessions. This
session control typically involves session management, authentication, and
persistency. - As described in more detail in the embodiments of FIGURE 2, each
individual adapter 135 communicates with the servlets and the associated operating
environment 106 and/or job scheduler 137. Adapters 135 encapsulate the user
command into an object 150 it for the particular operating environment 106 and/or job
scheduler 137. Afier any suitable amount of processing or job management, job
scheduler 137 communicates output or job details to job manager 130 via the
appropriate adapter 135 (perhaps in response to worry or at automatically upon
completion or error).

At this point, adapter 135 may contain unmodified or native data from each job
scheduler 137. However, normalization profiles may give the user, administrator, or
job manager 130 the ability to generate, select, or otherwise identify a set of
normalized properties to be shown from the possible properties of the various types of
jobs and operating environments 106. Job manager 130 may then utilize one or more
normalization profiles, which in this example includes a plurality of job status property

objects, to normalize the encapsulated job properties. Job manager 130 applies the job

14

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

status property objects on each set of jobs in the results 160. The outcome of this
process is a set of values, for each job, that are ordered and normalized as needed.
This information may be used to generate job objects 140. It could also be displayed
in a tabular format at this point for the convenience of the user using GUI 116. In
short, there is no specific limitation on how the resulting set of values may be
displayed or stored.

The generated job objects 140 may also be filtered or monitored for alerts. For
example, system 140 may generate an alert when a specific jobset is successfully
completed. As a result of alert filtering, a user may view alerts that are relevant to the
user’s tasks. In response to a request from the user, job manager 130 identifies one or
more alert filter objects 142 using the request. In the jobset example, job manager 130
may identify an alert filter object 142 associated with a job scheduler 137 that is
processing the jobset. The user may communicate a request to job manager 130 by
making a selection through GUI 116. The request may include information that
identifies or is operable to identify one or more alert filter objects 142. In some
embodiments, job manager 130 identifies a single alert filter object 142 operable to
filter alerts from two or more heterogeneous operating environments 106. After
identifying the one or more alert filter objects 142, job manager 130 selects one or
more job objects 140 using the one or more identified alert filter objects 142. For
example, alert filter object 142 may include information that matches or is operable to
match a specific job, job type, jobset, all jobs, or other groups of jobs. Using such
information, job manager 130 collects or processes one or more job objects 140 using
the one or more alert filter objects 142. Returning to the jobset example, job manager
130 select job objects 140 because they contain a reference identifying the specific
jobset. Moreover, job manager 130 may identify one or more job properties for each
job object 140. In the example, job manager 130 identifies the job status of each
identified job object 140 for determining their success. Job manager 130 identifies
alert filter criteria 146 for filtering job objects 140 for alerts. In some embodiments,
alert filter criteria 146 comprise a tuple. In this case, the tuple may include a property
name, operator, and a value. Turning to the jobset example, alert filter criteria 146
includes the following tuple: Job Status, =, and Success. Job manager 130 then
compares the identified job properties with associated alert filter criteria 146. In the

case of tuples, job manager 130 may then compare the value to the identified job

15

10

156

20

WO 2006/014733 PCT/US2005/025741

property in accordance with the operator. For example, job manager 130 may
determine whether the job property equals the value. As in the jobset example, job
manager 130 determines whether the job status of each identified job object 140 is
equal to “Success.” In the event of a match, job manager 130 identifies alert template
148 and instantiates alert object 144. In the jobset example, job manager 130
instantiates an alert object 144 representing that the jobset was successfully executed
by the associated job scheduler 137.

FIGURES 2A-E illustrate various configurations of enterprise system 100 for
executing jobs in heterogeneous operating environments 106. Generally, these figures
illustrate a job manager 130 communicating with a job scheduler 137, resident in one
of the operating environments 106, via an associated adapter 135. Put another way,
job manager 130 may use adapters 135 to interface, normalize, or otherwise process
communications from various heterogeneous job schedulers 137.

Each adapter 135 is an object or other module that encapsulates one or more
types of job schedulers 137. Adapters 135 may be written or described in any
particular format or programming language. For example, adapter 135 may be a Java
object. Regardless of the particular format, adapter 135 is generally operable to
provide APIs to job manager 130 for communication with each job scheduler 137 to
manage and monitor job information. Put another way, adapter 135 may be logically
located between job manager 130 and at least the associated job scheduler 137, thereby
allowing job manager to be communicably coupled with the job scheduler 137. In
certain embodiments, each adapter 135 may provide this compatibility by invoking,

including, exposing, or executing one or more of the following example methods:

Name- Description
List getJobStatus(List filters) Returns the job status data according to the given
filters

Job getJobDetails(Map params) | Returns the job details

void updateJobDetails(Job job) | Updates the job details

List getRunLog(RunLogFilter | Returns the run log data according to the given filter
filter)

List getPriorRun(Returns the prior run data according to the given

16

10

15

20

WO 2006/014733 PCT/US2005/025741

PriorRunFilter filter) filter

void actionJob(Job job, Map Perform action on the specified job

params)

List getJobPreds(Job job, Map | Returns the job predecessors of the specified job

params)

List getJobVRMSs(Job job, Map | Returns the job VRMs of the specified job

params)

void actionVRM(VRM vrm, Perform action on the specified job VRM
Map params)

void actionPred(Pred pred, Map | Perform action on the specified job predecessor

params)

There may be any number of adapters 135, each compatible with any
appropriate number of job schedulers 137. For example, system 100 may include a
mainframe job adapter 135 that provides APIs to allow communication with a
mainframe-based job scheduler 137. These APIs allow the caller to read and write to
different objects that exist within the mainframe job scheduler 137. These objects may
include jobs, calendars, datasets, ARFSets, ARFs, JCL, triggers and predecessors. In
another example, system 100 may include a distributed job adapter 135 that provides
APIs to allow communication with a distributed job scheduler 137. This example
distributed job scheduler 137 may run on any distributed platform such as Windows
and Unix-based operating systems. As with the mainframe adapter 135, the APIs
allow the caller to read and write to different objects (such as jobs, calendars and
global variables) that exist within the distributed job scheduler 137.

Job scheduler 137 is any executable, routine, service, daemon, or other module
or process that is operable to execute, monitor, or otherwise manage jobs 150 in at
least one operating environment 106. Typically, job scheduler 137 is associated with a
particular type, format, or compatibility of job 150. But, as illustrated in the various
embodiments, any job scheduler 137 may be also be configured to run as a more
varied job scheduler or even a master job scheduler 137 managing a plurality of slave
job schedulers 137. Moreover, while job scheduler 137 is illustrated as residing within

a particular operating environment 106, it will be understood that is for example

17

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

purposes only and merely illustrates that job scheduler 137 is associated with the
particular environment 106. Indeed, job scheduler 137 may be distributed across a
plurality of environments, computers, or data stores, without departing from the scope
of the disclosure. Job scheduler 137 may be proprietary, off-the-shelf, customized, or
any other type of job scheduler. Moreover, enterprise 100 may purchase, download, or
otherwise obtain job scheduler 137 using any appropriate technique.

For example, FIGURES 2A-C illustrates at least a portion of system 100 that
includes server 102 communicably coupled to first and second operating environments
106. In this example, each operating environment 106 includes one job scheduler 137,
each operable to manage jobs 150 for that particular operating environment 106. Job
manager 130, illustrated as executing on server 102, is communicably coupled to first
job scheduler 137a through a first adapter 135a and to second job scheduler 137b
through a second adapter 135b. But, as illustrated in the respective figures, adapters
135 may reside on server 102 and/or the associated operating environment 106 as
appropriate. For example, as illustrated in FIGURE 2A, job manager 130 locally
includes, loads, or otherwise invokes adapter 135a for executing job 150a, receiving or
retrieving job status 160a, or other communications, commands, instructions, and such
to first job scheduler 135a. In another example, as illustrated in FIGURE 2B, one or
more of the adapters 135 may act as an agent, service, or daemon residing within the
operating environment 106 for the appropriate job scheduler 137. In this example, job
manager 130 may invoke or interact with remote adapter 135 using a particular port,
socket, or method. In yet another embodiment, illustrated in FIGURE 2D, job
manager 130 may include one of the job schedulers 137 operable to schedule
heterogeneous jobs 150 to a plurality of operating environments 106. In this
embodiment, job manager 130 may be considered a logical all-in-one module with
internal job scheduling, adapting, and normalizing processes and capabilities.

As illustrated in FIGURE 2E, a particular job scheduler 137 or other
application (job manager 130 or other non-illustrated application) may be designed or
implemented as a “metascheduler” (137a) that caters to more than one type of job 150
or is compatible with more than one operating environment 106. In this scenario, job
scheduler 137a can manage heterogeneous jobs on different platforms, operating
systems, or other environments 106. When job scheduler 137a provides the

information about such jobs, it may automatically normalize the properties of these

18

10

15

WO 2006/014733 PCT/US2005/025741

jobs. As illustrated, the “metascheduler” 137a could also control subordinate
schedulers 137b and 137c, respectively. “Metascheduler” 137a may be operable to
consolidate and normalize the information obtained from the subordinates 137b and
137c¢ as appropriate.

In one aspect of operation, illustrated in FIGURE 2C, when retrieving the
details or properties of jobs, adapter 135 communicates with the job scheduler 137 to
get the raw values of these job properties. After adapter 135 receives the infbrmation,
it then translates and normalizes certain properties into a common set of values. In
particular, the status property of job 150 is mapped from the set of job scheduler-
specific values into a common or customized set of values. In some cases, more than
one raw value may be used to map to the common set of values. For example, a
mainframe job may include three properties that determine the normalized job status
value. These example properties are: queue name, status and specific status. In this

example, the raw values are used in combination to map to a common normalized

value.

Normalized Mainframe Raw Value Windows/Unix Raw
Value (Queue/Status/Specific Status) Value
Running ACT/any status except WARN/any Running
specific status
Waiting REQ/any status except WARN or Starting,
ERRX]any specific status except RESTART Inactive, Activated,
RDY/any status except WARN/any Queue Wait
specific status
Success CMP/any status except CANCEL/any Success
specific status
Failure REQ/ERRX/any specific status Failure
REQ/any status/RESTART
Cancel CMP/CANCEL/any specific status Terminated

19

WO 2006/014733 PCT/US2005/025741

Restart Late to Start
On Hold REQ/WARN/HOLD Hold
Late to REQ/WARN/any specific status
Start RDY/WARN/any specific status
Running ACT/WARN/any specific status
Late
Inactive FOR/any status/any specific status
Unknown other values or combinations other values

10

15

20

In other words, the normalization of job properties can also be performed in job
manager 130 instead of the associated adapter 135. Indeed, an example Job Status
Console of GUI 166 may also be operable to normalize of the status property of the
jobs. That is, adapter 135 may perform no normalizing translation when the raw data
is retrieved from the job scheduler 137. This information is then returned to the caller,
which is job manager 130 or GUI 116 as appropriate. The calling application then
normalizes the job properties using, for example, a technique of mapping the raw

values into a set of common values using normalization policies.

FIGURE 3 illustrates one embodiment of the job manager 130. At a high level,
this embodiment of job manager 130 includes a connection listener 304, a request
controller 308 communicably coupled with a plurality of job parsers and managers, a
view controller 314, a session manager 318, a template manager 320, an adapter
manager 322, and a profile manager 324. But, of course, these sub-modules are for
example purposes only and job manager 130 may include none, some, or all of (as well
as other) the illustrated sub-modules. Moreover, one or more of the sub-modules may
be remote, dynamically linked, or invoked as appropriate.

Connection listener 304 is any module, library, object, or other process
operable to listen (such as on a known port(s)) fof connections from clients 104. For
example, connection listener 304 may include or implement the following example

properties:

20

10

WO 2006/014733 PCT/US2005/025741

Name Description

portList List of server ports
serverSocketList List of server sockets
connectionThreadManager Connection thread manager

Connection listener 304 may also execute or invoke the following example methods:

Name Description

void init() Initialize the server listener
void destroy() Destroy the server listener
void addPort(int portNumber) Add a listener port

void removePort(int portNumber) Remove a listener port

Connection listener 304 may include or be communicably coupled with connection
pool 302. Connection pool 302 may be any thread manager module or data structure
operable to dispatch outgoing messages to the connection threads for processing. In
certain embodiments, connection pool 302 is at least partially responsible for
maintaining connection threads for communications between job manager 130 and

clients 104. The following table shows example properties of connection pool 302:

Name Description

threadList List of connection threads

workerPool Worker pool

And the following table shows example methods of the connection pool:

Name Description

void init() Initialize the manager

void destroy() Destroy the manager

void addConnection(Socket | Add a new socket connection and instantiate a
socket) connection thread to handle it

void Destroy the socket connection thread

10

15

20

WO 2006/014733 PCT/US2005/025741

destroyConnection(Socket

socket)

void sendMessage Send a message to the first available connection

(ResponseMessage msg)

After a connection is established, it is assigned to a connection thread in the
connection pool, for processing communications. Generally, a connection thread
manages a particular connection. For example, the connection may be keyed on or
assigned a socket. For example, when an outgoing message is to be sent out, the
thread sends the message through the connection using the appropriate socket. When
an incoming request is received from client 104, the thread reads the message and
unpacks it into a message object. This object is then handed off to the worker pool
306 for processing.

Worker pool 306 is any object or data structure representing the pool of worker
threads. Generally, each worker thread object represents a thread that can perform a
particular task. For example, the worker thread may accept a unit of work and perform
or execute it. When the task is completed, the worker is typically released back into
worker pool 306. Worker threads are handed out to perform tasks on behalf of client
104. In certain embodiments, worker pool 306 can be configured to start with a
particular number of threads and automatically grow to handle higher loads as

necessary. Worker pool 306 may include the following example properties:

Name Description
workerThreadList List of worker threads
connectionPool Connection pool

and implement the following example method:

Description

void process(RequestMessage message) | Process the given request message

Iustrated worker pool 306 is communicably coupled with request controller 308.

22

WO 2006/014733

PCT/US2005/025741

Request controller 308 is any module, object, or other process operable to route

incoming messages to the appropriate objects 310 and 312. For example, the message

may first be sent to the appropriate parser object 310 so that the message may be

parsed into a request object. There may be many kinds of request objects, such as one

5 for each type of request. For example, the following table illustrates a number of

example request objects:

Type Parameter Description
Server Connect server Name of server
user User name credential
password Password credential
Server Disconnect server Name of server
Get Job Status server Name of server
view Name of job status view
Scroll Job Status view Name of job status view
scroll size Scrolling size
scroll direction Direction (forward or
back)
Sort Job Status view Name of job status view
property ‘Which property to scroll
by
direction Ascending or descending
Save Job Status view Name of job status view
old view name Previous name of job
status view (if any)
other parameters Other configuration
parameters
Delete Job Status view Name of job status view
Get Job Details job name Name of job
server Server name
job number Job number
job properties Other job parameters

23

WO 2006/014733 PCT/US2005/025741
Update Job Details job name Name of job
server Server name
job number Job number
job properties Other job parameters
Job Action job name Name of job
server Server name
job number Job number
job properties Other job parameters
action properties Action parameters
Get Run Log server Server name
view View name
Save Run Log view View name
old view name Previous name of run log
view, if any
Delete Run Log view Delete the run log view
Get Prior Run server Server name
view View name
Save Prior R\un view View name
old view name Previous name of prior run
view, if any
Delete Prior Run view Delete the prior run view
Get Alerts server Server name
view View name
Update Alerts server Server name
view View name
alert properties Alert properties
filter properties Filter properties
Alert Action alert properties Alert properties
action parameters Parameters to alert action
Get Dashboard server Server name
view View name
Update Dashboard server Server name

24

10

WO 2006/014733 PCT/US2005/025741
view View name
dashboard properties Dashboard properties
filter properties Filter properties

Open session

Create new session

Close session

session ID Destroy session

In certain embodiments, the request object encapsulates data pertinent to the request,

including ID, session, request parameters, and more. For example, the request object

may have the following properties:

Name Description

requestld Request ID

session Session

response Response to this request, if any

Each request object may implement or invoke the following example methods:

Name Description

int getRequestld() Returns the request ID
void setRequestId(int id) Sets the request ID
Session getSession() Returns the session

void setSession(Session

session)

Sets the session

IResponse getResponse()

Returns the response associated with this request, if any

void setResponse(

IResponse response)

Sets the response

Based on the incoming

message’s request ID, a parser manager provides the

appropriate parser object 310 to unpack the message into the request object. Parser

object 310 is then invoked to unpack the message. It will be understood that there may

be any number of parser objects 310, such as one for each type of request. For

WO 2006/014733 PCT/US2005/025741

example, the parser manager may include or be coupled with one or more of the

following example parser objects 310:

Name Description

JobStatusParser Parses requests pertaining to job status

JobDetailsParser Parses requests pertaining to job details

JobActionsParser Parses requests pertaining to job actions

ServerParser Parses requests pertaining to server actions

OEParser Parses requests pertaining to operating environment
specific objects

AlertParser Parses requests pertaining to alerts

DashboardParser Parses requests pertaining to dashboard

SessionParser Parses requests pertaining to session

These example parser objects 310 may implement, execute, or produce the following

request messages:

JobStatusParser Get Job Status |
Scroll Job Status
Sort Job Status
Save Job Status
Delete Job Status

JobDetailsParser Get Job Details
Update Job Details

JobActionsParser Job Action

ServerParser Server Connect
Server Disconnect

CAT7Parser Get Run Log
Save Run Log
Delete Run Log
Get Prior Run

26

10

15

WO 2006/014733 PCT/US2005/025741

Save Prior Run

Delete Prior Run
AlertParser Get Alerts

Update Alerts
Alert Action
DashboardParser Get Dashboard
Update Dashboard

SessionParser Open Session

Close Session

After the request object is produced by parser object 310, the request is routed
to one of the handler objects 312 for subsequent processing. The handler manager
processes a request object, which often includes the object ID. Based on the request
object ID and other information, the handler manager routes the request object to the
correct handler object 312. Each handler 312 is responsible for processing the request
using operating environment 106, adapters 135, and job schedulers 137 as appropriate.
As with parser objects 310, there are typically many handler objects 312, such as one
for each type of request. In certain embodiments, each handler 312 is responsible for
performing or requesting the work that is requested. For example, each handler may
be operable to load, invoke, or communicate with the appropriate adapter 135 based on
the request object. As a result of its processing, a response object is produced. This
response object is returned along with the request object, after processing (typically
through adapter 135). The following table shows an example list of handlers 312:

Name Description

JobStatusHandler Processes requests pertaining to job status
JobHandler Processes requests pertaining to job details
JobHandler Processes requests pertaining to job actions
ServerHandler Processes requests pertaining to server actions
OEHandler Processes requests pertaining to OE specific objects
AlertHandler Processes requests pertaining to alerts
DashboardHandler Processes requests pertaining to dashboard

27

WO 2006/014733 PCT/US2005/025741

SessionHandler Processes requests pertaining to the session

The following table maps requests to example handlers:

Handler Request
JobStatusHandler Get Job Status
Scroll Job Status
Sort Job Status
Save Job Status
Delete Job Status
JobHandler Get Job Details
Update Job Details
Job Action
OEHandler Get Run Log
Save Run Log

Delete Run Log

Get Prior Run

Save Prior Run

Delete Prior Run
AlertHandler Get Alerts

Update Alerts
Alert Action
DashboardHandler Get Dashboard
Update Dashboard

SessionHandler Open session

Close session

As described above, the processing by each handler object 312 results in a response
object. This example response object is then fed into view controller 314 to produce
the response that, in turn, is returned as the outgoing message to client 104,

View controller 314 routes a processed request object (along with its response

object, if any) to the correct objects. First, the request is fed to a view manager, which

28

WO 2006/014733 PCT/US2005/025741

is operable to generate a view for use by GUI 116. The view manager provides, calls,
or other executes view handlers to process requests into views. For example, it may
route the request to the correct view handler. There are any number of handler objects,

such as one for each type of view.

Name Description

JobStatusHandler Processes responses pertaining to job status
JobDetailsHandler Processes responses pertaining to job details
JobActionsHandler Processes responses pertaining to job actions
ServerHandler Processes responses pertaining to server actions
CA7Handler Processes responses pertaining to CA-7 specific objects
AlertHandler Processes responses pertaining to alerts
DashboardHandler Processes responses pertaining to dashboard

The view manager is responsible for processing the given request into an end-user
view. As a result of its processing, a view object is produced or updated. This view
object is returned along with the request object after processing. After the view is
10 produced, the response object is then sent back to client 104. It will be understood that
the response object may comprise any particular data or instruction in any suitable

format. There may be any number of types or sub-classes of response objects. For

example,

Type Property Description
Server Connect

Server Disconnect

Get Job Status jobStatus Job Status object
Scroll Job Status jobStatus Job Status object
Sort Job Status jobStatus Job Status object
Save Job Status jobStatus Job Status object
Delete Job Status

Get Job Details Job Job object
Update Job Details Job Job object

29

WO 2006/014733 PCT/US2005/025741
Job Action job Job object
action returns Other action return values
Get Run Log RunLog Run Log object
Save Run Log RunlLog Run Log object
Delete Run Log
Get Prior Run PriorRun Prior Run object
Save Prior Run PriorRun Prior Run object
Get Alerts alerts Alerts object
Update Alerts alerts Alerts object
Alert Action alert Alert object
action returns Other action return values
Get Dashboard dashboard Dashboard object
Update Dashboard dashboard Dashboard object
Open session session Session object

In certain embodiments,

the response object encapsulates most or all of the data

pertinent to the response, such as output information, errors, and more. This response

object may include some or all of the following example properties:

Name Description

Request Request associated with this
response, if any

Buffer Buffer containing response

Exception Exception, if any

errorMessage Error message, if any

errorCode Error code, if any

Moreover, in certain embodiments, the response object may include the following

example methods:

30

10

15

WO 2006/014733 PCT/US2005/025741

Name Description

IRequest getRequest() Returns the request associated with this response

void setRequest(IRequest | Sets the request

request)

StringBuffer getBuffer() Returns the response buffer

void setBuffer(Sets the response buffer
StringBuffer buffer)

[lustrated job manager 130 also includes session manager 318. In this
embodiment, session manager 318 is any module generally responsible for handling
sessions. In other words, it creates, stores, and destroys sessions that are assigned to
each unique client 104, often utilizing a map of the current sessions. The session
typically maintains persistent information for a unique client 104 for the lifetime of the
connection. Certain back-end objects specific to client 104 are stored and reachable
from the client’s session. In certain embodiments, session manager 318 implements

the following example methods:

Name Description

Session createSession() Creates a new session

void destroySession(Destroy the given session

Session session)

Session findSession(String | Return the session that matches the given session ID, if

sessionld) any
void init() Initialize the session manager
void destroy() Destroy the session manager

Session manager 318 may automatically cull inactive or abandoned sessions that
exceed a timeout period. For example, certain sessions are governed by an idle
timeout. If this session is kept idle beyond a configurable timeout period, then session
manager 318 may clean it up automatically. In this example, all objects — views,
models, adapters, etc. — associated with the session are destroyed. A next request by

the user may result in an error indicating an unknown session or bad session. But, if

31

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

the view is dynamic, then the view may be responsible for sending the timeout event at
the point where the manager cleans up the session (and its views).

Template manager 320 may be any module operable to manage templates,
which are generally stored as objects in HTML files with placeholder variables
representing dynamic sections. But in certain circumstances, templates may not be
complete <html> blocks. Some may represent small sections of a complete page such
as a frame, table, graph, etc. At runtime, the component sections are typically replaced
by the actual data. Template objects are identified by their file names. Since they are
often uniquely named on the file system, there may be no need to invent a new tagging
scheme to identify them. Once requested, executed, or otherwise located, a
transformation of the template yields the output that is returned to the user through
GUI 116. During startup, initialization, or at any other appropriate time, job manager
130 reads in or loads the desired templates. Templates are often preprocessed after
they are read from the file system. Each template may be encapsulated inside an
object that uses a vector. Each entry in the vector contains an internal object that is
either a static portion of the template or a dynamic portion represented by a variable
name. When the entries are traversed in order and printed out, the resulting output
resembles the template file. This process may be called printing. The template object
exposes the printing functionality with a parameter. The caller provides a map that
contains variable names and values as its parameter. When the template object
encounters a variable name in the vector while printing, it uses the map to resolve the
variable name into a value. That value is then printed in lieu of the variable;
otherwise, the variable may be deemed empty. Sometimes, template manager 320
executes code in response to a variable entry in the vector. The caller can register
callbacks with the object for this scenario. Callbacks can be registered for specific
variable name, index number, or all variables. Parameters to a callback include the
current vector entry and working buffer of the printing process. Template manager
320 hands these objects out to transformers as necessary. Transformers can use the
same template object simultaneously. In this scenario, the template object is
responsible for safely supporting multiple callers.

Adapter manager 322 is responsible for handling adapter wrappers, often
utilizing a map of adapters. The adapter wrapper encapsulates a local or back-end

adapter 135. By providing a high-level interface layer on top of each adapter 135, the

32

WO 2006/014733

PCT/US2005/025741

wrapper provides a consistent and semantic set of methods to each type of job

scheduler. Typically, adapter manager 322 creates, stores, and destroys wrappers that

are assigned to each unique back-end connection or environment 106. In certain

embodiments, adapter manager 322 implements the following example methods:

Name
AdapterWrapper
getAdapter(String server)

Description

Creates or returns the adapter wrapper for this server

void init()

Initialize the adapter manager

void destroy()

Destroy the adapter manager

Profile manager 324 is responsible for handling profile objects such as, for

example, servers, users, groups and views. In this example, the server profile object

encapsulates a configured server, the user profile object encapsulates a user record, the

group profile object encapsulates a Portal group record, and the view profile object

encapsulates a view record.

The profile manager 324 communicates with

configuration, Portal, and its own data store to create, update and delete these objects.

In certain embodiments, profile manager 324 includes the following example methods:

Name Description

Returns the server profile matching the given name

ServerProfile getServer

(String serverName)

UserProfile getUser(String | Returns the user profile matching the given name
userName)

GroupProfile getGroup Returns the group profile matching the given name
(String groupName)

ViewProfile getView Returns the view profile matching the given name, that
(String userName, String is accessible to the user

viewName)

List getServers() Returns the list of servers

List getUsers() Returns the list of users

List getGroups() Returns the list of groups

33

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

List getViews(String Returns the list of views that are accessible to the user

username)

It will be understood that the foregoing sub-modules, properties, and methods
are for illustration purposes only. Indeed, each of these sub-modules, properties, and
methods may or may not be present in certain job managers 130. Put another way, job
manager 130 includes any processes or data storage operable manage jobs 150 and
may include none, some, or all of the foregoing example embodiments without
departing from the scope of the disclosure.

In one aspect of operation, a flow describes a path of execution of a client
request through job manager 130. The request typically originates from GUI 116 and
results in a new or updated page that is returned to the browser. When the servlet
receives a request, it is routed the request conﬁoller 308. This controller 308 produces
a request object that encapsulates the HTTP request and response. Request controller
308 then forwards this object to parser manager 310. Parser manager 310 is comprised
of one or more parsers. Each parser inspects the request and breaks it down into
various pieces of information as appropriate. For example, the session ID and request
ID are extracted. The parser may use this information to look up objects that are
relevant to the request. For example, the session ID translates to a session object.
When control returns to request controller 308 from the parser, the request object is
forwarded to handler manager 312.

Handler manager 312 is comprised of one or more handlers. Based on
information in the request object such as the request ID, handler manager 312 forwards
the request to the corresponding handler. Each handler may be considered an “atomic”
piece of business logic dedicated to servicing a request. A handler often depends on
other objects to accomplish its work. Some of these objects include adapters 135,
model objects, and other manager objects. For example, when a job status handler
executes, it uses the correct adapter instance 135 in conjunction with the job status
model object to accomplish its work. When the handler finishes its work, it produces a
response object. A response object can contain different pieces of information such as
output data, error codes, and others. Handler manager 312 returns this response object

to request controller 308.

34

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

Request controller 308 forwards the response object to view controller 314.
View controller 314 is comprised of one or more view objects. Each object is
dedicated to producing a specific view such as job status. The job status response
object provides the information to the view to produce the output for the browser.
Views are normally closely tied to templates. Template manager 320 provides HTML
templates that form the basis for the output. The final output is a combination of data
from a response object and a template. After the output is composed, view controller
314 sends it to client 104. Control then returns to request controller 308 and out of the
servlet.

FIGURE 4A illustrates an example alert filter object 142 and child or
associated job property object in accordance with one embodiment of the present
disclosure. As illustrated, alert filter object 142 may include a number of child records
or objects. . For example, one record or object (such as a Java job status model object)
represents the job status view for a particular job 150. In certain embodiments, each
object 142 contains a collection of alert filters 402. Alert filter 402 represents a filter
that job manager 130 may apply to job objects 140 for identifying transitions in job
states and generating alert objects 144. Alert filter 402 may be associated with a
particular operating environment 106. Alert filter 402 may be a collection of property
tuples 404 and alert definitions 406. Each example property tuple 404 comprises three
values: property name, property operator, and property value. The property name
contains the name or alias of the property that is matched from the job definition or
instance. For example, the name could be “Job ID” representing the ID number of the
job. The property operator contains the type of comparison to perform on the property
value. For example, the operator could be “=" representing the “equals” comparison.
The property value contains the value to match or compare. For example, the value
could be “100.” In certain embodiments, alert filter 402 may allow multiple property
operators and/or property values in the same property tuple 404. For example, there
could be multiple values specified in a special format as the property value, such as
“100,101,102.” The interpretation of the specification of multiple property operators
and/or property values in the filter may depend on the property name in question. In
addition to the collection of property tuple 404, alert filter 402 may contain a
reference, identifier, or other pointer that identifies or is operable to identify one or

more job objects 140. In some embodiments, the reference may be identified an

35

10

15

20

25

WO 2006/014733 PCT/US2005/025741

instance of a job scheduler 137 by a machine name, network address, database name,
or a combination of system, network, database and proprietary identifiers that
represent a unique installation of the associated job scheduler 137 or operating
environment 106. This reference may later be resolved to the set of information in
order to perform a network connection or API call into that instance of a job scheduler
137. In one aspect of operation, job manager 130 first groups the alert filters 402
according to their references to instances of job schedulers 137. (see FIGURE 4B).
For example, if there are five alert filters 402 and three of them refer to Job Scheduler
“S1” and two refer to job scheduler “S2,” then two filter groups may be formed: one
for S1, which contains three alert filters 402, and another for S2, which contains two
alert filters 402. Then alert filter object 142 distributes each filter group to a unique
worker thread for processing. In this example, each worker thread invokes an adapter
135 for job scheduler S1 and S2 that is associated with the type of job scheduler 137.
(see FIGURE 4C). Moreover, each worker thread passes filter criteria to the
associated adapters API which in turn converts requests to forms that are compatible to
the job schedulers. Job schedulers S1 and S2 return job properties to the worker
threads via associated adapters 135. (see FIGURE 4D). Job manager 130 then waits
for the threads to complete the processing before continuing. In the event of a match,
job manager 130 instantiates associated alert objects 144 using alert definition 406.
(see FIGURE 4E). Alert objects 144 may then be stored in system 100. For example,
alert objects 144 may be recorded to disk via a file system or database. (see FIGURE
4F).

Based, at least in part, on alert definition 406, job manager 130 instantiates
alert objects 144. Alert definition 406 is one example of alert template 148. Each alert

definition 406 includes one or more the following properties in the table below.

Property Type Description
Job String Name of job
Jobset String Name of jobset
Status Enum Status of job
Server String Name of server

36

10

15

20

WO 2006/014733 PCT/US2005/025741

Then, the following properties may need to be provided in order to generate alert
object 144.

Class Class of alert

Queue Name of alert queue

Status Status of alert

Text Text description for alert

Severity Severity level of alert

Creation Time Creation date-time

Update Time Last update date-time

Job Properties Other job properties to be included in alert
URL URL reference to content related to alert

The properties identified above are for illustration purposes only. Alert definition 406
may use the some, all, or different properties that are used to generate alert objects
144.

FIGURES 5A-F are example displays for presenting various normalized
properties of heterogeneous jobs as executed in accordance with one embodiment of
system 100. It will be understood that illustrated web pages 116a-116f, respectively,
are for example purposes only. Accordingly, GUI 116 may include or present data,
such as normalized or raw job properties, in any format or descriptive language and
each page may present any appropriate data in any layout without departing from the
scope of the disclosure.

Turning to the illustrated embodiments, FIGURE 5A illustrates an example job
requirements or job properties view 116a. In this view 116a, the user may be able to
view or modify various properties of job 150 or jobset. In other words, job properties
view 116a is a graphical representation of the objects that can be included in the
definition of the job. Job objects may include: job predecessor; job successor; triggers;
calendar; VRM requirements; dataset predecessors; user requirements; and network
predecessors. The dialog may be a modeless frame that contains a context sensitive
panel for displaying the graphical view of the selected item’s objects. This frame may

contain a palette on the left side that has a list of objects that can be created for the

37

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

selected object. On the right may be the graphical layout of the objects for the selected
item. Users may have the option to drag items from the palette and drop them onto the
graphical layout. Dragging and dropping an object may create a new object, but the
user often fills in the properties for that object in the main view. Upon dropping the
object, an icon may appear in the graphical layout. Also, the main view may select the
new object and display its properties so the user may fill in any missing attributes.
Until the user fills in required properties, all icons representing the new object may
have a graphical design that alerts the user that the object is incomplete.

Accordingly, job properties view 116a gives the user the ability to drag existing
objects into the job properties view 116a from the main panel’s tree view. Job
properties view 116a may not allow invalid objects to be dropped and the cursor may
change to a “No” symbol to notify the user. When a valid object is dropped, an icon
may appear in the job properties view 116 layout and the main view may select the
dropped object and display its properties. Job properties view 116a may always be
locked onto the object that was selected when it was launched. Users may have the
ability to select objects in the main view without job properties view 116a changing.
When the user is finished changing the requirements for job 150 or jobset, the applet
may provide the option to either close the dialog or change the job properties view
116a’s selection to edit another object’s requirements. Job properties view 116a may
display a blank panel if the user deletes the selected job 150 or jobset from the view.
When the user selects an object in job properties view 116a, the main view may select
the same object and display its properties.

FIGURE 5B illustrates an example job status view 116b. In certain
embodiments, job status view 116b consolidates the jobs that are filtered for that
particular view and displays associated properties. Of course, this view may be
customizable across the enterprise or individually. In other words, the particular view
may display properties as selected by the user. This view can be sorted by column (or
property). The user is also allowed to scroll between sets of jobs when the number of
jobs exceeds the window size set for the view. Also, the user is allowed to jump
directly into a specific set, the starting set, and the ending set. The order of the
properties can also be defined. Often, job status view 116b displays the normalized
properties, opposed to the raw data. This allows the user to sort, filter, and otherwise

view heterogeneous jobs in a consistent interface. For example, the first two displayed

38

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

jobs “testjob” and “WhereDidAllTheBoxJobsGo” may be a UNIX job and a
mainframe job, respectively. Yet, view 116b presents a common property, “Success,”
for both jobs after normalizing the native values.

FIGURE 5C provides an example overall view 116¢ of all the various BSVs,
to which the particular user has access, in list type view. For each BSV, view 116¢
shows the number of objects in various pre-defined statuses. When user navigates
through rows of the list view by pressing the left mouse button or the up/down arrow
keys in the keyboard, the toolbar will show the corresponding enabled icons for the
selected BSV. When there is a selected row and user sorts the rows, the toolbar icons
will be enabled/disabled according to the newly selected row object after the sort. If
user right-clicks any row, a context menu will appear that shows the same enabled
menu items, and the toolbar icons will be enabled/disabled accordingly. As with the
other views, view 116¢ may display or process the various properties after appropriate
ones have been normalized.

FIGURES 5D, SE, and 5F illustrates various graphical or tabular views (116d
116¢, and 116f) of the various jobs and job properties. For example, the user may
select a loaded BSV from the tree, resulting in the BSV details in multiple tabs in the
right pane. In this case, this view summarizes the status of the jobs and jobsets
included in this BSV and can be displayed as a bar chart or pie chart. These charts
show the number of jobs at different status. Each status is represented with a color and
this helps in understanding the overall health of the system at a glance. The user can
typically switch between these two chart styles using the toolbar option. As with the
other views, views 116d 116e, and 116f may each display or process the various
properties after appropriate ones have been normalized.

FIGURES 6A-6E are example displays 116g through 116k associated with alert
filter objects 142 in accordance with one embodiment of system 100. As with views
116a-f, it will be understood that illustrated web pages 116g through 116k are for
example purposes only. Accordingly, GUI 116 may include or present data, such as
statistical information of jobs states and alerts states, in any format or descriptive
language and each page may present any appropriate data in any suitable layout
without departing from the scope of the disclosure.

Turning to the illustrated embodiments, FIGURE 6A illustrates an example

Alert view 116g (discussed above). View 116g provides a summary of alert objects

39

10

15

20

WO 2006/014733 PCT/US2005/025741

144 in tabular form including the following properties: ID, server, severity, time, type,
and status. In this view, alert objects 144 may be sorted based on a property. For
example, when displayed via GUI 116 in a tabular format, alert objects 144 may be
sorted according to the severity level property or column. In the event that the number
of alert objects 144 is large, view 116g may provide a scrolling function to enable a
user to scroll between alert objects 144. In addition, the user may select an alert object
144 from the display in order to view additional information and/or perform actions.
As to view 116h in FIGURE 6B, the user may be able to view available alert
filter objects 142 and select desired filters such as through a checkbox. As illustrated,
view 116h includes “Filter 1” and “Filter 2” as available alert filters. Both or a single
alert filter may be selected and applied to associated job objects 140. Regarding view
116i in FIGURE 6C, a user of system 100 may create an alert filter thereby adding an
available alert filter to the list display in view 116h. In the process of adding a filter to
system 100, a user may provide values for the various fields displayed in view 116i.
These steps may be performed by entering information in available fields and/or
selecting values from dropdown menus. In addition, a user may provide and/or select
the information to be included in an alert object in the event of a match. As with the
filter criteria, the alert properties entered in available fields and/or selecting from a
dropdown menu. In the process of performing these tasks and/or other tasks, job
manager 130 may use one or more of the following methods in the table below.
Name Description

List getAlertFilters() Returns the filters

AlertFilter getAlertFilter(String name) | Returns a specific alert filter

void setAlertFilter(AlertFilter filter) Updates a specific alert filter

void addAlertFilter(AlertFilter filter) Add a specific alert filter

void removeAlertFilter(String name) | Remove a specific alert filter

List getAlerts(Filter filter) Return alerts based on given filter
void setAlert(Alert alert) Updates a specific alert

List getAlarms(Filter filter) Returns alarms based on given filter
void setAlarm(Alarm alarm) Updates a specific alarm

It will be understood that these methods are for illustration purposes only. Job

manager 130 may use some, none, or all of the illustrated methods without departing

40

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

from the scope of the disclosure. Regarding view 116j in FIGURE 6D, in the process
of generating an alert filter object 142, the user may select properties in which to base
the filter on. In other words, view 116j enables the user to select the properties to be
included in the generated alert filter object 142. In the illustrated embodiment, view
116j presents to tables to the user: Available Properties and Selected Properties. The
table labeled Available Properties identifies the properties that the user may add to
alert filter object 142. The table labeled Selected Properties identifies the properties
that the user has already selected to be included in alert filter object 142. As to view
116k in FIGURE 6E, view 116k display properties of an associated alert object 144
and enables a user perform an action such as Acknowledge or Open on the associated
alert object 144. In addition, the user may enter comments in the comment field.

FIGURE 7 is a flowchart illustrating an example method 700 for submitting a
job 150 in one or more of a plurality of heterogeneous operating environments 106 in
accordance with one embodiment of the present disclosure. At a high level, method
700 includes receiving a job submission from a user and executing job 150 in the
appropriate operating environment 106 (or operating environments 106). The
following description focuses on the operation of job manager 130 in performing
method 700. But system 100 contemplates using any appropriate combination and
arrangement of logical elements implementing some or all of the described
functionality.

Method 700 begins at step 702, where job manager 130 receives a job request
from the user, typically using client 104. But, as described above, the user may submit
job request directly to server 102 without departing from the scope of method 700.
The job request may comprise one or more of the following types of jobs: an update
job, a command, a task, or any other appropriate enterprise job or request. Next, at
step 704, job manager 130 authenticates the user. This authentication may include
verifying that the user can submit this particular type of job, can update the requested
or associated data, or any other security or authentication procedure or technique. Of
course, while not illustrated, modules other tha job manager 130 may perform this
authentication and communicate the results to job manager 130. Job manager 130 then
identifies a job object 140 using the received job request at step 706. For example, the
job request may include a job identifier or other pointer. In this example, job manager

130 queries the plurality of job objects 140 to determine the particular job object 140

41

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

associated with the request based on the pointer. Once the appropriate job object 140
is identified, Job manager 130 identifies operating environments 106 for the job at step
708. As described above, in the case of a distributed job, there may be more than one
operating environment 106 associated with the job. Job manager 130 may identify the
appropriate operating environment 106 using any suitable technique. For example, job
manager 130 may determine the appropriate operating system to execute the job. In
another example, job manager 130 may identify the location of the data storage
associated with the job request. In yet another example, job manager 130 may identify
the appropriate virtual location for executing the job request. Next, at step 710, job
manager 130 invokes a job scheduler 137 in the identified operating environment 106.
Once job manager 130 has invoked job scheduler, it may execute the job using the
invoked job scheduler 137 at step 712. It will be understood that this execution may
include an immediate submission, adding the job to queue associated with the invoked
job scheduler, or any other appropriate technique.

FIGURE 8 is a flowchart illustrating example method 800 for filtering alerts in
accordance with one embodiment of the present disclosure. Generally, method 800
describes one example technique for job manager 130 to filter one or more jobs objects
140 associated with heterogeneous operating environments 106 for state transitions
and generate alert objects 144 in response to determining a match. The following
descriptions will focus on the operation of job manager 130 in performing this method.
But, as with the previous flowchart, system 100 contemplates using any appropriate
combination and arrangement of logical elements implementing some or all of the
described functionality.

Method 800 begins at step 802, where job manager 130 receives a status
request from a user, typically at client 104. Next, at step 804, job manager 130
identifies a first alert filter object 142 using the status request. For example, job
manager 130 may identify a first alert filter object 142 associated with the research and
development (R&D) department. At step 806, job manager 130 identifies a property
name, an operator, a value, an alert definition, and one or more references using alert
filter object 142. In the R&D example, alert filter object 142 may include a failed state
expression and an identifier operable to identify job objects 140 associated with the
R&D department. At step 808, job manager 130 identifies job objects 140 using the

one or more references. In some embodiments, job objects 140 are associated with

42

10

15

20

25

WO 2006/014733 PCT/US2005/025741

heterogeneous operating environments 106. Next, a step 810, a property of each
identified job object 140 is identified in accordance with the property name. Returning
to the example, job manager 130 may identify the job state of each identify job object
140. The property and the value are compared in accordance with the operator a step
812. If a match is determined that decisional step 814, then job manager 130
instantiates an associated alert object 144 using alert template 148. In the example, job
manager 130 instantiates an alert object for those job objects associated with the R&D
group that contain a failed state. Otherwise, execution proceeds to decisional step 818.
If additional job objects 140 are available, then the next job object 140 is identified at
step 820. Otherwise, execution proceeds to decisional step 822. If additional alert
filter objects 142 are identified using the status requests, job manager 130 identifies
the next alert filter object 142 at step 824. Otherwise, job manager 130 generates a
presentation of the alert objects 144 at step 826. Next, at step 828, job manager 130
communicates the presentation to the requesting user.

The preceding flowcharts and accompanying description illustrate exemplary
methods 700 and 800. System 100 contemplates using any suitable technique for
performing these and other tasks. It will be understood that method 800 is for
illustration purposes only and that the described or similar techniques may be
performed at any appropriate time, including concurrently, individually, or in
combination. In addition, many of the steps in these flowcharts may take place
simultaneously and/or in different orders than as shown. Moreover, system 100 may
use methods with additional steps, fewer steps, and/or different steps, so long as the
methods remain appropriate.

Although this disclosure has been described in terms of certain embodiments
and generally associated methods, alterations and permutations of these embodiments
and methods will be apparent to those skilled in the art. Accordingly, the above
description of example embodiments does not define or constrain this disclosure.
Other changes, substitutions, and alterations are also possible without departing from

the spirit and scope of this disclosure.

43

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

WHAT IS CLAIMED IS:

1. A job manager operable to:

invoke an alert filter, wherein the alert filter is compatible with a plurality
operating environments;

identify one or more properties of a first job associated with a first operating
environment;

identify one or more properties of a second job associated with a second
operating environment, wherein the first operating environment and the second
operating environment are heterogeneous;

generate a first alert object in response to a first match between the alert filter
and the identified properties of the first job; and

generate a second alert object in response to a second match between the alert

filter and the identified properties of the second job.

2. The job manager of Claim 1, at least one of the identified properties of
the first job and at least one of the identified properties of the second job are

normalized to a same value.

3. The job manager of Claim 1, further operable to:

retrieve the one or more properties of the first job from the first operating
environment;

normalize the one or more properties of the first job at a third operating
environment; and

compare the normalized properties of the first job to the alert filter.

4. The job manager of Claim 1, wherein the job manager operable to
generate a first alert object comprises the job manager operable to:

retrieve the one or more properties of the first job from the first operating
environment; and

instantiate the first alert object by population a portion of the alert filter with
the retrieved data.

44

10

15

20

25

30

WO 2006/014733 PCT/US2005/025741

5. The job manager of Claim 4, wherein each selection includes a property

name, an operator, and a value.

6. The job manager of Claim 1, further operable to communicate the first

and second alert objects to one of a client, a database, or a user.

7. The job manager of Claim 1, wherein the job manager comprises:

a first worker thread associated with the first operating environment, the first
worker thread operable to process the alert filter;

a second worker thread associated with the second operating environment, the
second worker thread operable to process the alert filter;

a first adapter associated with the first worker thread, the first adapter operable
to convert information to a form compatible with the first operating environment; and

a second adapter associated with the second worker thread, the second adapter
operable to convert information to a form compatible with the second operating

environment.

8. A system for providing alerts for heterogeneous jobs, comprising:
memory storing a plurality of alert filters, each alert filter compatible with a
plurality operating environments; and
one or more processors operable to:
periodically invoke one of the alert filters;
identify one or more properties of a first job associated with a first of
the plurality of operating environments;
identify one or more properties of a second job associated with a second
of the plurality of operating environments, wherein the first operating environment and
the second operating environment are heterogeneous;
generate a first alert object in response to a first match between the alert
filter and the identified properties of the first job; and
generate a second alert object in response to a second match between

the alert filter and the identified properties of the second job.

45

10

15

20

WO 2006/014733 PCT/US2005/025741

9. The system of Claim 8, at least one of the identified properties of the
first job and at least one of the identified properties of the second job are normalized to

a same value.

10. The system of Claim 8, the processors further operable to:

retrieve the one or more properties of the first job from the first operating
environment;

normalize the one or more properties of the first job at a third operating
environment; and

compare the normalized properties of the first job to the alert filter.

11. The system of Claim 8, wherein the processors operable to generate a
first alert object comprises the processors operable to:

retrieve the one or more properties of the first job from the first operating
environment; and

instantiate the first alert object by population a portion of the alert filter with

the retrieved data.

12. The system of Claim 11, wherein each selection includes a property

name, an operator, and a value.

13. The system of Claim 8, the processors further operable to communicate

the first and second alert objects to one of a client, a database, or a user.

46

10

15

20

25

WO 2006/014733 PCT/US2005/025741

14. The system of Claim 8, the processors further operable to execute:

a first worker thread associated with the first operating environment, the first
worker thread operable to process the alert filter;

a second worker thread associated with the second operating environment, the
second worker thread operable to process the alert filter;

a first adapter associated with the first worker thread, the first adapter operable
to convert information to a form compatible with the first operating environment; and

a second adapter associated with the second worker thread, the second adapter
operable to convert information to a form compatible with the second operating

environment.

15. Amethod for providing alerts for heterogeneous jobs, comprising:

invoking an alert filter, wherein the alert filter is compatible with a plurality
operating environments;

identifying one or more properties of a first job associated with a first of the
plurality of operating environments;

identifying one or more properties of a second job associated with a second of
the plurality of operating environments, wherein the first and the second of the
plurality of operating environments are heterogeneous;

generating a first alert object in response to a first match between the alert filter
and the identified properties of the first job; and

generating a second alert object in response to a second match between the

alert filter and the identified properties of the second job.
16. The method of Claim 15, at least one of the identified properties of the

first job and at least one of the identified properties of the second job are normalized to

a same value.

47

10

15

WO 2006/014733 PCT/US2005/025741

17. The method of Claim 15, further comprising:

retrieving the one or more properties of the first job from the first operating

environment;

normalizing the one or more properties of the first job at a third operating

environment; and

comparing the normalized properties of the first job to the alert filter.

18. The method of Claim 15, the method further comprising generating the

alert filter based, at least in part, on one or more inputs from a user.

19. The method of Claim 18, wherein each selections includes a property

name, an operator, and a value.
20. The method of Claim 15, the method further comprising

communicating the first and second alert objects to one of a client, a database, or a

Uuser.

48

PCT/US2005/025741

WO 2006/014733

_~PyOL
~9L1

1/20

asoL~

~—8¥ |
~9v L

€90 r\‘

141

™\

T
@ ™-ay01

¢0}

[OIA
)
901

\G]

~-ep0 L

00}

WO 2006/014733

2/20

PCT/US2005/025741

| 106a\
“E‘ 150a FIRST
N JOB
1353 ————"3 / SCHEDULER
AP \ \—1§0a 137a
o8 SN FIRST JoB ==
ADAPTER
MANAGER | o,
130 WEAS. | SECOND JoB
—= ADAPTER |
5 150b SECOND
139D <;£> SCHEDULER
FIG. 24 13013 137b
1060~ |
135a
1062~ | \ FIRST
JOB
1(2‘ ig%#gr? : SCHEDULER
API
CALLS 137a
JOB
MANAGER AP
130 CALLS
SECOND
JOB
SECOND JOB
OAPTER SCHEDULER
vl / 137b
106b 1951 137b

FIG. 2B

PCT/US2005/025741

WO 2006/014733

a901) 4
qost h5e ac Old —————— e
~ a3nv4 r—=" : 1
a0 | 66°SSI0ONS ‘900 |
| ‘ ! |
W01V Id L&} | qmmm.mmw__w_%mn_% mm_, !
q3LnamLsia > ! : . _
0L STINAIHIS | ISE'aIVA ' 80T |
O_ 00} 'SS300NS 'V 80F | V__ =
431NA3IHOS NOILVIINNWINOD N
WHOALY1d ~ gor oL
oo GNVHEINIYIN ™G ST inaanas
HNINNNY
BOSH| v aor /
B90} 0tt
<
N 2 DOIA
F T T 1)
| 66 ‘0 ‘ONINNNY ‘3 90 | , ,
o ___ - | 102 0 'wouya ‘g 80r | 66 'SS300NS 3 90T
| 660 ‘ONINNNY 3 80T | | y0L 0 ‘INLOV D EOr | q%m_mmw_%%om_m?
| 10z ‘0 ‘yoyy3a ‘a gor | | 1GE€ ‘0 ‘adTIv4 ‘g gor | ; X
L€} | y01°0"3A0V D 807 | | 001 "0 "DNINNNY 'V 807 ! IPSRINGIA IS
| 1GE 0 ‘QTv4 ‘9 900 | GEl >
,_ SNLYLS €0r NdN13Y @rv < m asn
HATNA3IHOS | 431dvay SNLVLS gor 139 (1) 2|l (9
o qor g0r = gL
901 5 p

SNLYLS gor 139 (2)

oc
Ll
(&}
<
=
<
=
o
o
S

PCT/US2005/025741

WO 2006/014733

0G1

AUEL

d431Nd3HIS
31¥NIdd04ans

mm—

ST0YLINOD

4/20

051

d31Na3IHIS.
3LVNIGH04NS

———

elEL

H3INAFHOSYLIINW

66 ‘SS330NS 3 90r
102 ‘a3v4 ‘g gor
¥01 ‘SS3J0NS 0 9or
}GE ‘03v4 ‘g gor
00} 'SS320NS ‘v dor

-SHTINAIHIS FLVNIAH0dNS oY
S311H3d04dd Q3ZINVINEON HLIM Sgor

ST041INOD

0tl

NOLLYOINNAINGD

>

v0l

INIHOVIA
IN3IO

AT OIA

WO 2006/014733

5/20

PCT/US2005/025741

130
310
306 /
\ PARSER | SERVER |JOB STATUS
308 MANAGER| PARSER | PARSER
WORKER POOL \
1| | REQUEST | |HANDLER| SERVER |JOBSTATUS| . . |
WORKER CONTROLLER | | MANAGER | HANDLER | HANDLER
THREAD N -
314 316
312
\ \
302 VIEW VIEW | SERVER [JOBSTATUS| . .
N CONTROLLER | |MANAGER| VIEW VIEW
CONNECTION POOL SESSION TEMPLATE
— MANAGER MANAGER
| CONNECTION SESSION | ™\ TEMPLATE
l- THREAD | | 7318 | L I [M320
CONNECTION
LISTENER ADAPTER PROFILE
~ MANAGER MANAGER
304
[ADAPTER ‘\322 PROFILE -] ‘\324
i {
FIG. 3
7Q9\
702~ | RECEIVE JOB REQUEST y
FROM A USER IDENTIFY OPERATING | 708
T ENVIRONMENT FOR JOB
704~ AUTHENTICATE USER v
] 4 INVOKE JOB SCHEDULER
IDENTIFY JoB 0BJECT | | | "M IPEIIFIED GEERATING [N\-740
706-"] USING JOB REQUEST
L 4
EXECUTE JOB USING
FIG. 7 INVOKED JOB SCHEDULER [\ 71

WO 2006/014733 PCT/US2005/025741

6/20

142 ALERT MODEL OBJECT

- FILTERS: ALERT FILTER ,
1
|- CONTAINS

ALERT FILTER
_ TUPLES: PROPERTY TUPLE
- SCHEDULER REFERENGE: STRING
- ALERT: ALERT DEFINITION

1 1
|- CONTAINS 1|

PROPERTY TUPLE ALERT DEFINITION
- NAME: STRING - CLASS NAME: STRING
- OPERATOR: STRING - SEVERITY LEVEL: STRING
- VALUE: STRING - QUEUE NAME: STRING

FIG. 44 | - STATUS: STRING

- TEXT: STRING
- MISCELLANEOUS: STRING
- URL: STRING

402 < |

404 N\ 406

PCT/US2005/025741

WO 2006/014733

(1S) JONVLSNI
HITNAIHIS
aor

LEL

7/20

Fdv3dHL
HIMHOM

N DV DIA
V 3dAL 40 43INAIHOS % _
SNOILVOINNWWOD QHVANVYLS d0r 404 43.1dvav . " SNOILINIHIQ 4O SIONVISNI
HO AHV131Hd0Yd (€) dor 139 01 Idv Haldvay oL
pmmmmmm e mmmmm e e SHILTH 0 YIHILMO SSYd (@
" SHALAVYAY J19VTIVAY V 3dAL 40 €3NAIHOS “
! [83dAL 40 u3InaaHos | 80T 404 ¥3ldvay !
g0r 404 Waldvay | N <
| el ey |V 63ING3HIS 90T 3dAL 40
T | SI HOIHM ‘LS 43TINQaHOS
404 Y31dvav NIV.Lg0 (1)
gt DIH P
e 1 cov 20v _
2 QYI4HL A9 03SS39004d (2) “ / / "
HINHOM i | 2s:"3IN@aHos | | 2s AINaIHos |
2 = V__ G YL LMW | | v YA LYY “
NOILFTdINOD SdnoYo (¢
—_— | |
4o4 sLvm (e) | 2T L_____doddnodddatid
103rd0 r HO4 dno¥S YA |
300N | . |
Ty | 207~ }S HIINAIHOS |
: i : S AL Y3 |
= P I
HINHOM H04 SLIYM (€) 1 | IS HINAIHIS LS “431NAIHIS | 1
A= TR ENICEy L3 1437V “
A9 03SSIN0Hd (2) ! \ \ i
“. 0V FA0)% _

S

PCT/US2005/025741

WO 2006/014733

8/20

LE}

INLSAS | AV OIA
I T
——— " sasn 193rd0
\.\‘J ILER S S1HATY FLHM IV Pz
ISVAVLYA aNv avay
> 590
¢ QVaLHL 4y O1d
ON
HIMHOM [7a3HOLVIN mmo_,& N"NL3Y (€) = 103080
ANV 343M (1) 300N
L QV3HHL ~ San ~| 103r80 e
HIMHOM [2Q3IHOLVIN S9or Y3114 NI NOILINIF3A W3V [Tnanme @
ANV 343Mm (1) 1431V NO @3sve S S
1437V 31vdINgg (2) vl el
AN
drv OlH
(2S) JONVISNI - . -~ d 3dAL 40 H31NAIHOS — Z Qv3dHL
%:M%Iow IVINGO4 FALLYN NI VigaLIE9 80r 404 H3Ldvay LVINH0H 193rd0 HIHHOM
HOLVI LYHL SEO N6nL3Y (1) / NI SEOF NYNL3Y (2)
GEIL
(2S) JONVLSNI ~| V3dAL0 ¥3TNAIHOS ~f + QVaHHL
mm:m_%zow IVINH04 INLYN NI VIEaLH0 g0r 404 H3Ldvay LVINH03 193rd0 YDIHOM
HOLYIN LYHL SEOr NYN13Y (1) / NI SEOr NUNL3Y (2)
GEl

WO 2006/014733 PCT/US2005/025741

Ix]
() ~
(o — a S
3 S 2
' = 57 2 @
é _— ﬁ 755 é :cg
m
e (of5o0) = %
2000, [ab] Q
= —
{k
o)
=
: <
.
fI
L
!
=
<
~ > |
e
O jlg =
i 3] <
- o |
= w %)
¢/ g
A &)
S/ s 5
Y N wm wn faa)
=
el »[1]« 757 ® 557 1=
© A mn frao, '; nm |vea/ <
— Jaﬂa o ..a..ﬂﬂﬂa -
" l2/5550) D lBlsses) O
(222 ooog, w
AN d N
(] =
S
> ¥ \
2
=
wy
E 2
P -
2l E
‘S - 700,
(@] —-—
= X |5 -
@ : = o000, o
oz 2 ooopo, <C
21N S
pcd (=)
ol -

PCT/US2005/025741

10/20

WO 2006/014733

_N JouDaul _So._,WM.% : . e
* ONEOrX0aMIN pajouiual [$00S7-801-¥01 onqorpwameN |]
$590NS | $00S¥-801-¥0} A pwwos| 7]
sseoons | $00SY-801-¥01 ongorxoaman| [
- sapooul| ¥0057-801~¥01 lsagxog|]
palio| $00S¥-801~¥0l pwooods| [7]
sse09ng | y00GY-801-¥0L| o9sqorxogaypiiypigessum| [
ss800nS | $00SY-801~¥01 qofisay|]

jasqop snjbjsg JEYSEIN qor pajps [|

<< <fafl oLs1 30 01-1 | , op]| [a]¥s1_qol j3eies J:pup josjes | Ll
T egor]
Usal1ay 99104
uoypinbiyuo) ¢ seiiedoid 4 S48fi{ 4« SqOfa ,,
m. pJpoqyspg __ﬁmcwz | SNiPis qor h
SNIOJS qof < FOOGY-BOI-¥0F < SISAISS < 3[OSUO) qof
SQof :snybjS qof
L 3| dieH | qupgsissy 19bpubppy qop esudisuy || S OIA

09D L] - /0808:4s0410d0| //:dyy (5 Sseippy |

<< DE*S DIPN @ S8jlIoAD [yaJpag @ _ @ ﬂ @ ~ < xocmbﬂv_

disH spo] sejoaby ek HpT opT |

**Aodd JaJojdx] joulaju| }JOSOIdIN — /0808:tsoypao}/ /:dyy &

PCT/US2005/025741

WO 2006/014733

11/20

sop|dpi0m /|opiod /ejias //-dyy (3]

0 4 0 0} 4 a.n|ip} Ioba7|)

1101 14 ¢ 0 08l a.n|ip} 4H |)

! 0 /4 0 67 aJn|ip} | juswdojeneq | [}

0 0 ! 0 ! ainjioy | Buyunoody| [}

$S209NG | @ PIOH | @ HDIS o} 8j07| @407 Buuuny| < 2injipj | 4 SNIDIS ASH [@ 2WDN ASEH
N=EEE
Y Jabouppy qop aspdisju]
P ; |
ﬁmo_toaoi ; Juaju09

k[’ fi
<< S ooE A dnpiojs=pwoass; /jppiod /jajaies / /:duy 3 mme%.,_
(] JIn] & - _Q oipap I sojonny 3K yones v | {73 [Z] @ »@ xocmbg_
S dioff si00] sej0aDy Mk #pT onT |
va i Jaiojdx] jaulajul }JoSONIIN — [DHOGTZ

;\o@:

D8 DIH

PCT/US2005/025741

WO 2006/014733

12/20

&B%s_\.%a\a_aa\\ sz @_

\ -000°}

186°C

\ -000°C

-000°¢

@l@@m

186DUDN qor esudiajul

]
F soljiadody | tuepuog
< S| 09 M.x_ A - dnpinjs=pwosa; /jopiod /1ajaies / /:dyy mmevm:
D aM| P -9 _O DIPa f@ saj110AD § 2K :ScmmO%_ &) - . ‘V_ucmo@_
R djsff sjoo] sajioADy MR JpT m_c_

- Jalojdx3 jaulsju| {osodl§ — [DHO{(H

as Old

PCT/US2005/025741

WO 2006/014733

13/20

Buyom g
Buuuny 7]
$$890nS [7]

PIoH [

HOIS of 8joT[E]
ainjini [N

i -9
29kt

18Bouppy qor esiidisjul

: mm_tmn_en; jusjuo) ,w

HS OIH

<¢ S| 09 e ila - dnppjs=pwasa; /jopiod /ysimes / /- dyu % wmevui

N!n_ om] P -3 _O DIPapy ,@ sojuonny 3 yoaosg oy | {7} ﬁ ﬁ b@ v_ocmb@_
B . | djoff sjoo sejioADy Mex pT o)f _
x[Ial™ ~ Jadojdx3 joussjuj oSOl — [DHOJ(E

PCT/US2005/025741

WO 2006/014733

14720

jounju 0907 Zig ¥
%00°0 0 paso|)
%000 0 POV
%00°0 0 uadg
%00°0 0 Mo %12°¢S 6ZL J3Yj0
%000 0 wnipap %C9'S LL Bujuuny
%00°0 0 ybiH %18°L L0} ain|in4
%000 0 {DOHMD %9¢°¢¢ LSy §s999ng
%00°0 0 SHaly |bjol %0000} 0L€1 sqof [bjo]
abpjuasiay an|pp adi)| abojuadiad an|pp adA|
- SH3IY

£0:20:22 38\:\8

aw) c*cva: N

ysaljay 92104

uolpInbIju0)) ¢

piooqusbg < v00S¥-801-v0!

SIB}ll4 <

Aipwwng s

_Pipoqusng Jll spely]I snidis qor

< SIBARS <

ajosuoy qor

Apwiwing

:pap0oqysn(

Ll w3 | die | wopsissy
\4

labouby qor

astidiaju]

{8|peSB|0SU0qOr /1a|Mlagal0su0)qor /0808:IS0Y|po0] / AT,

SSaIppy _

<< bg_mu DIPSN ,@ sejlionny [+] youpag @ _ & n @ a <9 %ong A ﬂv_

disH sjoo] sojuoADy maIX HpT g |

—[|"*Aq papiroud Jalojdx] jousju| |JosodlN~ |a|A@Saj0SUOQqOr/}ojAIagalosU0)qor /088! 1soy|odo}/ /:dyy

AS ODIA

PCT/US2005/025741

15/20

WO 2006/014733

7 senduo) N : , £
21 [pabpajmounoy | paly [GyivpiLL €00Z/1S/10(MoT| ¥00Gy-801-¥0} ozg| (1 |
uedo | Mely|90:25:81 ¥00Z/11/50|Buluiop | $005¥-801-+01 el [|
uadp | M)y |0Sy:L)L £00Z/1S/10] MOT) ¥00Sy—-80L-+0L ¢so| [W
pabpajmouxoy |uLDlY | 10:GE*60 ¥00Z/0S/¥0| Mo1| ¥00Sy-801-+0L |WaVIVNNY| [|
B usdg | pely|10:10:01 ¥00Z/10/G0 | Wnipei | ¥006y-801-v01| v¥06| [
uado | Mely|6G:+0:2¢ ¥00Z/21/S0| 1PUMD | $00S¥-801-¥0! Loe| [
uadp | Hoaly [90:¥G:91 £00Z/18/10| MOT|¥00S¥-801-¥0L 06| [
uado| Haly [67:9G:L1 ¥00Z/¥1/S0| Mo1| ¥00Sy-801-¥0) ol [M
TS adA] awi| Ajriaaag Jemeg - al pos]| |
<< <[] 07 o 8-1 | 09| fa]] tsiyy polp up 4oajos |:pup posjes | r\a@:
G T s el |
4ysa.l48y 92104
uolpinbijuo) « seledold <« SJB)jl{ 4 SHBJY A
Feosﬁci, S pmaem qor |
sNpjS qor < y00G7—801-v0l < SIBABS < 3[0SU0) qof
. S8y snibiS. qor
Ll wa | dieH | posissy Jaboupp qor asudusjuy Jdsyueoiun || ¥9 OId
00D |[4] uiyspialy \pulj~sjosuogqor \dwa \:9[Z| SSeIPPY |
<< »@_mu DIpaj ,@ sajuioany (5] youneg @ _ & ﬂ @ e v_oombn_.v_
. djof S|00] Sop40ADy MaIp WPT w_c_
*+ Aq poepiroid Jaiojdx3 EEmE_ }JOSOJOIN — EE spajy\|pui{~ajosuonqor\dwa) \:9 (3

PCT/US2005/025741

WO 2006/014733

16/20

\

Japndwio) AN WM_ auo(ﬂmm_
SEojoN b7 | moay
«P3|1Bd, = SNIEIS “u., = QO | ¥00SG1-801-¥01 wiefy FALTE
i :@u.ﬁu_: = SNJEIS .:DO_._ HCNH‘_OQE_:
918[a(] :pue 199(8S
‘SNJe}S qor 10} ey B 813jap 10 upa ‘ppy | [f(YO
e S y
uoyninbijuonq seliedoidq SI9)I{ A SHO|Y«
[Poooqusog J| suewy [Tsniois gor ||
snipiS qof < ¥00S¥-801-¥0l < SIsABS < ?josuo) qop
A SJ9}jl] Sp9ly .
ST deH | uosissy Jaboupy qor esudisju] g9 OI4
o,o@ wiy:sJay)i 4 ~spe)y\jpui4~8josuogqor\dwa \:[F | SS?IpPY _

<< bg_mu DIPoN @ SajlI0AD§ [] youpeg @ _ @ ﬁ @ e v_o.om.bﬂv_

deff sioo sejoaDy malf HpT aiiT |

Jaojdx3 joulaju] oSOy — Wiy siajiiTsHa|y\|puliTsjosuogqor\dwe | \:2H

WO 2006/014733 PCT/US2005/025741

1720 |
FIG. 6C ")6'

E:]C:\Temp\JobConsole_FinaI\Aleris_Filters_Add__Alerf.hfm - Microsoft Internet Ex... || |IC0ll|X
|_Eile Edit View Favorites JTools Help 2N

|<:ZI ~ Back >~ ® ﬁ l @ Search (%] Favorites @P Media @lv >>

[

| Address {€1C:\Temp\JobConsole_Final\Alerts_Filters_Add_Alert.htm vl @60
Enterprise Job Manager Assistant | Help | Exit
Alerts: Add a Filter 0K Cancel

Job Console > Servers > 104-108-45004 > Job Status

Job Siu’fu;m Alerts | Dushboarﬂ

»Alerts v Filters »Properties »Configuration

* = Required

Name: |
Server: | 104-108-45004 [[v]]

Type: | Alert]
Job: [* - B |
Jobset: | * B |

Status | 101 - Failed {[v]

When the filter matches, create the following alert:

Class: [ImportantClass] or [Class A |
Queue: | Default or | Queue 1 v
Status: | Open [v]
Text: |
Status: | Medium E
Job Name y
-Job Properties: | Jobset
Server v
URL Name: | i

URL Link: |]

About | Legal Nofices
ey | ' &% My Computer /%

PCT/US2005/025741

WO 2006/014733

18/20

Vi Jayndwoy AW B

S8OfjoN [beT | [noqy

iy
i 4

swl)
SUEN
Janiag
qor

o_

—
=
“a
=

adA| jusA3 wi.pjy
asuodsay w.pjy
TN Uy

salpiadolg qor*paly
ananp paly

{asqor sy

Jasp

{xa]

STIETEIN

adA|

oo Selpiadoug - 9jqDjiDAY

R

uoypanbiyuo) ¢

sajpadoid a

siefllj« Sqor(|

Fv._oon;moa %tmz E SnipiS qor

SN{DIS qor < 0067801707

< §IBMAS < 3josuo)y qof

[90uUBD 30 saladoad spsly
e w3 | den | juojsissy Jaboupp qop ssudiaju3
9Dl a wyysajpadoud—spa|y\|puty"ajosuogqor\dwa) \:3 (3 wmw‘_vu..q_

<< b@_mu DIpa ,@ sojuoapy [x] youoag @ _ 2] - @ <5 Ao0ga nv_

dieff sjoo] sejoBy maly wpT o7 |

Jaojdx3 joussju| pososdlpy - sjosuodqor [

s_oi

a9 vl

PCT/US2005/025741

WO 2006/014733

19/20

= .
7 Jayndwo) A Wuﬂg 3]
A 1
SeooN [DD3T | [mogy
1SjUBIWIOY Mo :Ajaenag
uadQ :snypjs <
abpajmouxoy |f :uoyoy }inpjaQ :ananp ,
sspjgjuppiodwy :ssDjY
padinbay = , 110} :ql |
1. A S rid | o |
| SUoidy Ji| s|ipja@ Haly
110} < SHRIV < SIS qor < ¥00G¥—801-¥01 < SIAIBS < 3[OSU0) qof |
auoq || | eoueo | [o 110} isuoyoy pely |
= X3 | digH | jupjsissy 1aBoubpy qor aspdisjul
09D lFa Wiy suoioyps|y ~spaly \|putejosuogqor\dwa \:3[F mmeug_
<< {20 _ ¢ DIpep ,@ sajuoADj %] yaupag @ _ T ﬂ @ a <9 AI0g A ﬂv_
FEES . disff sjoo] sojioADy melf ypT o |
%ol Jaio|dx] jouldju| }OSOIONN — Wiy'suoloyHa|yspely\|oul ajosuoggor\dwa]\:o &

H9 DIA

WO 2006/014733 PCT/US2005/025741

20/20

FIG. 8 ‘lﬁ!ﬁi" ,990

802~ RECEIVE A STATUS REQUEST FROM A USER

Y

IDENTIFY A FIRST ALERT FILTER OBJECT -

804~

’-

\
806~ IDENTIFY A PROPERTY NAME, AN OPERATOR, A
VALUE, AND A REFERENCE USING FILTER OBJECT

Y

IDENTIFY JOB OBJECTS USING THE REFERENCE

808~

Y
810~ IDENTIFY PROPERTY OF FIRST JOB OBJECT
IN ACCORDANCE WITH PROPERTY NAME

-

d

\
812~ COMPARE PROPERTY AND VALUE
IN ACCORDANGE WITH OPERATOR

NO

MATCH?

814 YES
INITIATE ALERT OBJECT USING DEFINITION

816"

Y

IDENTIFY PROPERTY OF
NEXT JOB IN ACCORDANCE
WITH PROPERTY NAME

ADDITIONAL
JOB OBJECTS?

YES

818 \

820

ADDITIONAL

~ ALERT FILTER OBJECTS
2

YES IDENTIFY NEXT ALERT
FILTER OBJECT

\

822 824

GENERATE PRESENTATION INCLUDING
826-"| INFORMATION ASSOCIATED WITH ALERT OBJECTS

4

COMMUNICATE PRESENTATION TO REQUESTING USER

828"

/
END

INTERNATIONAL SEARCH REPORT

Application No

PCT7US2005/025741

A. CLASSIFICATION OF SUBJECT MATTER
6G06F9/46 HO4L12/24

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F HO4L

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

Elactronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, PAJ, COMPENDEX

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X MARTIN D: "Job Scheduling - What’s old is 1-20
new again,.. sort of"

INTERNET ARTICLE, ‘Online!

24 February 2003 (2003-02-24), pages 1-2,
XP002353991

Retrieved from the Internet:
URL:http://www.branhamgroup.com/article_pr
int.php?id=24> ‘retrieved on 2005-11-08!
the whole document

-f

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

‘A" document defining the general state of the art which Is not
considered to be of particular relevance

‘E" earlier document but published on or after the international
filing date

L document which may throw doubis on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

*0O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

_"T" later document published after the international filing date

or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
m%r:ts, guch combination being obvious to a person skifled
in the an.

*&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

15 November 2005 29/11/2005
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
N% - 22807 H)V Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016 de Man, A

Fomm PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Application No

PCT7US2005/025741

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

P,A

ANONYMOUS: "ISA Server 2004 Monitoring
Features™”

INTERNET ARTICLE, ‘OnTine!

16 June 2004 (2004-06-16), pages 1-10,
XP002353992

Retrieved from the Internet:
URL:http://www.microsoft.com/technet/prodt
echnol/isa/2004/plan/monitoringfeatures.ms
px> ‘retrieved on 2005-11~-14!

page 1

page 4

WO 96/31035 A (CABLETRON SYSTEMS, INC)

3 October 1996 (1996-10-03)

abstract

page 3, lines 20-31

page 5, lines 3-25

page 10, 1ine 13 - page 11, line 13

page 13, lines 27-29

WO 02/086750 A (COMPUTER ASSOCIATES THINK,
INC) 31 October 2002 (2002-10-31)

abstract

page 2, Tines 9-30

page 5, line 25 -~ page 6, line 32
ANONYMOUS: "Unicenter Enterprise Job
Manager r1 SP3"

INTERNET ARTICLE, ‘Online!

30 June 2005 (2005-06-30), pages 1-4,
XP002353993

Retrieved from the Internet:
URL:http://www3.ca.com/Files/DataSheets/un
i_ejm_rl_sp3_ds.pdf>

‘retrieved on 2005~11-14!

the whole document

1-20

1-20

1-20

Form PCT/ISA/210 (continuation of second sheet) {January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Application No

| PCT/US2005/025741

Patent document Publication Patent family Publication

cited in search report date member(s) date

WO 9631035 A 03-10-1996 AT 219874 T 15-07-2002
AU 720061 B2 25-05-2000
AU 5325896 A 16-10-1996
DE 69622026 D1 01-08-2002
DE 69622026 T2 27-02-2003
EP 0818096 Al 14-01-1998

WO 02086750 A 31-10-2002 CA 2439911 Al 31-10-2002
EP 1386245 Al 04-02-2004
JP 2004535624 T 25-11-2004

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

