wo 2012/173858 A2 I} 1001 00O O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/173858 A2

20 December 2012 (20.12.2012) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 12/00 (2006.01) GO6F 15/16 (2006.01) kind of national protection available): AE, AG, AL, AM,
(21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
’ CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
PCT/US2012/041297 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
7 June 2012 (07.06.2012) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(30) Priority Data: . o
13/160,474 14 June 2011 (14062011) Us (84) De51gnated States (unless otherwise indicated, fO}" every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant (for all designated States except US): NETAPP, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
INC. [US/US]; 495 East Java Drive, Sunnyvale, California UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
94089 (US). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV
(72) Inventors; and T ’ i A S
(75) Inventors/Applicants (for US only): YASA, Giridhar Ap- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
s) g TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
paji Nag [IN/IN]; 3rd Floor, Fair Winds Block, EGL S/W ML, MR, NE, SN, TD, TG)
Park, Bangalore 560071 (IN). i P '
CHANDRASEKARASASTRY, Nagesh Panyam Published:
][SH;Z{;Nal]ogrjg%Ol;l;lo r(,INF)alr Winds Block, EGL S/W Park, _ without international search report and to be republished
’ upon receipt of that report (Rule 48.2(g))
(74) Agents: BECKER, Jordan M. et al.; Perkins Coie LLP,

P.O. Box 1208, Seattle, Washington 98111-1208 (US).

(54) Title: HIERARCHICAL IDENTIFICATION AND MAPPING OF DUPLICATE DATA IN A STORAGE SYSTEM

Step down 10 next lower layer
only for the remaining
unmatched fingerprints

(57) Abstract: The technique introduced here includes a system and

802

Identify a first data object to be compared against a

second data object, each data object referencing
multiple data blocks

604
Generate a hierarchical Iree of fingerprints for the
two data objects

508
Starting from a top layer of each hierarchical tree,
identify a first layer of each tree and compare
fingerprints at this layer for both trees

Step down to the
next lower layer of
the hierarchical trees

620

“Are there any
matching fingerprints
in current layer?

Any layers lower
than current layer?

814

Map matching fingerprints of first data object ta
corresponding fingerprints of second data object

"Any remaining
Unmatched fingerprints in
the current fayer?.

Any layers lower
than current layer?

Continue

method for identitying and mapping duplicate data objects referenced by
data objects. The technique illustratively utilizes a hierarchical tree of
fingerprints for each data object to compare the data objects and identity
duplicate data blocks referenced by the data objects. A progressive com-
parison of the hierarchical trees starts from a top layer of the hierarchical
trees and proceeds toward a base layer. Between the compared data ob-
jects (i.e., the compared hierarchical trees), the technique maps matching
fingerprints only at the top-most layer of the hierarchical trees at which
the fingerprints match. Lower layer matching fingerprints are neither
compared nor mapped. Data blocks corresponding to the matching fin-
gerprints are then deleted. Such an identification and mapping technique
substantially reduces the amount of mapping metadata stored in data ob-
jects that have been subject to deduplication.

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

HIERARCHICAL IDENTIFICATION AND MAPPING OF DUPLICATE DATAIN A
STORAGE SYSTEM

CROSS-REFERENCE TO RELATED APPLICATION

[001] This application claims priority to US Patent Application No.
13/160,474 filed 14 June 2011, which is hereby incorporated by reference in its

entirety.

FIELD
[002] At least one embodiment of the techniques discussed in this
application pertains to data storage systems, and more particularly, to a technique
for generating hierarchical fingerprints for data objects in a storage system for the

purpose of identifying and mapping duplicate data.

BACKGROUND

[003] A network storage controller is a processing system that is used to
store and retrieve data on behalf of one or more hosts on a network. A storage
server is a storage controller that operates on behalf of one or more clients to store
and manage data in a set of mass storage devices, such as magnetic or optical
storage-based disks or tapes. Some storage servers are designed to service file-
level requests from clients, as is commonly the case with file servers used in a
network attached storage (NAS) environment. Other storage servers are designed
to service block-level requests from clients, as with storage servers used in a
storage area network (SAN) environment or virtual tape (VTL) environment. Still
other storage servers are capable of servicing both file-level requests and block-level
requests, as is the case with certain storage servers made by NetApp, Inc. of
Sunnyvale, California.

[004] In a large-scale storage system, such as an enterprise storage
network, it is common for certain items of data, such as certain data blocks, to be
stored in multiple places in the storage system, sometimes as an incidental result of

normal operation of the system and other times due to intentional copying of data.

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

For example, duplication of data blocks may occur when two or more logical
containers of data (e.g., files, virtual tapes, etc.) have some data in common or
where a given set of data occurs at multiple places within a given logical container of
data. For example, consider a scenario where a user creates a Windows
PowerPoint® document and stores the document at a first location of the storage
system. The user sends the document over to another user, who then makes minor
edits to one small section of the document. The second user then stores the edited
document in a different location of the storage system. Here, we have two data
objects (i.e., the two Windows® documents) that operate as logical containers of
data. Each data object logically references a set of physical data blocks that stores
the data corresponding to the documents. Since the two documents are
substantially similar, there will be a substantial number of identical data blocks (i.e.,
duplicate data blocks) referenced by the two data objects. Duplication can also
occur if the storage system backs up data by creating and maintaining multiple
persistent point-in-time images, or "snapshots," of stored data over a period of time.
Data duplication generally is not desirable, since the storage of the same data in
multiple places consumes extra storage space, which is a limited resource.

[005] Consequently, in many large-scale storage systems, storage
controllers have the ability to "deduplicate” data, which is the ability to identify and
remove duplicate data blocks. In one known approach to deduplication, data blocks
referenced by two data objects (i.e., an original data object and a new data object)
are compared and duplicate data blocks referenced by one of the data objects (e.g.,
the new data object) are deleted. Any references (e.g., pointers) of the new data
object to those duplicate (deleted) data blocks are modified to refer to the remaining
instances of those data blocks (i.e., the data blocks referenced by the original data
object). A result of this process is that a given data block may end up being shared
by the two data objects.

[006] Further, in known deduplication approaches, the new data object (i.e.,
the data object referencing deduplicated data blocks) stores one-to-one mapping of

each deleted data block to a corresponding data block referenced by the original

10

WO 2012/173858 PCT/US2012/041297

data object. Such one-to-one mapping data is generated and stored for each
individual deduplicated data block. Typically, such mapping information is stored in
metadata associated with the data object.

[007] Now consider the above example of the PowerPoint® documents.
Each time a new copy of the document (i.e., a new data object) is created by a user
to make minor edits, new data blocks (much of which are substantially similar to the
original document) are created and stored within the storage server. Accordingly, a
substantial number of data blocks referenced by these new copies (i.e., new data
objects) will be identical to the original copy of the document. Even after the
duplicate data blocks referenced by the new data object are deleted, each data
object will still hold a substantial amount of “mapping metadata” to store mapping
information for each deduplicated data block, consequently increasing the storage

footprint of the corresponding data objects.

10

15

20

25

WO 2012/173858 PCT/US2012/041297

SUMMARY
[008] The techniques introduced here include systems and methods for
identifying and mapping duplicate data objects referenced by data objects. The
techniques illustratively utilize a hierarchical tree of fingerprints for each data object
to compare the data objects and identify duplicate data blocks referenced by the
data objects. The hierarchical fingerprint trees include at least two layers of
fingerprints. A base layer of the hierarchical tree includes one fingerprint for each
data block referenced by a data object. A layer over the base layer includes a lesser
number of fingerprints (relative to the base layer), where each entity is a fingerprint
of two or more fingerprints from an immediately lower layer. Any number of layers
may be generated over the base layer in a similar manner, culminating at a single
fingerprint at a top-most layer. This single fingerprint is representative of all the data
blocks referenced by a data object, and is considered the object-level fingerprint of
the data object.
[009] A progressive comparison of the hierarchical trees starts from the top
layer of the hierarchical trees and proceeds toward the base layer. In an illustrative
example comparing two déta objects, the technique introduced herein starts by
comparing the top-layer fingerprints of the hierarchical trees of the two data objects.
If there is a match, the two top-level fingerprints are matched and the comparison
stops. If there is no match, processing steps to an immediately lower layer. The
technique maps any sets of matching fingerprints at this layer, but allows processing
to continue to the next lower layer of the hierarchical trees only for non-matching
sets of fingerprints. In this manner, processing proceeds as necessary until the
base layer of the hierarchical trees. The matching fingerprints are mapped only at
the highest layer of the hierarchical trees at which they match with the compared
fingerprints. Data blocks corresponding to the matching fingerprints are then
deleted. Accordingly, multiple data blocks of one data object are capable of being
simuitaneously linked to a corresponding matching data blocks of another data

object using just one mapping reference. Consequently, such an identification and

WO 2012/173858 PCT/US2012/041297

mapping technique substantially reduces the amount of mapping metadata stored in

data objects that have been subject to deduplication.

10

15

20

WO 2012/173858 PCT/US2012/041297

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] One or more embodiments of the present invention are illustrated by
way of example and not limitation in the figures of the accompanying drawings, in
which like references indicate similar elements and in which:

[0011] Figure 1 shows a network storage system in which the technique
introduced here can be implemented;

[0012] Figure 2 is a high-level block diagram showing an example of the
architecture of a storage controller;

[0013] Figure 3 is a diagram illustrating an example of storage operating
system 107 that cén be used with the techniques introduced here

[0014] Figure 4A shows an example of a buffer tree and the relationship
between inodes, an inode file and the buffer tree;

[0015] Figures 4B and 4C illustrate an example of two buffer trees before and
after deduplication of data blocks, respectively;

[0016] Figure 5A depicts two data objects that are compared and mapped
without the use of hierarchical trees of fingerprints;

[0017] Figure 5B depicts two data objects that are compared and mapped
with the use of hierarchical trees of fingerprints;

[0018] Figure 6 is a flow diagram explaining a process for identifying and
mapping duplicate data blocks in a data object;

[0019] | Figures 7A and 7B depict the use of buckets for classifying object-level
fingerprints; and

[0020] Figure 8 illustrates a flow diagram that depicts a process by which the

deduplication system performs object-level deduplication.

10

15

20

25

WO 2012/173858 PCT/US2012/041297

DETAILED DESCRIPTION

[0021] References in this specification to “an embodiment”, “one
embodiment”, or the like, mean that the particular feature, structure or characteristic
being described is included in at least one embodiment of the present invention.
Occurrences of such phrases in this specification do not necessarily all refer to the

same embodiment.

l. Overview

[0022] The techniques introduced here include systems and methods for
identifying and mapping duplicate data objects referenced by data objects. The
techniques illustratively utilize a hierarchical tree of fingerprints for each data object
to compare the data objects and identify duplicate data blocks referenced by the
data objects. A progressive comparison of the hierarchical trees starts from a top
layer of the hierarchical trees and proceeds toward a base layer. Between the
compared data objects (i.e., the compared hjerarchical trees), the technique maps
matching fingerprints only at the top-most layer of the hierarchical trees at which the
fingerprints match. Lower layer matching fingerprints are neither compared nor
mapped. Data blocks corresponding to the matching fingerprints are then deleted.
Such‘an identification and mapping technigue substantially reduces the amount of

mapping metadata stored in data objects that have been subject to deduplication.

. System Environment

[0023] Refer now to Figure 1, which shows a network storage system in which
the technique being introduced here can be implemented. In Figure 1, a storage
controller 102 is coupled to a storage subsystem 104 and to a set of clients 101
through an interconnect 103. The interconnect 103 may be, for example, a local
area network (LAN), wide area network (WAN), metropolitan area network (MAN),
global area network such as the Internet, a Fibre Channel fabric, or any combination

of such interconnects. Each of the clients 101 may be, for example, a conventional

10

15

20

25

WO 2012/173858 PCT/US2012/041297

personal computer (PC), server-class computer, workstation, handheld
computing/communication device, or the like.

[0024] Storage of data in the storage subsystem 104 is managed by the
storage controller 102 configured to operate as a network storage server. The
storage controller 102 and the storage subsystem 104 are collectively referred to
herein as the storage system 109. The storage controller 102 receives and
responds to various read and write requests from the clients 101, directed to data
stored in or to be stored in storage subsystem 104. The storage subsystem 104
includes a number of nonvolatile mass storage devices 105, which can be, for
example, conventional magnetic or optical disks or tape drives; alternatively, they
can be non-volatile solid-state memory, such as flash memory, or any combination
of such devices. The mass storage devices 105 in storage subsystem 104 can be
organized as a Redundant Array of Inexpensive Disks (RAID), in which case the
storage controller 102 can access the storage subsystem 104 using a conventional
RAID algorithm for redundancy.

[0025] The storage controller 102 includes a storage operating system 107,
which is responsible for managing storage of data in the storage subsystem 104,
servicing requests from clients101, and performing various other types of storage
related operations. In the illustrated embodiment, the storage operating system 107
includes a deduplication system 111 which performs deduplication of data blocks,
which may include operations related to identifying duplicate blocks, generating
hierarchical fingerprint trees for data objects, mapping data objects sharing common
data blocks, etc. In some embodiments, the deduplication system 111 may be a
separate component that is different from the storage operating system 107. In
certain embodiments, the storage operating system 107 and deduplication system
111 are both implemented in the form of software (executed by one or more
programmable processors). In other embodiments, however, either or both of these
elements may be implemented in pure hardware, e.g., specially-designed dedicated

circuitry, or as a combination of software and specially-designed dedicated circuitry.

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

[0026] The storage controller 102 can be, for example, a storage server which
provides file-level data access services to clients, such as commonly done in a NAS
environment, or block-level data access services such as commonly done in a SAN
environment, or it may be capable of providing both file-level and block-level data
access services to hosts. Further, although the storage controlier 102 is illustrated
as a single unit in Figure 1, it can have a distributed architecture. For example, the
storage controller 102 can be designed as a physically separate network module
(e.g., "N-blade") and disk module (e.g., "D-blade") (not shown), which communicate
with each other over a physical interconnect. Such an architecture allows
convenient scaling, such as by deploying two or more N-modules and D-modules, all
capable of communicating with each other through the interconnect, in a cluster
configuration. In some instances, the deduplication 111 system is implemented as
part of the D-blade of such an architecture.

[0027] Figure 2 is a high-level block diagram showing an example of the
architecture of the storage controller 102. The storage controller 102 includes one
or more processors 201 and memory 202 coupled to an interconnect 203. The
interconnect 203 shown in Figure 2 is an abstraction that represents any one or
more separate physical buses, point-to-point connections, or both, connected by
appropriate bridges, adapters, or controllers. The interconnect 203, therefore, may
include, for example, a system bus, a Peripheral Component Interconnect (PCI) bus
or PCI-Express bus, a HyperTransport or industry standard architecture (ISA) bus, a
small computer system interface (SCSI) bus, a universal serial bus (USB), IIC (12C)
bus, or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394
bus, also called “Firewire”.

[0028] The processor(s) 201 is/are the central processing unit (CPU) of the
storage controller 102 and, thus, control the overall operation of the storage
controller 102. In certain embodiments, the processor(s) 21 accomplish this by
executing software or firmware stored in memory 202. The processor(s) 201 may
be, or may include, one or more programmable general-purpose or special-purpose

microprocessors, digital signal processors (DSPs), programmable controllers,

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

application specific integrated circuits (ASICs), programmable logic devices (PLDs),
trusted platform modules (TPMs), or the like, or a combination of such devices.
[0029] The memory 202 is or includes the main memory of the storage
controlier 102. The memory 202 represents any form of random access memory
(RAM), read-only memory (ROM), flash memory, or the like, or a combination of
such devices. In use, the memory 202 may contain, among other things, code 207
embodying the storage operating system 107 and/or the deduplication system 111.
[0030] Also connected to the processor(s) 201 through the interconnect 203
are a network adapter 204 and a storage adapter 205. The network adapter 204
provides the storage controller 102 with the ability to communicate with remote
devices, such as clients 101, over the interconnect 203 and may be, for example, an
Ethernet adapter or Fibre Channel adapter. The storage adapter 205 allows the
storage controller 102 to access the storage subsystem 104 and may be, for
example, a Fibre Channel adapter or SCSI adapter.

[0031] Figure 3 is a diagram illustrating an example of storage operating
system 107 that can be used with the techniques introduced here. In the illustrated
embodiment the storage operating system 107 includes multiple functional layers
organized to form an integrated network protocol stack or, more generally, a multi-
protocol engine 310 that provides data paths for clients to access information stored
on the node using block and file access protocols. The multiprotocol engine 310 in
combination with underlying processing hardware also forms N-module 314. The
multi-protocol engine 310 includes a network access layer 312 which includes one or
more network drivers that implement one or more lower-level protocols to enable the
processing system to communicate over the network 103, such as Ethernet, Internet
Protocol (IP), Transport Control Protocol/Internet Protocol (TCP/IP), Fibre Channel
Protocol (FCP) and/or User Datagram Protocol/ Internet Protocol (UDP/IP). The
multiprotocol engine 410 also includes a protocol layer which implements various
higher-level network protocols, such as Network File System (NFS), Common
Internet File System (CIFS), Hypertext Transfer Protocol (HTTP), Internet small

computer system interface (iSCSI), etc. Further, the multiprotocol engine 310

10

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

includes a cluster fabric (CF) interface module 340a which implements intra-cluster
communication with D-modules and with other N-modules.

[0032] In addition, the storage operating system 107 includes a set of layers
organized to form a backend server 365 that provides data paths for accessing
information stored on disks. The backend server 365 in combination with underlying
processing hardware also forms D-module 316. To that end, the backend server
365 includes a storage manager module 360 that manages any number of volumes
372, a RAID system module 480 and a storage driver system module 390.

[0033] The storage manager 360 primarily manages a file system (or multiple
file systems) and serves client-initiated read and write requests. In at least one
embodiment the storage manager 360 implements the
volumes/regions/extents/slabs based storage techniques introduced here. The
RAID system module 380 manages the storage and retrieval of information to and
from the volumes/disks in accordance with a RAID redundancy protocol, such as
RAID-4, RAID-5, RAID-DP or declustered RAID (discussed below), while the disk
driver system 390 implements a disk access protocol such as Serial ATA (SATA),
SCSI or FC protocol (FCP).

[0034] The backend server 365 also includes a CF interface module 340b to
implement intra-cluster communication 370 with N-modules and/or other D-modules.
The CF interface modules 340a and 340b can cooperate to provide a single file
system image across all D-modules 316 in the cluster. Thus, any network port of an
N-module 314 that receives a client request can access any data container within
the single file system image located on any D-module 316 of the cluster.

[0035] The CF interface modules 340 implement the CF protocol to
communicate file system commands among the modules of clusters in the storage
environment. Such communication can be effected by a D-module exposing a CF
application programming interface (API) to which an N-module (or another D-
module) issues calls. To that end, a CF interface module 340 can be organized as a
CF encoder/decoder. The CF encoder of, e.g., CF interface 340a on N-module 314

can encapsulate a CF message as (i) a local procedure call (LPC) when

11

10

15

20

25

WO 2012/173858 PCT/US2012/041297

communicating a file system command to a D-module 316 residing on the same
node or (ii) a remote procedure call (RPC) when communicating the command to a
D-module residing on a remote node of the cluster. In either case, the CF decoder
of CF interface 340b on D-module 316 de-encapsulates the CF message and
processes the file system command.

[0036] In operation of a node, a request from a client can be forwarded as a
packet over the network 103 and onto the node, where it is received at the network
adapter 204 (Figure 2). A network driver of layer 312 processes the packet and, if
appropriate, passes it on to a network protocol and file access layer for additional
processing prior to forwarding to the storage manager 360. At that point, the storage
manager 360 interprets the request and generates operations to load (retrieve) the
requested data from the RAID system 380. The storage manager 360 determines in
which extent and in which region the data resides. The region receives a request for
that (portion of) extent and in turn determines the slab(s) containing the requested
data. The request is then handed to the RAID system module 380 for further
processing and the determination of which storage device(s) hold the data, before
issuing requests to the appropriate storage device driver(s). The storage device
driver(s) access(es) the data from the specified device(s) and loads the requested
data block(s) in memory for processing by the node. Upon completion of the
request, the node (and operating system) returns a reply to the client.

[0037] The data request/response “path” through the storage operating
system 107 as described above can be implemented in general-purpose
programmable hardware executing the storage operating system 107 as software or
firmware. Alternatively, it can be implemented entirely or partially in specially
designed hardware. That is, in an alternate embodiment of the invention, some or
all of the storage operating system 107 is implemented as logic circuitry embodied
within, for example, one or more field programmable gate arrays (FPGAs),
application specific integrated circuits (ASICs), programmable logic devices (PLDs),

or some combination thereof.

12

10

15

20

25

WO 2012/173858 PCT/US2012/041297

[0038] The N-module 314 and D-module 316 each can be implemented as
processing hardware configured by separately-scheduled processes of storage
operating system 107; however, in an alternate embodiment, the modules may be
implemented as processing hardware configured by code within a single operating
system process. Communication between an N-module 314 and a D-module 316 is
thus illustratively effected through the use of message passing between the modules
although, in the case of remote communication between an N-module and D-module
of different nodes. A known message-passing mechanism provided by the‘storage
operating system to transfer information between modules (processes) is the Inter
Process Communication (IPC) mechanism. The protocol used with the IPC
mechanism is illustratively a generic file and/or block-based “agnostic” CF protocol

that comprises a collection of methods/functions constituting a CF API.

1. Internal Functionality and Architecture

[0039] It is useful now to consider how data can be structured and organized
by the storage system 109. Reference is now made to Figure 4A in this regard. In
at least one embodiment, data is stored in the form of volumes, where each volume
contains one or more directories, subdirectories and/or files. The term “aggregate”
is used to refer to a pool of storage, which combines one or more physical mass
storage devices (e.g., disks) or parts thereof into a single logical storage object. An>
aggregate contains or provides storage for one or more other logical data sets at a
higher level of abstraction, such as volumes. A “volume” is a set of stored data
associated with a collection of mass storage devices, such as disks, which obtains
its storage from (i.e., is contained within) an aggregate, and which is managed as an
independent administrative unit, such as a complete file system. Each volume can
contain data in the form of one or more directories, subdirectories and files.

[0040] In certain embodiments, a logical data object such as a file (or other
form of logical data container, such as a logical unit or "LUN") is represented in a

storage system 109 in the form of a hierarchical structure called a "buffer tree". A

13

10

15

20

25

WO 2012/173858 PCT/US2012/041297

buffer tree is a hierarchical structure which is used to store file data as well as
metadata about a logical data object (simply, “data object”) such as a file, including
pointers for use in locating the data blocks for the file. A buffer tree includes one or
more levels of indirect blocks (called “L1 blocks”, “L2 blocks”, etc.), each of which
contains one or more pointers to lower-level indirect blocks and/or to the direct
blocks (called “L0O blocks”) of the file. All of the data in the file is stored only at the
lowest level (LO) blocks. |

[0041] The root of a buffer tree is the “inode” of the file. Aninode is a
metadata container that is used to store metadata about the file, such as ownership,
access permissions, file size, file type, and pointers to the highest level of indirect
blocks for the file. Each file has its own inode. The inode is stored in a separate
inode file, which may itself be structured as a buffer tree.

[0042] Figure 4A shows an example of a buffer tree 4109 for a file. The file is
assigned an inode 305, which references Level 1 (L1) indirect blocks 4111. Each
indirect block 4111 stores two or more pointers to a lower-level block, e.g., a direct
block 4113. Each pointer in an L1 and indirect block 4111 references a physical
data storage block (or simply, “data block”) 4113 in a storage device (i.e., in the
aggregate).

[0043] For each volume managed by the storage controller 102, the inodes of
the files and directories in that volume are stored in a separate inode file, such as
inode file 4101 in Figure 4A which stores inode 4105. A separate inode file is
maintained for each volume. The location of the inode file for each volume is stored
in a Volume Information ("Volumelnfo") block associated with that volume, such as
Volumelnfo block 4103 in Figure 3. The Volumelnfo block 4103 is a metadata
container that contains metadata that applies to the volume as a whole. Examples
of such metadata include, for example, the volume's name, type, size, any space
guarantees to apply to the volume, and a pointer to the location of the inode file of

the volume.

14

10

15

20

25

WO 2012/173858 PCT/US2012/041297

V. Duplicate Data Identification and Deduplication

[0044] Now consider the process of deduplication. Figures 4B and 4C show
an example of the buffer trees of two files, where Figure 4B shows the two buffer
trees before deduplication and Figure 4B shows the two buffer trees after
deduplication. The root blocks of the two files are Inode 1 403 and Inpde 2423,
respectively. The numerals in Figures 4B and 4C are the values of the pointers to
the various blocks and, in effect, therefore, are the identifiers of the data blocks.
The fill patterns of the direct (L0) blocks in Figures 4B and 4C indicate the data
content of those blocks, such that blocks shown with identical fill patterns are
identical. It can be seen from Figure 4B, therefore, that data blocks 415, 431, and
435 are identical.

[0045] The result of deduplication is that these three data blocks are, in effect,
coalesced into a single data block, identified by pointer 415, which is now shared by
the indirect blocks that previously pointed to data block 431 and data block 435.
Further, it can be seen that data block 415 is now shared by both files. In a more
complicated example, data blocks can be coalesced so as to be shared between
volumes or other types of logical containers. Note that this coalescing operation
involves modifying the indirect blocks that pointed to data blocks 431 and 435, and
so forth, up to the root node. In a write out-of-place file system, that involves writing
those modified blocks to new locations on disk.

[0046] The collection of the coalesced data blocks, along with the references
pointing (e.g., the data objects) to the coalesced data blocks are referred to herein
as a "dataset." In some instances, the dataset may be, for example, a particular
volume (or other types of logical containers) of the storage system 109. In other
instances, the dataset may include, for example, multiple volumes (or other types of
logical containers) of the storage system 109.

[0047] To identify duplicate data blocks, a hash function, such as MD5, SHA-
1, SHA-256 or SHA-512, can be applied to all used (unfree) data blocks in the data

set to be deduplicated. The output of the hash function is a value for each data

15

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

block, called a fingerprint, where identical data blocks have the same fingerprint. By
comparing the fingerprints during a subsequent deduplication process, duplicate
data blocks can be identified and coalesced. Data blocks with identical fingerprints
are possible duplicates. Once possible duplicates are identified from their
fingerprints, a byte-by-byte comparison of those possible duplicates can be done to
determine whether they are in fact duplicates of each other. Because the fingerprint
of a block is much smaller than the data block, fingerprints for a very large number
of data blocks can be stored without consuming a significant portion of the storage
capacity in the system.

[0048] While duplicate data blocks referenced by a data object (e.g., a file) is
deleted (as a result of a deduplication process), metadata associated with the data
object would need to store information about newly referenced data blocks (i.e., new
data blocks referenced by the data object as a result of the deduplication process).
Consider, for example, Figure 5A. Data object D-B references twelve data blocks
502, namely data blocks B0 through B11. Data object D-C references twelve data
blocks 512, namely data blocks CO through C11. As illustrated in Figure 5A, data
object D-C references ten data blocks (C2 through C11) that are common to (i.e.,
duplicate of) data blocks referenced by data object D-B. Data blocks C0O and C1 are
different from corresponding data blocks B0 and B1 (as indicated in Figure S5A by
use of different shading for the non-duplicate déta blocks).

[0049] Deduplication is now done to remove duplicate data blocks. As will be
explained further below, deduplication may be done inline (i.e., when data object D-
C is first created and is being attempted to be written by the storage server, thus
preventing duplicate data blocks from being stored at all) or post-write (i.e., after the
data object D-C has already been stored and the duplicate data blocks already exist
in the system and have to be subsequently deleted). In embodiments, as explained
above, deduplication is performed by comparing fingerprints of each data block with
other data blocks. Figure 5A illustrates fingerprint layers 504 and 514 respectively
for data blocks referenced by data objects D-B and D-C. When deduplication is

done to remove the duplicate data blocks referenced by data object D-C, for

16

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

example, data blocks C2 through C11 are deleted (or prevented from being stored in
an inline deduplication scenario). The logical references of data object D-C to the
deleted data blocks (data blocks C2 through C11) are then redirected to
corresponding data blocks (data blocks B2 through B11).

[0050] One manner in which such redirection can be done is by doing a one-
to-one mapping of logical references of the deleted blocks (e.g., from data object D-
C) to corresponding data blocks referenced by data object D-B. This redirection
may be done directly at the physical data block level (for example, at the LO level
explained in Figures 4B and 4C) by pointing the references of the relevant (deleted)
blocks directly to the data blocks referenced by data object D-B. Alternatively, or in
addition to making a logical reference directly to the data blocks, redirection may
also be done by mapping the logical references of data object D-C (relating to the
deleted data blocks) directly to cqrresponding logical references of data object D-B.
For example, a logical reference to deleted data block C2 (from data object D-C)
would simply be mapped to data object D-B’s logical reference to data block B2.
Effectively, logical reference is now made to the physical data block corresponding
to data block B2 via the logical data object D-B, as illustrated by mapping connector
533 (only one exemplary mapping is shown in Figure 5A for the purpose of
illustration). Such a mapping of logical references (via data objects) may be stored
in metadata corresponding to the relevant data objects. For example, data object D-
C would store metadata about the mapping of logical references in associated
metadata.

[0051] In embodiments, the mapping-related metadata (or simply, “mapping-
metadata”) may include a one-to-one mapping of each redirected reference (i.e., for
every duplicate data block). Such a one-to-one mapping may be unavoidable in
situations where there is a smaller number of common or duplicate data blocks. But
in situations where the there is a substantial number of common data blocks
between two data objects (or even a situation where two identical data objects
reference two completely identical sets of data blocks), the one-to-one mapping

results in a large amount of mapping-metadata to be stored. Such is the situation in

17

10

15

20

25

WO 2012/173858 PCT/US2012/041297

the exemplary deduplication illustrated with reference to Figure 5A. There are only
two common data blocks. Here, a mapping of each of the C2 through C11 data
blocks to corresponding B2 through B11 data blocks (a total of 10 mappings) would
need to be stored in metadata associated with data object D-C. This increases the
overall storage footprint for data object D-C, despite being almost exactly identical to

data object D-B.

V. Hierarchical Fingerprint Trees for Data Objects

[0052] To alleviate the problem of storing excessive mapping-metadata, the
techniques discussed herein present the use of hierarchical trees of fingerprints for
storing mapping information for deduplicated data objects. Examples of such
hierarchical trees of fingerprints (simply, “hierarchical trees”), and an illustration of
how the hierarchical trees may be used to reduce the amount of mapping-metadata
stored for deduplicated data objects are provided here with reference to Figure 5B.
Figure 5B illustrates two data objects, data object D-B and data object D-C. Similar
to the illustration in Figure 5A, the two data objects reference 12 data blocks each.
Data object D-B references a set of twelve data blocks 502 and data object D-C
references a set of twelve data blocks 512. Again, apart from two data blocks (i.e.,
data blocks C0 and C1), all data blocks referenced by data object D-C are identical
(or duplicate) to corresponding data blocks referenced by data object D-B.

[0053] Similar to the illustration in Figure 5A, fingerprints are generated and
stored (e.g., as metadata) for each of the data blocks referenced by the two data
objects. This first level of fingerprints, where every data block has a separate
fingerprint, is referred to as the first layer or “F0" layer of fingerprints. Data object D-
B has an FO layer 504 with twelve fingerprints and data object D-C has an FO layer
514 with twelve fingerprints. Subsequently, a second layer of fingerprints, the “F1”
layer is built on top of the FO layer. The F1 layer has fewer fingerprints than the FO
layer, and is constructed by generating a fingerprint using two or more fingerprints
from the FO layer. Typically, the fingerprints in the F1 layer would each correspond

to a constant number (of value 2 or greater) of fingerprints from the FO layer. A

18

10

15

20

25

WO 2012/173858 PCT/US2012/041297

similar mechanism of grouping and construction is applied to both data objects
illustrated in Figure 5B. The F1 layer 506 of data object D-B has four fingerprints,
where each fingerprint is a fingerprint of three fingerprints from the FO layer. Ina
similar manner, any number of layers can be built over the base layer (i.e, the FO
layer), until a top layer that has just one fingerprint is achieved. In the illustration, a
third layer (F2 layer) is constructed over the F1 layer, the F2 layer having 2
fingerprints (each corresponding to two fingerprints from the immediately lower F1
layer). The top F3 layer (510 and 520 respectively for data objects D-B and D-C)
has just one fingerprint, that is a fingerprint of all fingerprints from the immediately
lower F2 layer (508 and 518 respectively for data objects D-B and D-C).
Accordingly, the top layer fingerprint is effectively representative of all fingerprints
(and thus all data blocks) corresponding to each data object.

[0054] It is understood that any number of groupings of fingerprints and any
number of layers may be generated in this manner until a top layer with a single
fingerprint is achieved. For example, the F1 layer 506 for data object D-B may use
two fingerprints from the lower layer (instead of the illustrated 3 fingerprints),
resulting in a higher granularity in the fingerprints of the F1 layer. Alternatively, the
F1 layer could use six fingerprints from the lower layer, resulting in a lesser number
(and corresponding lesser granularity) of fingerprints in the F1 layer. The total
number of layers would thus increase or decrease, depending on the chosen
granularity. The resulting tree of fingerprints, ranging from the top layer to the base
layer, with any number of intermediate layers, is the hierarchical fingerprint tree of
each data object.

[0055] In embodiments, the entire hierarchical tree is stored in metadata in
association with each data object. In embodiments, each layer of the hierarchical
tree may be collectively stored in a different logical container (e.g., a different
volume for each layer) for organizational purposes. Given the copious number of
data blocks that typical data objects would refer to, it can be envisioned that the

amount of storage space consumed by storing the hierarchical trees for these data

19

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

objects would be much lesser than storing extensive one-to-one mapping
information for each deduplicated data block.

[0056] Subsequent to constructing the hierarchical trees, identification and
mapping of duplicate blocks may be done at different layers of the hierarchical tree
as will be explained here. It is noted that the hierarchical trees may be generated at
any time, depending for example, on storage policies imposed by an administrator.
In embodiments, the hierarchical trees may be constructed as soon as data objects
are created. In embodiments, the hierarchical trees may be constructed at periodic
intervals for all objects created or modified within a set period. In embodiments, the
hierarchical trees may be constructed when deduplication routines are executed.
[0057] As indicated above, instead of comparing the direct base layer
fingerprints to detect duplicate data blocks, the entire hierarchical trees of the two
data objects are compared. Comparison of the two hierarchical trees commences at
the top layer (which typically includes a single fingerprint representative of all data
blocks referenced by the data block). If the top layer fingerprints match, then the
two data objects are identified as duplicate objects in their entireties. If that is the
case, the top-layer fingerprint of the duplicate data object (e.g., data object D-C) is
directly mapped to the top-layer fingerprint of the original data object (e.g., data
object D-B). As explained above, conventionally, references of each data block in
data object D-C would have been mapped to references of corresponding data
blocks in data object D-B. Such a one-to-one mapping would have required 12
mappings (one for each data block of data object D-C). Instead, using the
hierarchical trees, only one mapping would be required (i.e., the mapping from top-
layer fingerprint to top-lfayer fingerprint) for deduplication purposes. The entire set of
data blocks referenced by data object D-C may now be deleted, with the logical
references now mapped to data object D-B.

[0058] However, the above discussion assumed that the entire set of data
blocks referenced by data object D-C was identical to data blocks referenced data
object D-B. Now consider the scenario where there is at least one data block that is

not common between the two data objects. Such is the scenario in Figure 5B.

20

10

15

20

25

WO 2012/173858 PCT/US2012/041297

Here, data blocks CO and C1 are not duplicates of corresponding data blocks BO
and B1. All other data blocks referenced by the two data objects are common
(duplicate) and will need to be deduplicated. Here, comparison starts again at the
top layer. The top layer 510 of D-B does not match the top layer 520 of D-C
because the top layers are representative of all data blocks of the data object, and
thus will include the two non-identical data blocks. Comparison then next proceeds
to the next lower layer. This layer, as illustrated, has two fingerprints each. One of
the fingerprints is hierarchically linked to the two non-identical data blocks (in
addition to some identical blocks), while the other is hierarchically linked to six
identical blocks. Accordingly, there will be one matching fingerprint and one non-
matching fingerprint at this layer. Consequently, the matching fingerprint C***1 of
layer 518 is mapped to corresponding fingerprint B*"*1 of layer 508. This single
mapping, from C***1 to B*"1 is indicative or representative of mappings of mapping
between data blocks C6 through C11 to corresponding data blocks B6 through B11.
[0059] Subsequently, the matching process proceeds to the next lower layer
only for the fingerprints that did not match at the current level. Accordingly,
fingerprints corresponding to C**"0 are mapped to fingerprints corresponding to B0
at the next lower layer (layer 506 and 516). At this level, again, one fingerprint
corresponds to non-identical data blocks, while the other corresponds to identical
data blocks. A process similar to the process from the previous step is performed,
causing the matching fingerprints to be mapped at this layer (i.e., layers 506 and
516) and allowing the matching process to continue to the next lower layer only for
the non-identical or non-matching fingerprints at the current layer. If there are non-
identical data blocks, it can be envisioned that the process would continue all the
way to the base layer (e.g., layers 504 and 514) for at least the hierarchical portion
of the tree that corresponds to the non-identical data blocks.

[0060] In other words, a comparison is made of fingerprints starting from the
top layer and progressing downward to the base layer. Mapping of matching

fingerprints is done at the top-most layer where the fingerprints match, and

21

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

continued matching of fingerprints at a lower layer is done only for non-matching
fingerprints at the current layer.

[0061] In the illustrated example in Figure 5B, a conventional mapping would
have required 10 mappings, one for each duplicate data block in data object D-C.
However, by mapping using the hierarchical trees, the number of mappings reduces
to just 3 mappings (one at layer 518 mapping C*"1to B"'1, one at layer 516
mapping C 1 to B™*1, and one at layer 514 mapping C'2 to B'2).

[0062] Refer now to Figure 6, which is a flow diagram explaining a process for
identifying and mapping duplicate data blocks in a data object. As explained in
Figures 1-4, each of the following steps required for identification and deduplication
of duplicate data blocks may be performed, for example, by the deduplication
system 111 of the storage controller 102. The process starts at block 602, where
the deduplication system 111 identifies a first data object that needs to be compared
against an existing data object (second data object) in the storage system. At block
604, the deduplication system 111 generates a hierarchical tree of fingerprints for
both data objects, if one does not already exist for either data object. Subsequently,
at block 606, the deduplication system 111 performs a hierarchical comparison of
the fingerprint trees, starting at the top layer. For each layer, the deduplication
system 111 identifies whether there are any matching fingerprints, as indicated in
block 608. If any fingerprint matches at this layer, processing continues to block
614, where the matching fingerprints of the first data object are matched to
corresponding fingerprints of the second data object. Subsequently, at block 616,
the deduplication system 111 verifies whether there are any remaining unmatched
fingerprints in the current layer. If there are, processing is stepped to the next lower
layer only for the unmatched fingerprints, as indicated in biock 620. If no matching
fingerprints are identified at block 608, the deduplication system 111 determines
whether there are any layers lower than the current layer, as indicated in block 610.
If lower layers are found, processing is shifted to the next lower layer and matching
is done again at block 608 for the lower layer. In this manner, all identical data

blocks of the first data object are mapped to corresponding data blocks at the top-

22

10

15

20

25

WO 2012/173858 PCT/US2012/041297

most layer of the hierarchical tree at which they match. Either before the mapping
operation or subsequent to the mapping operation, the identified duplicate data
blocks are deleted from the storage system as appropriate as part of the

deduplication process.

V. Object-Level Identification and Mapping of Duplicate Data Objects

[0063] The above discussion illustrated scenarios where a first data object is
compared to a preexisting second data object and how duplicate data blocks
referenced by the second data object are deduplicated. There are several manners
by which the second data object may be selected to be compared against the first
data object. In embodiments, a top layer fingerprint (i.e., the single fingerprint of the
hierarchical tree that is representative of all data blocks referenced by a data object)
of the first data object may be compared against every top-layer fingerprint
corresponding to the preexisting data objects in the storage system. A top-layer
fingerprint may otherwise be referred to as an object-level fingerprint of the data
object. Comparison can be done by directly comparing (e.g., by doing a numerical
comparison) a value of the first object-level fingerprint to values of each of the
preexisting object-level fingerprints in the storage system. However, such a
comparison may be computationally expensive considering the enormous number of
preexisting data objects in the data system. Accordingly, this description further
addresses techniques for reducing the amount of computations necessary for
identifying the second data object.

[0064] In embodiments, the object-level fingerprints of the preexisting data
objects are s in, for example, a numerical order in a database in the storage system.
Accordingly, the received or first object-level fingerprint may be compared only
against a range of preexisting fingerprints that correspond to a subset of values that
are close to the value of the first object-level fingerprint. For example, if the value of
a received first object-level fingerprint is 6330, and there are a million preexisting
object-level fingerprints, the received object-level fingerprint may be compared

against a subgroup (or a bucket) of preexisting object-level fingerprints ranging in

23

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

values from 5000 to 10000 in the sorted list. Alternatively, or in addition to a sorted
list, the storage system may also create buckets of preexisting top-level fingerprints.
Each bucket stores or refers to a subset of the preexisting object-level fingerprints,
for example, based on a value of the object-level fingerprints. Figure 7A illustrates
such a bucket-based classification of preexisting object-level fingerprints. The
preexisting object-level fingerprints are placed in one of four buckets here, based on
their values. Here, as illustrated for example in Figure 7B, when a first object-level
fingerprint is received, it is compared against one of the buckets based on the value
of the object-level fingerprint. For example, as illustrated in Figure 7B, a received
object-level fingerprint has a value of 232, and is therefore compared only against
the fingerprints in bucket 3, which range from values 201 to 300.

[0065] | Object-level comparisons offer further computational benefits.
Conventionally, fingerprints corresponding to each data block referenced by a data
object would need to be compared against data blocks referenced by other data
blocks. Instead, object-level fingerprint comparisons allow a single comparison
between two data objects to identify identical data objects on an entity-level. Even if
the two data objects are not exactly identical, the object-level comparison further
helps identify closely related data objects such that the duplicate identification and
mapping processes explained above may be executed. For example, consider the
example in Figure 7B, where the received object-level fingerprint has a value 233.
Even if bucket 3 does not have a matching fingerprint with the exact “233” value, the
storage system identifies the closest fingerprint (e.g., a fingerprint with a “238"
value). Given the closeness of the value of the received object-level fingerprint, it
can be adjudged that the related data object has a high probability of referencing
data blocks that are identical to at least some of the data blocks referenced by the
received data object.

[0066] Figure 8 illustrates a flow diagram that depicts a process by which the
deduplication system 111 performs object-level deduplication. At block 802, the
deduplication system 111 identifies or receives a data object. In embodiments, as

indicated above, the deduplication system may perform an inline deduplication,

24

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

meaning that the data object is a new data object that is to be written (or has not yet
been stored) within the storage system. In such an inline scenario, the deduplication
system 111 eliminates duplicate data blocks even before storing the data object to
improve deduplication efficiency and to avoid having to store data blocks that will
need to be deleted at a later time. It is noted that this process may also be
performed on data objects that have already been stored within the storage system.
For example, a deduplication routine run by the deduplication system every three
days may trawl the storage system for duplicate data blocks (after such data blocks
have been stored within the storage system) and delete the identified duplicate
blocks. In either scenario, the deduplication system then generates a hierarchical
tree of fingerprints for the input data object. It is noted that in at least some
scenarios, the hierarchical tree may already have been generated for the data object
(e.g., when the data object was first stored in the storage system). The top layer of
the hierarchical tree is the input object-level fingerprint.

[0067] Now, at block 808, the deduplication system compares the value of the
input object-level fingerprint against a database of preexisting object-level
fingerprints maintained by the storage system. In some embodiments, as explained
above, the deduplication system 111 may identify a subgroup or bucket of
preexisting object-level fingerprints based on the value of the input object-level
fingerprint prior to starting the matching process. Based on this comparison, at
block 808, the deduplication system 111 identifies one or more preexisting object-
level fingerprints to compare and match the input object-level fingerprint against. If,
at block 808, the deduplication system 111 identifies a matching object-level
fingerprint from the database of preexisting object-level fingerprints, deduplication
system 111 identifies the input data object as completely identical to the identified
preexisting data object and correspondingly deduplicates the input data object at
block 810.

[0068] If an exact match is not identified, the deduplication system 111
proceeds to identify, at block 812, a related object-level fingerprint from the selected

bucket of fingerprints. If one or more of such closely related fingerprints exist,

25

10

15

20

25

WO 2012/173858 PCT/US2012/041297

processing proceeds to block 816, where a hierarchical comparison of the data
objects if performed to identify and map any identical data blocks referenced by the
input data object. If such identical data blocks exist, the deduplication system 111
deduplicates such blocks, as indicated at block 820.

[0069] Thus, methods and systems for identifying and mapping duplicate data
blocks using hierarchical trees of fingerprints have been described. The techniques
introduced above can be implemented by using programmable circuitry programmed
by software and/or firmware, or by using special-purpose hardwired circuitry, or by
using a combination of such embodiments. Special-purpose hardwired circuitry may
be in the form of, for example, one or more application-specific integrated circuits
(ASICs), programmable logic devices (PLDs), field-programmable gate arrays
(FPGAS), etc.

[0070] Software or firmware to implement the techniques introduced here may
be stored on a machine-readable medium and may be executed by one or more
general-purpose or special-purpose programmable microprocessors. A “machine-
readable medium”, as the term is used herein, includes any mechanism that can
store information in a form accessible by a machine (a machine may be, for
example, a computer, network device, cellular phone, personal digital assistant
(PDA), manufacturing tool, any device with one or more processors, etc.). For
example, a machine-accessible medium includes recordable/non-recordable media
(e.g., read-only memory (ROM); random access memory (RAM); magnetic disk
storage media; optical storage media; flash memory devices; etc.), etc.

Although the present invention has been described with reference to specific
exemplary embodiments, it will be recognized that the invention is not limited to the
embodiments described, but can be practiced with modification and alteration within
the spirit and scope of the appended claims. Accordingly, the specification and

drawings are to be regarded in an illustrative sense rather than a restrictive sense.

26

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

CLAIMS
What is claimed is:

1. A method of identifying duplicate data blocks referenced by a first data object
in relation to a second data object and mapping the duplicate data blocks to
corresponding data blocks referenced by the second data object, the method
comprising:

generating, by a storage system, a hierarchical tree of fingerprints for each of
the first and second data objects, each of said hierarchical trees having a base layer
and one or more upper layers above the base layer, the base layer having one
fingerprint each for each data block referenced by the first or second data object,
each of the one or more upper layers having at least one fingerprint representative
of a plurality of fingerprints from an immediately lower layer of the hierarchical tree;

starting from a top layer of the hierarchical trees and going down toward the
base layer, identifying, by the storage system, a matching of fingerprints in each
layer of the first data object with corresponding fingerprints at the same layer of the
second data object; and

mapping, by the storage system, the identified fingerprints of the first data
object to matching fingerprints of the second data object, wherein said mapping is
done for each identified fingerprint only at the highest level of the hierarchical trees
at which the matching fingerprint is identified.

2. The method of claim 1, further comprising:
deduplicating one or more data blocks referenced by the first data object that
correspond to the mapped fingerprints.

3. The method of claim 2, wherein said deduplicating further includes:
deleting the data blocks referenced by the first data object that correspond to
the mapped fingerprints; and '
redirecting logical references associated with the deleted data blocks to
corresponding data blocks associated with the mapped fingerprints.

4, The method of claim 3, wherein said redirecting logical references comprises:
logically referencing each mapped fingerprint of the first data object directly to
the corresponding matching fingerprint of the second data object.

27

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

5. The method of claim 3, wherein the storage system does not store any
information relating to a mapping of data blocks associated with the mapped
fingerprints of the first data object to corresponding data blocks associated with the
corresponding fingerprints of the second data object.

6. The method of claim 3, wherein the redirected logical references are stored in
association with metadata corresponding to the first data object.

7. The method of claim 1, wherein at least one of the data blocks referenced by
the first data object is a duplicate of one of the data blocks referenced by the second
data object.

8. The method of claim 1, wherein at least one of the data blocks referenced by
the first data object is different from any of the data blocks referenced by the second

data object.

9. The method of claim 1, wherein for the fingerprints in a given layer of the first
data object that do not match corresponding fingerprints in a corresponding layer of
the second data object, the method further comprises:

stepping down to a layer immediately below the given layer; and

performing said identifying and mapping only for fingerprints of the
immediately below layer that correspond to the unmatched fingerprints of the given

layer.

10. The method of claim 1, wherein the selected number of fingerprints is a
randomly assigned number of fingerprints for each layer.

11. The method of claim 1, wherein the top layer of a given data object includes

one fingerprint that is representative of all data blocks associated with the given data

object.

28

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

12. The method of claim 1, further comprising:
assigning a separate storage container for storing fingerprints associated with

each layer of the hierarchical trees.

13. The method of claim 1, further comprising:
storing the hierarchical tree of fingerprints of each data object in association
with metadata corresponding to each data object.

14. A method of mapping data blocks referenced by a first data object to
corresponding data blocks referenced by a second data object, the method
comprising:
generating, by a storage system, a hierarchical tree of fingerprints for each of
the first and second data objects, each of said hierarchical trees having a base layer
and one or more upper layers above the base layer, the base layer having one
fingerprint each for each data block referenced by the first or second data object,
each of the one or more upper layers having at least one fingerprint representative
of a plurality of fingerprints from an immediately lower layer of the hierarchical tree;
and
starting from a top layer of the hierarchical trees and going down toward the
base layer, at each given layer of the hierarchical tree of the first data object:
identifying, by the storage system, a given fingerprint of the first data
object that matches with a corresponding fingerprint at a corresponding layer
of the second data object;
mapping, by the storage system, the given fingerprint of the first data
object to the matching fingerprint of the second data object; and
proceeding, by the storage system, to an immediately lower layer to
perform said identifying and mapping only for any unmatched fingerprints of
the first data object in the given layer.

15. The method of claim 14, further comprising:

deduplicating data blocks referenced by the first data object that correspond
to each of the mapped fingerprints from each layer of the hierarchical tree.

29

10

15

20

25

30

- WO 2012/173858 PCT/US2012/041297

16. The method of claim 15, wherein said deduplicating further includes:

deleting the data blocks referenced by the first data object that correspond to
the mapped fingerprints; and

redirecting logical references associated with the deleted data blocks by
logically referencing each mapped fingerprint of the first data object directly to the
corresponding matching fingerprint of the second data object.

17. The method of claim 16, wherein said redirecting logical references does not
store any information relating to a mapping of data blocks associated with the
mapped fingerprints of the first data object to corresponding data blocks associated
with the corresponding fingerprints of the second data object.

18. The method of claim 16, wherein the redirected logical references are stored
in association with metadata corresponding to the first data object.

19. The method of claim 14, wherein at least one of the data blocks referenced
by the first data object is different from any of the data blocks referenced by the

second data object.

20. The method of claim 14, further comprising:

storing the hierarchical tree of fingerprints of each data object in association
with metadata corresponding to each data object.
21. A network storage server comprising:

a network adapter through which to communicate with a plurality of network

storage clients via a network;

a storage adapter through which to access a nonvolatile mass storage

subsystem; and

a processor coupled to the network adapter and the storage adapter and

configured to:

generate a hierarchical tree of fingerprints for each of the first and
second data objects, each of said hierarchical trees having a base layer and
one or more upper layers above the base layer, the base layer having one
fingerprint each for each data block referenced by the first or second data

30

10

16

20

25

30

WO 2012/173858 PCT/US2012/041297

object, each of the one or more upper layers having at least one fingerprint
representative of a plurality of fingerprints from an immediately lower layer of
the hierarchical tree;

starting from a top layer of the hierarchical trees and going down
toward the base layer, identify a Matching of fingerprints in each layer of the
first data object with corresponding fingerprints at the same layer of the
second data object; and

map the identified fingerprints of the first data object to matching
fingerprints of the second data object, wherein said mapping is done for each
identified fingerprint only at the highest level of the hierarchical trees at which
the matching fingerprint is identified.

22. A network storage server as recited in claim 21, wherein said processor is
further configured to:

deduplicate data blocks referenced by the first data object that corresponds to
the mapped fingerprints.

23. A network storage server as recited in claim 22, wherein said processor is

further configured to:

delete the data blocks referenced by the first data object that correspond to
the mapped fingerprints; and

redirect logical references associated with the deleted data blocks by logically
referencing each mapped fingerprint of the first data object directly to the
corresponding matching fingerprint of the second data object.

24. A network storage server as recited in claim 23, wherein the network storage
server does not store any information relating to a mapping of data blocks
associated with the mapped fingerprints of the first data object to corresponding data
blocks associated with the corresponding fingerprints of the second data object.

25. A network storage server as recited in claim 23, wherein the redirected logical
references are stored in association with metadata corresponding to the first data

object.

31

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

26. A network storage server as recited in claim 21, wherein for the fingerprints in
a given layer of the first data object that do not match corresponding fingerprints in a
corresponding layer of the second data object, the processor is further configured to:
step down to a layer immediately below the given layer; and
perform said identify and map operations only for fingerprints of the
immediately below layer that correspond to the unmatched fingerprints of the given

layer.

27. A network storage server as recited in claim 21, wherein the top layer of a
given data object includes one fingerprint that is representative of all data blocks
associated with the given data object.

28. A method of mapping data blocks referenced by a first data object to
corresponding data blocks referenced by a second data object, the method
comprising:
generating, by a storage system, a hierarchical tree of fingerprints for each of
the first and second data objects, said hierarchical tree for a given data object
including:
a base layer having one fingerprint for each data block of the given
data object;
a top layer having one fingerprint representative of all data blocks of
the given data object; and
one or more intermediate layers, each intermediate layer having
multiple intermediate-layer fingerprints, each intermediate-layer fingerprint
representative of multiple fingerprints from an immediately lower layer of the
hierarchical tree;
within the hierarchical tree of fingerprints of the first data object:
starting from a top layer of the hierarchical tree and going down toward
the base layer, identifying a highest layer of the hierarchical tree at which a
given fingerprint of the first data object matches a corresponding fingerprint at
a corresponding layer of the second data object; and
mapping, at the identified highest layer, the fingerprint of the first data
object to the matching fingerprint of the second data object.

32

10

15

20

25

30

WO 2012/173858 PCT/US2012/041297

29. A storage system for mapping data blocks referenced by a first data object to
corresponding data blocks referenced by a second data object, the storage system
comprising:

means for generating a hierarchical tree of fingerprints for each of the first
and second data objects, each layer of each said hierarchical tree having a base
layer and one or more upper layers above the base layer, the base layer having one
fingerprint each for each data block referenced by the first or second data object,
each of the one or more upper layers having at least one fingerprint representative
of a selected number of fingerprints from an immediately lower layer of the
hierarchical tree;

means for identifying, starting from a top layer of the hierarchical trees and
going down toward the base layer, a matching of fingerprints in each layer of the first
data object with corresponding fingerprints at the same layer of the second data
object; and

means for mapping the identified fingerprints of the first data object to
matching fingerprints of the second data object, wherein said mapping is done for
each identified fingerprint only at the highest level of the hierarchical trees at which
the matching fingerprint is identified.

30. A storage system as recited in claim 29, further comprising:
means for deduplicating data blocks referenced by the first data object that
corresponds to the mapped fingerprints.

31. A storage system as recited in claim 30, wherein said means for deduplicating
further includes:

means for deleting the data blocks referenced by the first data object that
correspond to the mapped fingerprints; and

means for redirecting logical references associated with the deleted data
blocks by logically referencing each mapped fingerprint of the first logical object
directly to the corresponding matching fingerprint of the second logical object.

33

WO 2012/173858 PCT/US2012/041297

101 - 101

Client o o o Client

103

102

Storage Controller

107

Storage OS

111
Deduplication

/_/109

e 104
:_ Persistent Storage Subsystem :
|
| 105 105 105 |
| |
: o 0o o |
| |
! |
e e e e e ———— . ——

1/10

PCT/US2012/041297

WO 2012/173858

¢ OIA

wajsAs abelo)s syl
Juajsisiad wios/of wouyo
Jaydepy abelojg . Ja)depy 3yJomiaN
Goc ¥0cT

€0¢

Aowapy
(s)iossao0lqg

apo)

20¢ LoC

2/10

PCT/US2012/041297

WO 2012/173858

go¢
FETNETS

puayoeq

ol¢
SINPON-A

AN

sa0Ine(] abkeioig

woJl4/01
WwiasAg
___ lanuqQ ebelolg
06¢
waysAs aivy
08¢
Jabeueyy abelioig
09€
soeu8l| 4D
q0ve

. suslD
€ Old WOl4/oL
_ — —— — —
| " -
_ _
_ _
| | $$800Yy
| _ MINEN
| N -
_ | X3
| |
_ |
| | [000}0.d
| |
| S p—
| _ g8LE
| _
| |
_ _ soepaU| 40
| V| e
| o | [BOvE
| |
|

0l€
auibug

|

!

|

_

|

|

_

_

|

¢ jpojoid |
NN
_

|

|

|

|

|

|

|

3/10

PCT/US2012/041297

WO 2012/173858

o0lg
101Q

A A
gley ~ cley ~

LY ~

o0|g oolg oolg
pang |97 peug | **° | paug
N A
gley ~ gLey ~
11 L4 L4 L] [W}
\\ A
Lier
]
apouy|
S0cy -
n\V < OjU| SWIN[OA
60LY
L0LY oy apouj {0154

17

- 4/10

WO 2012/173858 PCT/US2012/041297

403 423
INODE 1 INODE 2
405 407 425 427
IND IND IND IND
7 411 413 415 431 433 435
ATA DA waii DATA B
FIGURE 4B
403 423
INODE 1 INODE 2
405 292 425 427
IND IND IND IND
411 413 433
(7777777, TT] 415
i || Hith ATR DATA
i
FIGURE 4C

5/10

PCT/US2012/041297

WO 2012/173858

VS “OId

v ,
ST T T T /77777 B I S B R 1,
mo 0 moToToTo GO | ¥0 | €0 8\§ (va o | 68 | 88 TL od | 98 | va | €8 | 28 JH 7
5a &da
NE/ H H Nom/
Y.
nojoofeo|sooleofso|vofeo]zo % vwajosfeafea|sa|oa|sa|valea|eca YLy
v v v v v Vv vy vy ¥ Vv vy by b vy yo§ g
o |oko |60 (802090 (60|v0|e0 |20 nelog|ealsa|saloalcalvalecalzg 7 \&\“&N

vLG \

6/10

PCT/US2012/041297

WO 2012/173858

qa¢ ‘OIAd

|) i s A R I R R D R 7
| :L ox; 60 | 80 | LO mo# mog ¥O0 | €0 | 20 \\\ itaj0a| 649 |83 | /9 | 99 ¥ mm; vg | €9 | ¢4 \\ :
I : h ; S IS A SR WA k

N_‘mO/.M H B | g-a H

7,
L10]0LO0| 60 80| L3 90| SO|¥O| €D rialoraleafsalafoafjsalvalcalcd \\w\\\ «— 205

%
I I I I I v v ¥ VY Y VY VY oy oy

4 F
vis —>11.0]01.0) 6.0 801 LD 190160 %0 | €D S% lglorg|ea|sa|La|og|sa|ra|cg|zg \\XW\“\ p0S

£.d ¢.g b.dg §T 905

—

o= _ 077

9LG —>

8l —»

7/10

WO 2012/173858 PCT/US2012/041297

602

Identify a first data object to be compared against a
second data object, each data object referencing
multiple data blocks

¢ 604

Generate a hierarchical tree of fingerprints for the
two data objects

i 606
Starting from a top layer of each hierarchical tree,
identify a first layer of each tree and compare
fingerprints at this layer for both trees

612

Step down to the
> next lower layer of
the hierarchical trees

620

Are there any
matching fingerprints
in current layer?

Step down to next lower layer
only for the remaining
unmatched fingerprints

Any layers lower
than current layer?

A

Map matching fingerprints of first data object to
corresponding fingerprints of second data object

616
Any remaining
unmatched fingerprints in
the current layer?

Any layers lower
than current layer?

nld
P

A 4

(Continue)

FIG. 6

8/10

WO 2012/173858

704

RECEIVED OBJECT-
LEVEL FINGERPRINT

FINGERPRINT 232

PCT/US2012/041297

1 2
0000 | 0000
0000 0000
0000 0000
FINGERPRINTS 0-100 FINGERPRINTS 101-200

3 4
0000 | 0000
0000 0000
0000 0000
FINGERPRINTS 201-300 FINGERPRINTS 301-400

FIG. 74

BUCKET BUCKET

1 2
0000 0000
0000 0000
0000 0000
FINGERPRINTS 0-100 FINGERPRINTS 101-200

, 4
%;/ 0000
0000
0000

%

FINGERPRINTS 301-400

FIG. 7B

9/10

WO 2012/173858 PCT/US2012/041297

802

Receive a data object

v 804

Generate a hierarchical tree of fingerprints for
received data object and assign a top layer
fingerprint as the input object-tevel fingerprint of the
received data object

v 806

Based on a value of the object-level fingerprint,
identify a selected subgroup of fingerprints from a
database of preexisting object-leve! fingerprints

v 808

Compare input object-level fingerprint against one
or more preexisting object-level fingerprints from
selected subgroup

810

Is there a
match?

Deduplicate received
data object

Identify one or more closely related object-level
fingerprint from selected subgroup

814

Closely related
object-level fingerprint
exists?

816
Perform a hierarchical comparison of fingerprint
tree of input data object against fingerprint tree of
closely related data object

818 820

Any common Deduplicate matched/
data blocks? common data blocks

(Continue)

FIG. 8

10/10

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings

