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METHODS OF DECODING SPEECH FROM BRAIN ACTIVITY DATA AND DEVICES
FOR PRACTICING THE SAME

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[0001] This invention was made with government support under Grant No.
NS021135 awarded by the National Institutes of Health. The government has certain

rights in the invention.

CROSS-REFERENCE TO RELATED APPLICATIONS
[0002] This application claims the benefit of U.S. Provisional Patent Application
No. 61/719,050, filed October 26, 2012; the disclosure of which is incorporated herein

by reference in their entirety.

BACKGROUND
[0003] Spoken language is a uniquely human trait. The human brain has evolved
computational mechanisms that decode highly variable acoustic inputs into meaningful
elements of language, such as phonemes and words. Yet for hundreds of thousands of
patients, including certain patients who suffer from paralysis, locked-in syndrome, Lou
Gehrig’s disease, or other neurological diseases, the ability to communicate via spoken

language is lacking or impaired.

SUMMARY

[0004] The present disclosure provides methods of decoding speech from brain
activity data. Aspects of the methods include receiving brain speech activity data from a
subject, and processing the brain speech activity data to output speech feature data.
Also provided are devices and systems for practicing the subject methods.

[0005] In certain aspects, methods of the present disclosure include decoding
brain speech activity of a subject into speech feature data, with such methods involving
(@) receiving brain speech activity data from the subject into a decoder device; (b)
processing the received brain speech activity data with a decoder module present in the
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decoder device, wherein the decoder module is configured to convert the received brain
speech activity data into speech feature data; and (c) outputting the speech feature data
to an output device.

[0006] In certain aspects, the method may also involve obtaining the brain
speech activity data from the subject. The brain speech activity data may be obtained
from a region of the subject's brain associated with speech recognition, with particular
areas of interest including, but not limited to, the peri-sylvian language cortex including
the posterior superior temporal gyrus (pSTG), motor cortex and Broca’s area. The brain
speech activity data itself may be the result of heard speech, imagined speech, a
combination of heard and imagined speech, and/or from one or more other stimuli.
[0007] The manner in which the brain speech activity data is obtained may vary.
In certain aspects, the data is obtained from a subject through the use of an electrode
device which contains two or more electrodes. One or more electrodes of the device
may be implanted in the subject’s brain, such as by using an implanted or penetrating
electrode. Where the device is implanted, the brain speech activity data may include
electrocorticography (ECoG) data. Other data of interest includes, but is not necessarily
limited to, electroencephalography (EEG) data and data obtained with one or more
nonimplanted and/or nonpenetrating electrodes.

[0008] Brain speech activity data may be processed by variety of different
algorithms or models. The processing may include a linear spectrogram model, and/or
a non-linear modulation model. In certain aspects, the decoder module is configured to
select between a linear spectrogram model and a non-linear modulation model.

[0009] The processed brain speech activity data may be converted by the output
device. The output device may convert the speech feature data into a different form,
such as into readable text or into audible sound. Such an audible sound may be, for
example, a human recognizable word or collection of words (e.g., phrases or
sentences).

[0010] The decoder devices that are used in practicing the subject methods may
themselves vary. In certain aspects, the decoder device and the output device are
integrated into a single apparatus. Where the decoder device and output device are
instead part of separate apparatuses, they may be configured to share and/or transmit
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data (e.g., using a wired connection and/or wirelessly). Output devices of interest
include, but are not limited to, computers (e.g., desktops, laptops, and tablets), phones
(e.g. smartphones) and TTY devices.

[0011] Also provided by the instant disclosure are systems for practicing the
subject methods. In certain aspects, the systems for decoding brain speech activity of a
subject into speech feature data include a decoder device having a data input
component configured to receive brain speech activity data; a decoder module having a
processor and a machine-readable medium encoding instructions operable to cause the
processor to convert received brain speech activity data into speech feature data and
output the speech feature data to an output component; and a data output component
configured to output speech feature data from the decoder module.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The invention may be best understood from the following detailed
description when read in conjunction with the accompanying drawings. Included in the
drawings are the following figures:

[0013] FIG. 1A depicts a flowchart of one embodiment of a method of the instant
disclosure. Neural signals including brain speech activity data are received from a
subject’s brain. The neural signals are processed and decoded into speech features.
The speech features may then be output, e.g. as synthesized speech sound or as a
word identification.

[0014] FIG. 1B depicts a flowchart of one embodiment of a method of the instant
disclosure, in which a decoder module is trained. A speech stimulus is applied to a
subject (e.g. a subject listens to speech sounds, speaks out loud, or imagines speech
sounds, movement, and/or other speech representations). The speech stimulus is
preprocessed into original speech feature data (to be used as output data for the
decoding module). The neural signals resulting from the speech stimulus are
preprocessed into brain speech activity data (e.g. neural input features). The original
speech feature data and the brain speech activity data are used to train (e.g. build, test,
etc.) the decoding module (e.g. a predictive decoding model). The decoding module
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generates reconstructed speech feature data (i.e. predicted speech feature data), from
the brain speech activity data, which is output as speech (e.g. by an output device).
The output speech may be in the form of synthesized speech and/or readable text.
[0015] FIG. 1C depicts a flowchart of one embodiment of a method of the instant
disclosure, which uses the trained decoder module of FIG. 1B. Steps for preprocessing
speech stimulus into original speech feature data and training the decoder module are
not necessary in this embodiment.

[0016] FIG. 2, Panels A-B illustrate non-limiting examples of electrodes for use in
recording speech-related brain signals. Panel A: Implanted electrode array for direct
recording of speech-related brain signals. Panel B: Noninvasive scalp electrode
system.

[0017] FIG. 3 depicts an overview of certain aspects an experimental paradigm.
Participants listened to words (acoustic waveform, top left), while neural signals were
recorded from cortical surface electrode arrays (top right, solid gray circles) implanted
over superior and middle temporal gyrus (STG, MTG). Speech-induced cortical field
potentials (bottom right, gray curves) recorded at multiple electrode sites were used to
fit multi-input, multi-output models for offline decoding. The models take as input time-
varying neural signals at multiple electrodes and output a spectrogram consisting of
time-varying spectral power across a range of acoustic frequencies (180-7,000 Hz,
bottom left). To assess decoding accuracy, the reconstructed spectrogram is compared
to the spectrogram of the original acoustic waveform. Where a speech feature data
representation other than a spectrogram is utilized, decoding accuracy may be
assessed by comparing to the reconstructed speech features to the original speech
features.

[0018] FIG. 4, Panels A-C depict spectrogram reconstruction. Panel A: The top
panel shows spectrogram of six isolated words (deep, jazz, cause) and pseudowords
(fook, ors, nim) presented aurally to an individual participant. (Bottom): spectrogram-
based reconstruction of the same speech segment, linearly decoded from a set of
electrodes. Dark gray and light gray bars denote vowels and fricative consonants,
respectively, and the spectrogram is normalized within each frequency channel for
display. Panel B: Single trial high gamma band power (70-150 Hz, gray curves)
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induced by the speech segment in Panel A. Recordings are from four different STG
sites used in the reconstruction. The high gamma response at each site is z-scored and
plotted in standard deviation (SD) units. Right panel: frequency tuning curves (dark
black) for each of the four electrode sites, sorted by peak frequency and normalized by
maximum amplitude. Red bars overlay each peak frequency and indicate SEM of the
parameter estimate. Frequency tuning was computed from spectro-temporal receptive
fields (STRFs) measured at each individual electrode site. Tuning curves exhibit a
range of functional forms including multiple frequency peaks (FIG. 11, Panel B and FIG.
12, Panel B). Panel C: The anatomical distribution of fitted weights in the reconstruction
model. Dashed box denotes the extent of the electrode grid (shown in FIG. 3). Weight
magnitudes are averaged over all time lags and spectrogram frequencies and spatially
smoothed for display. Nonzero weights are largely focal to STG electrode sites. Scale
baris 10 mm.

[0019] FIG. 5, Panels A-B show individual participant and group average
reconstruction accuracy. Panel A: Overall reconstruction accuracy for each participant
using the linear spectrogram model. Error bars denote resampling SEM. Overall
accuracy is reported as the mean over all acoustic frequencies. Participants are
grouped by grid density (low or high) and stimulus set (isolated words or sentences).
Statistical significance of the correlation coefficient for each individual participant was
computed using a randomization test. Reconstructed trials were randomly shuffled
1,000 times and the correlation coefficient was computed for each shuffle to create a
null distribution of coefficients. The p value was calculated as the proportion of elements
greater than the observed correlation. Panel B: Reconstruction accuracy as a function
of acoustic frequency averaged over all participants (N = 15) using the linear
spectrogram model. Shaded region denotes SEM over participants.

[0020] FIG. 6, Panels A-D show factors influencing reconstruction quality. Panel
A: Group average t value map of informative electrodes, which are predominantly
localized to posterior STG. For each participant, informative electrodes are defined as
those associated with significant weights (p<0.05, FDR correction) in the fitted
reconstruction model. To plot electrodes in a common anatomical space, spatial

coordinates of significant electrodes are normalized to the MNI (Montreal Neurological
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Institute) brain template (Yale Biolmage Suite). The dashed white line denotes the
extent of electrode coverage pooled over participants. Panel B: Reconstruction
accuracy is significantly greater than zero when using neural responses within the high
gamma band (~70-170 Hz; p<0.05, one sample ttests, df = 14, Bonferroni correction).
Accuracy was computed separately in 10 Hz bands from 1-300 Hz and averaged
across all participants (N = 15). Panel C: Mean reconstruction accuracy improves with
increasing number of electrodes used in the reconstruction algorithm. Error bars
indicate SEM over 20 cross-validated data sets of four participants with 4 mm high
density grids. Panel D: Accuracy across participants is strongly correlated (r = 0.78,
p<0.001, df = 13) with tuning spread (which varied by participant depending on grid
placement and electrode density). Tuning spread was quantified as the fraction of
frequency bins that included one or more peaks, ranging from 0 (no peaks) to 1 (at least
one peak in all frequency bins, ranging from 180-7,000 Hz).

[0021] FIG. 7, Panels A-C compare linear and nonlinear coding of temporal
fluctuations. Panel A: Mean reconstruction accuracy (r) as a function of temporal
modulation rate, averaged over all participants (N = 15). Modulation-based decoding
accuracy (red curve) is higher compared to spectrogram-based decoding (blue curve)
for temporal rates 24 Hz. In addition, spectrogram-based decoding accuracy is
significantly greater than zero for lower modulation rates (£8 Hz), supporting the
possibility of a dual modulation and envelope-based coding scheme for slow modulation
rates. Shaded gray regions indicate SEM over participants. Panel B: Mean ensemble
rate tuning curve across all predictive electrode sites (n = 195). Error bars indicate SEM.
Overlaid histograms indicate proportion of sites with peak tuning at each rate. Panel C:
Within-site differences between modulation and spectrogram-based tuning. Arrow
indicates the mean difference across sites. Within-site, nonlinear modulation models are
tuned to higher temporal modulation rates than the corresponding linear spectrogram
models (p<10~', two sample paired ttest, df = 194).

[0022] FIG. 8, Panels A-B show a schematic of a nonlinear modulation model.
Panel A: The input spectrogram (top left) is transformed by a linear modulation filter
bank (right) followed by a nonlinear magnitude operation. This nonlinear operation
extracts the modulation energy of the incoming spectrogram and generates phase
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invariance to local fluctuations in the spectrogram envelope. The input representation is
the two-dimensional spectrogram S(f,f) across frequency f and time f The output
(bottom left) is the four-dimensional modulation energy representation M(s,r,f,f) across
spectral modulation scale s, temporal modulation rate r, frequency f, and time ¢ In the
full modulation representation, negative rates by convention correspond to upward
frequency sweeps, while positive rates correspond to downward frequency sweeps.
Accuracy for positive and negative rates was averaged unless otherwise shown. Panel
B: Schematic of linear (spectrogram envelope) and nonlinear (modulation energy)
temporal coding. Left: acoustic waveform (black curve) and spectrogram of a temporally
modulated tone. The linear spectrogram model (top) assumes that neural responses are
a linear function of the spectrogram envelope (plotted for the tone center frequency
channel, top right). In this case, the instantaneous output may be high or low and does
not directly indicate the modulation rate of the envelope. The nonlinear modulation
model (bottom) assumes that neural responses are a linear function of modulation
energy. This is an amplitude-based coding scheme (plotted for the peak modulation
channel, bottom right). The nonlinear modulation model explicitly estimates the
modulation rate by taking on a constant value for a constant rate.

[0023] FIG. 9, Panels A-B depict an example of nonlinear modulation coding and
reconstruction. Panel A: Top: the spectrogram of an isolated word (“waldo”) presented
aurally to one participant. Blue curve plots the spectrogram envelope, summed over all
frequencies. Left panels: induced high gamma responses (black curves, trial averaged)
at four different STG sites. Temporal modulation energy of the stimulus (dashed red
curves) is overlaid (computed from 2, 4, 8, and 16 Hz modulation filters and normalized
to maximum value). Dashed black lines indicate baseline response level. Right panels:
nonlinear modulation rate tuning curves for each site (estimated from nonlinear STRFs).
Shaded regions and error bars indicate SEM. Panel B: Original spectrogram (top),
modulation-based reconstruction (middle), and spectrogram-based reconstruction
(bottom), linearly decoded from a fixed set of STG electrodes. The modulation
reconstruction is projected into the spectrogram domain using an iterative projection
algorithm and an overcomplete set of modulation filters. The displayed spectrogram is
averaged over 100 random initializations of the algorithm.
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[0024] FIG. 10, Panels A-D depict word identification. Word identification based
on the reconstructed spectrograms was assessed using a set of 47 individual words and
pseudowords from a single speaker in a high density 4 mm grid experiment. The
speech recognition algorithm is described in the text. Panel A: Distribution of
identification rank for all 47 words in the set. Median identification rank is 0.89 (black
arrow), which is higher than 0.50 chance level (dashed line; p<0.0001; randomization
test). Statistical significance was assessed by a randomization test in which a null
distribution of the median was constructed by randomly shuffling the word pairs 10,000
times, computing median identification rank for each shuffle, and calculating the
percentile rank of the true median in the null distribution. Best performance was
achieved after smoothing the spectrograms with a 2-D box filter (500 ms, 2 octaves).
Panel B: Receiver operating characteristic (ROC) plot of identification performance (red
curve). Diagonal black line indicates no predictive power. Panel C: Examples of
accurately (right) and inaccurately (left) identified words. Left: reconstruction of
pseudoword “heef” is poor and leads to a low identification rank (0.13). Right:
reconstruction of pseudoword “thack” is accurate and best matches the correct word out
of 46 other candidate words (identification rank = 1.0). Panel D: Actual and
reconstructed word similarity is correlated (r = 0.41). Pair-wise similarity between the
original spectrograms of individual words is correlated with pair-wise similarity between
the reconstructed and original spectrograms. Plotted values are computed prior to
spectrogram smoothing used in the identification algorithm. Gray points denote the
similarity between identical words.

[0025] FIG. 11, Panels A-C show anatomical distribution of surface local field
potential (LFP) responses and linear STRFs in a low density grid participant (10 mm
electrode spacing). Panel A: Trial averaged spectral LFP responses to English
sentences (2—4 s duration) at individual electrode sites. Speech stimuli evoke increased
high gamma power (~70-150 Hz) sometimes accompanied by decreased power at
lower frequencies (<40 Hz) throughout sites in the temporal auditory cortex. Black
outline indicates temporal cortex sites with high gamma responses (>0.5 SD from
baseline). Panel B: Example linear STRFs across all sites for one participant. All
models are fit to power in the high gamma band range (70-150 Hz). Panel C:
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Anatomical location of subdural electrode grid (10 mm electrode spacing). Black box
outline indicates sites as in Panels A and B.

[0026] FIG. 12, Panels A-B depict frequency tuning. Panel A: Left panels: linear
STRFs for two example electrode sites. Right panels: pure tone frequency tuning (black
curves) matches frequency tuning derived from fitted linear STRF models (red curves).
For one participant, pure tones (375—-6,000 Hz, logarithmically spaced) were presented
for 100 ms at 80 dB. Pure tone tuning curves were calculated as the amplitudes of the
induced high gamma response across tone frequencies. STRF-derived tuning curves
were calculated by first setting all inhibitory weights to zero and then summing across
the time dimension. At these two sites, frequency tuning is approximately high-pass
(top) or low-pass (bottom). Panel B: Distribution of the number of frequency tuning
peaks across significant electrodes (N = 15 participants) estimated from linear STRF
models (32-channel). The majority of sites exhibit complex frequency tuning patterns of
2-5 peaks. Peaks were identified as significant parameters (£2.0) separated by more
than a half octave.

[0027] FIG. 13 shows mean reconstruction accuracy for the joint rate-scale space
across all participants (N = 15). Top: modulation-based (nonlinear) decoding accuracy is
significantly higher compared to frequency-based (linear) decoding (bottom) for all
spectral scales at temporal rates 216 Hz (p<0.05, post hoc pair-wise comparisons,
Bonferroni correction, following significant two-way repeated measures ANOVA; model
type by stimulus component interaction effect, F(59,826) = 1.84, p<0.0005).

[0028] FIG. 14, Panels A-B show modulation rate tuning was estimated from
both linear and nonlinear STRF models, based on the spectrogram or modulation
representation, respectively. Linear STRFs have a 2-D parameter space
(frequencyxtime). Modulation rate tuning for the linear STRF was computed by filtering
the fitted STRF model with the modulation filter bank and averaging along the irrelevant
dimensions. Modulation rate tuning computed in this way was similar to that computed
from the modulation transfer function (MTF) (modulus of the 2-D Fourier transform of
the fitted STRF). Nonlinear STRFs have a 4-D parameter space
(ratexscalexfrequencyxtime). Modulation-based rate tuning curves were computed by

summing across the three irrelevant dimensions. Modulation rate tuning was similar
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whether this procedure was applied to a reduced dimension model (ratextime only) or to
the marginalized full model. Reported estimates of modulation rate tuning were
computed from the reduced (ratextime) models. Panel A: Left: example linear STRF.
The linear STRF can be transformed into rate-scale space (the MTF, right) by taking the
modulus of the 2-D Fourier transform or by filtering the STRF with the modulation filter
bank. The linear modulation rate tuning curve (blue curve, top) is obtained after
averaging along the scale dimension. Panel B: Left: example nonlinear STRF from the
same site as in Panel A, fit in the rate-time parameter space. Right: the corresponding
modulation-based rate tuning curve (red) is plotted against the spectrogram-based
tuning curve (blue) from Panel A (only positive rates are shown).

[0029] FIG. 15 shows confusion matrix for word identification (FIG. 10, Panels A-
D). Left: pair-wise similarities (correlation coefficient) between actual auditory
spectrograms of each word pair. Right: pair-wise similarities between reconstructed and
actual spectrograms of each word pair. Correlations were computed prior to any
spectrogram smoothing.

[0030] FIG. 16 shows stimulus correlations in linear and nonlinear stimulus
representations. Speech, like other natural sounds, has strong stimulus correlations
(illustrated for acoustic frequency, top panels, and temporal modulation rate, bottom
panels). Correlations were estimated from 1,000 randomly selected TIMIT sentences at
different time lags (r = 0, 50, 250 ms; note the temporal asymmetry due to the use of
causal modulation filters). Under an efficient coding hypothesis, these statistical
redundancies may be exploited by the brain during sensory processing. An optimal
linear estimator (Wiener filter) was used, which is essentially a multivariate linear
regression and does not account for correlations among the output variables. Stimulus
reconstruction therefore reflects an upper bound on the stimulus features that are
encoded by the neural ensemble. The effect of stimulus statistics on reconstruction
accuracy can be explored systematically using different stimulus priors.

[0031] FIG. 17 shows the spectrograms of the original and reconstructed words.
For audio playback, the spectrogram or modulation representations must be converted
to an acoustic waveform, a transformation that requires both magnitude and phase

information. Because the reconstructed representations are magnitude-only, the phase
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must be estimated. In general, this is known as the phase retrieval problem. To recover
the acoustic waveform from the spectrogram, an iterative projection algorithm was used
to estimate the phase. This step introduces additional acoustic artifacts that can distort
the auditory features reconstructed directly from neural responses. Consequently, the
audio file is an accurate but not perfect reflection of the reconstructed speech
representation. A similar algorithm can be used to recover the spectrogram from the
modulation representation. Here, the spectrogram reconstruction was projected into the
(complex) modulation domain, the phase was extracted, and then the extracted phase
was combined with the reconstructed magnitude of the modulation representation. With
both phase and magnitude information, an invertible transformation can then be used to
convert the (complex) modulation representation back to the spectrogram. Finally, to aid
perceptual inspection of the reconstructions, the sample rate of the audio file is slightly
slower (14 kHz) than that presented to participants (16 kHz).

[0032] FIG. 18, Panels A-C show reconstructed spectrograms from heard and
imagined speech. Subjects were given a ticker tape on which was written the
Gettysburg Address. Each subject read the ticker tape aloud in its entirety, and the
spectrogram was reconstructed. The top images of Panels A and B show two time
points of the heard speech. The subject subsequently read the tickertape and was
asked to imagine speaking the words. The bottom images of panels Panels A and B
show two time points of such imagined speech. Panel C shows the placement of
electrodes, with the black line indicating 48 electrodes of particular importance.

[0033] FIG. 19A, Panels A -—C show an example decoding of speech imagery
(silent speech) from measured brain activity. Top panel (A), Original Spectrogram of
the sound of the sentence "How are you?". Middle panel (B), Predicted Spectrogram
from brain activity while the patient spoke outloud the sentence "How are you?".
Bottom panel (C), Predicted Spectrogram from brain activity while the patient silently
imagined the sentence "How are you?". The predicted spectrotemporal pattern during
silent imagery closely matches the spectrotemporal pattern of the actual sound,
providing a basis to decode imagined speech.

[0034] FIG. 19B shows individual electrodes (circles) having similar prediction

accuracy for heard speech and imagined speech. For each individual electrode, a
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different reconstruction model is fit, and reconstruction accuracy (correlation coefficient)
is assessed based on each electrode's model. This yields a correlation coefficient for
each individual electrode that quantifies how well the brain activity at that electrode can
be used to predict speech features. The figure shows that electrodes with high
predictive power in the heard speech condition also have high predictive power in the
imagery speech condition. Therefore, predictive models derived from heard speech can
be successfully applied to decode imagined speech.

DETAILED DESCRIPTION
[0035] The present disclosure provides methods of decoding speech from brain
activity data. Aspects of the methods include receiving brain speech activity data from a
subject, and processing the brain speech activity data to output speech feature data.
Also provided are devices and systems for practicing the subject methods.

[0036] Before the present invention is described in greater detall, it is to be
understood that this invention is not limited to particular embodiments described, as
such may, of course, vary. It is also to be understood that the terminology used herein is
for the purpose of describing particular embodiments only, and is not intended to be
limiting, since the scope of the present invention will be limited only by the appended
claims.

[0037] Where a range of values is provided, it is understood that each intervening
value, to the tenth of the unit of the lower limit unless the context clearly dictates
otherwise, between the upper and lower limits of that range is also specifically
disclosed. Each smaller range between any stated value or intervening value in a stated
range and any other stated or intervening value in that stated range is encompassed
within the invention. The upper and lower limits of these smaller ranges may
independently be included or excluded in the range, and each range where either,
neither or both limits are included in the smaller ranges is also encompassed within the
invention, subject to any specifically excluded limit in the stated range. Where the stated

12
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range includes one or both of the limits, ranges excluding either or both of those
included limits are also included in the invention.

[0038] Unless defined otherwise, all technical and scientific terms used herein
have the same meaning as commonly understood by one of ordinary skill in the art to
which this invention belongs. Although any methods and materials similar or equivalent
to those described herein can be used in the practice or testing of the present invention,
some potential and exemplary methods and materials may now be described. Any and
all publications mentioned herein are incorporated herein by reference to disclose and
describe the methods and/or materials in connection with which the publications are
cited. It is understood that the present disclosure supersedes any disclosure of an
incorporated publication to the extent there is a contradiction.

[0039] It must be noted that as used herein and in the appended claims, the
singular forms "a", "an", and "the" include plural referents unless the context clearly
dictates otherwise. Thus, for example, reference to "an electrode" includes a plurality of
such electrodes and reference to "the signal" includes reference to one or more signals,
and so forth.

[0040] It is further noted that the claims may be drafted to exclude any element
which may be optional. As such, this statement is intended to serve as antecedent basis
for use of such exclusive terminology as “solely”, “only” and the like in connection with
the recitation of claim elements, or the use of a “negative” limitation.

[0041] The publications discussed herein are provided solely for their disclosure
prior to the filing date of the present application. Nothing herein is to be construed as an
admission that the present invention is not entitled to antedate such publication by virtue
of prior invention. Further, the dates of publication provided may be different from the
actual publication dates which may need to be independently confirmed. To the extent
such publications may set out definitions of a term that conflict with the explicit or
implicit definition of the present disclosure, the definition of the present disclosure
controls.

[0042] As will be apparent to those of skill in the art upon reading this disclosure,
each of the individual embodiments described and illustrated herein has discrete
components and features which may be readily separated from or combined with the

13
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features of any of the other several embodiments without departing from the scope or
spirit of the present invention. Any recited method can be carried out in the order of
events recited or in any other order which is logically possible.

METHODS

[0043] As summarized above, aspects of the invention include methods of
decoding speech from brain speech activity data. In certain aspects, the decoded brain
speech activity data may be output, e.g. as speech feature data.

[0044] The phrase “brain speech activity data” is used broadly and generically to
refer to any brain activity data from a subject who has heard, spoken, read, and/or
imagined one or more words, pseudowords (e.g., “heef” or “thack”), phrases, and/or
sentences. The phrase is meant to include, but is not limited to, raw brain activity data,
such as time-varying neural signals measured as electrical activity along the scalp or
as local field potentials, such as that obtained by one or more electrodes (e.g., an EEG
electrode or an ECoG electrode), as shall be described more fully herein. Further, the
phrase is meant to encompass brain activity data obtained from a region of the subject's
brain associated with speech recognition (e.g., the peri-sylvian language cortex
including the posterior superior temporal gyrus (pSTG) and Broca's area), as well as
brain activity data obtained from a region of the subject’s brain that is not traditionally
associated with speech recognition.

[0045] Likewise, the phrase “speech feature data” is used broadly and generically
to refer to brain speech activity data that has been processed. “Speech feature data”
specifically includes, but is not limited to, brain speech activity data that has been
processed by at least one of a linear spectrogram model and an energy model (e.g. a
non-linear modulation model). Accordingly, “speech feature data” includes abstract
representations (i.e., models) of speech such as spectrograms, modulation
representation, phonemes, semantics, articulatory and other auditory or motor
representations.

[0046] Linear spectrogram models may assume that neural resposes and the
spectrogram envelope are linearly related. Use of a linear spectro-temporal model in
stimulus reconstruction is described in Mesgarani et al. J Neurophysiol. 2009:
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102(6):3329-39; the disclosure of which in incorporated herein by reference. |In
contrast, energy models are non-linear and involve amplitude-based coding. Use of
energy models in decoding brain activity in response to visual stimuli is described in
Adelson E. H. et al. J. Opt. Soc. Am. A 2 1985: 284-299; the disclosure of which is
incorporated herein by reference. In certain aspects, the energy model is a non-linear
modulation model, which is based on temporal modulations and spectral modulations as
is described in Chi et al. (2005) J Acoust Soc Am 118: 887—90; the disclosure of which
is incorporated herein by reference.

[0047] Aspects of embodiments of methods of the present disclosure involve
converting brain speech activity data into speech feature data. In certain aspects, the
brain speech activity data may be received from a subject, such as by using one or
more electrodes to detect the subject’s brain speech activity data. In certain aspects,
the brain speech activity data may be obtained from a machine-readable medium, such
as a computer hard drive, memory, DVD-ROM, and the like. In such aspects, the brain
speech activity data may have been previously obtained from a subject and
subsequently stored in the machine-readable medium.

[0048] The brain speech activity data may be processed by a variety of different
algorithms and/or models to produce speech feature data. The algorithms and/or
models may together be referred to herein as a decoder module. Aspects of the
methods include processing using a linear spectrogram model, a non-linear modulation
model, and/or combinations of the two. The algorithms may use one or more statistical
and/or machine learning algorithms, such as linear regression, principle component
analysis, genetic algorithms, gradient boosting, neural networks, hidden Markov
models, Bayesian networks, decision trees, and the like. In certain embodiments, the
algorithms may use downsampling to reduce computational load. The algorithms may
minimize overfitting (e.g., through cross validation, by limiting the number of learning
iterations, etc.). For a general review of statistical methods and machine learning, see
Larrafiaga P. et al. Machine learning in bioinformatics. Brief Bioinform. 2006: 7(1):86-
112; the disclosure of which is incorporated by reference. Once processed, speech
feature data may be output, such as by an output device.
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[0049] FIG. 1A presents a flow diagram of a method 100 of the instant disclosure,
intended to be a general and non-limiting illustration. Neural signals from a subject’s
brain are processed 101 using a decoder 105, resulting in speech feature data 110.
The decoder 105 may include a data input component configured to receive brain
speech activity data; a decoder module comprising a processor that is configured to
convert received brain speech activity data into speech feature data; and a data output
component configured to output speech feature data from the decoder module. The
processing 101 may involve, for example, the use of a linear spectrogram model, a non-
linear modulation model, and/or combinations of the two. The speech feature data 110
may be output, such as in the form of synthesized speech sound 115 and/or as
readable text 116.

[0050] FIG. 1B presents a flowchart of one embodiment of a method of the
instant disclosure, in which a decoder module (e.g. of the decoder 105 of FIG. 1A) is
trained. A speech stimulus is applied 102B to a subject (e.g. a subject listens to speech
sounds, speaks outloud, or imagines speech sounds, movement, and/or other speech
representations). The speech stimulus is preprocessed 104B into original speech
feature data (e.g. as an auditory spectrogram, auditory modulation data, phonetics,
semantics, articulatory motor data, and/or other stimulus representations of speech
comprehension and production). The neural signals resulting from the speech stimulus
are recorded, stored, and transferred 106B. The neural signals are preprocessed 108B
into brain speech activity data (e.g. neural input features). Steps 106B and 108B may
occur independently of (e.g. before, after, or at the same time as) step 104B. The
decoding module (i.e. a predictive decoding model) may be trained 110B based on the
brain speech activity data and/or the original speech feature data.

[0051] In certain embodiments, the training of the decoder module may involve
use of the algorithms, models, statistical methods, and/or machine learning algorithms
as previously discussed. The training of the decoder module may involve fitting one or
more models (e.g. linear model, non-linear modulation model) to a training set (e.g.
comprising the applied stimulus, brain speech activity data and/or reconstructed speech
feature data). The decoder module may reconstruct 112B speech feature data from the
brain speech activity data. An output device (e.g. part of or external to the decoder 105)
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may output 114B reconstructed speech feature data as speech (e.g. synthesized
speech and/or as readable text). In certain aspects, this method may be performed
iteratively. The training 110B of the decoder module may be based on a number of
speech stimuli and resulting brain speech activity data and/or original speech feature
data. In certain embodiments, the output device may apply one or more statistical
methods and/or machine learning algorithms (such as those described for the decoding
module) to classify, or otherwise identify, the speech feature data (or sections thereof)
as one or more phonemes, words, pseudowords, phrases, commands, actions, and/or
sentences. In certain embodiments, the output device may use highest probability
and/or a model score to classify the speech feature data.

[0052] FIG. 1C presents a flowchart of one embodiment of a method of the
instant disclosure, which uses the trained decoder module of FIG. 1B to reconstruct
112C speech feature data. Steps for preprocessing speech stimulus into original
speech feature data and training the decoder module may not be necessary in this
embodiment.Various steps and aspects of the methods shall now be described in
greater detail below.

Receiving Brain Speech Activity Data

[0053] Aspects of embodiments of the invention include receiving brain speech
activity data for a subject. Brain speech activity data may be the result of heard speech,
imagined speech, a combination of heard and imagined speech, and/or from one or
more other stimuli.

[0054] The term *heard speech” is used to refer to one or more words,
pseudowords (e.g., “heef” or “thack”), phrases, and/or sentences that are heard by a
subject. Heard speech may include sounds made by the subject, or that the subject
hears from one or more other individuals. In contrast, “imagined speech” is used to
refer to one or more words, pseudowords, phrases, and/or sentences that are thought
and/or inaudibly spoken by a subject.

[0055] In certain aspects, the brain speech activity data may be obtained from a
machine-readable medium, such as a computer hard drive, memory, DVD-ROM, and
the like. In such aspects, the brain speech activity data may have been previously
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obtained from a subject and subsequently stored in the machine-readable medium.
Such brain speech activity data may have been stored non-transiently, such as for
about 1 ms or more, including about 10 ms or more, about 100 ms or more, e.g. about 1
s or more, about 10s or more, about 30s or more, about 60s or more, about an hour or
more, or about a day or more.

[0056] In certain aspects, receiving brain speech activity for a subject may
involve receiving brain speech activity data from the subject, such as by using one or
more electrodes. Methods of the present disclosure thus may include methods of
decoding speech from brain speech activity data received from a patient substantially in
real time, including methods in which time between obtaining the brain speech activity
data from the subject and outputting the speech feature data to an output device is
about 30 seconds or less, e.g., 10 seconds or less, or 5 seconds or less, including 1
second or less.

[0057] Brain speech activity data may be detected and/or collected from a subject
by any convenient means. In certain instances, receiving a subject's brain speech
activity data includes positioning one or more electrodes, wherein the electrode(s) are of
a suitable type and position so as to detect a subject’s brain activity. FIG. 2, Panels A-B
illustrate two of the many possible ways in which electrodes may be positioned in
accordance with the instant disclosure. In the embodiment illustrated in FIG. 2, Panel
A, an electrode array is implanted in the subject’s brain for detecting brain speech
activity data, where each numbered white circle corresponds to a separate electrode.
FIG. 2, Panel B shows an embodiment in which a plurality of noninvasive electrodes are
placed over a subject’s head to record brain speech activity data, such as EEG data.
[0058] In certain aspects, one or more electrodes may be positioned so as to
correspond to particular landmarks or regions in the subject's brain. The specific
location at which to position an electrode may be determined by identification of
anatomical landmarks in a subject’s brain, such as the pre-central and post-central gyri
and the central sulcus. Identification of anatomical landmarks in a subject’s brain may
be accomplished by any convenient means, such as magnetic resonance imaging
(MRI), functional magnetic resonance imaging (fMRI), positron emission tomography
(PET), and visual inspection of a subject’s brain while undergoing a craniotomy. Once a
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suitable location for an electrode is determined, the electrode may be positioned or
implanted according to any convenient means. Suitable locations for positioning or
implanting an electrode may include, but are not limited to, one or more regions of the
subject's brain associated with speech recognition, including the peri-sylvian language
cortex including the posterior superior temporal gyrus (pSTG) and Broca’s area. In
certain aspects, correct placement of electrodes may be confirmed by any convenient
means, including visual inspection or computed tomography (CT) scan. In some
aspects, after electrode positions are confirmed they may be superimposed on a
surface reconstruction image of the subject's brain.

[0059] Methods of interest for positioning electrodes further include, but are not
limited to, those described in U.S. Patent Nos. 4,084,583; 5,119,816; 5,291,888;
5,361,773; 5,479,934; 5,724,984; 5,817,029; 6,256,531; 6,381,481; 6,510,340;
7,239,910; 7,715,607; 7,908,009; 8,045,775; and 8,019,142; the disclosures of which
are incorporated herein by reference.

[0060] Though in some embodiments one electrode may positioned, in some
embodiments more than one electrode may be positioned. More than one electrode
may be employed so as to provide greater resolution or information about the brain
speech activity data, as each electrode may convey information about the activity of a
particular region. By comparing differences between the signals of each electrode,
more accurate models of brain speech activity data may be created (FIG. 6, Panel C;
Example 1). Accordingly, in certain embodiments, between about 5 and 1024
electrodes, or more, may be employed. In some embodiments, the number of
electrodes positioned is about 5 to 10 electrodes, about 10 to 20 electrodes, about 20 to
30 electrodes, about 30 to 40 electrodes, about 40 to 50 electrodes, about 60 to 70
electrodes, about 70 to 80 electrodes, about 80 to 90 electrodes, about 90 to 100
electrodes, about 100 to 110 electrodes, about 110 to 120 electrodes, about 120 to 130
electrodes, about 130 to 140 electrodes, about 140 to 150 electrodes, about 150 to 160
electrodes, about 160 to 170 electrodes, about 170 to 180 electrodes, about 180 to 190
electrodes, about 190 to 200 electrodes, about 200 to 210 electrodes, about 210 to 220
electrodes, about 220 to 230 electrodes, about 230 to 240 electrodes, about 240 to 250
electrodes, about 250 to 300 electrodes, about 300 to 400 electrodes, about 400 to 500
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electrodes, about 500 to 600 electrodes, about 600 to 700 electrodes, about 700 to 800
electrodes, about 800 to 900 electrodes, about 900 to 1000 electrodes, or about 1000 to
1024 electrodes, or more. When more than one electrode is employed, the electrodes
may be homogeneous or heterogeneous.

[0061] As is apparent from FIGs. 2, 3, 11, Panel C and 18, Panel C, electrodes
may be arranged in no particular pattern or any convenient pattern to facilitate recording
of brain speech activity data. For example, a plurality of electrodes may be placed in a
grid pattern, in which the spacing between adjacent electrodes is approximately
equivalent. Such spacing between adjacent electrodes may be, for example, about 2.5
cm or less, about 2 cm or less, about 1.5 cm or less, about 1 cm or less, about 0.5cm or
less, about 0.1 cm or less, or about 0.05 cm or less. Electrodes placed in a grid pattern
may be arranged such that the overall plurality of electrodes forms a roughly
geometrical shape. In certain embodiments, a grid pattern may be roughly square in
overall shape, roughly rectangular, or roughly trapezoidal.

[0062] Electrodes may also be pre-arranged into an array, such that the array
includes a plurality of electrodes that may be placed on or in a subject’s brain. Such
arrays may be miniature- or micro-arrays, a non-limiting example of which may be a
miniature ECoG array. An array may include, for example, about 5 electrodes or more,
e.g., about 5 to 10 electrodes, about 10 to 20 electrodes, about 20 to 30 electrodes,
about 30 to 40 electrodes, about 40 to 50 electrodes, about 50 to 60 electrodes, about
60 to 70 electrodes, about 70 to 80 electrodes, about 80 to 90 electrodes, about 90 to
100 electrodes, about 100 to 125 electrodes, about 125 to 150 electrodes, about 150 to
200 electrodes, about 200 to 250 electrodes, about 250 to 300 electrodes, about 300 to
400 electrodes, about 400 to 500 electrodes, or about 500 electrodes or more. In
certain embodiments, the array may cover a surface area of about 1cm?, about 1 to 10
cm?, about 10 to 25 cm?, about 25 to 50 cm?, about 50 to 75 cm?, about 75 to 100 cm?,
or 100 cm? or more. Arrays of interest may include, but are not limited to, those
described in U.S. Patent Nos. USD565735; USD603051; USD641886; and
USD647208; the disclosures of which are incorporated herein by reference.

[0063] Electrodes may be platinum-iridium electrodes or be made out of any
convenient material. The diameter, length, and composition of the electrodes to be
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employed may be determined in accordance with routine procedures known to those
skilled in the art. Factors which may be weighted when selecting an appropriate
electrode type may include but not be limited to the desired location for placement, the
type of subject, the age of the subject, cost, duration for which the electrode may need
to be positioned, and other factors.

[0064] In certain embodiments, the electrodes may be intracranial electrodes.
Such electrodes may be implanted between a subject’'s scalp and a subject’s skull.
Intracranial electrodes may be positioned and arranged as described previously.

[0065] In some embodiments, the electrodes may be ECoG electrodes or may
include an ECoG array. The ECoG electrodes may be intracranial, and may be
implanted between a subject’'s scalp and a subject’'s skull or directly on the surface of
the brain. For a general review of ECoG technology, see Ajmone-Marsan, C.
Electrocorticography: Historical Comments on its Development and the Evolution of its
Practical Applications, Electroencephalogr. Clin. Neurophysiol, Suppl. 1998, 48: 10—16;
the disclosure of which is incorporated herein by reference.

[0066] Also of interest are electrodes that may receive electroencephalography
(EEG) data. One or more wet or dry EEG electrodes may be used in practicing the
subject methods. Electrodes and electrode systems of interest further include, but are
not limited to, those described in U.S. Patent Publication Numbers 2007/0093706,
2009/0281408, 2010/0130844, 2010/0198042, 2011/0046502, 2011/0046503,
2011/0046504, 2011/0237923, 2011/0282231, 2011/0282232 and U.S. Patents
4,709,702, 4967038, 5038782, 6154669; the disclosures of which are incorporated
herein by reference.

[0067] In certain embodiments, a ground electrode or reference electrode may be
positioned. A ground or reference electrode may be placed at any convenient location,
where such locations are known to those of skill in the art. In certain embodiments, a
ground electrode or reference electrode is a scalp electrode. A scalp electrode may be
placed on a subject’s forehead or in any other convenient location.

21



WO 2014/066855 PCT/US2013/066967

Processing
[0068] The brain speech activity data may be processed to produce speech
feature data. Such processing may be carried out by a decoder device. As used
herein, “decoder device” is intended to be used broadly and generically to refer to an
apparatus that is configured to convert brain speech activity data to speech feature
data. The phrase “decoder device” may include, but is not limited to, computers (e.qg.
laptop, desktop, server, cloud server, etc.), neurophysiology workstations (e.g. a RZ2
Neurophysiology Workstation sold by Tucker Davis Technologies), smartphones/tablets,
and the like. In certain aspects, a decoder device includes a data input component to
receive brain speech activity data, a decoder module that converts received brain
speech activity data into speech feature data, and a data output component configured
to output speech feature data from the decoder module.
[0069] Decoder devices of interest may include a data input component that may
receive brain speech activity data. In certain aspects, the data input component may
include any convenient means for obtaining brain speech activity data for a subject that
is contained in a non-transient storage medium, such as RAM memory, flash memory,
hard disk, etc.
[0070] In certain aspects, the data input component is configured to receive brain
speech activity data from a subject via direct physical communication, such as a by a
cable. For example, an electrode may be placed on a subject, wherein the electrode is
connected to a wire that is in physical connection with the data input component of a
decoder device. A data input component may thus be configured to physically connect
with a plurality of electrodes, such as 2 or more, including 10 or more, e.g., 50 or more,
or 100 or more.
[0071] A data input component may also, or instead, receive brain speech activity
data by a non-physical means. Of interest is wireless communication, such as Wi-Fi,
cellular (e.g., 3G, 4G), Bluetooth and the like; a non-limiting example of such wireless
communication is described in US Patent Publication 2006/0129056; the disclosure of
which is incorporated herein by reference.
[0072] Decoder devices may include a decoder module that converts received
brain speech activity data into speech feature data. The decoder module may contain
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at least one processor that is configured to convert brain speech activity data to speech
feature data. In certain aspects, the processor may execute instructions from one or
more software modules to convert brain speech activity data to speech feature data,
and/or to output the speech feature data to an output component. A software module
may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM
memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of
storage medium known in the art. A storage medium may be coupled to the processor
such that the processor can read information from, and write information to, the storage
medium. In the alternative, the storage medium may be integral to the processor.
[0073] The brain speech activity data received by the decoder module may
contain brain activity data covering a wide range of frequencies. The frequencies
contained within the brain speech activity data may depend upon factors including but
not limited to the particular type of electrode employed, the type of subject, the position
of the electrode, and other factors. In certain embodiments, the brain speech activity
data received by a decoder module may include frequencies of about 1 Hz to 500 Hz or
more. In certain embodiments, the brain speech activity data may include frequencies
from the range of about 1 to 10 Hz, about 10 to 20 Hz, about 20 to 30 Hz, about 30 to
40 Hz, about 40 to 50 Hz, about 50 to 60 Hz, about 60 to 70 Hz, about 70 to 80 Hz,
about 80 to 90 Hz, about 90 to 100 Hz, about 100 to 125 Hz, about 125 Hz to 150 Hz,
about 150 Hz to 175 Hz, about 175 Hz to 200 Hz, about 200 Hz to 225 Hz, about 225
Hz to 250 Hz, about 250 Hz to 275 Hz, about 275 Hz to 300 Hz, about 300 Hz to 325
Hz, about 325 Hz to 350 Hz, about 350 Hz to 375 Hz, about 375 Hz to 400 Hz, about
400 Hz to 425 Hz, about 425 Hz to 450 Hz, about 450 Hz to 475 Hz, or about 475 Hz to
500 Hz or more. In some embodiments, the brain speech activity data received by the
decoder module may include delta, theta, alpha, mu, beta, gamma, or high gamma
frequencies. Certain embodiments may include only one of delta, theta, alpha, mu,
beta, gamma, and high gamma frequency bands. Other embodiments may include one
or more of delta, theta, alpha, mu, beta, gamma, and high gamma frequency bands.
[0074] In certain aspects, the decoder module may process the received brain
speech activity data prior to converting the data into speech feature data. Processing
may include applying one or more filters, such as a bandpass filter, a notch filter, a
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temporal filter, and/or a spectro-temporal filter. Processing may include applying a
transform to the brain speech activity data.

[0075] For example, in certain aspects processing may include applying a
bandpass filter to the brain speech activity data. A bandpass filter may separate the
brain speech activity data in about 2 to about 16 different frequency bands, or more. In
certain embodiments, a bandpass filter may split a signal into about 2 frequency bands,
about 4 frequency bands, about 6 frequency bands, about 8 frequency bands, about 10
frequency bands, about 12 frequency bands, about 14 frequency bands, about 16
frequency bands or more. Specific frequency bands may be selected to divide brain
speech activity data into physiologically important ranges. In some embodiments, a
bandpass filter is employed to produce a signal including mu frequencies, beta
frequencies, gamma frequencies, high gamma frequencies, or other ranges known to
correspond to particular brain wave frequencies.

[0076] The decoder module may apply one or more notch filters to the brain
speech activity data. A notch filter may be applied any frequency for which signal
subtraction is desired. In certain embodiments, a notch filter may be used that filters
frequencies at about 60Hz, at about 120 Hz, or about 180Hz. A notch filter may be
applied to remove electrical hum or other noise, such as that from an A/C current.
[0077] A decoder module may transform brain speech activity data. For
example, high gamma band power (about 70-150 Hz) brain speech activity data may be
extracted from an input signal by any convenient means, such as applying a Hilbert-
Huang transform. The decoder module may apply other transformations and/or filters to
the brain speech activity data (e.g. to remove artifacts, reduce background, and/or
extract brain speech activity data) as described by Sanai et al. (2007) EEG Signal
Processing, the disclosure of which is incorporated by reference. Processing may also
involve converting an input signal into standardized z-scores, using any convenient
means.

[0078] The processed or unprocessed brain speech activity data may be
converted by the decoder module into speech feature data. In certain aspects,
conversion of brain speech activity data into speech feature data may involve
application of a linear spectrogram model and/or a non-linear modulation model. The
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linear spectrogram model and/or the non-linear modulation model may be contained in
one or more software modules that reside in a storage medium that is coupled to the
processor of the decoder module, as described above.

[0079] In certain aspects, the decoder module may select between a linear
spectrogram model and a non-linear modulation model for converting brain speech
activity data to speech feature data. The decoder module may apply a linear
spectrogram model to a subset of brain speech activity data, and a non-linear
modulation model to a subset of the brain speech activity data. In such aspects, the
decoder module may include instructions as to when to apply a linear spectrogram
model and when to apply a non-linear modulation model.

[0080] Alternatively, the decoder module may apply both a linear spectrogram
model and a non-linear modulation model to convert the brain speech activity data to
speech feature data. The resulting speech feature data from each model may be
combined and/or averaged by any convenient means. In certain aspects, the linear
spectrogram model and non-linear modulation model may be applied with equal or
unequal weights by the decoder module. The weights that may be applied to each
individual model may vary, e.g., according to the frequency of the brain speech activity
data.

[0081] The decoder module may be configured to modify one or more
parameters of the processing for a particular subject. For example, a decoder module
may be configured to operate in a closed-loop system, wherein brain speech activity
data is converted to speech feature data and output to an output device. The subject,
or a non-subject user, may then interact with the decoder module to provide input as to
the accuracy of the resulting output speech feature data. The decoder module may
thus be configured to learn specific parameters to be applied in, for example, a linear
spectrogram model and a non-linear modulation model; to learn which model(s) to
apply; to learn which filter(s) to apply; and the like. Such learning by the decoder
module may comprise applying one or more statistical and/or machine learning
algorithms, such as linear regression, principle component analysis, genetic algorithms,
gradient boosting, neural networks, hidden Markov models, Bayesian networks,
decision trees, and the like. In certain embodiments, the algorithms may use
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downsampling to reduce computational load. The algorithms may minimize overfitting
(e.g., through cross validation, by limiting the number of learning iterations, etc.). A
decoder module may thus be tailored for a particular subject.

[0082] The processor of the decoder module may further be configured to output
the speech feature data to a data output component. In certain aspects, the data output
component is configured to transmit speech feature data via direct physical
communication (e.g., by a cable). For example, a data output component may include a
cable that may be connected to a separate output device, as described below. An
output component may also, or instead, transmit speech feature data by a non-physical
means, such as wireless communication (e.g., Wi-Fi, cellular (e.g., 3G, 4G), Bluetooth
and the like).

Output Devices

[0083] Once brain speech activity data is converted to speech feature data, it
may be communicated to an output device. The phrase “output device” is intended to
be used broadly and generically to refer to a device which may be used to display,
processes, analyze, print, amplify, store, or utilize speech feature data. lllustrative but
non-limiting examples of output devices may include a display monitor, a speaker, a
phone (e.g., a smartphone) or a TTY device, a printer, a computer storage device (e.g.
hard drive, tape drive, or other storage means), and other convenient output devices.
[0084] In certain aspects, a decoder and an output device may be separate
devices. In other embodiments, a decoder and an output device may be the same
device. Forinstance, a single device (e.g., a smartphone, or computer) may be used as
both the decoder device and the output device.

[0085] The speech feature data that is output by the output device may include
one or more phonemes, words, pseudowords (e.g., “heef” or “thack”), phrases,
commands, actions, and/or sentences. In certain aspects, an output device may
convert the speech feature data into readable text. The output device may output the
readable text in a tangible (e.g., paper) or intangible form (e.g., a computer display). An
output device may also, or instead, convert the speech feature data into audible sound.
The audible sound may be played by the output device, such as by a speaker contained
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in the output device. In certain aspects, the output device may transmit the sound to a
receiving device, which produces the audible sound. For instance, a smartphone may
convert the speech feature data into audible sound that is transmitted to another phone,
which produces the audible sound.

SYSTEMS

[0086] Also provided are systems for decoding brain speech activity of a subject
into speech feature data. In certain aspects, the systems for decoding brain speech
activity of a subject into speech feature data include a decoder device (e.g., as
described above) having a data input component configured to receive brain speech
activity data; a decoder module having a processor and a machine-readable medium
encoding instructions operable to cause the processor to convert received brain speech
activity data into speech feature data and output the speech feature data to an output
component; and a data output component configured to output speech feature data
from the decoder module.

[0087] A number of other components may also be included in systems of the
present disclosure. In certain aspects, systems may include a brain speech activity
acquisition device, which may receive brain speech activity from a subject. The brain
speech activity acquisition device may be in operable communication with the data input
component of the decoder, such as by wired and/or wireless communication. In some
aspects, the brain speech activity acquisition device may include one or more
electrodes, such as ECoG and/or EEG electrodes, such as are described herein.

[0088] Systems of the present disclosure may include one or more output
devices. As described herein, examples of output devices of interest include, but are
not limited to, a display monitor, a speaker, a phone (e.g., a smartphone) or a TTY
device, a printer, a computer storage device (e.g. hard drive, tape drive, or other
storage means), and other convenient output devices. The output device may output
readable text in a tangible (e.g., paper) or intangible form (e.g., a computer display). An

output device may also, or instead, convert the speech feature data into audible sound.
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uTiLITy

[0089] The subject methods and systems may be used to decode speech from
brain activity data received from a subject. In many embodiments the subjects are
‘mammals” or “mammalian”, where these terms are used broadly to describe organisms
which are within the class mammalia, including primates (e.g., humans, chimpanzees,
and monkeys). In many embodiments, the subjects are humans. The subject methods
may be applied to human subjects of both genders and at any stage of development
(i.e., fetal, neonates, infant, juvenile, adolescent, adult), where in certain embodiments
the human subject is a juvenile, adolescent or adult. While the present invention may be
applied to a human subject, it is to be understood that the subject methods may also be
carried-out on other animal subjects (that is, in “non-human subjects”).

[0090] Moreover, subjects of interest include those in which the ability to
communicate via spoken language is lacking or impaired. Examples of such subjects
include, but are not limited to, subjects who may be suffering from paralysis, locked-in
syndrome, Lou Gehrig’s disease, and/or other neurological diseases.

EXAMPLES
[0091] As can be appreciated from the disclosure provided above, the present
disclosure has a wide variety of applications. Accordingly, the following examples are
put forth so as to provide those of ordinary skill in the art with a complete disclosure and
description of how to make and use the present invention, and are not intended to limit
the scope of what the inventors regard as their invention nor are they intended to
represent that the experiments below are all or the only experiments performed. Those
of skill in the art will readily recognize a variety of noncritical parameters that could be
changed or modified to yield essentially similar results. Thus, the following examples
are put forth so as to provide those of ordinary skill in the art with a complete disclosure
and description of how to make and use the present invention, and are not intended to
limit the scope of what the inventors regard as their invention nor are they intended to
represent that the experiments below are all or the only experiments performed. Efforts

have been made to ensure accuracy with respect to numbers used (e.g. amounts,
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temperature, etc.) but some experimental errors and deviations should be accounted

for.

MATERIALS AND METHODS

[0092] The following are general materials and protocols used in the Examples
below.

Participants and Neural Recordings
[0093] Electrocorticographic (ECoG) recordings were obtained using subdural
electrode arrays implanted in 15 patients undergoing neurosurgical procedures for
epilepsy or brain tumor. All participants volunteered and gave their informed consent
before testing. The experimental protocol was approved by the Johns Hopkins Hospital,
Columbia University Medical Center, University of California, San Francisco and
Berkeley Institutional Review Boards and Committees on Human Research. Electrode
grids had center-to-center distance of either 4 mm (N = 4 patrticipants) or 10 mm (N =
11). Grid placement was determined entirely by clinical criteria and covered left or right
fronto-temporal regions in all patients. Localization and coregistration of electrodes with
the structural MRl is described in Dalal, et al. Conf Proc IEEE Eng Med Biol Soc 2007:
4941-4944; the disclosure of which is incorporated herein by reference. Multi-channel
ECoG data were amplified and digitally recorded with sampling rate = 1,000 Hz (N = 6
participants), 2,003 Hz (N = 5), or 3,052 Hz (N = 4). All ECoG signals were remontaged
to a common average reference after removal of channels with artifacts or excessive
noise (including electromagnetic noise from hospital equipment and poor contact with
the cortical surface), as described by Crone, et al. (2001) Clin Neurophysiol 112: 565—
582; the disclosure of which is incorporated herein by reference. Time-varying high
gamma band power (70-150 Hz) was extracted from the multi-channel ECoG signal
using the Hilbert-Huang transform as described by Canolty, et al. (2007) Front Neurosci
1: 185-196; the disclosure of which is incorporated herein by reference. It was then
converted to standardized z-scores, and used for all analyses (except FIG. 6, Panel B in
which the ECoG signal was filtered into 30 bands of width 10 Hz, ranging from 1-300
Hz, in order to calculate band-specific prediction accuracy). Data from a variety of
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language tasks were analyzed. Tasks included passive listening (N = 5 participants),
target word detection (N = 5), and word/sentence repetition (N = 5).

Speech Stimuli

[0094] Speech stimuli consisted of isolated words from a single speaker (N =10
participants) or sentences from a variety of male and female speakers (N = 5). Isolated
words included nouns, verbs, proper names, and pseudowords and were recorded by a
native English female speaker (0.3—1 s duration, 16 kHz sample rate). Sentences were
phonetically transcribed stimuli from the Texas Instruments/Massachusetts Institute of
Technology (TIMIT) database (24 s, 16 kHz). Stimuli were presented aurally at the
patient's bedside using either external free-field loudspeakers or calibrated ear inserts
(Etymotic ER-5A) at approximately 70-80 dB.

[0095] The spectrogram representation (linear model) was generated from the
speech waveform using a 128 channel auditory filter bank mimicking the auditory
periphery. Filters had logarithmically spaced center frequencies ranging from 180-7,000
Hz and bandwidth of approximately 1/12™ octave. The spectrogram was subsequently
downsampled to 32 frequency channels.

[0096] The modulation representation (nonlinear model) was obtained by a 2-D
complex wavelet transform of the 128 channel auditory spectrogram, implemented by a
bank of causal modulation-selective filters spanning a range of spectral scales (0.5-8
cyc/oct) and temporal rates (1-32 Hz). The modulation selective filters are idealized
spectro-temporal receptive fields similar to those measured in mammalian primary
auditory cortex (FIG. 8, Panels A-B). The filter bank output constitutes a complex-valued
time-varying multi-dimensional speech representation (downsampled to 32 acoustic
frequency x 12 rate x 5 scale = 1,920 total stimulus channels). The modulation
representation is obtained by taking the magnitude of this complex-valued output. In
specific analyses (stated in the text), reduced modulation representations were used to
reduce dimensionality and to achieve an acceptable computational load, as well as to
verify that tuning estimates were not affected by regularization, given the large number
of fitted parameters in the full model. Reduced modulation representations included (1)
rate-scale (60 total channels) and (2) rate only (six total channels). The rate-scale
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representation was obtained by averaging along the irrelevant dimension (frequency)
prior to the nonlinear magnitude operation. The rate only representation was obtained
by filtering the spectrogram with pure temporal modulation filters (described in Chi et al.
(2005) J Acoust Soc Am 118: 887-90; the disclosure of which is incorporated herein by
reference). Spectro-temporal filtering of the spectrogram is directional and captures
upward and downward frequency sweeps, which by convention are denoted as positive
and negative rates, respectively. Pure temporal filtering in the rate-only representation is
not directional and results in half the total number of rate channels. These operations
are described in Chi et al.. FIG. 16 summarizes the stimulus correlations present in the

linear and nonlinear representations.

Stimulus Reconstruction
[0097] The stimulus reconstruction model is the linear mapping between the
responses at a set of electrodes and the original stimulus representation (e.g.,
modulation or spectrogram representation). For a set of N electrodes, the response of
electrode nattime t=1 ... Twas represented as R(, n). The reconstruction model, g(r,
f, n), was a function that maps R(t, n) to stimulus S(t, f) as follows:
$(tf) =Zn 2. 9(x. f,m)R(t — 7,n) (1)
where & denotes the estimated stimulus representation. Equation 1 implies that the
reconstruction of each channel in the stimulus representation, Sy (f), from the neural
population is independent of the other channels (estimated using a separate set of g:(t,
n)). The reconstruction of one such channel can be written as:
Sp(®) =Zn X gr(mR(E—1,n) (2)
The entire reconstruction function was then described as the collection of functions for
each stimulus feature:
G =1{91,92 - 9r} (3)
For the spectrogram, time-varying spectral energy in 32 individual frequency channels
was reconstructed. For the modulation representation, unless otherwise stated the
reduced rate-scale representation was reconstructed, which consists of time-varying
modulation energy in 60 rate-scale channels (defined in Speech Stimuli). T = 100
temporal lags, discretized at 10 ms, was utilized.
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Fitting
[0098] Prior to model fitting, stimuli and neural response data were synchronized,
downsampled to 100 Hz, and standardized to zero mean and unit standard deviation.
Model parameters (G in Egn. 3) were fit to a training set of stimulus-response data
(ranging from 2.5—-17.5 min for different participants) using coordinate gradient descent
with early stopping regularization, an iterative linear regression algorithm. Each data set
was divided into training (80%), validation (10%), and test sets (10%). Overfitting was
minimized by monitoring prediction accuracy on the validation set and terminating the
algorithm after a series of 50 iterations failed to improve performance (an indication that
overfitting was beginning to occur). Reconstruction accuracy was then evaluated on the
independent test set. Coordinate descent produces a sparse solution in the weight
vector (i.e., most weight values set to zero) and essentially performs variable selection
simultaneously with model fitting. Consequently, there is no requirement to preselect
electrodes for the reconstruction model. For grid sizes studied here, inclusion of all
electrodes in the reconstruction model can be advantageous because the algorithm
encourages irrelevant parameters to maintain zero weight, while allowing the model to
capture additional variance using electrodes potentially excluded by feature selection
approaches. Equal numbers of parameters are used to estimate each stimulus channel
in both linear and nonlinear models. For each stimulus channel, the number of
parameters in the corresponding reconstruction filter is N electrodes x 100 time lags
(the number of electrodes for each participant was determined by clinical criteria and

therefore N varied by participant).

Cross-Validation
[0099] Parameter estimation was performed by a cross-validation procedure
using repeated random subsampling. For each repeat, trials were randomly partitioned
into training (80% of trials), validation (10%), and test sets (10%); model fitting was then
performed using the training/validation data; and reconstruction accuracy was evaluated
on the test set. This procedure was repeated multiple times (depending on

computational load) and the parameters and reconstruction accuracy measures were
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averaged over all repeats. The forward encoding models were estimated using 20
resamples; the spectrogram and modulation reconstruction models were estimated
using 10 and 3 resamples, respectively (due to increasing computational load). Identical
data partitions were used for comparing predictive power for different reconstruction
models (i.e., spectrogram versus modulation) to ensure potential differences were not
due to different stimuli or noise levels in the evaluation data. To check stability of the
generalization error estimates, it was verified that estimated spectrogram reconstruction
accuracy was stable as a function of the number of resamples used in the estimation
(ranging from 3 to 10). The total duration of the test set equaled the length of the
concatenated resampled data sets (range of ~0.8-17.5 min across participants).
Standard error of individual parameters was calculated as the standard deviation of the
resampled estimates. Statistical significance of individual parameters was assessed by
the tratio (coefficient divided by its resampled standard error estimate). Model fitting
was performed with the MATLAB toolbox STRFLab.

Reconstruction Accuracy

[00100] Reconstruction accuracy was quantified separately for each stimulus
component by computing the correlation coefficient (Pearson's r) between the
reconstructed and original stimulus component. For each participant, this yielded 32
individual correlation coefficients for the 32 channel spectrogram model and 60
correlation coefficients for the 60 channel rate-scale modulation model (defined in
Speech Stimuli). Overall reconstruction accuracy is reported as the mean correlation
over all stimulus components.

[00101] To make a direct comparison of modulation and spectrogram-based
accuracy, the reconstructions need to be compared in the same stimulus space. The
linear spectrogram reconstruction was therefore projected into the rate-scale modulation
space (using the modulation filter bank as described in Speech Stimuli). This
transformation provides an estimate of the modulation content of the spectrogram
reconstruction and allows direct comparison with the modulation reconstruction. The
transformed reconstruction was then correlated with the 60 rate-scale components of
the original stimulus. Accuracy as a function of rate (FIG. 7, Panel A) was calculated by
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averaging over the scale dimension. Positive and negative rates were also averaged
unless otherwise shown. Comparison of reconstruction accuracy for a subset of data in
the full rate-scale-frequency modulation space vyielded similar results. To impose
additivity and approximate a normal sampling distribution of the correlation coefficient
statistic, Fisher's z-transform was applied to correlation coefficients prior to tests of
statistical significance and prior to averaging over stimulus channels and participants.
The inverse z-transform was then applied for all reported mean rvalues.

[00102] To visualize the modulation-based reconstruction in the spectrogram
domain (FIG. 9, Panel B), the 4-D modulation representation needs to be inverted. If
both magnitude and phase responses are available, the 2-D spectrogram can be
restored by a linear inverse filtering operation. Here, only the magnitude response is
reconstructed directly from neural activity. In this case, the spectrogram can be
recovered approximately from the magnitude-only modulation representation using an
iterative projection algorithm and an overcomplete set of modulation filters as described
in Chi et al. FIG. 9, Panel B displays the average of 100 random initializations of this
algorithm. This approach is subject to non-neural errors due to the phase-retrieval
problem (i.e., the algorithm does not perfectly recover the spectrogram, even when
applied to the original stimulus). Therefore, quantitative comparisons with the
spectrogram-based reconstruction were performed in the modulation space.

[00103] Reconstruction accuracy was cross-validated and the reported correlation
is the average over all resamples (see Cross-Validation). Standard error was computed
as the standard deviation of the resampled distribution. The reported correlations are
not corrected to account for the noise ceiling on prediction accuracy, which limits the
amount of potentially explainable variance. An ideal model would not achieve perfect
prediction accuracy of r = 1.0 due to the presence of random noise that is unrelated to
the stimulus. With repeated trials of identical stimuli, it is possible to estimate trial-to-trial
variability to correct for the amount of potentially explainable variance. A sufficient
number of trial repetitions (>5) was generally unavailable for a robust estimate, and

uncorrected values are therefore reported.
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STRF Encoding Models
[00104] Encoding models describe the linear mapping between the stimulus
representation and the neural response at individual sites. For a stimulus representation
s(x,f) and instantaneous neural response r(f) sampled at times t=1 ... T, the encoding

model is defined as the linear mapping:

et (4)

Each coefficient of h indicates the gain applied to stimulus feature x at time lag wu.
Positive values indicate components of the stimulus correlated with increased neural
response, and negative values indicate components correlated with decreased
response. The residual, e(f), represents components of the response (nonlinearities and
noise) that cannot be predicted by the encoding model.

[00105] Model fitting for the STRF models (h in Eqn. 4) proceeded similarly to
reconstruction except a standard gradient descent algorithm (with early stopping
regularization) was used that does not impose a sparse solution. The linear STRF
model included 32 frequency channels x 100 time lags (3,200 parameters). The full
nonlinear modulation STRF model included 32 frequency x 5 scale x 12 rate x 100 time
lags (192,000 parameters) and the reduced rate-time modulation model (FIG. 14,
Panels A-B) included 6 ratex100 time lags (600 parameters). The STRF models were
cross-validated using 20 resampled data sets with no overlap between training and test
partitions within each resample. Data partitions were identical across STRF model type
(linear and nonlinear). Identical resampled data sets for estimating STRF and
reconstruction models were not enforced, because the predictive power of these two
approaches is not comparable. Tuning curves were estimated from STRFs as follows:
Frequency tuning was estimated from the linear STRF models by first setting all
inhibitory weights to zero and then summing across the time dimension. Nonlinear rate
tuning was estimated from the nonlinear STRF modulation model by the same
procedure, using the reduced rate-only representation. Linear rate tuning was estimated
from the linear STRF model by filtering the fitted STRF with the modulation filter bank
(see Speech Stimuli) and averaging along the irrelevant dimensions. Linear rate tuning
computed in this way was similar to that computed from the modulation transfer function
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(modulus of the 2-D Fourier transform) of the fitted linear STRF. For all tuning curves,
standard error was computed as the standard deviation of the resampled estimates.
Frequency tuning curve peaks were identified as significant parameters (£2.0)
separated by more than a half octave. To calculate ensemble tuning curves (FIG. 7,
Panel B), the tuning curve for each site was normalized by the maximum value and
averaged across sites. STG sites with forward prediction accuracy of r~0.1 were

analyzed (n = 195).

EXAMPLE 1: RECONSTRUCTION OF HEARD SPEECH FROM BRAIN ACTIVITY

[00106] Words and sentences from different English speakers were presented
aurally to 15 patients undergoing neurosurgical procedures for epilepsy or brain tumor.
All patients had normal language capacity as determined by neurological exam. Cortical
surface field potentials were recorded from non-penetrating multi-electrode arrays
placed over the lateral temporal cortex (FIG. 3, dark gray circles), including the pSTG.
The nature of auditory information contained in temporal cortex neural responses was
investigated using a stimulus reconstruction approach (see Materials and Methods,
above). The reconstruction procedure was a multi-input, multi-output predictive model
that was fit to stimulus-response data. It constitutes a mapping from neural responses to
a multi-dimensional stimulus representation (FIGs. 3 and 4, Panels A-C). This mapping
can be estimated using a variety of different learning algorithms, as described by
Hastie, et al. (2009) Elements of statistical learning, the disclosure of which is
incorporated by reference. New York, NY: Springer Science; the disclosure of which is
incorporated herein by reference. A regularized linear regression algorithm was used to
minimize the mean-square error between the original and reconstructed stimulus. Once
the model was fit to a training set, it could then be used to predict the spectro-temporal
content of any arbitrary sound, including novel speech not used in training.

[00107] A key component in the reconstruction algorithm was the choice of
stimulus representation. Previous applications of stimulus reconstruction in non-human
auditory systems have focused primarily on linear models to reconstruct the auditory
spectrogram. The spectrogram is a time-varying representation of the amplitude
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envelope at each acoustic frequency (FIG. 3, bottom left). The spectrogram envelope of
natural sounds is not static but rather fluctuates across both frequency and time.
Envelope fluctuations in the spectrogram are referred to as modulations and play an
important role in the intelligibility of speech. Temporal modulations occur at different
temporal rates and spectral modulations occur at different spectral scales. For example,
slow and intermediate temporal modulation rates (<4 Hz) are associated with syllable
rate, while fast modulation rates (>16 Hz) correspond to syllable onsets and offsets.
Similarly, broad spectral modulations relate to vowel formants while narrow spectral
structure characterizes harmonics. In the linear spectrogram model, modulations are
represented implicitly as the fluctuations of the spectrogram envelope. Furthermore,
neural responses are assumed to be linearly related to the spectrogram envelope.
[00108] For stimulus reconstruction, the linear spectrogram model was first applied
to human pSTG responses using a stimulus set of isolated words from an individual
speaker. A leave-one-out cross-validation fitting procedure was used in which the
reconstruction model was trained on stimulus-response data from isolated words and
evaluated by directly comparing the original and reconstructed spectrograms of the out-
of-sample word. Reconstruction accuracy was quantified as the correlation coefficient
(Pearson's r) between the original and reconstructed stimulus. The reconstruction
procedure is illustrated in FIG. 4, Panels A-C for one participant with a high-density (4
mm) electrode grid placed over posterior temporal cortex. For different words, the linear
model yielded accurate spectrogram reconstructions at the level of single trial stimulus
presentations (FIGs. 4, Panels A-C, and 17}. The reconstructions captured major
spectro-temporal features such as energy concentration at vowel harmonics (FIG. 4,
Panel A, dark gray bars) and high frequency components during fricative consonants
(FIG. 4, Panel A, [z] and [s], lighter gray bars). The anatomical distribution of weights in
the fitted reconstruction model revealed that the most informative electrode sites within
temporal cortex were largely confined to pSTG (FIG. 4, Panel C).

[00109] Across the sample of participants (& = 15), cross-validated reconstruction
accuracy for single trials was significantly greater than zero in all individual participants
(p<0.001, randomization test, FIG. 5, Panel A). At the population level, mean accuracy

averaged over all participants and stimulus sets (including different word sets and
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continuous sentences from different speakers) was highly significant (mean
accuracy r= 0.28, p<10™°, one-sample ttest, ¢f= 14). As a function of acoustic
frequency, mean accuracy ranged from 7= ~0.2-0.3 (FIG. 5, Panel B).

[00110] Second, significant predictive power (r > 0) was largely confined to neural
responses in the high gamma band (~70-170 Hz; FIG. 6, Panel B; £<0.01, one-
sample itests, df= 14, Bonferroni correction). Predictive power for the high gamma
band (~70-170 Hz) was significantly better compared to other neural frequency bands
(0<0.05, Bonferroni adjusted pair-wise comparisons between frequency bands,
following  significant one-way repeated measures analysis of variance
(ANOVA), £(30,420) = 128.7, p<107').

[00111] Third, increasing the number of electrodes used in the reconstruction
improved overall reconstruction accuracy (FIG. 6, Panel C). Overall prediction quality
was relatively low for participants with five or fewer responsive STG electrodes (mean
accuracy = 0.19, N = 6 participants) and was robust for cases with high density grids
(mean accuracy r= 0.43, & = 4, mean of 37 responsive STG electrodes per participant).
[00112] Certain neural response properties were identified that allow the linear
model to find an effective mapping to the stimulus spectrogram. For example, individual
recording sites should preferably exhibit reliable frequency selectivity (e.g., FIG. 4,
Panel B, right column; FIG. 11, Panel B; FIG. 12, Panels A-B). An absence of frequency
selectivity (i.e., equal neural response amplitudes to all stimulus frequencies) would
imply that neural responses do not encode frequency and could not be used to
differentiate stimulus frequencies. To quantify frequency tuning at individual electrodes,
estimates of standard spectro-temporal receptive fields (STRFs) were used. The STRF
is a forward modeling approach commonly used to estimate neural tuning to a wide
variety of stimulus parameters in different sensory systems. It was found that different
electrodes were sensitive to different acoustic frequencies important for speech sounds,
ranging from low (~200 Hz) to high (~7,000 Hz). The majority of individual sites
exhibited a complex tuning profile with multiple peaks (e.g., FIG. 4, Panel B, rows 2 and
3; FIG. 12, Panel B). The full range of the acoustic speech spectrum was encoded by
responses from multiple electrodes in the ensemble, although coverage of the spectrum
varied by participant (FIG. 6, Panel B). Across participants, total reconstruction
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accuracy was positively correlated with the proportion of spectrum coverage (r=
0.78, p<0.001, df=13; FIG. 6, Panel D).

[00113] Further, the neural response should preferably rise and fall reliably with
fluctuations in the stimulus spectrogram envelope. This is because the linear model
assumes a linear mapping between the response and the spectrogram envelope. This
requirement for “envelope-locking” reveals a major limitation of the linear model, which
is most evident at fast temporal modulation rates. This limitation is illustrated in FIG. 7,
Panel A (blue curve), which plots reconstruction accuracy as a function of modulation
rate. A one-way repeated measures ANOVA (£(5,70) = 13.99, g<107°) indicated that
accuracy was significantly higher for slow modulation rates (€4 Hz) compared to faster
modulation rates (>8 Hz) (p<0.05, post hoc pair-wise comparisons, Bonferroni
correction). Accuracy for slow and intermediate modulation rates (<8 Hz) was
significantly ~ greater  than zero (r= ~0.15 to 0.42; one-sample
paired {tests, £<0.0005, ¢f = 14, Bonferroni correction) indicating that the high gamma
response faithfully tracks the spectrogram envelope at these rates. However, accuracy
levels were not significantly greater than zero at fast modulation rates (>8 Hz; r= ~0.10;
one-sample paired {tests, £>0.05, df= 14, Bonferroni correction), indicating a lack of
reliable envelope-locking to rapid temporal fluctuations.

[00114] Given the failure of the linear spectrogram model to reconstruct fast
modulation rates, competing models of auditory neural encoding were evaluated. An
alternative, nonlinear model based on modulation (described in Chi, et al) was
investigated. Speech sounds are characterized by both slow and fast temporal
modulations (e.g., syllable rate versus onsets) as well as narrow and broad spectral
modulations (e.g., harmonics versus formants). The modulation model represents these
multi-resolution features explicitly through a complex wavelet analysis of the auditory
spectrogram. Computationally, the modulation representation is generated by a
population of modulation-selective filters that analyze the two-dimensional spectrogram
and extract modulation energy (a nonlinear operation) at different temporal rates and
spectral scales (FIG. 8, Panel A). Conceptually, this transformation is similar to the
modulus of a 2-D Fourier transform of the spectrogram, localized at each acoustic
frequency.
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[00115] The nonlinear component of the model is phase invariance to the
spectrogram envelope (FIG. 8, Panel B). A fundamental difference with the linear
spectrogram model is that phase invariance permits a nonlinear temporal coding
scheme, whereby envelope fluctuations are encoded by amplitude rather than
envelope-locking (FIG. 8, Panel B). Such amplitude-based coding schemes are broadly
referred to as “energy models.” The modulation model therefore represents an auditory
analog to the classical energy model of complex cells in the visual system, which are
invariant to the spatial phase of visual stimuli.

[00116] Reconstructing the modulation representation proceeds similarly to the
spectrogram, except that individual reconstructed stimulus components now correspond
to modulation energy at different rates and scales instead of spectral energy at different
acoustic frequencies. Next, reconstruction accuracy was compared using the nonlinear
modulation model to that of the linear spectrogram model (FIG. 7, Panel A; FIG. 13). In
the group data, the nonlinear model yielded significantly higher accuracy compared to
the linear model (two-way repeated measures ANOVA; main effect of model
type, F(1,14) = 33.36, z<107™*). This included significantly better accuracy for fast
temporal modulation rates compared to the linear spectrogram model (4—-32 Hz; FIG. 7,
Panel A, red versus blue curves; model type by modulation rate interaction
effect, F(5,70) = 3.33, p<0.01; post hoc pair-wise comparisons, p<10~*, Bonferroni
correction).

[00117] The improved performance of the modulation model suggested that this
representation provided better neural sensitivity to fast modulation rates compared to
the linear spectrogram. To further investigate this possibility, modulation rate tuning
curves at individual STG electrode sites (1= 195) were estimated using linear and
nonlinear STRFs, which are based on the spectrogram and modulation representations,
respectively (FIG. 14, Panels A-B). The average envelope-locked responses exhibit
prominent tuning to low rates (1-8 Hz) with a gradual loss of sensitivity at higher rates
(>8 Hz) (FIG. 7, Panels B-C). In contrast, the average modulation-based tuning curves
preserve sensitivity to much higher rates approaching 32 Hz (FIG. 7, Panels B-C).
[00118] Sensitivity to fast modulation rates at single STG electrodes is illustrated
for one participant in FIG. 9, Panel A. In this example (the word “waldo”), the
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spectrogram envelope (blue curve, top) fluctuates rapidly between the two syllables
(‘wal” and “do,” ~300 ms). The linear model assumes that neural responses (high
gamma power, black curves, left) are envelope-locked and directly track this rapid
change. However, robust tracking of such rapid envelope changes was not generally
observed, in violation of linear model assumptions. This is illustrated for several
individual electrodes in FIG. 9, Panel A (compare black curves, left, with blue curve,
top). In contrast, the modulation representation encodes this fluctuation nonlinearly as
an increase in energy at fast rates (>8 Hz, dashed red curves, ~300 ms, bottom two
rows). This allows the model to capture energy-based modulation information in the
neural response. Modulation energy encoding at these sites is quantified by the
corresponding nonlinear rate tuning curves (FIG. 9, Panel A, right column). These
tuning curves show neural sensitivity to a range of temporal modulations with a single
peak rate. For illustrative purposes, FIG. 9, Panel A (left) compares modulation energy
at the peak temporal rate (dashed red curves) with the neural responses (black curves)
at each individual site. This illustrates the ability of the modulation model to account for
a rapid decrease in the spectrogram envelope without a corresponding decrease in the
neural response.

[00119] The effect of sensitivity to fast modulation rates can also be observed
when the modulation reconstruction is viewed in the spectrogram domain (FIG. 9, Panel
B, middle, see Materials and Methods, Reconstruction Accuracy). The result is that
dynamic spectral information (such as the upward frequency sweep at ~400-500
ms, FIG. 9, Panel B, top) is better resolved compared to the linear spectrogram-based
reconstruction (FIG. 9, Panel B, bottom).

[00120] While these results indicate that a nonlinear model is required to reliably
reconstruct fast modulation rates, psychoacoustic studies have shown that slow and
intermediate modulation rates (~1-8 Hz) are most critical for speech intelligibility. These
slow temporal fluctuations carry essential phonological information such as formant
transitions and syllable rate. The linear spectrogram model, which also yielded good
performance within this range (FIG. 7, Panel A; FIG. 13), therefore appears sufficient to
reconstruct the essential range of temporal modulations. To examine this issue,

reconstruction quality was further assessed by evaluating the ability to identify isolated
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words using the linear spectrogram reconstructions. A participant implanted with a high-
density electrode grid (4 mm spacing) was analyzed, the density of which provided a
large set of pSTG electrodes. Compared to lower density grid cases, data for this
participant included ensemble frequency tuning that covered the majority of the
(speech-related) acoustic spectrum (180-7,000 Hz), a factor which was found to be
important for accurate reconstruction (FIG. 6, Panel D). Spectrogram reconstructions
were generated for each of 47 words, using neural responses either from single trials or
averaged over 3-5 trials per word (same word set and cross-validated fitting procedure
as described inFIG. 4, Panels A-C). To identify individual words from the
reconstructions, a simple speech recognition algorithm based on dynamic time warping
was used to temporally align words of variable duration. For a target word, a similarity
score (correlation coefficient) was then computed between the target reconstruction and
the actual spectrograms of each of the 47 words in the candidate set. The 47 similarity
scores were sorted and word identification rank was quantified as the percentile rank of
the correct word. (1.0 indicates the target reconstruction matched the correct word out
of all candidate words; 0.0 indicates the target was least similar to the correct word
among all other candidates.) The expected mean of the distribution of identification
ranks is 0.5 at chance level.

[00121] Word identification using averaged trials was substantially higher than
chance (FIG. 10, Panels A-B, median identification rank = 0.89, 1<0.0001;
randomization test), with correctly identified words exhibiting accurate reconstructions
and poorly identified words exhibiting inaccurate reconstructions (FIG. 10, Panel C). For
single trials, identification performance declined slightly but remained significant
(median = 0.76, 3<0.0001; randomization test). In addition, for each possible word pair,
the similarity between the two original spectrograms was computed and compared to
the similarity between the reconstructed and actual spectrograms (using averaged
trials; FIG. 10, Panel D; FIG. 15). Acoustic and reconstruction word similarities were
correlated (r= 0.41, p<107'°, ¢f= 45), suggesting that acoustic similarity of the
candidate words is likely to influence identification performance (i.e., identification is

more difficult when the word set contains many acoustically similar sounds).
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EXAMPLE 2: RECONSTRUCTION OF IMAGINED SPEECH FROM BRAIN ACTIVITY

[00122] The text of the Gettysburg Address was printed on a ticker tape. The
ticker tape was presented to 8 patients undergoing neurosurgical procedures for
epilepsy or brain tumor. Cortical surface field potentials were recorded from non-
penetrating multi-electrode arrays placed over the lateral temporal cortex, as described
above in Materials and Methods, and in Example 1. The positioning of the electrodes is
depicted in FIG. 18, Panel C.

[00123] Each patient was first asked to read the text of the Gettysburg Address
aloud. Spectrograms were reconstructed using the algorithms and models described
above. FIG. 18, Panels A-B show two time points of such spectrograms for one patient
(labeled “Talk™).

[00124] Each patient was subsequently asked to read the text of the Gettysburg
Address while imagining that he or she was talking. The patient did not read the text
aloud, nor was the text otherwise presented aurally to the patient. Spectrograms were
reconstructed from the imagined speech brain activity, using algorithms and models
described above. FIG. 18, Panels A-B show two time points of such spectrograms for
one patient (labeled “Imagine Talking”). For 7 of the 8 patients, the word identification
from imagined speech brain activity was substantially higher than chance.

[00125] FIG. 19A, Panels A -C. Example decoding of speech imagery (silent
speech) from measured brain activity. Top panel (A), Original Spectrogram of the
sound of the sentence "How are you?". Middle panel (B), Predicted Spectrogram from
brain activity while the patient spoke outloud the sentence "How are you?". Bottom
panel (C), Predicted Spectrogram from brain activity while the patient silently imagined
the sentence "How are you?". The predicted spectrotemporal pattern during silent
imagery closely matches the spectrotemporal pattern of the actual sound, providing a
basis to decode imagined speech.

[00126] FIG. 19B. Individual electrodes (circles) have similar prediction accuracy
for heard speech and imagined speech. For each individual electrode, a different
reconstruction model is fit, and reconstruction accuracy (correlation coefficient) is
assessed based on each electrode's model. This yields a correlation coefficient for
each individual electrode that quantifies how well the brain activity at that electrode can
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be used to predict speech features. The figure shows that electrodes with high
predictive power in the heard speech condition also have high predictive power in the
imagery speech condition. Therefore, predictive models derived from heard speech can

be successfully applied to decode imagined speech.

[00127] Although the foregoing invention has been described in some detail by
way of illustration and example for purposes of clarity of understanding, it is readily
apparent to those of ordinary skill in the art in light of the teachings of this invention that
certain changes and modifications may be made thereto without departing from the
spirit or scope of the appended claims. It is also to be understood that the terminology
used herein is for the purpose of describing particular embodiments only, and is not
intended to be limiting, since the scope of the present invention will be limited only by
the appended claims.

[00128] Accordingly, the preceding merely illustrates the principles of the
invention. It will be appreciated that those skilled in the art will be able to devise various
arrangements which, although not explicitly described or shown herein, embody the
principles of the invention and are included within its spirit and scope. Furthermore, all
examples and conditional language recited herein are principally intended to aid the
reader in understanding the principles of the invention and the concepts contributed by
the inventors to furthering the art, and are to be construed as being without limitation to
such specifically recited examples and conditions. Moreover, all statements herein
reciting principles, aspects, and embodiments of the invention as well as specific
examples thereof, are intended to encompass both structural and functional equivalents
thereof. Additionally, it is intended that such equivalents include both currently known
equivalents and equivalents developed in the future, i.e., any elements developed that
perform the same function, regardless of structure. The scope of the present invention,
therefore, is not intended to be limited to the exemplary embodiments shown and
described herein. Rather, the scope and spirit of present invention is embodied by the

appended claims.
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CLAIMS

WHAT IS CLAIMED |IS:

1. A method of decoding brain speech activity of a subject into speech feature
data, the method comprising:

(a) receiving brain speech activity data from the subject into a decoder
device;

(b) processing the received brain speech activity data with a decoder module
present in the decoder device, wherein the decoder module is configured to convert the
received brain speech activity data into speech feature data; and

(c) outputting the speech feature data to an output device.

2. The method according to Claim 1, wherein the method further comprises
obtaining the brain speech activity data from the subject.

3. The method according to Claim 2, wherein the brain speech activity data is
obtained from a region of the subject's brain associated with speech recognition.

4. The method according to Claim 3, wherein the region comprises the peri-sylvian
language cortex including the posterior superior temporal gyrus (pSTG), motor cortex,

Broca’s area and combinations thereof.

5. The method according to Claim 2, wherein the brain speech activity data is
obtained from an electrode device.

6. The method according to Claim 5, wherein the electrode device comprises a
plurality of electrodes.

7. The method according to Claim 6, wherein the electrode device is implanted.
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8. The method according to Claim 7, wherein the brain speech activity data is
electrocorticography (ECoG) data.

9. The method according to Claim 6, wherein the electrode device is not implanted.

10.  The method according to Claim 9, wherein the brain speech activity data is
electroencephalography (EEG) data.

11.  The method according to Claim 1, wherein the decoder module employs at least

one of a linear spectrogram model and a non-linear modulation model.

12.  The method according to Claim 11, wherein the decoder module is configured to

select between a linear spectrogram model and a non-linear modulation model.

13.  The method according to Claim 1, wherein the speech feature data is configured
to be converted by an output device into readable text.

14.  The method according to Claim 1, wherein the speech feature data is configured
to be converted by an output device into audible sound.

15.  The method according to Claim 14, wherein the audible sound is a human

recognizable word.

16.  The method according to Claim 14, wherein the audible sound is a human

recognizable collection of words.

17.  The method according to Claim 16, wherein the human recognizable collection

comprises phrases or sentences.

18.  The method according to Claim 1, wherein the brain speech activity data is the
result of heard speech.
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19.  The method according to Claim 1, wherein the brain speech activity data is the

result of imagined speech.

20. The method according to Claim 1, wherein the decoder device and the output

device are integrated into a single apparatus.

21.  The method according to Claim 1, wherein the decoder device and output device

are part of separate apparatuses.

22. The method according to claim 21, wherein the decoder device and output

device are configured to wirelessly share data.

23.  The method according to Claim 22, wherein the output device is a smartphone.

24.  The method according to Claim 1, wherein the subject is unable to produce

recognizable speech.

25. A system for decoding brain speech activity of a subject into speech feature data,
the system comprising:
a decoder device comprising:
a data input component configured to receive brain speech activity data;
a decoder module comprising:
a processor; and
a machine-readable medium encoding instructions operable to:
cause the processor to convert received brain speech
activity data into speech feature data; and
output the speech feature data to an output component; and
a data output component configured to output speech feature data from
the decoder module.
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26.  The system according to Claim 25, wherein the brain speech activity data is
electrode-obtained data.

27.  The system according to Claim 26, wherein the electrode-obtained data is

electrocorticography (ECoG) data.

28.  The system according to Claim 26, wherein the electrode-obtained data is
electroencephalography (EEG) data.

29. The system according to Claim 25, wherein the decoder module employs at least

one of a linear spectrogram model and a non-linear modulation model.

30. The system according to Claim 29, wherein the decoder module is configured to

select between a linear spectrogram model and a non-linear modulation model.

31.  The system according to Claim 25, wherein the speech feature data is configured

to be converted by an output device into readable text.

32.  The system according to Claim 25, wherein the speech feature data is configured
to be converted by an output device into audible sound.

33.  The system according to Claim 32, wherein the audible sound is a human

recognizable word.

34. The system according to Claim 33, wherein the audible sound is a human
recognizable collection of words.

35.  The system according to Claim 34, wherein the human recognizable collection

comprises phrases or sentences.
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36. The system according to Claim 25, wherein the system further comprises a brain
speech activity data acquisition device in operable communication with the data input

component.

37. The system according to Claim 36, wherein the acquisition device comprises one

or more electrodes.

38.  The system according to Claim 37, wherein the acquisition device comprises a

plurality of electrodes.

39. The system according to Claim 37, wherein the one or more electrodes are
configured to be implantable.

40. The system according to Claim 37, wherein the one or more electrodes are
configured to be non-implantable.

41.  The system according to Claim 25, further comprising an output device in
operable communication with the data output component of the decoder module.

42.  The system according to Claim 41, wherein the output device is configured to

convert the speech feature data into readable text.

43.  The system according to Claim 41, wherein the output device is configured to
convert the speech feature data into audible sound.

44.  The system according to Claim 41, wherein the output device wirelessly

communicates with the data output component.

45.  The system according to Claim 44, wherein the output device is a smartphone.
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