
(19) United States
US 2005.007 1841A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0071841 A1
Hoflehner et al. (43) Pub. Date: Mar. 31, 2005

(54) METHODS AND APPARATUSES FOR
THREAD MANAGEMENT OF
MULTTHREADING

(76) Inventors: Gerolf F. Hoflehner, Santa Clara, CA
(US); Shih-Wei Liao, Palo Alto, CA
(US); Xinmin Tian, Union City, CA
(US); Hong Wang, Santa Clara, CA
(US); Daniel M. Lavery, Santa Clara,
CA (US); Perry Wang, San Jose, CA
(US); Dongkeun Kim, San Jose, CA
(US); Milind Girkar, Sunnyvale, CA
(US); John P. Shen, San Jose, CA (US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
12400 WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CA 90025-1030 (US)

(21) Appl. No.: 10/676,581

(22) Filed: Sep. 30, 2003

Start

Publication Classification

(51) Int. Cl. ... G06F 9/46

(52) U.S. Cl. .. 718/100

(57) ABSTRACT

Methods and apparatuses for thread management for multi
threading are described herein. In one embodiment, exem
plary process includes Selecting, during a compilation of
code having one or more threads executable in a data
processing System, a current thread having a most bottom
order, determining resources allocated to one or more child
threads spawned from the current thread, and allocating
resources for the current thread in consideration of the
resources allocated to the current threads one or more child
threads to avoid resource conflicts between the current
thread and its one or more child threads. Other methods and
apparatuses are also described.

500

501

Create an internal thread pool to maintain a list of logical thread
Contexts which may be used by one or more speculative threads

(e.g., helper threads)

502

Create a new thread team associated with a non-speculative thread
(e.g., a main thread) before the non-speculative thread enters a

precomputation region (e.g., delinquent load region), the new thread
team initially containing only the cating thread

Spawn one or more speculative threads from the threadpool once
the non-speculative thread enters the precomputation region, the one
or more speculative threads performing one or more precomputations

(e.g., prefetching for the non-speculative thread
503

Execute at least a portion of code in the non-speculative thread,
using in part at least a portion of data provided (e.g., prefetched or
precomputed) by the one or more speculative threads (e.g., helper

threads)
54

Terminate the one or more speculative threads associated with the
non-speculative thread and release the logical thread contexts

associated with the terminated speculative threads back to the thread
pool for future use

505

Patent Application Publication Mar. 31, 2005 Sheet 1 of 15 US 2005/0071841 A1

104 100

Cache

103 107 105 106

Volatile Nonviolatile
Microprocessor RAM Memory

(e.g. hard drive)

102
109

Display Controller I/O
& Display Device Controller(s)

108

I/O
110 Device(s)

(e.g. mouse, or
keyboard, or
modem, Or

network interface,
or printer)

Patent Application Publication Mar. 31, 2005 Sheet 2 of 15 US 2005/0071841 A1

200

Processor
204

Execution Core
230

Fig. 2

Patent Application Publication Mar. 31, 2005 Sheet 3 of 15 US 2005/0071841 A1

300

Processor
304

Logical
Processor(s)

350

N
310 N M

N N V

N y
N
N N
Y N N

Y y
N
N M
\\ N

-----------.S.------------
Y Y s w

a
N

ar y

/ Slicer y
? Delinquent 322 y

f Load identifier Compiler \
320 308

328
Code Generator

Parallelization d
Analyzer f

w 324 A.

Patent Application Publication Mar. 31, 2005 Sheet 4 of 15 US 2005/0071841 A1

400

Logical Processor Logical
PrOCeSSOr Processor

Fig. 4A
(Prior Art)

450

Thread Switch

Logical Logical Processor
Processor O Processor

Fig. 4B

Patent Application Publication Mar. 31, 2005 Sheet 5 of 15 US 2005/0071841 A1

Create an internal thread pool to maintain a fist of logical thread
Contexts which may be used by one or more speculative threads

(e.g., helper threads)
501

Create a new thread team associated with a non-speculative thread
(e.g., a main thread) before the non-speculative thread enters a

precomputation region (e.g., delinquent foad region), the new thread
team initially containing only the calling thread

502

Spawn one or more speculative threads from the thread pool once
the non-speculative thread enters the precomputation region, the one
or more speculative threads performing one or more precomputations

(e.g., prefetching) for the non-speculative thread
503

Execute at least a portion of code in the non-speculative thread,
using in part at least a portion of data provided (e.g., prefetched or
precomputed) by the one or more speculative threads (e.g., helper

threads)
504

Terminate the one or more speculative threads associated with the
non-speculative thread and release the logical thread Contexts

associated with the terminated speculative threads back to the thread
pool for future use

505

Patent Application Publication Mar. 31, 2005 Sheet 6 of 15 US 2005/0071841 A1

600
Front end module to provide a common representation for

a variety of programming languages (e.g., C/C++, or
Fortran 95)

601

Profile nodule
602

Interprocedural Analysis & Optimization module
603

AutoHelper (e.g., compiler)
604

Global Scalar Optimizations module
605

Backend module to generate binaries for a variety of
platforms, such as IA-32 and Itanium platforms

606

Patent Application Publication Mar. 31, 2005 Sheet 7 of 15 US 2005/0071841 A1

700

identifying delinquent load on a main thread (e.g., non
speculative thread) including, for example, generating

profiles and analyzing profiles
701.

Performing parallelization analysis for helper threads (e.g.,
speculative threads) including, for example, generating

dependent graph, slicing, scheduling, communication, and
Synchronization

702

Perform code generation for helper threads including, for
example, generating thread graph, communication, and

synchronization
703

Allocate resources, Such as hardware registers or
memory, for each helper threads and the main thread to

avoid resource Conflicts
704

Patent Application Publication Mar. 31, 2005 Sheet 8 of 15 US 2005/0071841 A1

Start 800

Building a dependent graph that captures both data and control
dependences of the main thread (e.g., non-speculative thread)

801

Perform slicing of the main thread using the dependent graph
802

Perform scheduling across the threads to overlap multiple prefetches
even if one thread stalls

803

Select a communication Scheme (e.g., communication-based
scheme or computation-based scheme) for the threads

804

Determine a synchronization period for the threads to synchronize
with each other

805

01 -61-I

US 2005/0071841 A1

[ITA] = 8A 8pI
I TA' OtA=IIA ppe ?i I peal?, dadlau

000 ||

Patent Application Publication Mar. 31, 2005 Sheet 10 of 15

| || -61-I

US 2005/0071841 A1

@HNOGI
laer)$()SHEILSIORITÐNINIVWTHTSILVOOTTV E20! 1*()SHELSIOR?T?LVOO TTVRYHà =‘ONAAVAS THOVRTLVTGIVRIHITNAHOITIHOTHOHTOEHTAVIT?OHnOSTATCIV,TH

|-OCI CIVEIRIHL NIVW RIO-H

Ë

±RIOHCINGH 3RIOHCINEI 5$() ATRVLTRO HITOS@HTELIXINA #$()SHEILSIORITONINIVWAYIT?LVOOTTV 580GTVRHLTNOETHOITIHOTHOHTOEHTAVIT?OHDOSTATGIVETNI ÈRIGHCTREO d'O WOJLLO8I NI CIVETRIHJL HOV@THOH :=NIVHO OTVOETHHJL HOVERHOH

5 5

?-----

Patent Application Publication Mar. 31, 2005 Sheet 12 of 15

2OO

Helper Thread 2

Helper Thread 3

Helper Threadn

Main Thread

Fig. 12

Thread D120.1 Written Resources 1202 Live-in Resources 1203

(V5, R2)
(V6, R3)

R2, R3, R4, (V3, R6)
Helper Thread 1 R5, R8, R9 (V4, R7)

US 2005/0071841 A1

Patent Application Publication Mar. 31, 2005 Sheet 13 of 15 US 2005/0071841 A1

1300

identify one or more threads, including
a main thread and its helper threads
and select a thread having the most

botton order
1301

Retrieve resource information (e.g.,
from a resource table) of any child

thread of the currently selected thread
1302

Delete one or Tore threads Out of resource 2
309 1303

Allocate resources for the Current
thread based on the retrieved resource
information of its child threads without

causing conflicts
1304

Update resource information (e.g., in a
corresponding resource table) for the

current thread
1305

Select a next thread having
the most bottom order

1308

More thread
1306

Allocate resources for the main thread
based on the resource information of

all the helper threads
1307

US 2005/0071841 A1 Patent Application Publication Mar. 31, 2005 Sheet 14 of 15

Fig. 14A

50 100 150 200 250 3OO 25

Period

5

Fig. 14B

Patent Application Publication Mar. 31, 2005 Sheet 15 of 15 US 2005/0071841 A1

.

s .

Fig. 14C

2 5 25 50 100 150 200 250 300

Period

Fig. 14D

US 2005/0071841 A1

METHODS AND APPARATUSES FOR THREAD
MANAGEMENT OF MULTTHREADING

FIELD

0001 Embodiments of the invention relate to information
processing System; and more specifically, to thread manage
ment for multi-threading.

BACKGROUND

0002 Memory latency has become the critical bottleneck
to achieving high performance on modern processors. Many
large applications today are memory intensive, because their
memory acceSS patterns are difficult to predict and their
working Sets are becoming quite large. Despite continued
advances in cache design and new developments in prefetch
ing techniques, the memory bottleneck problem Still persists.
This problem worSens when executing pointer-intensive
applications, which tend to defy conventional Stride-based
prefetching techniques.

0003. One solution is to overlap memory stalls in one
program with the execution of useful instructions from
another program, thus effectively improving System perfor
mance in terms of overall throughput. Improving throughput
of multitasking workloads on a Single processor has been the
primary motivation behind the emerging simultaneous mul
tithreading (SMT) techniques. An SMT processor can issue
instructions from multiple hardware contexts, or logical
processors (also referred to as hardware threads), to the
functional units of a Super-Scalar processor in the same
cycle. SMT achieves higher overall throughput by increas
ing overall instruction-level parallelism available to the
architecture via the exploitation of the natural parallelism
between independent threads during each cycle.
0004 SMT can also improve the performance of appli
cations that are multithreaded. However, SMT does not
directly improve the performance, in terms of reducing
latency, of Single-threaded applications. Since the majority
of desktop applications in the traditional PC environment are
Still Single-threaded, it is important to investigate if and how
SRI resources can be exploited to enhance Single-threaded
code performance by reducing its latency. In addition, the
current compiler typically cannot automatically allocate
resources for the threads it created.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 The invention may best be understood by referring
to the following description and accompanying drawings
that are used to illustrate embodiments of the invention. In
the drawings:
0006 FIG. 1 illustrates a computer system having multi
threading capability according to one embodiment.
0007 FIG. 2 illustrates a computer system having multi
threading capability according to an alternative embodi
ment.

0008 FIG. 3 illustrates a computer system having a
compiler capable of generating a helper thread according to
one embodiment.

0009 FIG. 4A illustrates a typical symmetric multi
threading process.

Mar. 31, 2005

0010 FIG. 4B illustrates an asymmetric multi-thread
process according to one embodiment.
0011 FIG. 5 is flow diagram illustrating an exemplary
process for executing one or more helper threads according
to one embodiment.

0012 FIG. 6 is a block diagram illustrating exemplary
Software architecture of a multi-threading System according
to one embodiment.

0013 FIG. 7 is a flow diagram illustrating an exemplary
process for generating a helper thread according to one
embodiment.

0014 FIG. 8 is a flow diagram illustrating an exemplary
process for parallelization analysis according to one embodi
ment.

0.015 FIGS. 9A-9C show pseudo code for an applica
tion, a main thread, and a helper thread according to one
embodiment.

0016 FIG. 10 is a block diagram illustrating an exem
plary thread configuration according to one embodiment.
0017 FIG. 11 is a block diagram illustrating an exem
plary pseudo code for allocating resources for the threads
according to one embodiment.
0018 FIG. 12 is a block diagram illustrating an exem
plary resource data structure containing resource informa
tion for the threads according to one embodiment.
0019 FIG. 13 is a flow diagram illustrating an exemplary
process for allocating resources for threads according to one
embodiment.

0020 FIGS. 14A-14D show results of a variety bench
mark tests using embodiments of techniques.

DETAILED DESCRIPTION

0021 Methods and apparatuses for compiler-creating
helper threads for multi-threading Systems are described.
According to one embodiment, a compiler, also referred to
as AutoHelper, that implements thread-based prefetching
helper threads on a multi-threading System, Such as, for
example, the Intel Pentium TM 4 Hyper-Threading systems,
available from Intel Corporation. In one embodiment, the
compiler automates the generation of helper threads for
Hyper-Threading processors. The techniques focus at iden
tifying and generating helper threads of minimal sizes that
can be executed to achieve timely and effective data
prefetching, while incurring minimal communication over
head. A runtime System is also implemented to efficiently
manage the helper threads and the Synchronization between
threads. Consequently, helper threads are able to issue
timely prefetches for the Sequential pointer-intensive appli
cations.

0022. In addition, hardware resources such as register
contexts may be managed for helper threads within a com
piler. Specifically, the register Set may be Statically or
dynamically partitioned between main thread and helper
threads, and between multiple helper threads. As a result, the
live-in/live-out register copies via memory for threads may
be avoided and the threads may be destroyed at compile
time, when the compiler runs out of resources, or at runtime
when infrequent cases of certain main thread event occurs.

US 2005/0071841 A1

0023. In the following description, numerous specific
details are set forth. However, it is understood that embodi
ments of the invention may be practiced without these
Specific details. In other instances, well-known circuits,
Structures and techniques have not been shown in detail in
order not to obscure the understanding of this description.

0024. Some portions of the detailed descriptions which
follow are presented in terms of algorithms and Symbolic
representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are used by those skilled in the data processing arts to most
effectively convey the Substance of their work to others
skilled in the art. An algorithm is here, and generally,
conceived to be a Self-consistent Sequence of operations
leading to a desired result. The operations are those requir
ing physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of
electrical or magnetic Signals capable of being Stored, trans
ferred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
elements, Symbols, characters, terms, numbers, or the like.

0.025. It should be borne in mind, however, that all of
these and Similar terms are to be associated with the appro
priate physical quantities and are merely convenient labels
applied to these quantities. Unless Specifically Stated other
wise as apparent from the following discussion, it is appre
ciated that throughout the description, discussions utilizing
terms Such as “processing or “computing or "calculating
or “determining” or “displaying or the like, refer to the
action and processes of a computer System, or Similar data
processing device, that manipulates and transforms data
represented as physical (e.g. electronic) quantities within the
computer System's registers and memories into other data
Similarly represented as physical quantities within the com
puter System memories or registers or other Such informa
tion Storage, transmission or display devices.

0.026 Embodiments of the present invention also relate to
apparatuses for performing the operations described herein.
An apparatus may be specially constructed for the required
purposes, or it may comprise a general purpose computer
Selectively activated or reconfigured by a computer program
Stored in the computer. Such a computer program may be
Stored in a computer readable Storage medium, Such as, but
is not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, and magnetic-optical disks, read
only memories (ROMs), random access memories (RAMs)
such as Dynamic RAM (DRAM), erasable programmable
ROMs (EPROMs), electrically erasable programmable
ROMs (EEPROMs), magnetic or optical cards, or any type
of media Suitable for Storing electronic instructions, and
each of the above Storage components is coupled to a
computer System bus.

0027. The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose Systems may be used
with programs in accordance with the teachings herein, or it
may prove convenient to construct more specialized appa
ratus to perform the methods. The structure for a variety of
these Systems will appear from the description below. In
addition, embodiments of the present invention are not
described with reference to any particular programming

Mar. 31, 2005

language. It will be appreciated that a variety of program
ming languages may be used to implement the teachings of
the embodiments of the invention as described herein.

0028. A machine-readable medium includes any mecha
nism for Storing or transmitting information in a form
readable by a machine (e.g., a computer). For example, a
machine-readable medium includes read only memory
(“ROM"); random access memory (“RAM”); magnetic disk
Storage media, optical Storage media; flash memory devices,
electrical, optical, acoustical or other form of propagated
Signals (e.g., carrier waves, infrared signals, digital signals,
etc.), etc.
0029 FIG. 1 is a block diagram of an exemplary com
puter which may be used with an embodiment. For example,
exemplary system 100 shown in FIG. 1 may perform the
processes shown in FIGS. 5-8. Exemplary system 100 may
be a multi-threading system, such as an Intel Pentium TM 4
Hyper-Threading system. Exemplary system 100 may be a
Simultaneous multithreading (SMT) or chip multiprocessing
(CMP) enabled system.
0030) Note that while FIG. 1 illustrates various compo
nents of a computer System, it is not intended to represent
any particular architecture or manner of interconnecting the
components, as Such details are not germane to the present
invention. It will also be appreciated that network comput
ers, handheld computers, cell phones, and other data pro
cessing Systems which have fewer components or perhaps
more components may also be used with the present inven
tion.

0031. As shown in FIG. 1, the computer system 100,
which is a form of a data processing System, includes a bus
102 which is coupled to a microprocessor 103 and a ROM
107, a volatile RAM 105, and a non-volatile memory 106.
The microprocessor 103, which may be a Pentium processor
from Intel Corporation or a PowerPC processor from
Motorola, Inc., is coupled to cache memory 104 as shown in
the example of FIG. 1. The bus 102 interconnects these
various components together and also interconnects these
components 103, 107, 105, and 106 to a display controller
and display device 108, as well as to input/output (I/O)
devices 110, which may be mice, keyboards, modems,
network interfaces, printers, and other devices which are
well-known in the art. Typically, the input/output devices
110 are coupled to the System through input/output control
lers 109. The volatile RAM 105 is typically implemented as
dynamic RAM (DRAM) which requires power continuously
in order to refresh or maintain the data in the memory. The
non-volatile memory 106 is typically a magnetic hard drive,
a magnetic optical drive, an optical drive, or a DVD RAM
or other type of memory System which maintains data even
after power is removed from the system. Typically the
non-volatile memory will also be a random acceSS memory,
although this is not required. While FIG. 1 shows that the
non-volatile memory is a local device coupled directly to the
rest of the components in the data processing System, it will
be appreciated that the present invention may utilize a
non-volatile memory which is remote from the System, Such
as a network Storage device which is coupled to the data
processing System through a network interface Such as a
modem or Ethernet interface. The bus 102 may include one
or more buses connected to each other through various
bridges, controllers, and/or adapters, as is well-known in the

US 2005/0071841 A1

art. In one embodiment, the I/O controller 109 includes a
USB (Universal Serial Bus) adapter for controlling USB
peripherals or a PCI controller for controlling PCI devices,
which may be included in IO devices 110. In a further
embodiment, I/O controller 109 includes an IEEE-1394
controller for controlling IEEE-1394 devices, also known as
FireWire devices.

0032. According to one embodiment, processor 103 may
include one or more logical hardware contexts, also referred
to as logical processors, for handling multiple threads Simul
taneously, including a main thread, also referred to as a
non-speculative thread, and one or more helper threads, also
referred to as Speculative threads, of an application. Proces
Sor 103 may be a Hyper Threading processor, Such as a
Pentium 4 or a Xeon processor capable of performing
multithreading processes from Intel Corporation. During an
execution of an application, the main thread and one or more
helper threads are executed in parallel. The helper threads
are speculatively executed associated with, but Somewhat
independent to, the main thread to perform Some precom
putations, Such as Speculative prefetches of addresses or
data, for the main thread to reduce the memory latency
incurred by the main thread.
0.033 According to one embodiment, the code of the
helper threads (e.g., the Source code and the binary execut
able code) are generated by a compiler, Such as AutoHelper
compiler available from Intel Corporation, loaded and
executed in a memory, such as volatile RAM 105, by an
operating System (OS) executed by a processor, Such as
processor 103. The operating System running within the
exemplary system 100 may be a Windows operating system
from Microsoft Corporation or a Mac OS from Apple
Computer. Alternatively, the operating System may be a
Linux or Unix operating System. Other operating Systems,
Such as embedded real-time operating Systems, may be
utilized.

0034 Current Hyper-Threading processors typically pro
vide two hardware contexts, or logical processors. To
improve the performance of a Single-threaded application,
Hyper-Threading technology can utilize its Second context
to perform prefetching for the main thread. Having a sepa
rate context allows the helper threads execution to be
decoupled from the control flow of the main thread, unlike
Software prefetching. By running far ahead of the main
thread to perform long-range prefetches, the helper threads
can trigger prefetches early, and eliminate or reduce the
cache miss penalties experienced by the main thread.
0035. With AutoHelper, a compiler is able to automati
cally generate prefetching helper threads for Hyper-Thread
ing machines. The helper threads aim at bringing the
latency-hiding benefit of multithreading to Sequential work
loads. Unlike threads produced by the conventional paral
lelizing compilers, the helper threads only prefetch for the
main thread, which does not reuse the computed results from
the helper threads. According to on embodiment, the pro
gram correctness is Still maintained by the main threads
execution, while the helper threads do not affect program
correctness and are used Solely for performance improve
ment. This attribute permits the use of more aggressive
forms of optimization in generating helper threads. For
example, when the main thread does not need help, certain
optimizations may be performed, which are not possible
with conventional throughput threading paradigm.

Mar. 31, 2005

0036). In one embodiment, if it is predicted that a helper
is not needed for a certain period of time, the helper may
terminate and release all the resources associate with the
helper to main thread. According to another embodiment, if
it is predicted that a helper may be needed shortly, the helper
may be in a pause mode, which Still consumes Some
resources on Hyper-Threading hardware. Exponential back
off (via halting) will be invoked if the helper stays in the
pause mode too long (e.g., exceeding a programmable
timeout period). According to a further embodiment, if the
compiler cannot predict when the helper thread will be
needed, the helper may be in a Snooze mode and may
relinquish the occupied processor resources to the main
thread.

0037. Furthermore, according to one embodiment, per
formance monitoring and on-the-fly adjustments are made
possible under helper-threading paradigm, because the
helper thread does not contribute to the Semantics of the
main program. When a main thread needs a helper, it will
wake up the main thread. For example, with respect to a
run-away helper or a run-behind thread, one of the processes
described above may be invoked to adjust the run-away
helper thread.
0038 FIG. 2 is a block diagram illustrating one embodi
ment of a computing System 200 capable of performing the
disclosed techniques. In one embodiment, the computing
system 200 includes a processor 204 and a memory 202.
Memory 202 may store instructions 210 and data 212 for
controlling the operation of the processor 204. The processor
204 may include a front end 221 that supplies instruction
information to an execution core 230. The front end 221 may
Supply the instruction information to the processor core 204
in program order.
0039 For at least one embodiment, the front end 221
includes a fetch/decode unit 222 that includes logically
independent SequencerS 220 for each of a plurality of thread
contexts. The logically independent Sequencer(s) 220 may
include marking logic 280 to mark the instruction informa
tion for Speculative threads as being “speculative.” One
skilled in the art will recognize that, for an embodiment
implemented in a multiple processor multithreading envi
ronment, only one Sequencer 220 may be included in the
fetch/decode unit 222.

0040 AS used herein, the term “instruction information”
is meant to refer to instructions that can be understood and
executed by the execution core 230. Instruction information
may be stored in a cache 225. The cache 225 may be
implemented as an execution instruction cache or an execu
tion trace cache. For embodiments that utilize an execution
instruction cache, “instruction information' includes
instructions that have been fetched from an instruction cache
and decoded. For embodiments that utilize a trace cache, the
term “instruction information' includes traces of decoded
micro-operations. For embodiments that utilize neither an
execution instruction cache nor trace cache, “instruction
information” also includes raw bytes for instructions that
may store in an instruction cache Such as I cache 244.
0041 FIG. 3 is a block diagram illustrating an exemplary
System containing a compiler to generate one or more helper
threads according to one embodiment. Referring to FIG. 3,
exemplary processing System 300 includes a memory Sys
tem 302 and a processor 304. Memory system 302 may store

US 2005/0071841 A1

instructions 310 and data 312 for controlling the operation of
the processor 304. For example, instructions 310 may
include a compiler program 308 that, when executed, causes
the processor 304 to compile a program that resides in the
memory system 302. Memory 302 holds the program to be
compiled, intermediate forms of the program, and a resulting
compiled program. For at least one embodiment, the com
piler program 308 includes instructions to generate code for
one or more helper threads with respect to a main thread.
0.042 Memory system 302 is intended as a generalized
representation of memory and may include a variety of
forms of memory, such as a hard drive, CD-ROM, random
access memory (RAM), dynamic random access memory
(DRAM), static random access memory (SRAM) and
related circuitry. Memory system 302 may store instructions
310 and/or data 312 represented by data signals that may be
executed by processor 304. The instructions 310 and/or data
312 may include code for performing any or all of the
techniques discussed herein.

0.043 Specifically, compiler 308 may include a delin
quent load identifier 320 that, when executed by the pro
ceSSor 304, identifies one or more delinquent load regions of
a main thread. The compiler 308 may also include a paral
lelization analyzer 324 that, when executed by the processor
304, performs one or more parallelization analysis for the
helper threads. Also, the compiler 308 may include a slicer
322 that identifies one or more slices to be executed by a
helper thread in order to perform speculative precomputa
tion. The compiler 308 may further include a code generator
328 that, when executed by the processor 304, generates the
code (e.g., Source and executable code) for the helper
threads.

0044) Executing helper threads in an SMT machine is a
form of asymmetric multithreading, as shown in FIG. 4B
according to one embodiment. Traditional parallel program
ming models provide Symmetric multithreading, as shown in
FIG. 4A. In contrast, the helper threads, such as helper
threads 451-454 in FIG. 4B execute as user-level threads
(fibers) with lightweight thread invocation and Switching.
Furthermore, Symmetric multithreading requires well-tuned
data decomposition acroSS Symmetric threads, Such as
threads 401–404 in FIG. 4A. In the helper thread model,
according to one embodiment, the main thread runs the
Sequential code that operates on the entire data Set, without
incurring data decomposition overhead. Without decompos
ing the data, the compiler instead focuses on providing
multiple helpers for timely prefetches for the main thread’s
data.

004.5 FIG. 5 is a flow diagram illustrating an exemplary
proceSS for executing a helper thread according to one
embodiment. Exemplary process 500 may be performed by
a processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), Software (such as is run on a general
purpose computer System or a dedicated machine), or a
combination of both. In one embodiment, exemplary proceSS
500 includes executing a main thread of an application in a
multi-threading System, and Spawning one or more helper
threads from the main thread to perform one or more
computations for the main thread when the main thread
enters a region having one or more delinquent loads, code of
the one or more helper thread being created during a
compilation of the main thread.

Mar. 31, 2005

0046 Referring to FIG. 5, at block 501, the processing
logic creates an internal thread pool to maintain a list of
logical thread contexts which may be used by one or more
helper threads. At block 502, a new thread team may be
created before a main thread enters a delinquent load region
(e.g., precomputation region) which may be identified by a
compiler. In one embodiment, the new thread team initially
contains only the calling thread. According to one embodi
ment, the compiler may insert a Statement, Such as
Start helper Statement, before the main thread enters the
region to activate one or more helper threads. At block 503,
when the main thread enters the region, the main thread
spawns (via a function call, Such as invoke helper) one or
more helper threads which are created using the resources
from the thread pool to perform one or more precomputa
tions, Such as prefetching addresses and data, for the main
thread. According to one embodiment, if no logical proces
Sor is available for executing the Spawned helper threads, the
helper threads may be created and placed in a run queue for
the thread team for Subsequent execution. In one embodi
ment, the run queue may be associated with a time-out. The
request to invoke a helper is simply dropped (e.g., termi
nated) after the time-out period expires, assuming that the
prefetch will no longer be timely. This is different from
traditional task-queue model for parallel programming,
where each task needs to be executed.

0047. At block 504, at least a portion of the code within
the region of the main thread is executed using in part the
data (e.g., prefetched or precomputed) provided by the one
or more helper threads. According to one embodiment, the
results computed by a helper thread are not integrated into
the main thread. The benefit of a helper thread lies in its side
effects of prefetching, not in reusing its computation results.
This allows the compiler to aggressively optimize the code
generation for helper threads. The main thread handles the
correctness issue, while the helper threads target the perfor
mance of a program. This also allows the helper thread
invoking Statement, Such as invoke helper, to drop requests
whenever deemed appropriate. Finally, non-faulting instruc
tions, Such as the prefetch instructions, may be used to avoid
disruptions to the main thread if exceptions are signaled in
a helper thread.
0048. At block 505, the one or more helper threads
associated with the main thread are terminated (via a func
tion call, Such as finish helper) when the main thread is
about to exit the delinquent load region and the resources,
Such as logical thread contexts, associated with the termi
nated helper threads are released back to the thread pool.
This enables future requests to immediately recycle the
logical thread contexts from the thread pool. Other opera
tions apparent to those with ordinary skill in the art may be
included.

0049) Hyper-Threading technology is well suited for Sup
porting the execution of one or more helper threads. Accord
ing to one embodiment, in each processor cycle, instructions
from either of the logical processors can be Scheduled and
executed Simultaneously on shared execution resources.
This allows helper threads to issue timely prefetches. In
addition, the entire on-chip cache hierarchy is shared
between the logical processors, which is useful for helper
threads to effectively prefetch for the main thread at all
levels of the cache hierarchy. Furthermore, although the
physical execution resources are shared between the logical

US 2005/0071841 A1

processors, the architecture State is duplicated in a Hyper
Threading processor. The execution of helper threads will
not alter the architecture State in the logical processor
executing the main thread.
0050. However, on Hyper-Threading technology enabled
machines, helper threads can Still impact the execution of
main thread due to the writes to memory. Because helper
threads share memory with the main thread, the execution of
helper threads should be guaranteed not to write to the data
Structures of the main thread. In one embodiment, the
compiler (e.g., AutoHelper) provides memory protection
between the main thread and the helper threads. The com
piler removes Stores to non-local variables in the helper
threads.

0051 FIG. 6 is a block diagram illustrating an exemplary
architecture of a compiler according to one embodiment. In
one embodiment, exemplary architecture 600 includes,
among others, a front end module 601, profiler 602, inter
procedural analysis and optimization module 603, compiler
604, global scalar optimization module 605, and backend
module 606. In one embodiment, front end module 601
provides a common intermediate representation, Such as ILO
representation from Intel Corporation, for Source codes
written in a variety of programming languages, Such as
C/C++ and Fortran. As a result, the compiler, Such as
AutoHelper 604 is applicable irrespective of the source
languages and of the target platforms. Profiler 602 performs
a profiling run to examine the characteristics of the repre
Sentation. Interprocedural analysis module 603 may exposes
optimization opportunities acroSS procedure call boundaries.
Thereafter, the compiler 604 (e.g., AutoHelper) is invoked to
generate code for one or more helper threads. Global Scalar
optimization module 605 applies, using partial redundancy
elimination to minimize the number of times an expression
is evaluated. Finally, backend module 606 generates binary
code for the helper threads for a variety of platforms, Such
as IA-32 or Itanium platform from Intel Corporation. Other
components apparent to those with ordinary skill in the art
may be included.
0.052 Unlike a conventional approach, AutoHelper (e.g.,
the compiler) eliminates the profile-instrumentation pass to
make the tool easier to use. According to one embodiment,
the compiler can directly analyze the output from profiling
results, such as those generated by Intel's VTuneTM Perfor
mance Analyzer, which is enabled for Hyper-Threading
technology. Because it is a middle-end pass instead of a
post-pass tool, the compiler is able to utilize Several product
quality analyses, Such as array dependence analysis and
global Scalar optimization, etc. These analyses, invoked
after the compiler, perform aggressive optimizations on the
helper threads code.
0.053 According to one embodiment, the compiler gen
erates one or more helper threads to precompute and
prefetch the address accessed by a load that misses the cache
frequently, also referred to as a delinquent load. The com
piler also generates one or more triggers in the main thread
that Spawns one or more helper threads. The compiler
implements the trigger as an invoking function, Such as the
invoke helper function call. Once the trigger is reached, the
load is expected to appear later in the instruction Stream of
the main thread, hence the Speculatively executed helper
threads can reduce the number of cache misses in the main
thread.

Mar. 31, 2005

0054 FIG. 7 is flow diagram illustrating an exemplary
process performed by a compiler, Such as AutoHelper,
according to one embodiment. Exemplary process 700 may
be performed by a processing logic that may comprise
hardware (circuitry, dedicated logic, etc.), Software (Such as
is run on a general purpose computer System or a dedicated
machine), or a combination of both. In one embodiment,
exemplary process 700 starts at block 701, to identifying
delinquent loads using, for example, the VTune tool from
Intel Corporation, to perform parallelization analysis for
helper threads (block 702), to generate code for helper
threads (block 703), and to allocate resources, such as
hardware registers or memories for each helper threads and
the main thread (block 704), which will be described in
details further below.

0055 According to one embodiment, the compiler iden
tifies the most delinquent loads in an application Source code
using one or more run-time profiles. Traditional compilers
collect the profiles in two steps: profile-instrumentation and
profile-generation. However, because cache miss is not an
architecture feature that is exposed to the compilers, profile
instrumentation pass does not permit instrumentation of
cache misses for the compiler to identify delinquent loads.
The profiles for each cache hierarchy are collected via a
utility, such as the VTune TM Analyzer from Intel Corpora
tion. In one embodiment, the application may be executed
with debugging information in a separate profiling run prior
to the compiler. During the profiling run, cache misses are
sampled and the hardware counters are accumulated for each
Static load in the application.
0056. The compiler identifies the candidates for thread
based prefetching. In a particular embodiment, the VTune TM
Summarizes the cache behavior on a per-load basis. Because
the binary for the profiling run is compiled with the debug
information (e.g., debug Symbols), it is possible to correlate
the profiles back to Source line numbers and the Statements.
Certain loads that contribute more than a predetermined
threshold may be identified as delinquent loads. In a par
ticular embodiment, the top loads that contribute to 90% of
cache misses are denoted as delinquent loads.
0057. In addition to identifying delinquent load instruc
tions, the compiler generates helper threads that compute the
addresses of delinquent loads accurately. In one embodi
ment, Separate code for helper threads is generated. The
Separation between the main thread and the helper threads
code prevents transformations on a helper threads code
from affecting the main thread. In one embodiment, the
compiler uses multi-entry threading, instead of conventional
out-lining, in the Intel product compiler to generate Separate
codes for helper threads.
0058. Furthermore, according to one embodiment, the
compiler performs multi-entry threading at the granularity of
a compiler-Selected code region, denoted as precomputation
region. This region encompasses a Set of delinquent loads
and defines the Scope for Speculative precomputation. In one
embodiment, the implementation usually targets loop
regions, because loops are usually the hot Spots in program
execution, and the delinquent loads are the loads that were
executed many times, usually in a loop.
0059 FIG. 8 is flow diagram illustrating an exemplary
process for parallelization analysis according to one embodi
ment. Exemplary process 800 may be performed by a

US 2005/0071841 A1

processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), Software (such as is run on a general
purpose computer System or a dedicated machine), or a
combination of both. Referring to FIG. 8, at block 801, the
processing logic builds a dependent graph that captures both
data and control dependencies of the main thread. According
to one embodiment, in order to filter out unrelated code and
thus reduce the size of a helper threads code, the compiler
first builds a graph that captures both data and control
dependences. The effectiveness and legality of filtering rely
on the compiler's ability to accurately disambiguate memory
references. As a result, a memory disambiguation module in
the compiler is invoked to disambiguate pointers to dynami
cally allocated objects. Because a pointer could be a global
variable or a function parameter, the points-to analysis
performed by the compiler is interprocedural, if the compiler
compiles in the whole-program mode. In one embodiment,
in order to build the dependence graph more accurately, a
Series of array dependence tests may be performed, So that
each element in an array is disambiguated in building the
dependence graph, if all the array accesses are finite expres
Sions. Otherwise, approximation is used. Furthermore, each
field in a structure may be disambiguated.

0060 Referring back to FIG. 8, at block 802, the pro
cessing logic performs a slicing operation on the main thread
using the dependent graph. During Slicing, according to one
embodiment, the compiler first identifies the load addresses
of delinquent loads as Slice criteria, which Specify the
intermediate slicing results. After building the dependence
graph, the compiler computes the program Slices of the
identified Slice criteria. The program Slices of the Slice
criteria are defined as the Set of instructions that contribute
to the computation of the addresses for memory prefetches
executed by the one or more helper threads. Slicing can
reduce the code to only the instructions relevant to the
computation of an address, thus allows the helper threads to
run quicker and ahead of the main thread. The compiler only
needs to copy instructions in a slice to the helper threads
code.

0061 According to one embodiment, slicing in the com
piler extracts a minimal Sequence of instructions to produce
the addresses of delinquent loads by transitively traversing
the dependence edges backwards. The leaf nodes on the
dependence graph of the resulting Slices can be converted to
prefetch instructions, because no further instructions are
dependent on those leaf nodes. Those prefetch instructions
executed by a processor, such as the Pentium TM 4 from Intel
Corporation, are both non-blocking and non-faulting. Dif
ferent prefetch instructions exist for bringing data into
different levels of cache in the memory hierarchy.
0.062 According to one embodiment, slicing operations
may be performed with respect to a given code region.
Traversal on the dependence graph in a given region must
terminate when it reaches code outside of that region. Thus,
Slicing must be terminated during traversal instead of after
traversal, because the graph traversal may span to the
outside of a region and then back to the inside of a region.
Simply collecting the Slices according to regions after the
traversal may lose precision.

0.063. In a further embodiment, the compiler slices each
delinquent loads instruction one by one. To minimize the
duplication of code in helper threads and reduce the over

Mar. 31, 2005

head of thread invocation and Synchronization, the compiler
merges slices into one helper thread if they are in the same
precomputation region.

0064) Referring back to FIG. 8, at block 803, the pro
cessing logic performs Scheduling acroSS the threads to
overlap multiple prefetches. In one embodiment, Since
Hyper-Threading processors Support out-of-order execution
with large Scheduling windows, the processors can look for
independent instructions beyond the current executing
instruction when it waits on a pending cache miss. This
aspect of out-of-order execution can provide Substantial
performance gain over an in-order processor and reduce the
need for chaining speculative precomputation. Furthermore,
the compiler Selects basic speculative precomputation for
Hyper-Threading processors. Namely, only one helper
thread is Scheduled at a time to Save the thread spawning and
communication overhead. Another benefit from using basic
Speculative precomputation is that it does not inundate the
memory System on our Hyper-Threading processors as fast
as chaining speculative precomputation does. When the
out-of-order processor looks for independent instructions for
execution, those instructions can generate too many load
requests and Saturate the memory System. When the helper
threads issue prefetching requests, a large number of out
Standing misses could rapidly fill up the miss buffer and, as
a result, Stall the processor. Thus, the compiler needs to be
judicious in Spawning helper threads. Finally, to ensure
timely prefetching, the compiler pins down the single helper
thread and the main thread on respective logical processors.

0065 Referring back to FIG. 8, at block 804, processing
logic Selects a communication Scheme for the threads. In one
embodiment, the compiler provides a module that computes
live-neSS information for any given Slice, or any Subset of
program. Liveness information provides estimates on the
communication cost. The information is used to Select the
precomputation region that provides good trade-off between
communication and computation. The liveness information
may help find triggerS or the points at which the backward
Slicing ends.

0066. Because the typical Hyper-Threading processors
issue three micro-ops per processor cycle and use Some
hard-partitioned resources, the compiler has to be judicious
as not to let helper threads slow down the main threads
execution, especially if the main thread issues three micro
opS for execution per cycle already. For the loop nest
encompassing delinquent loads, the compiler makes trade
off between re-computation and communication in choosing
the loop level for performing speculative precomputation.
For each loop level, Starting from the innermost one, accord
ing to one embodiment, the compiler Selects one of the
communication-based Scheme and computation-based
Scheme.

0067. According to one embodiment, the communica
tion-based Scheme communicates the live-in values from the
main thread to the helper thread in each iteration, So the
helper thread does not need to re-compute the live-in values.
The compiler will select this scheme if there exists an inner
loop encompassing most delinquent loads and if slicing for
the inner loop significantly decreases the Size of a helper
thread. However, this scheme will be disabled if the com
munication cost for the inner loop level is very large. The

US 2005/0071841 A1

compiler will give Smaller estimate of communication cost,
if the live-in values are computed early and the number of
live-ins is Small.

0068 Communication-based scheme will create multiple
communication points between the main thread and its
helper thread at runtime. Communication-based Scheme is
important for Hyper-Threading processors, because relying
on only one communication point by re-computing the Slice
in the helper thread may create too much resource conten
tion between threads. This Scheme is Similar to constructing
a do-acroSS loop in that the main thread initiates the next
iteration after it finishes computing the live-in values for that
iteration. The Scheme trades communication for less com
putation.
0069. According to one embodiment, the computation
based Scheme assumes only one communication point
between two threads to pass in the live-in values in the
beginning. Afterwards, the helper thread needs to compute
everything it needs to generate accurate prefetch addresses.
The compiler will Select this Scheme if there is no inner loop,
or if slicing for this loop level does not significantly
increases the size of a helper thread. Computation-based
Scheme gives the helper thread more independence in execu
tion, once the Single communication point is reached.
0070 According to one embodiment, to select the loop
level for Speculative precomputation, the compiler Selects
the outermost loop that benefits from communication-based
Scheme. Hence the Scheme-selection algorithm described
above can terminate once it finds a loop with communica
tion-based Scheme. If the compiler does not find any loop
with communication-based Scheme, the outermost loop will
be the targeted region for Speculative precomputation. After
the compiler Selects the precomputation regions and their
communication Schemes, locating good trigger points in the
main thread would ensure timely prefetches, while mini
mizing the communication between the main thread and the
helper threads. Liveness information helps locate triggers,
which are the points at which the backward Slicing ends.
Slicing beyond the precomputation region ends when the
number of live-ins increases.

0071 Referring back to FIG. 8, at block 805, the pro
cessing logic determines a Synchronization period for the
threads to Synchronize with each other during the execution.
According to one embodiment, the Synchronization period is
used to express the distance between a helper thread and the
main thread. Typically, the helper thread performs all of its
precomputation in units of Synchronization period. This both
minimizes communication and limits the possibility of pro
ducing run-away helpers. Because the compiler computes
the value of Synchronization period and generates Synchro
nization code accordingly, Special hardware Support, Such as
Outstanding Slice Counter, is no longer needed.
0072) If the synchronization period is too large, the
prefetch induced by the helper thread could not only dis
place temporally important data to be used by the main
thread but also potentially displace earlier prefetched data
that have not been used by the main thread. On the other
hand, if the Synchronization period is too Small, the prefetch
could be too late to be useful. To decide on the value of
Synchronization period, according to one embodiment, the
compiler first computes the difference between the length of
the Slice and the length of program Schedule in the main

Mar. 31, 2005

thread. If the difference is Small, the run-ahead distance
induced by the helper thread in one iteration is consequently
small. Multiple iterations may be needed by the helper
thread to maintain enough run-ahead distance. Hence, the
compiler increases the Synchronization period if the differ
ence is Small, and Vice versa.

0073. Thereafter, the compiler generates code for the
main thread and the helper thread during a code generation
Stage. During the code generation Stage, the compiler builds
a thread graph as the interface between the analysis phase
and code generation phase. Each graph node denotes a
Sequence of instructions, or a code region. The invocation
edge between the nodes denotes the thread-spawning rela
tionship, which is important for Specifying chaining helper
threads. Having a thread graph enables code reuse because,
according to one embodiment, the compiler also allows the
user to insert pragmas in the Source program to specify the
code for helper threads and the live-ins. Both the pragma
based approach and the automatic approach share the same
graph abstraction. As a result, the helper thread code gen
eration module may be shared.
0074 The helper thread code generation leverages multi
entry threading technology in the compiler to generate
helper thread code. In contrast to the conventional, well
known outlining, the compiler does not create a Separate
compilation unit (or routine) for the helper thread. Instead,
the compiler generates a threaded entry and a threaded
return for in the helper thread code. The compiler keeps all
newly generated helper thread codes intact or inlined within
the same user-defined routine without splitting them into
independent Subroutines. This method provides later com
piler optimizations with more opportunities for performing
optimization on the newly generated helper threads. Fewer
instructions in the helper thread means less resource con
tention on a hyper-threaded processor. This demonstrates
that using helper threads for hiding latency incurs fewer
instructions and leSS resource contention than the traditional
Symmetric multithreading model, which is important espe
cially because the hyper-threaded processor issues three
micro-ops per processor cycle and has Some hard-partitioned
CSOUCCS.

0075 According to one embodiment, the generated codes
for helper threads will be re-ordered and optimized by the
later on phases in the compiler Such as partial dead-store
elimination (PDSE), partial redundancy elimination (PRE),
and other Scalar optimizations. In that Sense, the helper
thread code needs to be optimized to minimize the resource
contention. due to the helper thread. However, those further
optimizations may remove prefetching code as well. There
fore, the leaf delinquent loads may be converted to the
Volatile-assign Statements in the compiler. The leaf node in
the dependence graph of a Slice implies that no further
instructions in the helper thread depend on the loaded value.
Hence, the destination of the Volatile-assign Statement is
changed to a register temp in the representation to Speed up
the resulting code. Using volatile-assign may prevent all
later on compiler global optimizations from removing gen
erated prefetches for delinquent loads.

0076 According to one embodiment, the compiler aims
at ensuring the helper thread to run neither too far ahead nor
behind the main thread using a Self-counting mechanism.
According to one embodiment, value X is pre-Set for run

US 2005/0071841 A1

ahead distance control. The X can be modified through a
compiler Switch by users, or based on program analysis of
the length of slice (or helper code) and the length of main
code. In one embodiment, the compiler generates mc
(M-counter) with an initial value X for main thread and hc
(H-counter) with an initial value 0 for helper thread, and the
compiler generates the counter M and H for counting the
Sync-up periods in main and helper code. The idea is that the
all four counters (mc, M, he, H) perform Self-counting. The
helper thread has no inference to main thread. If the helper
thread runs too far ahead of main thread, it will issue a wait,
if the helper thread runs behind main thread, it will perform
a catch-up.

0077. In a particular embodiment, for every X loop
iterations, the main thread issues a post to ensure that the
helper is not waiting and can go ahead to perform non fault
ing load. At this point, if the helper thread waits for the main
thread after issuing a number of non faulting loads in
chunks of Sync-up period, it will wake up to perform
non faulting loads. In another particular embodiment, for
every X loop-iterations, the helper thread examines whether
its hc counter is greater main thread's mc counter and the hc
counter is greater a Sync-up period HX of the helper thread,
if So, the helper will issue a wait and go to sleep. This
prevents the helper thread from running too far ahead of the
main thread. In a further embodiment, before iterating over
another chunk of Sync-up period, the helper thread examines
whether its hc counter is Smaller than the main thread's mc
counter. If So, the helper thread has fallen behind, and must
"catch-up and jump ahead' by updating its counter hc and H
and all capture private and live-in variable from the main
thread. FIGS. 9A-9C are diagrams illustrating exemplary
pseudo code of an application, a main thread, and a helper
thread according to one embodiment. Referring to FIGS.
9A-9C, the compiler compiles a source code 901 of an
application and generates code for a main thread 902 and a
helper thread 903 using at least one of the aforementioned
techniques. It will be appreciated that the code 901-903 are
not limited to C/C++. Other programming languages, Such
as Fortran or ASSembly, may be used.

0078. After the code for the helper threads have been
created, the compiler may further allocate, Statically or
dynamically, resources for each helper thread and the main
thread to ensure that there is no resource conflict between the
main thread and the helper threads, and among the helper
threads. Hardware resources, Such as register contexts, may
be managed for helper threads within the compiler. Specifi
cally, the register Set may be Statically or dynamically
partitioned between the main thread and the helper threads,
and between multiple helper threads. As a result, the live
in/live-out register copies via memory for threads may be
avoided and the threads may be destroyed at compile-time,
when the compiler runs out of resources, or at runtime when
infrequent cases of certain main thread event occurs.

0079 According to one embodiment, the compiler may
“walk through the helper threads in a bottom-up order and
communicates the resource utilization in a data Structure,
such as a resource table shown in FIG. 12. The parent helper
thread, which may be the main thread, utilizes this infor
mation and ensures that its resources don't overlap with the
thread resources. When the thread resources penalize the

Mar. 31, 2005

main execution thread, for example by forcing the main
thread to Spill/fill registers, the compiler can kill previously
created threads.

0080 FIG. 10 is a block diagram illustrating an exem
plary configuration of threads according to one embodiment.
In this embodiment, exemplary configuration 1000 includes
a main thread 1001 (e.g., a parent thread) and three helper
threads (e.g., child threads) 1002-1004, which may be
spawned from the main thread 1001, while thread 1003 may
be spawned from thread 1002 (e.g., helper thread 1002 is a
parent thread of helper thread 1003). It will be appreciated
that the helper threads are not limited to three helper threads,
more or less helper threads may be included. The helper
threads may be spawned by a Spawn instruction and the
thread execution may resumes after the Spawn instruction.
0081. The threads are created by the compiler during a
thread creation phase, Such as those operations shown in
FIGS. 5-8. According to one embodiment, the compiler
creates the threads in the thread creation phase and allocates
resources for the threads in a Subsequent thread resource
allocation phase. Dynamically and typically, a helper thread
is spawned when its parent thread Stalls. Exemplary con
figuration 1000 may happen during a page fault or a level 3
(L3) cache miss.
0082 It is crucial that a thread can only share incoming
registers (or resources in general) with a parent thread. For
example, referring to FIG. 10, when main thread 1001 needs
a register, it writes a value to register RIO before it spawns
helper thread 1002 and uses register R10 after the helper
thread 1002 terminates. Neither the helper thread 1002 nor
any of its children (in the example, helper thread 1003 is the
only children of helper thread 1002, and helper threads 1002
and 1004 are children of the main thread 1001) can write to
register R10. Otherwise they would destroy the value in the
main thread 1001. This would result in incorrect program
execution. To avoid this resource conflict, according to one
embodiment, the compiler may partition the resources Stati
cally or dynamically.
0083. According to one embodiment, the compiler allo
cates resources for the helper threads and the main thread in
a bottom-up order. FIG. 11 is a block diagram illustrating an
exemplary pseudo code for allocating resources for the
threads according to one embodiment. That is, in the exem
plary algorithm 1100, the compiler allocates all resources for
the helper threads in a bottom-up order (block 1101) and
thereafter allocates resources for the main thread (block
1102) based on the resources used by the helper threads to
avoid resource conflicts.

0084. For the purposes of illustration, the resources used
the threads are assumed to be the hardware registers. How
ever, Similar concepts may be applied to other resources
apparent to one with ordinary skill in the art, Such as
memory or interrupt. Referring to FIG. 10, the compiler
partitions the registers dynamically by walking bottom up
from the lead thread of a thread chain. In this example,
helper thread 1003 is a leaf thread in the first thread chain
including helper thread 1002. Helper thread 1004 is a leaf
thread in the Second thread chain. The compiler records the
register allocation in each helper thread in a data Structure,
Such as a resource table Similar to the exemplary resource
table 1200 of FIG. 12. Then the parent thread reads the
resource allocation of its children thread and does its allo
cation and reports it in its resource table.

US 2005/0071841 A1

0085 FIG. 12 is a block diagram illustrating an exem
plary resource data Structure according to one embodiment.
Exemplary data structure 1200 may be implemented as a
table Stored in a memory and accessible by a compiler.
Alternatively, exemplary data structure 1200 may be imple
mented in a database. In one embodiment, exemplary data
structure 1200 includes, but not limited to, written resources
1202 and live-in resources used by the respective thread
identified via thread ID 1201. Other configurations may
exist.

0086) Referring to FIGS. 10 and 12, according to one
embodiment, at the beginning, the registers of helper thread
1003 (e.g., the thread having the most bottom order in a
bottom-up scheme) are allocated. The live-in values are V5
and V6 and assuming they are assigned to registers R2 and
R3 respectively. Also, V7 gets register R4 assigned and V9
gets register R5 assigned. The resource table for helper
thread 1003 includes live-in-((V5, R2), (V6, R3)) and
register written=(R4, R5), as shown in FIG. 12. In helper
thread 1002, the compiler replaces V5 with R2 and V6 with
R3 during the allocation and marks register R4 and R5
(written in helper thread 1003) as live at the spawn instruc
tion. This prevents register usage of R4 or R5 across the
spawn point of helper thread 1003 and thus prevents a
resource conflict between helper thread 1002 and helper
thread 1003. For helper thread 1002, the live-in values are
V3 and V4 and are assigned to register R6 and R7 respec
tively. When V8 and V20 are assigned to registers R8 and R9
respectively, the resource table for helper thread 1002
includes live in=(V3, R6), (V4, R7)) and written registers=
(R2, R3, R4, R5, R8, shown in FIG. 12. The written
registers are the live-in registers for helper thread 1003 (e.g.,
R2 and R3), the written registers in helper thread 1003 (e.g.,
R4 and R5) and the registers written in helper thread 1002
(e.g., R8 and R9). Then the compiler allocates the registers
for helper thread 1004. When the registers are allocated for
all the helper threads, it allocates the registers for the main
thread 1001.

0087. In addition, according to one embodiment, when
the compiler runs out of registers, it can delete one or more
helper threads within the chain. This can happen for
example, when the main thread runs out of registers, because
the helper thread chain is too deep or a Single helper thread
needs too many registers and the main thread has to Spill/fill
registers. The compiler can apply heuristics to either allow
certain number of spills or delete the entire helper thread
chain or Some threads in the thread chain. An alternative to
deleting helper thread is to explicitly configure the weight of
context save/restore, So that upon context Switch, the par
ent’s live registers that could be written by the helper
threads execution can be Saved automatically by the hard
ware. Even though this context Switch is relatively expen
Sive, potentially Such case is infrequent case. Moreover,
Such fine-grain context Switch is still of much low overhead
compared to full-context Switch as used in most OS-enabled
thread Switch or a traditional hardware based full-context
thread Switch.

0088. Furthermore, when there is a conflict for live-in
registers, for example, if helper thread 1003 overwrote a
live-in register (e.g., mov v5=. . .) and this register is also
used in helper thread 1002 after the spawn of helper thread
1003, there would be a resource conflict for the register
assigned to V5 (in this example, register R2). To handle this

Mar. 31, 2005

information, the compiler would use availability analysis
and insert compensation code, Such as inserting a mov
v5'=V5 instruction before spawning helper thread 1003 and
replacing v5 by v5' after the spawn.

0089 FIG. 13 is a flow diagram illustrating an exemplary
process for allocating resources for threads according to one
embodiment. Exemplary process 1300 may be performed by
a processing logic that may comprise hardware (circuitry,
dedicated logic, etc.), Software (such as is run on a general
purpose computer System or a dedicated machine), or a
combination of both. In one embodiment, exemplary process
1300 includes Selecting, during a compilation of a code
having one or more threads executable in a data processing
System, a current thread having a most bottom order, deter
mining resources allocated to one or more child threads
Spawned from the current thread, and allocating resources
for the current thread in consideration of the resources
allocated to the current threads one or more child threads to
avoid resource conflicts between the current thread and its
one or more child threads.

0090 Referring to FIG. 13, at block 1301, processing
logic identifies one or more threads, including a main thread
and its helper threads, and Selects a thread having the most
bottom order as a current thread. The threads may be
identified using a thread dependency graph created during
the thread creation phase of the compilation. At block 1302,
the processing logic retrieves resource information of any
child thread, which may be spawned from the current thread.
The resources information may be obtained from a data
Structure corresponding to the child threads, Such as resource
table 1200 of FIG. 12. At block 1303, if there is no more
resources available, the processing logic may delete one or
more threads from the chain and restart over again (block
1309). If there is more resource available, at block 1304, the
processing logic allocates resources for the current thread in
consideration of resources used by its child threads without
causing resource conflicts. Thereafter, at block 1305, the
processing logic updates the resources allocated to the
current thread in the associated resource table, Such as
resource table 1200. The above processes continue until no
more helper threads (e.g., child threads of the main thread)
remained (blocks 1306 and 1308). Finally, at block 1307, the
processing logic allocates resources for the main thread
(e.g., a parent thread for all helper threads) based on the
resource information of all the helper threads without caus
ing resource conflicts. Other operations may be included.

0091. The above described techniques have been tested
against a variety of benchmark tools based on a System
Similar to the following configurations:

A Processor with Hyper-Threading Technology

Threading
Trace cache

2 logical processors.
12k micro-ops. 8-way associative.
6 micro-ops per line.
8k bytes. 4-way associative. 64-byte line

size.
2-cycle integer access. 4-cycle FP access.

L1 D cache

US 2005/0071841 A1

-continued

A Processor with Hyper-Threading Technology

L2 unified 256k bytes. 8-way associative.
cache 128-byte line size. 7-cycle access latency.
Load buffers 48
Store buffers 24

0092. The variety of benchmark tools include at least one
of the following:

Benchmark Description Input Set

nbody walker Traverses nearest bodies 2Ok bodies
from any node in Nbody
graph

mist Computes Minimal 3k nodes
Spanning Tree for data
clustering

em3d Solves electromagnetic 2Ok.5-
propagation in 3D degree

nodes
health Hierarchical database 5 levels

modeling health care system
mcf Integer programming Lite

algorithm used for bus
scheduling

0.093 FIG. 14A is a chart illustrating an improvement of
performance by the helper thread on nbody walker bench
mark utility. FIG. 14B is a chart illustrating a speedup result
of nbody walker at a given value of Synchronization period.
FIG. 14C is a chart illustrating an automatic process versus
a manual process with respect to a variety of benchmark.
FIG. 14D is chart illustrating an improvement of an auto
matic process over a manual process using nbody walker at
a given Synchronization period.
0094. Thus, methods and apparatuses for thread manage
ment for multi-threading have been described. In the fore
going Specification, the invention has been described with
reference to Specific exemplary embodiments thereof. It will
be evident that various modifications may be made thereto
without departing from the broader Spirit and Scope of the
invention as Set forth in the following claims. The Specifi
cation and drawings are, accordingly, to be regarded in an
illustrative Sense rather than a restrictive Sense.

What is claimed is:
1. A method, comprising:
Selecting, during a compilation of code having one or

more threads executable in a data processing System, a
current thread having a most bottom order;

determining resources allocated to one or more child
threads spawned from the current thread; and

allocating resources for the current thread in consideration
of the resources allocated to the current threads one or
more child threads to avoid resource conflicts between
the current thread and its one or more child threads.

2. The method of claim 1, wherein the resources include
at least one of hardware registers and memory used by the
respective thread.

10
Mar. 31, 2005

3. The method of claim 1, wherein the resources allocated
to the one or more child threads are recorded in a data
Structure accessible by the current thread.

4. The method of claim 1, further comprising updating
resource information in a data Structure regarding the
resources allocated to the current thread, the data structure
being accessible by a parent thread of the current thread.

5. The method of claim 1, further comprising repeating
the Selecting, determining, and allocating in a bottom-up
order until each of the one or more threads has been
processed.

6. The method of claim 5, further comprising allocate
resources for a main thread that is a parent thread of the one
or more threads after each of the one or more threads has
been processed, the resources of the main thread are allo
cated in View of resources allocated to the one or more
threads.

7. The method of claim 1, further comprising:

determining whether there are resources remaining in the
data processing System prior to the allocating the
resources for the current thread; and

deleting at least one child thread of the current thread; and
allocating the resources for the current thread using the

resources associated with the at least one deleted child
thread.

8. A machine-readable medium having executable code to
cause a machine to perform a method, the method compris
ing:

Selecting, during a compilation of code having one or
more threads executable in a data processing System, a
current thread having a most bottom order;

determining resources allocated to one or more child
threads spawned from the current thread; and

allocating resources for the current thread in consideration
of the resources allocated to the current threads one or
more child threads to avoid resource conflicts between
the current thread and its one or more child threads.

9. The machine-readable medium of claim 8, wherein the
resources include at least one of hardware registers and
memory used by the respective thread.

10. The machine-readable medium of claim 8, wherein
the resources allocated to the one or more child threads are
recorded in a data Structure accessible by the current thread.

11. The method of claim 1, further comprising updating
resource information in a data Structure regarding the
resources allocated to the current thread, the data structure
being accessible by a parent thread of the current thread.

12. The machine-readable medium of claim 8, wherein
the method further comprises repeating the Selecting, deter
mining, and allocating in a bottom-up order until each of the
one or more threads has been processed.

13. The machine-readable medium of claim 12, wherein
the method further comprises allocating resources for a main
thread that is a parent thread of the one or more threads after
each of the one or more threads has been processed, the
resources of the main thread are allocated in View of
resources allocated to the one or more threads.

14. The machine-readable medium of claim 8, wherein
the method further comprises:

US 2005/0071841 A1

determining whether there are resources remaining in the
data processing System prior to the allocating the
resources for the current thread; and

deleting at least one child thread of the current thread; and
allocating the resources for the current thread using the

resources associated with the at least one deleted child
thread.

15. A data processing System, comprising:
a processor capable of performing multi-threading opera

tions,
a memory coupled to the processor; and
a process executed by the processor from the memory to

cause the processor to
Select, during a compilation of code having one or more

threads executable in a data processing System, a
current thread having a most bottom order,

determine resources allocated to one or more child
threads spawned from the current thread, and

allocate resources for the current thread in consider
ation of the resources allocated to the current
threads one or more child threads to avoid resource
conflicts between the current thread and its one or
more child threads.

16. The data processing System of claim 15, wherein the
process further causes the processor to update resource

Mar. 31, 2005

information in a data Structure regarding the resources
allocated to the current thread, the data Structure being
accessible by a parent thread of the current thread.

17. The data processing system of claim 16, wherein the
process further causes the processor to repeat the Selecting,
determining, and allocating in a bottom-up order until each
of the one or more threads has been processed.

18. The data processing system of claim 17, wherein the
process further causes the processor to allocate resources for
a main thread that is a parent thread of the one or more
threads after each of the one or more threads has been
processed, the resources of the main thread are allocated in
View of resources allocated to the one or more threads.

19. The data processing system of claim 15, wherein the
process further causes the processor to:

determine whether there are resources remaining in the
data processing System prior to the allocating the
resources for the current thread; and

delete at least one child thread of the current thread; and

allocate the resources for the current thread using the
resources associated with the at least one deleted child
thread.

20. The data processing system of claim 15, wherein the
resources include at least one of hardware registers and
memory used by the respective thread.

