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(57) ABSTRACT 

Methods and apparatuses for thread management for multi 
threading are described herein. In one embodiment, exem 
plary process includes Selecting, during a compilation of 
code having one or more threads executable in a data 
processing System, a current thread having a most bottom 
order, determining resources allocated to one or more child 
threads spawned from the current thread, and allocating 
resources for the current thread in consideration of the 
resources allocated to the current threads one or more child 
threads to avoid resource conflicts between the current 
thread and its one or more child threads. Other methods and 
apparatuses are also described. 

500 

501 

Create an internal thread pool to maintain a list of logical thread 
Contexts which may be used by one or more speculative threads 

(e.g., helper threads) 

502 

Create a new thread team associated with a non-speculative thread 
(e.g., a main thread) before the non-speculative thread enters a 

precomputation region (e.g., delinquent load region), the new thread 
team initially containing only the cating thread 

Spawn one or more speculative threads from the threadpool once 
the non-speculative thread enters the precomputation region, the one 
or more speculative threads performing one or more precomputations 

(e.g., prefetching for the non-speculative thread 
503 

Execute at least a portion of code in the non-speculative thread, 
using in part at least a portion of data provided (e.g., prefetched or 
precomputed) by the one or more speculative threads (e.g., helper 

threads) 
54 

Terminate the one or more speculative threads associated with the 
non-speculative thread and release the logical thread contexts 

associated with the terminated speculative threads back to the thread 
pool for future use 

505 



Patent Application Publication Mar. 31, 2005 Sheet 1 of 15 US 2005/0071841 A1 

104 100 

Cache 

103 107 105 106 

Volatile Nonviolatile 
Microprocessor RAM Memory 

(e.g. hard drive) 

102 
109 

Display Controller I/O 
& Display Device Controller(s) 

108 

I/O 
110 Device(s) 

(e.g. mouse, or 
keyboard, or 
modem, Or 

network interface, 
or printer) 

  

  



Patent Application Publication Mar. 31, 2005 Sheet 2 of 15 US 2005/0071841 A1 

200 

Processor 
204 

Execution Core 
230 

Fig. 2 

  

  



Patent Application Publication Mar. 31, 2005 Sheet 3 of 15 US 2005/0071841 A1 

300 

Processor 
304 

Logical 
Processor(s) 

350 

N 
310 N M 

N N V 

N y 
N 
N N 
Y N N 

Y y 
N 
N M 
\\ N 

-----------.S.------------ 
Y Y s w 

a 
N 

ar y 

/ Slicer y 
? Delinquent 322 y 

f Load identifier Compiler \ 
320 308 

328 
Code Generator 

Parallelization d 
Analyzer f 

w 324 A. 

  

  



Patent Application Publication Mar. 31, 2005 Sheet 4 of 15 US 2005/0071841 A1 

400 

Logical Processor Logical 
PrOCeSSOr Processor 

Fig. 4A 
(Prior Art) 

450 

Thread Switch 

Logical Logical Processor 
Processor O Processor 

Fig. 4B 

  



Patent Application Publication Mar. 31, 2005 Sheet 5 of 15 US 2005/0071841 A1 

Create an internal thread pool to maintain a fist of logical thread 
Contexts which may be used by one or more speculative threads 

(e.g., helper threads) 
501 

Create a new thread team associated with a non-speculative thread 
(e.g., a main thread) before the non-speculative thread enters a 

precomputation region (e.g., delinquent foad region), the new thread 
team initially containing only the calling thread 

502 

Spawn one or more speculative threads from the thread pool once 
the non-speculative thread enters the precomputation region, the one 
or more speculative threads performing one or more precomputations 

(e.g., prefetching) for the non-speculative thread 
503 

Execute at least a portion of code in the non-speculative thread, 
using in part at least a portion of data provided (e.g., prefetched or 
precomputed) by the one or more speculative threads (e.g., helper 

threads) 
504 

Terminate the one or more speculative threads associated with the 
non-speculative thread and release the logical thread Contexts 

associated with the terminated speculative threads back to the thread 
pool for future use 
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700 

identifying delinquent load on a main thread (e.g., non 
speculative thread) including, for example, generating 

profiles and analyzing profiles 
701. 

Performing parallelization analysis for helper threads (e.g., 
speculative threads) including, for example, generating 

dependent graph, slicing, scheduling, communication, and 
Synchronization 

702 

Perform code generation for helper threads including, for 
example, generating thread graph, communication, and 

synchronization 
703 

Allocate resources, Such as hardware registers or 
memory, for each helper threads and the main thread to 

avoid resource Conflicts 
704 
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Building a dependent graph that captures both data and control 
dependences of the main thread (e.g., non-speculative thread) 
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Perform slicing of the main thread using the dependent graph 
802 

Perform scheduling across the threads to overlap multiple prefetches 
even if one thread stalls 

803 

Select a communication Scheme (e.g., communication-based 
scheme or computation-based scheme) for the threads 

804 

Determine a synchronization period for the threads to synchronize 
with each other 
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METHODS AND APPARATUSES FOR THREAD 
MANAGEMENT OF MULTTHREADING 

FIELD 

0001 Embodiments of the invention relate to information 
processing System; and more specifically, to thread manage 
ment for multi-threading. 

BACKGROUND 

0002 Memory latency has become the critical bottleneck 
to achieving high performance on modern processors. Many 
large applications today are memory intensive, because their 
memory acceSS patterns are difficult to predict and their 
working Sets are becoming quite large. Despite continued 
advances in cache design and new developments in prefetch 
ing techniques, the memory bottleneck problem Still persists. 
This problem worSens when executing pointer-intensive 
applications, which tend to defy conventional Stride-based 
prefetching techniques. 

0003. One solution is to overlap memory stalls in one 
program with the execution of useful instructions from 
another program, thus effectively improving System perfor 
mance in terms of overall throughput. Improving throughput 
of multitasking workloads on a Single processor has been the 
primary motivation behind the emerging simultaneous mul 
tithreading (SMT) techniques. An SMT processor can issue 
instructions from multiple hardware contexts, or logical 
processors (also referred to as hardware threads), to the 
functional units of a Super-Scalar processor in the same 
cycle. SMT achieves higher overall throughput by increas 
ing overall instruction-level parallelism available to the 
architecture via the exploitation of the natural parallelism 
between independent threads during each cycle. 
0004 SMT can also improve the performance of appli 
cations that are multithreaded. However, SMT does not 
directly improve the performance, in terms of reducing 
latency, of Single-threaded applications. Since the majority 
of desktop applications in the traditional PC environment are 
Still Single-threaded, it is important to investigate if and how 
SRI resources can be exploited to enhance Single-threaded 
code performance by reducing its latency. In addition, the 
current compiler typically cannot automatically allocate 
resources for the threads it created. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 The invention may best be understood by referring 
to the following description and accompanying drawings 
that are used to illustrate embodiments of the invention. In 
the drawings: 
0006 FIG. 1 illustrates a computer system having multi 
threading capability according to one embodiment. 
0007 FIG. 2 illustrates a computer system having multi 
threading capability according to an alternative embodi 
ment. 

0008 FIG. 3 illustrates a computer system having a 
compiler capable of generating a helper thread according to 
one embodiment. 

0009 FIG. 4A illustrates a typical symmetric multi 
threading process. 
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0010 FIG. 4B illustrates an asymmetric multi-thread 
process according to one embodiment. 
0011 FIG. 5 is flow diagram illustrating an exemplary 
process for executing one or more helper threads according 
to one embodiment. 

0012 FIG. 6 is a block diagram illustrating exemplary 
Software architecture of a multi-threading System according 
to one embodiment. 

0013 FIG. 7 is a flow diagram illustrating an exemplary 
process for generating a helper thread according to one 
embodiment. 

0014 FIG. 8 is a flow diagram illustrating an exemplary 
process for parallelization analysis according to one embodi 
ment. 

0.015 FIGS. 9A-9C show pseudo code for an applica 
tion, a main thread, and a helper thread according to one 
embodiment. 

0016 FIG. 10 is a block diagram illustrating an exem 
plary thread configuration according to one embodiment. 
0017 FIG. 11 is a block diagram illustrating an exem 
plary pseudo code for allocating resources for the threads 
according to one embodiment. 
0018 FIG. 12 is a block diagram illustrating an exem 
plary resource data structure containing resource informa 
tion for the threads according to one embodiment. 
0019 FIG. 13 is a flow diagram illustrating an exemplary 
process for allocating resources for threads according to one 
embodiment. 

0020 FIGS. 14A-14D show results of a variety bench 
mark tests using embodiments of techniques. 

DETAILED DESCRIPTION 

0021 Methods and apparatuses for compiler-creating 
helper threads for multi-threading Systems are described. 
According to one embodiment, a compiler, also referred to 
as AutoHelper, that implements thread-based prefetching 
helper threads on a multi-threading System, Such as, for 
example, the Intel Pentium TM 4 Hyper-Threading systems, 
available from Intel Corporation. In one embodiment, the 
compiler automates the generation of helper threads for 
Hyper-Threading processors. The techniques focus at iden 
tifying and generating helper threads of minimal sizes that 
can be executed to achieve timely and effective data 
prefetching, while incurring minimal communication over 
head. A runtime System is also implemented to efficiently 
manage the helper threads and the Synchronization between 
threads. Consequently, helper threads are able to issue 
timely prefetches for the Sequential pointer-intensive appli 
cations. 

0022. In addition, hardware resources such as register 
contexts may be managed for helper threads within a com 
piler. Specifically, the register Set may be Statically or 
dynamically partitioned between main thread and helper 
threads, and between multiple helper threads. As a result, the 
live-in/live-out register copies via memory for threads may 
be avoided and the threads may be destroyed at compile 
time, when the compiler runs out of resources, or at runtime 
when infrequent cases of certain main thread event occurs. 
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0023. In the following description, numerous specific 
details are set forth. However, it is understood that embodi 
ments of the invention may be practiced without these 
Specific details. In other instances, well-known circuits, 
Structures and techniques have not been shown in detail in 
order not to obscure the understanding of this description. 

0024. Some portions of the detailed descriptions which 
follow are presented in terms of algorithms and Symbolic 
representations of operations on data bits within a computer 
memory. These algorithmic descriptions and representations 
are used by those skilled in the data processing arts to most 
effectively convey the Substance of their work to others 
skilled in the art. An algorithm is here, and generally, 
conceived to be a Self-consistent Sequence of operations 
leading to a desired result. The operations are those requir 
ing physical manipulations of physical quantities. Usually, 
though not necessarily, these quantities take the form of 
electrical or magnetic Signals capable of being Stored, trans 
ferred, combined, compared, and otherwise manipulated. It 
has proven convenient at times, principally for reasons of 
common usage, to refer to these signals as bits, values, 
elements, Symbols, characters, terms, numbers, or the like. 

0.025. It should be borne in mind, however, that all of 
these and Similar terms are to be associated with the appro 
priate physical quantities and are merely convenient labels 
applied to these quantities. Unless Specifically Stated other 
wise as apparent from the following discussion, it is appre 
ciated that throughout the description, discussions utilizing 
terms Such as “processing or “computing or "calculating 
or “determining” or “displaying or the like, refer to the 
action and processes of a computer System, or Similar data 
processing device, that manipulates and transforms data 
represented as physical (e.g. electronic) quantities within the 
computer System's registers and memories into other data 
Similarly represented as physical quantities within the com 
puter System memories or registers or other Such informa 
tion Storage, transmission or display devices. 

0.026 Embodiments of the present invention also relate to 
apparatuses for performing the operations described herein. 
An apparatus may be specially constructed for the required 
purposes, or it may comprise a general purpose computer 
Selectively activated or reconfigured by a computer program 
Stored in the computer. Such a computer program may be 
Stored in a computer readable Storage medium, Such as, but 
is not limited to, any type of disk including floppy disks, 
optical disks, CD-ROMs, and magnetic-optical disks, read 
only memories (ROMs), random access memories (RAMs) 
such as Dynamic RAM (DRAM), erasable programmable 
ROMs (EPROMs), electrically erasable programmable 
ROMs (EEPROMs), magnetic or optical cards, or any type 
of media Suitable for Storing electronic instructions, and 
each of the above Storage components is coupled to a 
computer System bus. 

0027. The algorithms and displays presented herein are 
not inherently related to any particular computer or other 
apparatus. Various general purpose Systems may be used 
with programs in accordance with the teachings herein, or it 
may prove convenient to construct more specialized appa 
ratus to perform the methods. The structure for a variety of 
these Systems will appear from the description below. In 
addition, embodiments of the present invention are not 
described with reference to any particular programming 
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language. It will be appreciated that a variety of program 
ming languages may be used to implement the teachings of 
the embodiments of the invention as described herein. 

0028. A machine-readable medium includes any mecha 
nism for Storing or transmitting information in a form 
readable by a machine (e.g., a computer). For example, a 
machine-readable medium includes read only memory 
(“ROM"); random access memory (“RAM”); magnetic disk 
Storage media, optical Storage media; flash memory devices, 
electrical, optical, acoustical or other form of propagated 
Signals (e.g., carrier waves, infrared signals, digital signals, 
etc.), etc. 
0029 FIG. 1 is a block diagram of an exemplary com 
puter which may be used with an embodiment. For example, 
exemplary system 100 shown in FIG. 1 may perform the 
processes shown in FIGS. 5-8. Exemplary system 100 may 
be a multi-threading system, such as an Intel Pentium TM 4 
Hyper-Threading system. Exemplary system 100 may be a 
Simultaneous multithreading (SMT) or chip multiprocessing 
(CMP) enabled system. 
0030) Note that while FIG. 1 illustrates various compo 
nents of a computer System, it is not intended to represent 
any particular architecture or manner of interconnecting the 
components, as Such details are not germane to the present 
invention. It will also be appreciated that network comput 
ers, handheld computers, cell phones, and other data pro 
cessing Systems which have fewer components or perhaps 
more components may also be used with the present inven 
tion. 

0031. As shown in FIG. 1, the computer system 100, 
which is a form of a data processing System, includes a bus 
102 which is coupled to a microprocessor 103 and a ROM 
107, a volatile RAM 105, and a non-volatile memory 106. 
The microprocessor 103, which may be a Pentium processor 
from Intel Corporation or a PowerPC processor from 
Motorola, Inc., is coupled to cache memory 104 as shown in 
the example of FIG. 1. The bus 102 interconnects these 
various components together and also interconnects these 
components 103, 107, 105, and 106 to a display controller 
and display device 108, as well as to input/output (I/O) 
devices 110, which may be mice, keyboards, modems, 
network interfaces, printers, and other devices which are 
well-known in the art. Typically, the input/output devices 
110 are coupled to the System through input/output control 
lers 109. The volatile RAM 105 is typically implemented as 
dynamic RAM (DRAM) which requires power continuously 
in order to refresh or maintain the data in the memory. The 
non-volatile memory 106 is typically a magnetic hard drive, 
a magnetic optical drive, an optical drive, or a DVD RAM 
or other type of memory System which maintains data even 
after power is removed from the system. Typically the 
non-volatile memory will also be a random acceSS memory, 
although this is not required. While FIG. 1 shows that the 
non-volatile memory is a local device coupled directly to the 
rest of the components in the data processing System, it will 
be appreciated that the present invention may utilize a 
non-volatile memory which is remote from the System, Such 
as a network Storage device which is coupled to the data 
processing System through a network interface Such as a 
modem or Ethernet interface. The bus 102 may include one 
or more buses connected to each other through various 
bridges, controllers, and/or adapters, as is well-known in the 



US 2005/0071841 A1 

art. In one embodiment, the I/O controller 109 includes a 
USB (Universal Serial Bus) adapter for controlling USB 
peripherals or a PCI controller for controlling PCI devices, 
which may be included in IO devices 110. In a further 
embodiment, I/O controller 109 includes an IEEE-1394 
controller for controlling IEEE-1394 devices, also known as 
FireWire devices. 

0032. According to one embodiment, processor 103 may 
include one or more logical hardware contexts, also referred 
to as logical processors, for handling multiple threads Simul 
taneously, including a main thread, also referred to as a 
non-speculative thread, and one or more helper threads, also 
referred to as Speculative threads, of an application. Proces 
Sor 103 may be a Hyper Threading processor, Such as a 
Pentium 4 or a Xeon processor capable of performing 
multithreading processes from Intel Corporation. During an 
execution of an application, the main thread and one or more 
helper threads are executed in parallel. The helper threads 
are speculatively executed associated with, but Somewhat 
independent to, the main thread to perform Some precom 
putations, Such as Speculative prefetches of addresses or 
data, for the main thread to reduce the memory latency 
incurred by the main thread. 
0.033 According to one embodiment, the code of the 
helper threads (e.g., the Source code and the binary execut 
able code) are generated by a compiler, Such as AutoHelper 
compiler available from Intel Corporation, loaded and 
executed in a memory, such as volatile RAM 105, by an 
operating System (OS) executed by a processor, Such as 
processor 103. The operating System running within the 
exemplary system 100 may be a Windows operating system 
from Microsoft Corporation or a Mac OS from Apple 
Computer. Alternatively, the operating System may be a 
Linux or Unix operating System. Other operating Systems, 
Such as embedded real-time operating Systems, may be 
utilized. 

0034 Current Hyper-Threading processors typically pro 
vide two hardware contexts, or logical processors. To 
improve the performance of a Single-threaded application, 
Hyper-Threading technology can utilize its Second context 
to perform prefetching for the main thread. Having a sepa 
rate context allows the helper threads execution to be 
decoupled from the control flow of the main thread, unlike 
Software prefetching. By running far ahead of the main 
thread to perform long-range prefetches, the helper threads 
can trigger prefetches early, and eliminate or reduce the 
cache miss penalties experienced by the main thread. 
0035. With AutoHelper, a compiler is able to automati 
cally generate prefetching helper threads for Hyper-Thread 
ing machines. The helper threads aim at bringing the 
latency-hiding benefit of multithreading to Sequential work 
loads. Unlike threads produced by the conventional paral 
lelizing compilers, the helper threads only prefetch for the 
main thread, which does not reuse the computed results from 
the helper threads. According to on embodiment, the pro 
gram correctness is Still maintained by the main threads 
execution, while the helper threads do not affect program 
correctness and are used Solely for performance improve 
ment. This attribute permits the use of more aggressive 
forms of optimization in generating helper threads. For 
example, when the main thread does not need help, certain 
optimizations may be performed, which are not possible 
with conventional throughput threading paradigm. 
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0036). In one embodiment, if it is predicted that a helper 
is not needed for a certain period of time, the helper may 
terminate and release all the resources associate with the 
helper to main thread. According to another embodiment, if 
it is predicted that a helper may be needed shortly, the helper 
may be in a pause mode, which Still consumes Some 
resources on Hyper-Threading hardware. Exponential back 
off (via halting) will be invoked if the helper stays in the 
pause mode too long (e.g., exceeding a programmable 
timeout period). According to a further embodiment, if the 
compiler cannot predict when the helper thread will be 
needed, the helper may be in a Snooze mode and may 
relinquish the occupied processor resources to the main 
thread. 

0037. Furthermore, according to one embodiment, per 
formance monitoring and on-the-fly adjustments are made 
possible under helper-threading paradigm, because the 
helper thread does not contribute to the Semantics of the 
main program. When a main thread needs a helper, it will 
wake up the main thread. For example, with respect to a 
run-away helper or a run-behind thread, one of the processes 
described above may be invoked to adjust the run-away 
helper thread. 
0038 FIG. 2 is a block diagram illustrating one embodi 
ment of a computing System 200 capable of performing the 
disclosed techniques. In one embodiment, the computing 
system 200 includes a processor 204 and a memory 202. 
Memory 202 may store instructions 210 and data 212 for 
controlling the operation of the processor 204. The processor 
204 may include a front end 221 that supplies instruction 
information to an execution core 230. The front end 221 may 
Supply the instruction information to the processor core 204 
in program order. 
0039 For at least one embodiment, the front end 221 
includes a fetch/decode unit 222 that includes logically 
independent SequencerS 220 for each of a plurality of thread 
contexts. The logically independent Sequencer(s) 220 may 
include marking logic 280 to mark the instruction informa 
tion for Speculative threads as being “speculative.” One 
skilled in the art will recognize that, for an embodiment 
implemented in a multiple processor multithreading envi 
ronment, only one Sequencer 220 may be included in the 
fetch/decode unit 222. 

0040 AS used herein, the term “instruction information” 
is meant to refer to instructions that can be understood and 
executed by the execution core 230. Instruction information 
may be stored in a cache 225. The cache 225 may be 
implemented as an execution instruction cache or an execu 
tion trace cache. For embodiments that utilize an execution 
instruction cache, “instruction information' includes 
instructions that have been fetched from an instruction cache 
and decoded. For embodiments that utilize a trace cache, the 
term “instruction information' includes traces of decoded 
micro-operations. For embodiments that utilize neither an 
execution instruction cache nor trace cache, “instruction 
information” also includes raw bytes for instructions that 
may store in an instruction cache Such as I cache 244. 
0041 FIG. 3 is a block diagram illustrating an exemplary 
System containing a compiler to generate one or more helper 
threads according to one embodiment. Referring to FIG. 3, 
exemplary processing System 300 includes a memory Sys 
tem 302 and a processor 304. Memory system 302 may store 
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instructions 310 and data 312 for controlling the operation of 
the processor 304. For example, instructions 310 may 
include a compiler program 308 that, when executed, causes 
the processor 304 to compile a program that resides in the 
memory system 302. Memory 302 holds the program to be 
compiled, intermediate forms of the program, and a resulting 
compiled program. For at least one embodiment, the com 
piler program 308 includes instructions to generate code for 
one or more helper threads with respect to a main thread. 
0.042 Memory system 302 is intended as a generalized 
representation of memory and may include a variety of 
forms of memory, such as a hard drive, CD-ROM, random 
access memory (RAM), dynamic random access memory 
(DRAM), static random access memory (SRAM) and 
related circuitry. Memory system 302 may store instructions 
310 and/or data 312 represented by data signals that may be 
executed by processor 304. The instructions 310 and/or data 
312 may include code for performing any or all of the 
techniques discussed herein. 

0.043 Specifically, compiler 308 may include a delin 
quent load identifier 320 that, when executed by the pro 
ceSSor 304, identifies one or more delinquent load regions of 
a main thread. The compiler 308 may also include a paral 
lelization analyzer 324 that, when executed by the processor 
304, performs one or more parallelization analysis for the 
helper threads. Also, the compiler 308 may include a slicer 
322 that identifies one or more slices to be executed by a 
helper thread in order to perform speculative precomputa 
tion. The compiler 308 may further include a code generator 
328 that, when executed by the processor 304, generates the 
code (e.g., Source and executable code) for the helper 
threads. 

0044) Executing helper threads in an SMT machine is a 
form of asymmetric multithreading, as shown in FIG. 4B 
according to one embodiment. Traditional parallel program 
ming models provide Symmetric multithreading, as shown in 
FIG. 4A. In contrast, the helper threads, such as helper 
threads 451-454 in FIG. 4B execute as user-level threads 
(fibers) with lightweight thread invocation and Switching. 
Furthermore, Symmetric multithreading requires well-tuned 
data decomposition acroSS Symmetric threads, Such as 
threads 401–404 in FIG. 4A. In the helper thread model, 
according to one embodiment, the main thread runs the 
Sequential code that operates on the entire data Set, without 
incurring data decomposition overhead. Without decompos 
ing the data, the compiler instead focuses on providing 
multiple helpers for timely prefetches for the main thread’s 
data. 

004.5 FIG. 5 is a flow diagram illustrating an exemplary 
proceSS for executing a helper thread according to one 
embodiment. Exemplary process 500 may be performed by 
a processing logic that may comprise hardware (circuitry, 
dedicated logic, etc.), Software (such as is run on a general 
purpose computer System or a dedicated machine), or a 
combination of both. In one embodiment, exemplary proceSS 
500 includes executing a main thread of an application in a 
multi-threading System, and Spawning one or more helper 
threads from the main thread to perform one or more 
computations for the main thread when the main thread 
enters a region having one or more delinquent loads, code of 
the one or more helper thread being created during a 
compilation of the main thread. 
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0046 Referring to FIG. 5, at block 501, the processing 
logic creates an internal thread pool to maintain a list of 
logical thread contexts which may be used by one or more 
helper threads. At block 502, a new thread team may be 
created before a main thread enters a delinquent load region 
(e.g., precomputation region) which may be identified by a 
compiler. In one embodiment, the new thread team initially 
contains only the calling thread. According to one embodi 
ment, the compiler may insert a Statement, Such as 
Start helper Statement, before the main thread enters the 
region to activate one or more helper threads. At block 503, 
when the main thread enters the region, the main thread 
spawns (via a function call, Such as invoke helper) one or 
more helper threads which are created using the resources 
from the thread pool to perform one or more precomputa 
tions, Such as prefetching addresses and data, for the main 
thread. According to one embodiment, if no logical proces 
Sor is available for executing the Spawned helper threads, the 
helper threads may be created and placed in a run queue for 
the thread team for Subsequent execution. In one embodi 
ment, the run queue may be associated with a time-out. The 
request to invoke a helper is simply dropped (e.g., termi 
nated) after the time-out period expires, assuming that the 
prefetch will no longer be timely. This is different from 
traditional task-queue model for parallel programming, 
where each task needs to be executed. 

0047. At block 504, at least a portion of the code within 
the region of the main thread is executed using in part the 
data (e.g., prefetched or precomputed) provided by the one 
or more helper threads. According to one embodiment, the 
results computed by a helper thread are not integrated into 
the main thread. The benefit of a helper thread lies in its side 
effects of prefetching, not in reusing its computation results. 
This allows the compiler to aggressively optimize the code 
generation for helper threads. The main thread handles the 
correctness issue, while the helper threads target the perfor 
mance of a program. This also allows the helper thread 
invoking Statement, Such as invoke helper, to drop requests 
whenever deemed appropriate. Finally, non-faulting instruc 
tions, Such as the prefetch instructions, may be used to avoid 
disruptions to the main thread if exceptions are signaled in 
a helper thread. 
0048. At block 505, the one or more helper threads 
associated with the main thread are terminated (via a func 
tion call, Such as finish helper) when the main thread is 
about to exit the delinquent load region and the resources, 
Such as logical thread contexts, associated with the termi 
nated helper threads are released back to the thread pool. 
This enables future requests to immediately recycle the 
logical thread contexts from the thread pool. Other opera 
tions apparent to those with ordinary skill in the art may be 
included. 

0049) Hyper-Threading technology is well suited for Sup 
porting the execution of one or more helper threads. Accord 
ing to one embodiment, in each processor cycle, instructions 
from either of the logical processors can be Scheduled and 
executed Simultaneously on shared execution resources. 
This allows helper threads to issue timely prefetches. In 
addition, the entire on-chip cache hierarchy is shared 
between the logical processors, which is useful for helper 
threads to effectively prefetch for the main thread at all 
levels of the cache hierarchy. Furthermore, although the 
physical execution resources are shared between the logical 
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processors, the architecture State is duplicated in a Hyper 
Threading processor. The execution of helper threads will 
not alter the architecture State in the logical processor 
executing the main thread. 
0050. However, on Hyper-Threading technology enabled 
machines, helper threads can Still impact the execution of 
main thread due to the writes to memory. Because helper 
threads share memory with the main thread, the execution of 
helper threads should be guaranteed not to write to the data 
Structures of the main thread. In one embodiment, the 
compiler (e.g., AutoHelper) provides memory protection 
between the main thread and the helper threads. The com 
piler removes Stores to non-local variables in the helper 
threads. 

0051 FIG. 6 is a block diagram illustrating an exemplary 
architecture of a compiler according to one embodiment. In 
one embodiment, exemplary architecture 600 includes, 
among others, a front end module 601, profiler 602, inter 
procedural analysis and optimization module 603, compiler 
604, global scalar optimization module 605, and backend 
module 606. In one embodiment, front end module 601 
provides a common intermediate representation, Such as ILO 
representation from Intel Corporation, for Source codes 
written in a variety of programming languages, Such as 
C/C++ and Fortran. As a result, the compiler, Such as 
AutoHelper 604 is applicable irrespective of the source 
languages and of the target platforms. Profiler 602 performs 
a profiling run to examine the characteristics of the repre 
Sentation. Interprocedural analysis module 603 may exposes 
optimization opportunities acroSS procedure call boundaries. 
Thereafter, the compiler 604 (e.g., AutoHelper) is invoked to 
generate code for one or more helper threads. Global Scalar 
optimization module 605 applies, using partial redundancy 
elimination to minimize the number of times an expression 
is evaluated. Finally, backend module 606 generates binary 
code for the helper threads for a variety of platforms, Such 
as IA-32 or Itanium platform from Intel Corporation. Other 
components apparent to those with ordinary skill in the art 
may be included. 
0.052 Unlike a conventional approach, AutoHelper (e.g., 
the compiler) eliminates the profile-instrumentation pass to 
make the tool easier to use. According to one embodiment, 
the compiler can directly analyze the output from profiling 
results, such as those generated by Intel's VTuneTM Perfor 
mance Analyzer, which is enabled for Hyper-Threading 
technology. Because it is a middle-end pass instead of a 
post-pass tool, the compiler is able to utilize Several product 
quality analyses, Such as array dependence analysis and 
global Scalar optimization, etc. These analyses, invoked 
after the compiler, perform aggressive optimizations on the 
helper threads code. 
0.053 According to one embodiment, the compiler gen 
erates one or more helper threads to precompute and 
prefetch the address accessed by a load that misses the cache 
frequently, also referred to as a delinquent load. The com 
piler also generates one or more triggers in the main thread 
that Spawns one or more helper threads. The compiler 
implements the trigger as an invoking function, Such as the 
invoke helper function call. Once the trigger is reached, the 
load is expected to appear later in the instruction Stream of 
the main thread, hence the Speculatively executed helper 
threads can reduce the number of cache misses in the main 
thread. 
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0054 FIG. 7 is flow diagram illustrating an exemplary 
process performed by a compiler, Such as AutoHelper, 
according to one embodiment. Exemplary process 700 may 
be performed by a processing logic that may comprise 
hardware (circuitry, dedicated logic, etc.), Software (Such as 
is run on a general purpose computer System or a dedicated 
machine), or a combination of both. In one embodiment, 
exemplary process 700 starts at block 701, to identifying 
delinquent loads using, for example, the VTune tool from 
Intel Corporation, to perform parallelization analysis for 
helper threads (block 702), to generate code for helper 
threads (block 703), and to allocate resources, such as 
hardware registers or memories for each helper threads and 
the main thread (block 704), which will be described in 
details further below. 

0055 According to one embodiment, the compiler iden 
tifies the most delinquent loads in an application Source code 
using one or more run-time profiles. Traditional compilers 
collect the profiles in two steps: profile-instrumentation and 
profile-generation. However, because cache miss is not an 
architecture feature that is exposed to the compilers, profile 
instrumentation pass does not permit instrumentation of 
cache misses for the compiler to identify delinquent loads. 
The profiles for each cache hierarchy are collected via a 
utility, such as the VTune TM Analyzer from Intel Corpora 
tion. In one embodiment, the application may be executed 
with debugging information in a separate profiling run prior 
to the compiler. During the profiling run, cache misses are 
sampled and the hardware counters are accumulated for each 
Static load in the application. 
0056. The compiler identifies the candidates for thread 
based prefetching. In a particular embodiment, the VTune TM 
Summarizes the cache behavior on a per-load basis. Because 
the binary for the profiling run is compiled with the debug 
information (e.g., debug Symbols), it is possible to correlate 
the profiles back to Source line numbers and the Statements. 
Certain loads that contribute more than a predetermined 
threshold may be identified as delinquent loads. In a par 
ticular embodiment, the top loads that contribute to 90% of 
cache misses are denoted as delinquent loads. 
0057. In addition to identifying delinquent load instruc 
tions, the compiler generates helper threads that compute the 
addresses of delinquent loads accurately. In one embodi 
ment, Separate code for helper threads is generated. The 
Separation between the main thread and the helper threads 
code prevents transformations on a helper threads code 
from affecting the main thread. In one embodiment, the 
compiler uses multi-entry threading, instead of conventional 
out-lining, in the Intel product compiler to generate Separate 
codes for helper threads. 
0058. Furthermore, according to one embodiment, the 
compiler performs multi-entry threading at the granularity of 
a compiler-Selected code region, denoted as precomputation 
region. This region encompasses a Set of delinquent loads 
and defines the Scope for Speculative precomputation. In one 
embodiment, the implementation usually targets loop 
regions, because loops are usually the hot Spots in program 
execution, and the delinquent loads are the loads that were 
executed many times, usually in a loop. 
0059 FIG. 8 is flow diagram illustrating an exemplary 
process for parallelization analysis according to one embodi 
ment. Exemplary process 800 may be performed by a 
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processing logic that may comprise hardware (circuitry, 
dedicated logic, etc.), Software (such as is run on a general 
purpose computer System or a dedicated machine), or a 
combination of both. Referring to FIG. 8, at block 801, the 
processing logic builds a dependent graph that captures both 
data and control dependencies of the main thread. According 
to one embodiment, in order to filter out unrelated code and 
thus reduce the size of a helper threads code, the compiler 
first builds a graph that captures both data and control 
dependences. The effectiveness and legality of filtering rely 
on the compiler's ability to accurately disambiguate memory 
references. As a result, a memory disambiguation module in 
the compiler is invoked to disambiguate pointers to dynami 
cally allocated objects. Because a pointer could be a global 
variable or a function parameter, the points-to analysis 
performed by the compiler is interprocedural, if the compiler 
compiles in the whole-program mode. In one embodiment, 
in order to build the dependence graph more accurately, a 
Series of array dependence tests may be performed, So that 
each element in an array is disambiguated in building the 
dependence graph, if all the array accesses are finite expres 
Sions. Otherwise, approximation is used. Furthermore, each 
field in a structure may be disambiguated. 

0060 Referring back to FIG. 8, at block 802, the pro 
cessing logic performs a slicing operation on the main thread 
using the dependent graph. During Slicing, according to one 
embodiment, the compiler first identifies the load addresses 
of delinquent loads as Slice criteria, which Specify the 
intermediate slicing results. After building the dependence 
graph, the compiler computes the program Slices of the 
identified Slice criteria. The program Slices of the Slice 
criteria are defined as the Set of instructions that contribute 
to the computation of the addresses for memory prefetches 
executed by the one or more helper threads. Slicing can 
reduce the code to only the instructions relevant to the 
computation of an address, thus allows the helper threads to 
run quicker and ahead of the main thread. The compiler only 
needs to copy instructions in a slice to the helper threads 
code. 

0061 According to one embodiment, slicing in the com 
piler extracts a minimal Sequence of instructions to produce 
the addresses of delinquent loads by transitively traversing 
the dependence edges backwards. The leaf nodes on the 
dependence graph of the resulting Slices can be converted to 
prefetch instructions, because no further instructions are 
dependent on those leaf nodes. Those prefetch instructions 
executed by a processor, such as the Pentium TM 4 from Intel 
Corporation, are both non-blocking and non-faulting. Dif 
ferent prefetch instructions exist for bringing data into 
different levels of cache in the memory hierarchy. 
0.062 According to one embodiment, slicing operations 
may be performed with respect to a given code region. 
Traversal on the dependence graph in a given region must 
terminate when it reaches code outside of that region. Thus, 
Slicing must be terminated during traversal instead of after 
traversal, because the graph traversal may span to the 
outside of a region and then back to the inside of a region. 
Simply collecting the Slices according to regions after the 
traversal may lose precision. 

0.063. In a further embodiment, the compiler slices each 
delinquent loads instruction one by one. To minimize the 
duplication of code in helper threads and reduce the over 
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head of thread invocation and Synchronization, the compiler 
merges slices into one helper thread if they are in the same 
precomputation region. 

0064) Referring back to FIG. 8, at block 803, the pro 
cessing logic performs Scheduling acroSS the threads to 
overlap multiple prefetches. In one embodiment, Since 
Hyper-Threading processors Support out-of-order execution 
with large Scheduling windows, the processors can look for 
independent instructions beyond the current executing 
instruction when it waits on a pending cache miss. This 
aspect of out-of-order execution can provide Substantial 
performance gain over an in-order processor and reduce the 
need for chaining speculative precomputation. Furthermore, 
the compiler Selects basic speculative precomputation for 
Hyper-Threading processors. Namely, only one helper 
thread is Scheduled at a time to Save the thread spawning and 
communication overhead. Another benefit from using basic 
Speculative precomputation is that it does not inundate the 
memory System on our Hyper-Threading processors as fast 
as chaining speculative precomputation does. When the 
out-of-order processor looks for independent instructions for 
execution, those instructions can generate too many load 
requests and Saturate the memory System. When the helper 
threads issue prefetching requests, a large number of out 
Standing misses could rapidly fill up the miss buffer and, as 
a result, Stall the processor. Thus, the compiler needs to be 
judicious in Spawning helper threads. Finally, to ensure 
timely prefetching, the compiler pins down the single helper 
thread and the main thread on respective logical processors. 

0065 Referring back to FIG. 8, at block 804, processing 
logic Selects a communication Scheme for the threads. In one 
embodiment, the compiler provides a module that computes 
live-neSS information for any given Slice, or any Subset of 
program. Liveness information provides estimates on the 
communication cost. The information is used to Select the 
precomputation region that provides good trade-off between 
communication and computation. The liveness information 
may help find triggerS or the points at which the backward 
Slicing ends. 

0066. Because the typical Hyper-Threading processors 
issue three micro-ops per processor cycle and use Some 
hard-partitioned resources, the compiler has to be judicious 
as not to let helper threads slow down the main threads 
execution, especially if the main thread issues three micro 
opS for execution per cycle already. For the loop nest 
encompassing delinquent loads, the compiler makes trade 
off between re-computation and communication in choosing 
the loop level for performing speculative precomputation. 
For each loop level, Starting from the innermost one, accord 
ing to one embodiment, the compiler Selects one of the 
communication-based Scheme and computation-based 
Scheme. 

0067. According to one embodiment, the communica 
tion-based Scheme communicates the live-in values from the 
main thread to the helper thread in each iteration, So the 
helper thread does not need to re-compute the live-in values. 
The compiler will select this scheme if there exists an inner 
loop encompassing most delinquent loads and if slicing for 
the inner loop significantly decreases the Size of a helper 
thread. However, this scheme will be disabled if the com 
munication cost for the inner loop level is very large. The 
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compiler will give Smaller estimate of communication cost, 
if the live-in values are computed early and the number of 
live-ins is Small. 

0068 Communication-based scheme will create multiple 
communication points between the main thread and its 
helper thread at runtime. Communication-based Scheme is 
important for Hyper-Threading processors, because relying 
on only one communication point by re-computing the Slice 
in the helper thread may create too much resource conten 
tion between threads. This Scheme is Similar to constructing 
a do-acroSS loop in that the main thread initiates the next 
iteration after it finishes computing the live-in values for that 
iteration. The Scheme trades communication for less com 
putation. 
0069. According to one embodiment, the computation 
based Scheme assumes only one communication point 
between two threads to pass in the live-in values in the 
beginning. Afterwards, the helper thread needs to compute 
everything it needs to generate accurate prefetch addresses. 
The compiler will Select this Scheme if there is no inner loop, 
or if slicing for this loop level does not significantly 
increases the size of a helper thread. Computation-based 
Scheme gives the helper thread more independence in execu 
tion, once the Single communication point is reached. 
0070 According to one embodiment, to select the loop 
level for Speculative precomputation, the compiler Selects 
the outermost loop that benefits from communication-based 
Scheme. Hence the Scheme-selection algorithm described 
above can terminate once it finds a loop with communica 
tion-based Scheme. If the compiler does not find any loop 
with communication-based Scheme, the outermost loop will 
be the targeted region for Speculative precomputation. After 
the compiler Selects the precomputation regions and their 
communication Schemes, locating good trigger points in the 
main thread would ensure timely prefetches, while mini 
mizing the communication between the main thread and the 
helper threads. Liveness information helps locate triggers, 
which are the points at which the backward Slicing ends. 
Slicing beyond the precomputation region ends when the 
number of live-ins increases. 

0071 Referring back to FIG. 8, at block 805, the pro 
cessing logic determines a Synchronization period for the 
threads to Synchronize with each other during the execution. 
According to one embodiment, the Synchronization period is 
used to express the distance between a helper thread and the 
main thread. Typically, the helper thread performs all of its 
precomputation in units of Synchronization period. This both 
minimizes communication and limits the possibility of pro 
ducing run-away helpers. Because the compiler computes 
the value of Synchronization period and generates Synchro 
nization code accordingly, Special hardware Support, Such as 
Outstanding Slice Counter, is no longer needed. 
0072) If the synchronization period is too large, the 
prefetch induced by the helper thread could not only dis 
place temporally important data to be used by the main 
thread but also potentially displace earlier prefetched data 
that have not been used by the main thread. On the other 
hand, if the Synchronization period is too Small, the prefetch 
could be too late to be useful. To decide on the value of 
Synchronization period, according to one embodiment, the 
compiler first computes the difference between the length of 
the Slice and the length of program Schedule in the main 
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thread. If the difference is Small, the run-ahead distance 
induced by the helper thread in one iteration is consequently 
small. Multiple iterations may be needed by the helper 
thread to maintain enough run-ahead distance. Hence, the 
compiler increases the Synchronization period if the differ 
ence is Small, and Vice versa. 

0073. Thereafter, the compiler generates code for the 
main thread and the helper thread during a code generation 
Stage. During the code generation Stage, the compiler builds 
a thread graph as the interface between the analysis phase 
and code generation phase. Each graph node denotes a 
Sequence of instructions, or a code region. The invocation 
edge between the nodes denotes the thread-spawning rela 
tionship, which is important for Specifying chaining helper 
threads. Having a thread graph enables code reuse because, 
according to one embodiment, the compiler also allows the 
user to insert pragmas in the Source program to specify the 
code for helper threads and the live-ins. Both the pragma 
based approach and the automatic approach share the same 
graph abstraction. As a result, the helper thread code gen 
eration module may be shared. 
0074 The helper thread code generation leverages multi 
entry threading technology in the compiler to generate 
helper thread code. In contrast to the conventional, well 
known outlining, the compiler does not create a Separate 
compilation unit (or routine) for the helper thread. Instead, 
the compiler generates a threaded entry and a threaded 
return for in the helper thread code. The compiler keeps all 
newly generated helper thread codes intact or inlined within 
the same user-defined routine without splitting them into 
independent Subroutines. This method provides later com 
piler optimizations with more opportunities for performing 
optimization on the newly generated helper threads. Fewer 
instructions in the helper thread means less resource con 
tention on a hyper-threaded processor. This demonstrates 
that using helper threads for hiding latency incurs fewer 
instructions and leSS resource contention than the traditional 
Symmetric multithreading model, which is important espe 
cially because the hyper-threaded processor issues three 
micro-ops per processor cycle and has Some hard-partitioned 
CSOUCCS. 

0075 According to one embodiment, the generated codes 
for helper threads will be re-ordered and optimized by the 
later on phases in the compiler Such as partial dead-store 
elimination (PDSE), partial redundancy elimination (PRE), 
and other Scalar optimizations. In that Sense, the helper 
thread code needs to be optimized to minimize the resource 
contention. due to the helper thread. However, those further 
optimizations may remove prefetching code as well. There 
fore, the leaf delinquent loads may be converted to the 
Volatile-assign Statements in the compiler. The leaf node in 
the dependence graph of a Slice implies that no further 
instructions in the helper thread depend on the loaded value. 
Hence, the destination of the Volatile-assign Statement is 
changed to a register temp in the representation to Speed up 
the resulting code. Using volatile-assign may prevent all 
later on compiler global optimizations from removing gen 
erated prefetches for delinquent loads. 

0076 According to one embodiment, the compiler aims 
at ensuring the helper thread to run neither too far ahead nor 
behind the main thread using a Self-counting mechanism. 
According to one embodiment, value X is pre-Set for run 
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ahead distance control. The X can be modified through a 
compiler Switch by users, or based on program analysis of 
the length of slice (or helper code) and the length of main 
code. In one embodiment, the compiler generates mc 
(M-counter) with an initial value X for main thread and hc 
(H-counter) with an initial value 0 for helper thread, and the 
compiler generates the counter M and H for counting the 
Sync-up periods in main and helper code. The idea is that the 
all four counters (mc, M, he, H) perform Self-counting. The 
helper thread has no inference to main thread. If the helper 
thread runs too far ahead of main thread, it will issue a wait, 
if the helper thread runs behind main thread, it will perform 
a catch-up. 

0077. In a particular embodiment, for every X loop 
iterations, the main thread issues a post to ensure that the 
helper is not waiting and can go ahead to perform non fault 
ing load. At this point, if the helper thread waits for the main 
thread after issuing a number of non faulting loads in 
chunks of Sync-up period, it will wake up to perform 
non faulting loads. In another particular embodiment, for 
every X loop-iterations, the helper thread examines whether 
its hc counter is greater main thread's mc counter and the hc 
counter is greater a Sync-up period HX of the helper thread, 
if So, the helper will issue a wait and go to sleep. This 
prevents the helper thread from running too far ahead of the 
main thread. In a further embodiment, before iterating over 
another chunk of Sync-up period, the helper thread examines 
whether its hc counter is Smaller than the main thread's mc 
counter. If So, the helper thread has fallen behind, and must 
"catch-up and jump ahead' by updating its counter hc and H 
and all capture private and live-in variable from the main 
thread. FIGS. 9A-9C are diagrams illustrating exemplary 
pseudo code of an application, a main thread, and a helper 
thread according to one embodiment. Referring to FIGS. 
9A-9C, the compiler compiles a source code 901 of an 
application and generates code for a main thread 902 and a 
helper thread 903 using at least one of the aforementioned 
techniques. It will be appreciated that the code 901-903 are 
not limited to C/C++. Other programming languages, Such 
as Fortran or ASSembly, may be used. 

0078. After the code for the helper threads have been 
created, the compiler may further allocate, Statically or 
dynamically, resources for each helper thread and the main 
thread to ensure that there is no resource conflict between the 
main thread and the helper threads, and among the helper 
threads. Hardware resources, Such as register contexts, may 
be managed for helper threads within the compiler. Specifi 
cally, the register Set may be Statically or dynamically 
partitioned between the main thread and the helper threads, 
and between multiple helper threads. As a result, the live 
in/live-out register copies via memory for threads may be 
avoided and the threads may be destroyed at compile-time, 
when the compiler runs out of resources, or at runtime when 
infrequent cases of certain main thread event occurs. 

0079 According to one embodiment, the compiler may 
“walk through the helper threads in a bottom-up order and 
communicates the resource utilization in a data Structure, 
such as a resource table shown in FIG. 12. The parent helper 
thread, which may be the main thread, utilizes this infor 
mation and ensures that its resources don't overlap with the 
thread resources. When the thread resources penalize the 
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main execution thread, for example by forcing the main 
thread to Spill/fill registers, the compiler can kill previously 
created threads. 

0080 FIG. 10 is a block diagram illustrating an exem 
plary configuration of threads according to one embodiment. 
In this embodiment, exemplary configuration 1000 includes 
a main thread 1001 (e.g., a parent thread) and three helper 
threads (e.g., child threads) 1002-1004, which may be 
spawned from the main thread 1001, while thread 1003 may 
be spawned from thread 1002 (e.g., helper thread 1002 is a 
parent thread of helper thread 1003). It will be appreciated 
that the helper threads are not limited to three helper threads, 
more or less helper threads may be included. The helper 
threads may be spawned by a Spawn instruction and the 
thread execution may resumes after the Spawn instruction. 
0081. The threads are created by the compiler during a 
thread creation phase, Such as those operations shown in 
FIGS. 5-8. According to one embodiment, the compiler 
creates the threads in the thread creation phase and allocates 
resources for the threads in a Subsequent thread resource 
allocation phase. Dynamically and typically, a helper thread 
is spawned when its parent thread Stalls. Exemplary con 
figuration 1000 may happen during a page fault or a level 3 
(L3) cache miss. 
0082 It is crucial that a thread can only share incoming 
registers (or resources in general) with a parent thread. For 
example, referring to FIG. 10, when main thread 1001 needs 
a register, it writes a value to register RIO before it spawns 
helper thread 1002 and uses register R10 after the helper 
thread 1002 terminates. Neither the helper thread 1002 nor 
any of its children (in the example, helper thread 1003 is the 
only children of helper thread 1002, and helper threads 1002 
and 1004 are children of the main thread 1001) can write to 
register R10. Otherwise they would destroy the value in the 
main thread 1001. This would result in incorrect program 
execution. To avoid this resource conflict, according to one 
embodiment, the compiler may partition the resources Stati 
cally or dynamically. 
0083. According to one embodiment, the compiler allo 
cates resources for the helper threads and the main thread in 
a bottom-up order. FIG. 11 is a block diagram illustrating an 
exemplary pseudo code for allocating resources for the 
threads according to one embodiment. That is, in the exem 
plary algorithm 1100, the compiler allocates all resources for 
the helper threads in a bottom-up order (block 1101) and 
thereafter allocates resources for the main thread (block 
1102) based on the resources used by the helper threads to 
avoid resource conflicts. 

0084. For the purposes of illustration, the resources used 
the threads are assumed to be the hardware registers. How 
ever, Similar concepts may be applied to other resources 
apparent to one with ordinary skill in the art, Such as 
memory or interrupt. Referring to FIG. 10, the compiler 
partitions the registers dynamically by walking bottom up 
from the lead thread of a thread chain. In this example, 
helper thread 1003 is a leaf thread in the first thread chain 
including helper thread 1002. Helper thread 1004 is a leaf 
thread in the Second thread chain. The compiler records the 
register allocation in each helper thread in a data Structure, 
Such as a resource table Similar to the exemplary resource 
table 1200 of FIG. 12. Then the parent thread reads the 
resource allocation of its children thread and does its allo 
cation and reports it in its resource table. 
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0085 FIG. 12 is a block diagram illustrating an exem 
plary resource data Structure according to one embodiment. 
Exemplary data structure 1200 may be implemented as a 
table Stored in a memory and accessible by a compiler. 
Alternatively, exemplary data structure 1200 may be imple 
mented in a database. In one embodiment, exemplary data 
structure 1200 includes, but not limited to, written resources 
1202 and live-in resources used by the respective thread 
identified via thread ID 1201. Other configurations may 
exist. 

0086) Referring to FIGS. 10 and 12, according to one 
embodiment, at the beginning, the registers of helper thread 
1003 (e.g., the thread having the most bottom order in a 
bottom-up scheme) are allocated. The live-in values are V5 
and V6 and assuming they are assigned to registers R2 and 
R3 respectively. Also, V7 gets register R4 assigned and V9 
gets register R5 assigned. The resource table for helper 
thread 1003 includes live-in-((V5, R2), (V6, R3)) and 
register written=(R4, R5), as shown in FIG. 12. In helper 
thread 1002, the compiler replaces V5 with R2 and V6 with 
R3 during the allocation and marks register R4 and R5 
(written in helper thread 1003) as live at the spawn instruc 
tion. This prevents register usage of R4 or R5 across the 
spawn point of helper thread 1003 and thus prevents a 
resource conflict between helper thread 1002 and helper 
thread 1003. For helper thread 1002, the live-in values are 
V3 and V4 and are assigned to register R6 and R7 respec 
tively. When V8 and V20 are assigned to registers R8 and R9 
respectively, the resource table for helper thread 1002 
includes live in=(V3, R6), (V4, R7)) and written registers= 
(R2, R3, R4, R5, R8, shown in FIG. 12. The written 
registers are the live-in registers for helper thread 1003 (e.g., 
R2 and R3), the written registers in helper thread 1003 (e.g., 
R4 and R5) and the registers written in helper thread 1002 
(e.g., R8 and R9). Then the compiler allocates the registers 
for helper thread 1004. When the registers are allocated for 
all the helper threads, it allocates the registers for the main 
thread 1001. 

0087. In addition, according to one embodiment, when 
the compiler runs out of registers, it can delete one or more 
helper threads within the chain. This can happen for 
example, when the main thread runs out of registers, because 
the helper thread chain is too deep or a Single helper thread 
needs too many registers and the main thread has to Spill/fill 
registers. The compiler can apply heuristics to either allow 
certain number of spills or delete the entire helper thread 
chain or Some threads in the thread chain. An alternative to 
deleting helper thread is to explicitly configure the weight of 
context save/restore, So that upon context Switch, the par 
ent’s live registers that could be written by the helper 
threads execution can be Saved automatically by the hard 
ware. Even though this context Switch is relatively expen 
Sive, potentially Such case is infrequent case. Moreover, 
Such fine-grain context Switch is still of much low overhead 
compared to full-context Switch as used in most OS-enabled 
thread Switch or a traditional hardware based full-context 
thread Switch. 

0088. Furthermore, when there is a conflict for live-in 
registers, for example, if helper thread 1003 overwrote a 
live-in register (e.g., mov v5=. . . ) and this register is also 
used in helper thread 1002 after the spawn of helper thread 
1003, there would be a resource conflict for the register 
assigned to V5 (in this example, register R2). To handle this 
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information, the compiler would use availability analysis 
and insert compensation code, Such as inserting a mov 
v5'=V5 instruction before spawning helper thread 1003 and 
replacing v5 by v5' after the spawn. 

0089 FIG. 13 is a flow diagram illustrating an exemplary 
process for allocating resources for threads according to one 
embodiment. Exemplary process 1300 may be performed by 
a processing logic that may comprise hardware (circuitry, 
dedicated logic, etc.), Software (such as is run on a general 
purpose computer System or a dedicated machine), or a 
combination of both. In one embodiment, exemplary process 
1300 includes Selecting, during a compilation of a code 
having one or more threads executable in a data processing 
System, a current thread having a most bottom order, deter 
mining resources allocated to one or more child threads 
Spawned from the current thread, and allocating resources 
for the current thread in consideration of the resources 
allocated to the current threads one or more child threads to 
avoid resource conflicts between the current thread and its 
one or more child threads. 

0090 Referring to FIG. 13, at block 1301, processing 
logic identifies one or more threads, including a main thread 
and its helper threads, and Selects a thread having the most 
bottom order as a current thread. The threads may be 
identified using a thread dependency graph created during 
the thread creation phase of the compilation. At block 1302, 
the processing logic retrieves resource information of any 
child thread, which may be spawned from the current thread. 
The resources information may be obtained from a data 
Structure corresponding to the child threads, Such as resource 
table 1200 of FIG. 12. At block 1303, if there is no more 
resources available, the processing logic may delete one or 
more threads from the chain and restart over again (block 
1309). If there is more resource available, at block 1304, the 
processing logic allocates resources for the current thread in 
consideration of resources used by its child threads without 
causing resource conflicts. Thereafter, at block 1305, the 
processing logic updates the resources allocated to the 
current thread in the associated resource table, Such as 
resource table 1200. The above processes continue until no 
more helper threads (e.g., child threads of the main thread) 
remained (blocks 1306 and 1308). Finally, at block 1307, the 
processing logic allocates resources for the main thread 
(e.g., a parent thread for all helper threads) based on the 
resource information of all the helper threads without caus 
ing resource conflicts. Other operations may be included. 

0091. The above described techniques have been tested 
against a variety of benchmark tools based on a System 
Similar to the following configurations: 

A Processor with Hyper-Threading Technology 

Threading 
Trace cache 

2 logical processors. 
12k micro-ops. 8-way associative. 
6 micro-ops per line. 
8k bytes. 4-way associative. 64-byte line 

size. 
2-cycle integer access. 4-cycle FP access. 

L1 D cache 
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-continued 

A Processor with Hyper-Threading Technology 

L2 unified 256k bytes. 8-way associative. 
cache 128-byte line size. 7-cycle access latency. 
Load buffers 48 
Store buffers 24 

0092. The variety of benchmark tools include at least one 
of the following: 

Benchmark Description Input Set 

nbody walker Traverses nearest bodies 2Ok bodies 
from any node in Nbody 
graph 

mist Computes Minimal 3k nodes 
Spanning Tree for data 
clustering 

em3d Solves electromagnetic 2Ok.5- 
propagation in 3D degree 

nodes 
health Hierarchical database 5 levels 

modeling health care system 
mcf Integer programming Lite 

algorithm used for bus 
scheduling 

0.093 FIG. 14A is a chart illustrating an improvement of 
performance by the helper thread on nbody walker bench 
mark utility. FIG. 14B is a chart illustrating a speedup result 
of nbody walker at a given value of Synchronization period. 
FIG. 14C is a chart illustrating an automatic process versus 
a manual process with respect to a variety of benchmark. 
FIG. 14D is chart illustrating an improvement of an auto 
matic process over a manual process using nbody walker at 
a given Synchronization period. 
0094. Thus, methods and apparatuses for thread manage 
ment for multi-threading have been described. In the fore 
going Specification, the invention has been described with 
reference to Specific exemplary embodiments thereof. It will 
be evident that various modifications may be made thereto 
without departing from the broader Spirit and Scope of the 
invention as Set forth in the following claims. The Specifi 
cation and drawings are, accordingly, to be regarded in an 
illustrative Sense rather than a restrictive Sense. 

What is claimed is: 
1. A method, comprising: 
Selecting, during a compilation of code having one or 

more threads executable in a data processing System, a 
current thread having a most bottom order; 

determining resources allocated to one or more child 
threads spawned from the current thread; and 

allocating resources for the current thread in consideration 
of the resources allocated to the current threads one or 
more child threads to avoid resource conflicts between 
the current thread and its one or more child threads. 

2. The method of claim 1, wherein the resources include 
at least one of hardware registers and memory used by the 
respective thread. 
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3. The method of claim 1, wherein the resources allocated 
to the one or more child threads are recorded in a data 
Structure accessible by the current thread. 

4. The method of claim 1, further comprising updating 
resource information in a data Structure regarding the 
resources allocated to the current thread, the data structure 
being accessible by a parent thread of the current thread. 

5. The method of claim 1, further comprising repeating 
the Selecting, determining, and allocating in a bottom-up 
order until each of the one or more threads has been 
processed. 

6. The method of claim 5, further comprising allocate 
resources for a main thread that is a parent thread of the one 
or more threads after each of the one or more threads has 
been processed, the resources of the main thread are allo 
cated in View of resources allocated to the one or more 
threads. 

7. The method of claim 1, further comprising: 

determining whether there are resources remaining in the 
data processing System prior to the allocating the 
resources for the current thread; and 

deleting at least one child thread of the current thread; and 
allocating the resources for the current thread using the 

resources associated with the at least one deleted child 
thread. 

8. A machine-readable medium having executable code to 
cause a machine to perform a method, the method compris 
ing: 

Selecting, during a compilation of code having one or 
more threads executable in a data processing System, a 
current thread having a most bottom order; 

determining resources allocated to one or more child 
threads spawned from the current thread; and 

allocating resources for the current thread in consideration 
of the resources allocated to the current threads one or 
more child threads to avoid resource conflicts between 
the current thread and its one or more child threads. 

9. The machine-readable medium of claim 8, wherein the 
resources include at least one of hardware registers and 
memory used by the respective thread. 

10. The machine-readable medium of claim 8, wherein 
the resources allocated to the one or more child threads are 
recorded in a data Structure accessible by the current thread. 

11. The method of claim 1, further comprising updating 
resource information in a data Structure regarding the 
resources allocated to the current thread, the data structure 
being accessible by a parent thread of the current thread. 

12. The machine-readable medium of claim 8, wherein 
the method further comprises repeating the Selecting, deter 
mining, and allocating in a bottom-up order until each of the 
one or more threads has been processed. 

13. The machine-readable medium of claim 12, wherein 
the method further comprises allocating resources for a main 
thread that is a parent thread of the one or more threads after 
each of the one or more threads has been processed, the 
resources of the main thread are allocated in View of 
resources allocated to the one or more threads. 

14. The machine-readable medium of claim 8, wherein 
the method further comprises: 
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determining whether there are resources remaining in the 
data processing System prior to the allocating the 
resources for the current thread; and 

deleting at least one child thread of the current thread; and 
allocating the resources for the current thread using the 

resources associated with the at least one deleted child 
thread. 

15. A data processing System, comprising: 
a processor capable of performing multi-threading opera 

tions, 
a memory coupled to the processor; and 
a process executed by the processor from the memory to 

cause the processor to 
Select, during a compilation of code having one or more 

threads executable in a data processing System, a 
current thread having a most bottom order, 

determine resources allocated to one or more child 
threads spawned from the current thread, and 

allocate resources for the current thread in consider 
ation of the resources allocated to the current 
threads one or more child threads to avoid resource 
conflicts between the current thread and its one or 
more child threads. 

16. The data processing System of claim 15, wherein the 
process further causes the processor to update resource 
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information in a data Structure regarding the resources 
allocated to the current thread, the data Structure being 
accessible by a parent thread of the current thread. 

17. The data processing system of claim 16, wherein the 
process further causes the processor to repeat the Selecting, 
determining, and allocating in a bottom-up order until each 
of the one or more threads has been processed. 

18. The data processing system of claim 17, wherein the 
process further causes the processor to allocate resources for 
a main thread that is a parent thread of the one or more 
threads after each of the one or more threads has been 
processed, the resources of the main thread are allocated in 
View of resources allocated to the one or more threads. 

19. The data processing system of claim 15, wherein the 
process further causes the processor to: 

determine whether there are resources remaining in the 
data processing System prior to the allocating the 
resources for the current thread; and 

delete at least one child thread of the current thread; and 

allocate the resources for the current thread using the 
resources associated with the at least one deleted child 
thread. 

20. The data processing system of claim 15, wherein the 
resources include at least one of hardware registers and 
memory used by the respective thread. 


