Title: PROCESS FOR THE CONVERSION OF COLCHICINOID TO THEIR 3-GLYOSYLATED DERIVATIVES VIA THEIR RESPECTIVE 3-DEMETHYL ANALOGUES

Figure 1

Abstract: The present invention relates to a bioprocess for the preparation of glycylated Colchicine, its analogs and derivatives of formula (1) wherein X represents O or S, and R1 represents C1-C6 alkyl, R2 is a glycoside residue, R represents hydrogen, C1-C6 alkyl, formyl or acetyl.
Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

— with international search report (Art. 21(3))

— with (an) indication*) in relation to deposited biological material furnished under Rule 13bis separately from the description (Rules 13bis.4(d)(i) and 48.2(a)(viii))
PROCESS FOR THE CONVERSION OF COLCHICINOIDs TO THEIR 3-GLYCOSYLATED DERIVATIVES VIA THEIR RESPECTIVE 3-DEMETHYL ANALOGUES

Field of the Invention

The present invention relates to a process for the preparation of glycosylated Colchicine, Thiocolchicine and their analogs and derivatives of formula (I). More particularly relates to the transformation of colchicines its analogs and derivatives into corresponding 3-glycosylated colchicine and the thio- analogs.

wherein X represents O or S, and R^1 represents C_1-C_6 alkyl, R^2 is a glycoside residue, R represents hydrogen, C_1-C_6 alkyl, formyl or acetyl.

The present invention relates to the process wherein a strain of the bacterial micro-organism Bacillus aryabhattai is used for the bio-conversion.

Background of the Invention

Colchicine is a medication that treats gout. It is a toxic natural product and secondary metabolite, originally extracted from plants of the family Colchicaceae. Currently, most of the Colchicine produced in the world is isolated from the seeds of the plant Gloriosa superba. Colchicine is an oral drug used for treating acute gout and familial Mediterranean fever (FMF). 3-demethyl-thiocolchicine glucoside i.e., Thiocolchicoside is a muscle relaxant which is known to possess GABA-mimetic and glycine actions. It is used as a muscle relaxant and anti-inflammatory drug in various countries including India. 3-demethylcolchicine glucoside or Colchicoside is an important intermediate which is used industrially for the production of
Thiocolchicoside. Due to an increasing demand for Thiocolchicoside and limited use of Colchicine, an efficient method for the glycosidation of Colchicine-skeleton molecules to facilitate the preparation of both known compounds and novel derivatives for use in pharmacological research, would be very beneficial.

A number of efforts for the preparation of 3-glycosylcolchicine compounds have been carried out in the past, either by means of chemical reactions or by biotransformation.

FR 2112131 disclosed the glycosylation of thiocolchicine by reacting acetobromoglucose (or 2,3,4,6-tetra-o-acetyl)-a-D-glycopyranosyl bromide) with 2-demethyl-colchicine or 3-demethyl-thiocolchicine.

US patent 5,777,136 disclosed a chemical synthesis of colchicoside and thiocolchicoside by glycosylation. This process involves use of hazardous reagents such as sodium fluoride, boron trifluoride and pyridine for the glycosylation.

GB 923421A disclosed a process for the preparation of different derivatives of Colchicine by biotransformation using different microorganisms selected from Steptomyces, Fusarium, Saccharomyces, Curvularia, Corynebacterium, Cunnighamella, Aspergillus and Streptococcus.

The PCT publications WO 98/15642 A1 and WO 2005/108595 A disclosed a process for the preparation of 3-O-glycosylcolchicinoid compounds of formula (I)

\[
\begin{align*}
R^1 & \quad \text{an O-glycoside residue,} \\
R^2 & \quad \text{hydrogen or C}_1\text{-C}_7 \text{ acetyl,} \\
R^3 & \quad \text{C}_1\text{-C}_6 \text{ alkoxy or C}_1\text{-C}_6 \text{ thioalkyl,} \\
NHR^2 & \quad \text{comprising the biotransformation of compounds in which} \\
R^1 & \quad \text{is OH or methoxy using Bacillus megaterium, characterised in that demethylated} \\
& \quad \text{colchicinoids are used to induce the glycosylating enzyme system.} \\
\end{align*}
\]

WO 99/18229 A1 disclosed a process for the preparation of 3-0-glycosylcolchicone compounds
wherein R^1 is a glycoside residue, R^3 is C_1-C_6 alkoxy or C_1-C_6 thioalkyl, which comprises the biotransformation of compounds in which R^1 is OH or methoxy by means of Bacillus megaterium.

WO 2012/038982 A2 disclosed the use of a gram-negative bacterial strain, Providencia vermicola for bio-transformation of thiocolchicine (TCN) to the corresponding 3-O-glycosyl derivative. The specific strain of Providencia vermicola was used for microbial transformation of other colchicinoid compounds such as Colchicine, thiocolchicine, 3-demethylcolchicine, 3-demethylthiocolchicine and N-deacetylthiocolchicine to their corresponding glycosylated form.

The Journal of Phytochemistry 1993, 33(4) 817-820 disclosed the glycosylation of thiocolchicine by a cell suspension culture of Centella asiatica.

The above said prior art methods have the drawbacks of excessive consumption of raw material during biotransformation and purification of the final glycosylated product. Hence, there is a need for a simple and industrially viable cost effective process for the glycosylation of colchicinoids.

Bacillus aryabhattai is a new species of microorganism which has been isolated, identified and characterised for the first time by Shivaji et al in 2009 from air samples collected from the upper atmosphere using cryotubes. There are several mutants that are reported in the literature or deposited with different culture collection centres in different countries. (Viz., VTCC - B-1092; VTCC-B-1097).

Indian Journal of Experimental Biology 51, April 2013, pp 322-335 disclosed a statistical and evolutionary optimization for enhanced production of an anti-leukemic enzyme, L-asparaginase, in a protease-deficient Bacillus aryabhattai.

Food Science and Technology, Jiangnan University, Wuxi 214122, China
isolated novel strain of Bacillus aryabhattai SK 22.003 from the soil of a dairy farm and it appeared to have higher β-galactosidase (EC 3.2.1.23) activity, which can be used to biosynthesize Galactooligosaccharides (GOS) from lactose. The objectives of this study were to investigate the characteristics of the β-galactosidase and the conditions influencing the biosynthesis of GOS.

The present inventors surprisingly found that Bacillus aryabhattai has the property to convert Colchicine and Thiocolchicine into their glycosylated compounds via their 3-demethyl analogues. Glycosylation of Colchicines using Bacillus aryabhattai has not been reported earlier and also in the above prior art.

Objectives of the Invention

The main objective of the present invention is to provide a simple and cost effective bioprocess for the preparation of glycosylated Colchicine and Thiocolchicine, their analogs and derivatives of formula (I) which is selective.

In yet another objective of the present invention is to provide a process for the preparation of glycosylated Colchicine, its analogs and derivatives of formula (I) which is safe, industrially viable and eco-friendly.

Another objective is to provide a novel biotransformation method for easy, specific and quantitative production of the 3-O-glucosylcolchicinoid and 3-O-glucosylthiocolchicinoid compounds.

Another objective is to provide a novel biotransformation method for easy, specific and quantitative production of the 3-O-demethylcolchicinoid and 3-O-demethylthiocolchicinoid compounds.

Summary of the Invention

The present invention relates to a bioprocess for the preparation of glycosylated Colchicine, its analogs and derivatives of formula (I)
wherein X represents O or S, and R^1 represents C_1-C_6 alkyl, R^2 is a glycoside residue, R represents hydrogen, C_1-C_6 alkyl, formyl or acetyl, which comprises contacting colchicines, its analogs and derivatives of formula (II)

wherein X represents O or S, and R^1 represents C_1-C_6 alkyl, R^3 represents hydrogen or methyl group, R represents hydrogen, C_1-C_6 alkyl, formyl or acetyl, with Bacillus aryabhattai in a suitable condition and isolating glycosylated colchicines, its analogs and derivatives of formula (I).

In a further embodiment, the bacterial microorganism of the species Bacillus aryabhattai for the aforementioned transformation is a strain (1011-6 AGM) isolated from soil and deposited under MTCC 5875 at The Microbial Type Culture Collection and Gene Bank (MTCC), Chandigarh, India. The strain has been accepted for deposit in MTCC-IDA under Budapest treaty and is preserved in the collection of MTCC.

Detailed Description of the Invention

The word "Colchicine" or "Colchicinoid" described in the specification includes the Colchicine and all the Colchicine-skeleton molecules including colchicine, thiocolchicine, 3-O-demethylcolchicine (DMC) or 3-O-demethylthiocolchicine.

According to the present invention the strains of Bacillus aryabhattai, capable of growing in the presence of high concentrations of colchicine and thiocolchicine, have an exceedingly high, very specific biotransformation activity of converting colchicinoid substrates into glycosylated colchicinoid, its analogs and derivatives.
Such a transformation is characterized by surprisingly high yields. Also, Bacillus aryabhattai is a gram positive organism and hence can be handled without any hazards.

The bio-transformation using B.aryabhattai proceeds via isolable 3-demethyl intermediates as depicted below:

\[
\text{Colchicine} / \text{Thiocolchicine} \rightarrow 3\text{-demethylcolchicine/thiocoolchicine} + \text{Glucose} \rightarrow \text{Colchicoside/Thiocoolchicoside}
\]

The chemical route for glycosylation consists of sequences of complex, non-specific reactions which lead to a mixture of glycosylated derivatives, some of which are inactive. Therefore, yields of the product specifically glycosylated at C-3 of the aromatic ring, are very low. Surprisingly, the biotransformation of colchicine derivatives into glycosylcolchicinoid derivatives by means of Bacillus aryabhattai is selective (glycosylation exclusively at C-3 of the aromatic ring) and yields the product in the range of 90-99% of the theoretical yield.

In another embodiment the biotransformation is effected under a suitable condition needed for organism growth which includes time, pH and temperature. Accordingly the transformation is effected preferably at temperature of between about 15° C to about 55° C, at a pH level between 4 and 9.

In another embodiment we have found that bio-transformation using Bacillus aryabhattai proceeds via isolable intermediates namely the respective 3-demethyl analogues of Colchicine / Thiocolchicine which are produced selectively.

In another embodiment of the process we have found that the biotransformation takes place at a Colchicinoid concentration of 0.05 g/L to 3.0 g/L. The optimum concentration has been determined to be 1.0 to 1.5 g/L.

In another embodiment of the process we have found that the biotransformation takes 18-40 hours for completion.

In another preferred embodiment, the present invention provides a biotransformation of Colchicinoids such as Colchicine, 3-demethylcolchicine, N-
desacetyl-N-formylcolchicine, thiocolchicine and N-desacetyl-N-formylthiocolchicine to their glycosylated form by contacting with the organism Bacillus aryabhattai which possesses biocatalytic property to add glucose moiety to the Colchicinoid compounds.

In another embodiment, the present invention provides a process for the preparation of glycosylated derivatives of Colchicine and Thiocolchicine, wherein Bacillus aryabhattai is cultured in a liquid medium.

In another embodiment, the present invention provides a process for the preparation of glycosylated derivatives of Colchicine and Thiocolchicine, wherein said organic nitrogen source is selected from the group consisting of meat extract, peptone, tryptone, casein, hydrolysate, corn-step water.

In another embodiment, the present invention provides a process for the preparation of glycosylated derivatives of Colchicine and Thiocolchicine, wherein the medium contains at least one carbon source.

In another embodiment, the present invention provides a process for the preparation of glycosylated derivatives of Colchicine and Thiocolchicine, wherein the carbon source is selected from the group consisting of glucose, fructose, glycerol.

In another embodiment, the present invention provides a process for the preparation of glycosylated derivatives of Colchicine and Thiocolchicine, wherein the medium contains at least one source of inorganic salts of K⁺, Na⁺, Mg²⁺, NH₄⁺.

In another embodiment, glycosylated Colchicine prepared by the process of the present invention are used as a key intermediates for semi-synthetic production of the active drug substance Thiocolchicoside and also for preparing new derivatives.

In another embodiment, glycosylated Thiocolchicosine prepared by the process of the present invention are used as a GABA-mimetic and glycinergic agent.

In another embodiment, glycosylated Thiocolchicosine prepared by the process of the present invention are used as a muscle relaxant.
The organism Bacillus aryabhattai specifically converts the said alkaloids viz. Colchicine, Thiocolchicine and other related colchicinoid compounds to their 3-O-glycosyl derivatives when grown in AGM medium containing glucose as carbon source along with various other nutrients viz. Soya peptone, yeast extract, mineral salts.

In a preferred embodiment, the present invention provides a process for the preparation of glycosylated derivatives of Colchicine and Thiocolchicine, preferably, Colchicoside and Thiocolchicoside by contacting Colchicine and Thiocolchicine with Bacillus aryabhattai.

In further embodiment, the gene sequence of the strain Bacillus aryabhattai MTCC 5875 is:

```
CAGTCTAGAGCCTAAGTGAAGGCTTCTGTTCTATGACCTGCTGGAACCGAAGCAGGAG
TAACACGGTTGCAACCTGGTAAGAGTTGGTGAGTGTTGTGATTGGTAACTGGCAGGCTA
ACGGTATAGGCCACCGTATGGAGAGAGGCTAAGCTGCTTGAGGTCTGTCAACATGGC
AGATCTCCTAAGGGAGAGAGAGGCTAAGCTGCTTGAGGTCTGTCAACATGGC
```

The glycosylated Colchicine derivatives obtained according to the claimed process were isolated from the fermented culture broths and subjected to various spectral analytical methods like IR, NMR, Mass Spectra and Optical rotation. The
data obtained matched with that of the respective standards thus confirming the identity of the compounds viz. Colchicoside and Thiocolchicoside.

Screening and Isolation of Bacteria:

5 Soil samples from different localities around Hyderabad, India were collected from agricultural fields, horticulture fields, botanical garden, Municipal Park, etc. in the following manner:

1. Wet soil samples about 10 - 20 gm around the root zone i.e. 6 - 10 inches from the surface were collected in sealable plastic bags.

2. The soil samples from the root zone of various horticultural, vegetable, medicinal and ornamental plants were collected from various locations and screened.

The soil samples thus collected were brought to the lab and stored in refrigerated conditions for further screening and bacterial isolation work.

15 The soil samples were screened for their physiological activity to convert Colchicine / Thiocolchicine to their respective glycosylated forms viz. Colchicoside / Thiocolchicoside. Throughout the screening studies we have used 1 - 2 gm of the collected soil samples; soil sample was transferred to 50 ml test tube having 10 ml of sterile distilled water; the soil suspension was mixed carefully to get uniform soil suspension. The soil suspension was allowed to stand for about 10 min and 1 ml of the supernatant from the soil suspension was transferred to 100 ml sterile LB broth (10 g peptone, 5 g yeast extract, 5 g sodium chloride in 1000 ml water) in 1 L conical flask with 100 mg of the substrate thiocolchicine and the flask was incubated on a rotary shaker at 30°C for 72 hr. A good mixed bacterial growth was observed after 72 hr of incubation; the broth was then diluted aseptically with 0.9% saline and plated on to LB agar medium having thiocolchicine in the concentrations ranging from 1.0 gm to 3.0 gm per lit. The LB plates were incubated at 30°C for 72 hr. The individual bacterial colonies were isolated separately on LB agar slants with Thiocolchicine. Likewise, many individual bacterial colonies were selected from various soil samples and re-inoculated in to LB broth with thiocolchicine. The broth samples were centrifuged in aseptic conditions and the supernatant was tested for the presence of
Thiocolchicoside by TLC (Thin Layer Chromatography) as standard screening procedure for identifying potentially active bacteria with trans-glycosylation activity on thiocolchicine. By using the above mentioned screening procedure, we found one bacterium which showed strong trans-glycosylation activity and converted Colchicine to Colchicoside and Thiocolchicine to Thiocolchicoside. The isolated bacterium was further purified by 'Single colony' isolation technique and found to have the following morphological characters.

Bacterial Morphological characters:

The standard mature colonies show:

- Opaque and dull white colour
- Smooth circular colony with diameter 2 - 3 mm having smooth edge
- Centrally raised with entire margin
- Colonies are glistening and shiny.

The term "colony morphology" refers to the visible characteristics of a colony. Colonies that differ in appearance are typically different bacterial strains, species, or genera. However, colony morphology is not a reliable way to identify bacteria, as many different types of bacteria have similar colony morphology. Still, recognizing differences in colony morphology is useful when trying to isolate bacteria and also when plates of pure culture have become contaminated.

The isolated colony was stored in 20% glycerol and stored at -20°C and the bacterial LB slants are stored at 4°C - 8°C. The slant culture was used for experimental purpose for media optimization. The isolated organism was sent to Microbial Type Culture Collection (MTCC), Indian Institute of Microbial Technology, Chandigarh, India for the purpose of identification. The organism was identified as Bacillus aryabhattai. To our surprise, this organism Bacillus aryabhattai has not been reported in the literature searched to have trans-glycosylation activity through which Thiocolchicine was converted to Thiocolchicoside and Colchicine to Colchicoside. The organism has been deposited with MTCC as per Budapest treaty
on the International recognition of the deposit of microorganisms for the purposes of patent procedure and the MTCC accession number assigned is MTCC 5875.

The isolated organism was maintained on LB agar medium with Thiocolchicine and used for further studies.

DESCRIPTION OF DRAWINGS:

Figure 1: Sequence listing of gene sequence of the strain Bacillus aryabhattai MTCC 5875.

Figure 2: Photograph of Bacillus aryabhattai strain MTCC 5875

The following examples describe the nature of the invention and are given only for the purpose of illustrating the present invention in more detail and are not limited and relate to solutions which have been particularly effective on a bench scale.

Example-1

Isolation and screening of suitable bacteria having trans-glycosylation activity

Various bacteria having trans-glycosylation activity from Soil samples collected from various place in Jeedimetla, Hyderabad, Andhra Pradesh were screened using following media composition having pH 7.2 before sterilization.

About 1 gm of soil sample was taken and added to 10 ml of sterile water to make soil suspension and allowed to stand for about 10 min. About 1 ml of supernatant was added to 100 ml of sterile LB broth (10 g peptone, 5 g yeast extract, 5 g sodium chloride in 1000 ml water) in 1 lit conical flask with 100 mg of Thiocolchicine. The conical flask was incubated on a shaker at 30°C for about 72 hr. A good bacterial growth was observed after 72 hr of incubation; the broth was diluted aseptically with 0.9% saline and plated on to LB agar medium containing Thiocolchicine in the concentration of 1 g/L and the plates were incubated at 30°C in an incubator for about 72 hr. The colonies were isolated separately on LB agar slants with Thiocolchicine.
Likewise, many bacterial colonies were isolated from soil samples (about 25 soil samples) collected from various locations as mentioned above. The broth samples were centrifuged in aseptic conditions and the supernatant was tested for the presence of the Thiocolchicoside by Thin Layer Chromatography as a standard procedure for screening the potentially active bacteria having trans-glycosylation enzyme/s. In total about 65 different isolates were screened for the trans-glycosylation activity on Thiocolchicine. During the screening process, we isolated about five bacteria which are having different morphological characters and showing mild to strong trans-glycosylation activity. Out of this, one organism showed strong trans-glycosylation activity and converted Thiocolchicine to Thiocolchicoside and Colchicine to Colchicoside. Thus, the isolated bacteria were further tested on the following medium for the confirmation of trans-glycosylation activity.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Ingredients</th>
<th>g/Lit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peptone/Soya Peptone</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Yeast Extract</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>NaCl</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Thiocolchicine/Colchicine</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Glucose</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Agar</td>
<td>14</td>
</tr>
</tbody>
</table>

Example-2

Formation of Thiocolchicoside or Colchicoside by bio-catalytic activity of bacterium Bacillus aryabhattai.

To explore and identify the trans-glycosylation activity of the bacterium Bacillus aryabhattai, the organism was maintained as Working Cell Bank (WCB) in 20% glycerol at -20°C; one WCB vial containing 500 µl of Bacillus aryabhattai glycerol suspension was transferred to a 500 ml conical flask containing 50 ml of the following seed medium:

Seed medium:
<table>
<thead>
<tr>
<th>S.No</th>
<th>Ingredients</th>
<th>g/Lit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peptone/Soya peptone</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Yeast Extract</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>NaCl</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Thiocolchicine/Colchicine</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>Glucose</td>
<td>10</td>
</tr>
</tbody>
</table>

The above medium was sterilized (without Colchicine/Thiocolchicine) at 121°C for 20 min and 500 µl of glycerol suspension from one WCB vial was transferred to the medium (50 ml in 500 ml flask) and then the flask was incubated on a rotary shaker (50 mm through) with 175 RPM at 30°C for 22 - 24 hr till the OD at 550 nm (optical density) reaches 10 - 15. Thereafter, 5 - 8 % of the seed from the flask was transferred to the production medium with the following composition:

Production Medium:

<table>
<thead>
<tr>
<th>S.No</th>
<th>Ingredients</th>
<th>g/Lit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peptone/Soya Peptone</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Yeast Extract</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>NaCl</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Thiocolchicine/Colchicine</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Glucose</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>pH</td>
<td>7.2</td>
</tr>
</tbody>
</table>

After inoculation, the production flask was kept on rotary shaker with 175 RPM at 30°C for 36 hr; after 24 hr of incubation the samples were withdrawn and tested for the presence of Thiocholchicoside or Colchicoside by Thin Layer Chromatography (TLC). TLC was performed by applying 10 or 20 µl samples on Silica gel TLC F$_{254}$ with mobile phase {Ethyl Acetate: Ethanol: Water (7 : 2 : 1)}.

Example-3
Isolation of Colchicoside /Thiocolchicoside from the fermented broth

Two volumes of Methanol was added to the fermented broth and the precipitated matter was filtered through a bed of filter aid. The clear filtrate was concentrated to strip off the Methanol. The aqueous phase was partitioned successively with a mixture of Chloroform and Ethanol. The Thiocolchicoside/Colchicoside was extracted into the organic phase. The organic phase was concentrated in a rotary evaporator till all the solvent is removed. The residue was dissolved in a minimum quantity of hot Ethanol and allowed to crystallize at 4 to 8 °C for 8 hours. The crystallized product (Thiocolchicoside/Colchicoside) was filtered and dried in a vacuum oven to obtain the product in powder form.

The Thiocolchicoside / Colchicoside thus obtained was subjected to the following tests along with the respective standards:

a) Purity and assay by HPLC
b) Specific Optical Rotation
c) IR spectroscopy
d) 1H NMR spectroscopy
e) 13C NMR spectroscopy
f) ESI Mass spectroscopy.

Spectral data of Thiocolchicoside isolated from the fermented broth:

\(^{1}\text{H-NMR (300 MHz, DMSO-d}_6\) \(\delta (\text{ppm}) : 1.83(3\text{H}-17,\text{s}); 1.9-2.3 \ (4\text{H}-5\text{a,5b,6a&6b,m}); 2.40 \ (3\text{H}-18,\text{m}); 3.17-3.34 \ (6\text{H}-\text{Glucoside protons 2',3',4',5' & 6',m}); 3.52 \ (3\text{H}-13,\text{s}); 3.82 \ (3\text{H}-14,\text{s}); 4.27-4.37 \ (1\text{H}-7, \text{m}); 4.92 \ (1\text{H}-\text{I',d}); 7.00 \ (1\text{H}-8,\text{s}); 7.14 \ (1\text{H}-12,\text{d}); 7.25 \ (1\text{H}-11,d); 8.61 \ (\text{NH-d}).
\)

\(^{13}\text{C-NMR (300 MHz, DMSO-d}_6\) \(\delta (\text{ppm}) : 181.2 \ (\text{C-9}); 168.6 \ (\text{C-16}); 157.4 \ (\text{C-10}); 151.1 \ (\text{C-3 and C-7a - overlapping signal}); 150.4 \ (\text{C-1}); 141.2 \ (\text{C-2}); 137.4 \ (\text{C-12a}); 134.0 \ (\text{C-12}); 127.8 \ (\text{C-11}); 126.6 \ (\text{C-8}); 126.5 \ (\text{C-13}); 111.1 \ (\text{C-4}); 100.4 \ (\text{C-1'}); 77.2 \ (\text{C-3'}); 76.9 \ (\text{C-5'}); 73.3 \ (\text{C-2'}); 69.9 \ (\text{C-4'}); 60.9 \ (\text{C-14}); 60.7 \ (\text{C-6'}); 35.6 \ (\text{C-6}); 29.2 \ (\text{C-5}); 22.4 \ (\text{C-17}); 14.4(\text{C-18})
\)

\(\text{MS}^+ (m/z) : 564.18 \ [\text{M + H}]^+
\)

Specific Optical Rotation : \([a]_\text{D}^{23} : -565.9^\circ \ (c= 0.50, \text{ water})\)
Spectral data of Colchicoside isolated from the fermented broth:

1H-NMR (300 MHz, DMSO-d$_6$) δ (ppm): 1.83 (3H-17, s); 1.95-2.23 (4H-5a, 5b, 6a & 6b, m); 3.14-3.72 (6H-Glucoside protons 2', 3', 4', 5' & 6', m); 3.51 (3H-13, s); 3.82 (3H-14, s); 3.86 (3H-18); 4.26-4.36 (1H-7, m); 4.90 (1H-I', d); 6.99 (1H-8, s); 7.11 (1H-I 1,d); 7.06 (1H-I2, d); 8.58 (NH-d).

13C-NMR (300 MHz, DMSO-d$_6$) δ (ppm): 178.0 (C-9); 168.6 (C-16); 163.6 (C-10); 150.8/150.9 (C-3 and C-7a - interchangeable signals); 150.4 (C-1); 141.2 (C-2); 135.1 (C-I 2a); 134.5 (C-12); 126.6 (C-8, C-11 - overlapping signals); 111.0 (C-4); 100.4 (C-I'); 77.2 (C-3'); 76.9 (C-5'); 73.3 (C-2'); 69.9 (C-4'); 60.9 (C-14); 60.7 (C-13); 60.8 (C-6'); 35.6 (C-6); 29.3 (C-5); 22.5 (C-17).

MS$^+$ (m/z): 548.21 [M + H]$^+$

Specific Optical Rotation: $[\alpha]_D^{22}$: -352.4° (c = 0.568, water)

It was found that the spectral and other experimental data of both Colchicoside and Thiocolchicoside produced by fermentation route matches with that of the respective working standards that were isolated from plant sources and prepared semi-synthetically from Colchicoside respectively. The HPLC purity was found to be more than 99% for both Colchicoside and Thiocolchicoside.

Example-4

Formation of 3-demethylthiocolchicine or 3-demethylcolchicine by bio-catalytic activity of bacterium B. arvabhattai

By altering the media composition and process parameters viz. glucose concentration and pH described in Example-2, the organism converts the substrate to the intermediate which gets accumulated in the broth. The intermediates namely 3-demethylcolchicine and 3-demethylthiocolchicine were isolated in pure form from the broth and characterised by spectral methods.

Spectral data of 3-demethylthiocolchicine isolated from the fermented broth:

1H-NMR (300 MHz, DMSO-d$_6$) δ (ppm): 1.83 (3H-17, s); 1.96-2.18 (4H-...
13C-NMR (300 MHz, DMSO-d$_6$) δ (ppm): 181.1 (C-9); 168.5 (C-16); 156.9 (C-10);
151.3 (C-3); 151.1 (C-7a); 150.7 (C-1); 139.6 (C-2); 137.9(C-12a); 134.2(C-4a,12); 133.9(C-1 1); 126.6 (C-8); 123.8 (C-13); 111.3 (C-4); 60.7 (C-15); 60.5(C-14); 35.7(C-6);28.9(C-5);22.4(C-17);14.3(C-18)

EI MS (m/z) : $M^+ = 401$

Spectral data of 3-demethylcolchicine isolated from the fermented broth :

1H-NMR (300 MHz,CDCl$_3$) δ (ppm): 1.98(3H-17,s); 2.24-2.49 (4H-5a,5b,6a&6b,m); 3.65 (3H-13,s) 3.99 (3H-2,s); 4.01 (3H-18,s); 4.61-4.68 (1H-7, m); 6.58 (IH-4,s); 6.90 (1H-I l,d); 7.34 (1H-I2,d); 7.59(IH-8,s); 8.01 (NH-d).

13C-NMR (300 MHz, CDC1$_3$) δ (ppm) : 179.5 (C-9); 170.3 (C-16); 163.9 (C-10); 152.8 (C-7a); 150.2 (C-1); 149.9 (C-3); 139.2 (C-2); 137.1(C-12a); 135.5(C-12); 134.7(C-4a); 130.3 (C-8); 124.7 (C-12b);1 13.0(C-1 l);1 10.3(C-4); 61.3 (C-14); 61.2(C-13); 56.4(C-18);52.8(C-7);36.2 (C-6);29.4(C-5); 22.6(C-17)

EI MS : $M^+ = 385$

The characterisation study proved that the intermediates were the 3-demethyl analogues namely 3-demethylcolchicine and 3-demethylthiocolchicine.
Claims:

1. A bioprocess for the preparation of glycosylated Colchicine, its analogs and derivatives of formula (I)

 ![Chemical Structure](image)

 wherein X represents O or S, and R^1 represents C_1-C_6 alkyl, R^2 is a glycoside residue, R represents hydrogen, C_1-C_6 alkyl, formyl or acetyl, which comprises contacting colchicines, its analogs and derivatives of formula (II)

 ![Chemical Structure](image)

 wherein X represents O or S, and R^1 represents C_1-C_6 alkyl, R^3 represents hydrogen or methyl group, R represents hydrogen, C_1-C_6 alkyl, formyl or acetyl, with Bacillus aryabhattai or its mutant strains in a suitable condition and isolating glycosylated colchicines, its analogs and derivatives of formula (I).

2. A process according to claim 1, wherein the biotransformation is carried using a microorganism of the species Bacillus aryabhattai, a gram positive bacterium with accession number MTCC 5875.

3. A process according to claim 1, wherein the biotransformation is high yielding and very specific in converting the Colchicinoids to their 3-glycosylated derivatives through their 3-demethyl analogues.

4. A process according to claim 1, wherein the bio-transformation using Bacillus aryabhattai with accession number MTCC 5875 proceeds selectively through respective 3-demethyl intermediates.
5. A process according to claim 4, wherein 3-demethyl intermediates formed after bio-transformation using Bacillus aryabhattai are isolated and converted into glycosylated Colchicines.

6. A process according to claim 4, wherein 3-demethyl intermediates formed after bio-transformation using Bacillus aryabhattai are converted in situ into glycosylated Colchicines.

7. A process according to claim 1, wherein the concentration of the Colchicinoid compound varies between 0.05 g/L to 3.0 g/L and more suitably 1.0 to 1.5 g/L.

8. A process according to claim 1, wherein the bio-transformation is completed within 18-40 hours.

9. A process according to claim 3 wherein demethylated intermediates are selected from 3-O-demethylcolchicine (DMC) or 3-O-demethylthiocolchicine (DMTC).

10. A process according to claim 1, wherein the transformation is effected at temperature of between 15° C to 55° C.

11. A process according to claim 1, wherein the transformation is effected at a pH level between 4 and 9.

12. A process according to claim 1, wherein Bacillus aryabhattai is cultured in a liquid medium.

13. A process according to claim 12, wherein the said medium contains one nitrogen source.

14. A process according to claim 13, wherein said organic nitrogen source is
selected from the group consisting of meat extract, peptone, tryptone, casein, hydrolysate, corn-step water.

15. A process according to claim 12, wherein the medium contains at least one carbon source.

16. A process according to claim 15, wherein the carbon source is selected from the group consisting of glucose, fructose, glycerol.

17. A process according to claim 12, wherein the medium contains at least one source of inorganic salts of K^+, Na^+, Mg^{2+}, NH_4^+.

18. Use of glycosylated Colchicine prepared by the process of claim 1 as a key intermediate for semi-synthetic production of the active drug substance Thiocolchicoside and also for preparing new derivatives.

19. Use of glycosylated thiocolchicine prepared by the process of claim 1 as a GABA-mimetic and glycnergic agent.

20. Use of glycosylated thiocolchicine prepared by the process of claim 1 as a muscle relaxant.
Figure 1

CAGTGAGGCAGCTGATGAAAGCTTGCTTCTGAGTGTCGTAACGCTAAGCGGCGGAGCGGAGG
TAAACACGGGTGGGCAAGTCCCTGAACTTACCTGGGAAACCCGGAAGCTAT
ACCAGATAGATCTCTCTCTCATGGAGATGATTGAAAAGATGGTTGCTATCAG
TTACAGATGGGCCCGCGGCGCTATTAGCTAGTGGTGAGGGTTAACAGGCTCACCAAGGCA
ACGATGTGATAGCCGACCTGAAAGGGTGATCGGCCAACAAGGACACTGAGACAGCC
CAGACTCTCATGGGAGCAGATGAGGAAATCTTCCGCAATGACAGAAGATTGTGAC
GGAGGAAAGCAGGTCGATGGTAAAGGCTTTCGGGCCTGTAATACCTGGTGTATGCCAG
AAGAACAAGTAAGGACAGTAACTGCTTGTACCTTGACGTTACCTAAACAGAAAGCCA
AGGCTAAACTGAGGCAAGCCCGGAGTTAATACGGTAAGGGAAAGCCTTATCCGGAA
TTATTGGGGCTAAAAACGGCGCAAAGGCGGTTTCTTAAGTCGTAGTGTGAAGGCCACCG
CTCAACCGTGAGGGGTACATGGAAACTGGGGAACCTTTAGTCGAGAGAGAAGGGAGC
GAATCTACATTGGTAGCAATTTGTGACTGAGATGAGAGAAGACAAGTAGGCGG
GCGCGTGTGTGTTCTAAGTCGATTGCAAGGGCGAAAGCGTGGGAGCAACAGCTT
ATTAGATACCTGTATGCTGACCCTGGTAACAGTATGAGTCTAAGTGGGAGCTTGAG
TCGCAATCTAGACTGCTGACATTAAGGACTTCCGGCTGGAGTAACGCGTGC
CAAGAGTAAACTCAAAGGAATTGACGGGGGCGCGGACAAGCGGTGGAGCA
TTAATTGGCAAGCAGCAACGCGAAGAACCCTTACGAGGTCTTGGCAGATCGAACCTAC
AGAGATAGAGCTTCCCTTGGGGGCAAAGGAGCAAGGTGGAAGGGCATGTTTCCTGTC
AGCTCTGCTGTGTTGAGATGTTGAAAGCTCCTCCGAACAGGCGGAACCCTTGATCTTA
GTGGCGGAGCTTAGTTTGGAGCTAAAGTGAGTCGCTGGTGAACAAACGGAAGAAAG
GTGAGGATGAGCTCATAACCTATGTGACTGGCACCCCTTATGACCTGGGTACACACGTGCTACA
ATGGAATGTTACAAAGGGCTGCAAGACCGGAGGTCAAGCCAAATCCCATAAAACCAT
TCTCATGTTTGAGGCTGCAACCTGCTGACATTGAAGTGGAAATCGCTAGAAT
CCGGAGTACGTAGCCTGCCGCGGTAAAGCTTCCGGGCGCTTGTACACGCCCGCTCA
CAGCCACGAGATTTGTAACACCGGAAGTGGAGTAACCTGTTGGAGGAGCTAGCGG
CCTAAGGTTGGGACAGATGATTGGGGTGA
A. CLASSIFICATION OF SUBJECT MATTER

INV. A61K31/704 C12P19/56
ADD.

According to International Patent Classification (IPC) and both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61K A61P C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , BIOSIS, CHEM ABS Data, EMBASE, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 98/15642 Al (INDENA SPA [IT]; BOMBARDELLI EZIO [IT]; PONZONE CESARE [IT]) 16 April 1 1998 (1998-04-16) cited in the application on page 1, paragraph 3; examples -------</td>
<td>1-20</td>
</tr>
<tr>
<td>X</td>
<td>WO 2012/038982 A2 (ElysiAn Li Fe SCIENCES PRIVATE LTD [IN]; PRABAKARAN KRISHNAMURTHY [IN];) 29 March 2012 (2012-03-29) cited in the application on page 1, paragraph 3; examples -------</td>
<td>1-20</td>
</tr>
<tr>
<td>X</td>
<td>WO 2011/112161 Al (ALI RAI F I LAC SANAYI VE TICARET A S [TR]; BULGUR ABDULLAH [TR]) 15 September 2011 (2011-09-15) page 1; example 5 -------</td>
<td>18-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search

6 August 2014

Date of mailing of the international search report

19/08/2014

Name and mailing address of the ISA /
European Patent Office, P.B. 5818 Patentua 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Winger, Rudolf
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>SEMANTI RAY ET AL: "From Space to Earth: Baccilus aryabhattai found in the Indian sub-continent", BIOSCIENCE DISCOVERY, vol. 3, no. 1, January 2012 (2012-01), pages 138-145, XP002728213, pages 141, 143</td>
<td>1-17</td>
</tr>
</tbody>
</table>

abstract
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AU 714810 B2</td>
<td>13-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4864897 A</td>
<td>05-05-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2252725 A1</td>
<td>16-04-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1218514 A</td>
<td>02-06-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9901187 A3</td>
<td>14-07-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69710744 DI</td>
<td>04-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69710744 T2</td>
<td>05-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 0931161 T3</td>
<td>10-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2171906 T3</td>
<td>16-09-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1019620 A1</td>
<td>11-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 9903806 A2</td>
<td>28-03-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT MI962063 A1</td>
<td>07-04-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3428027 B2</td>
<td>22-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000508179 A</td>
<td>04-07-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20000022478 A</td>
<td>25-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 991633 A</td>
<td>06-04-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 331942 A1</td>
<td>16-08-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 931161 E</td>
<td>31-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2196826 C2</td>
<td>20-01-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 44599 A3</td>
<td>18-01-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6150140 A</td>
<td>21-11-2000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2012038982 A2</td>
<td>29-03-2012</td>
<td>EP 2619315 A2</td>
<td>31-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140014072 A</td>
<td>05-02-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014024080 A</td>
<td>23-01-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012038982 A2</td>
<td>29-03-2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TR 201001903 A2</td>
<td>21-04-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2011112161 A1</td>
<td>15-09-2011</td>
</tr>
</tbody>
</table>