INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE (11) N° de publication : (A n'utiliser que pour les commandes de reproduction).

PARIS

A1

DEMANDE DE BREVET D'INVENTION

₂₀ N° 81 09715

- - Date de la mise à la disposition du public de la demande.......... B.O.P.I. « Listes » n° 47 du 20-11-1981.
 - Déposant : N.V. PHILIPS' GLOEILAMPENFABRIEKEN, société anonyme de droit néerlandais, résidant aux Pays-Bas.
 - (2) Invention de : Franz Hofer.
 - 73 Titulaire : Idem 71
 - Mandataire : Pierre Gendraud, société civile SPID, 209, rue de l'Université, 75007 Paris.

10

15

20

25

30

35

"Procédé pour la réalisation d'un tube d'images de télévision en couleur muni d'une couche absorbant le gaz, tube ainsi réalisé et dispositif fixateur convenant à un tel procédé."

La présente invention concerne un procédé permettant de réaliser un tube d'images de télévision en couleur, dont l'enveloppe comporte un cône et une fenêtre, qui sont reliés hermétiquement entre eux à l'aide d'un verre de soudure, un dispositif fixateur étant monté à un endroit situé dans l'enveloppe du tube avant la susdite soudure, dispositif fixateur comportant une source de métal fixateur évaporable et au moins une source de gaz contenant un matériau dégageant du gaz par chauffage, dispositif fixateur à partir duquel le gaz de la source de gaz est dégagé après la mise à vide du tube d'images et le métal fixateur est évaporé.

De plus, l'invention est relative à un tube d'images de télévision en couleur, ainsi qu'à un dispositif fixateur convenant entre autres au procédé mentionné ci-dessus.

Un procédé du genre décrit ci-dessus est connu du brevet britannique No 1.405.045. Loweilité d'un dispositif fixateur est en majeure partie déterminée par la mesure dans laquelle il résiste à l'attaque de l'atmosphère ambiante. La composition chimique des composants du dispositif fixateur ne peut pas être modifiée. prématurément dans les conditions se produisant pendant l'emmagasinage du dispositif fixateur ou pendant la réalisation des tubes auxquels ils sont appliqués. A ce sujet, il se présente notamment des problèmes lorsque le dispositif fixateur est monté dans le tube avant que la fenêtre image du tube ne soit reliée à l'aide d'un verre de soudure au cône dudit tube. La soudure des parties enveloppantes s'effectue dans un four à une température d'environ 450°C et prend environ une heure. Les composants du dispositif fixateur ne résistent pas à priori à l'attaque de l'atmosphère ambiante qui se produit (de l'air humide de 450°C). En ce qui concerne la source de gaz du dispositif fixateur, le

10

15

20

25

30

35

le brevet britannique Nº 1 405 045 propose un matériau susceptible de dégager un gaz et constitué par du nitrure de germanium (Ge_3N_4). Le nitrure de germanium (Ge_3N_4) est un composé particulièrement résistant, du point de vue chimique, qui se décompose à environ 900°C. Toutefois, cette température de décharge élevée a pour effet que, lors de l'évaporation du métal fixateur, l'azote dégagé de cette source de gaz forme une pression gazeuse suffisante dans le tube pour fournir l'effet de dispersion requis sur le métal fixateur qui s'évapore. Comme il est connu, l'effet de dispersion qu'exerce l'azote sur le matériau fixateur qui s'évapore permet d'obtenir une couche poreuse de métal fixateur uniformément répartie sur une surface intérieure du tube. Pour obtenir une couche de métal fixateur qui est poreuse sur toute l'épaisseur et, par conséquent, convenablement absorbante, il faut cependant que, lors du chauffage du dispositif fixateur, le gaz dégagé de la source de gaz ait formé déjà une pression gazeuse suffisante d'environ 133.10⁻³ à 666.10⁻² Pa dans le tube avant que le métal fixateur ne commence à s'évaporer.

D'une façon générale, la source à partir de laquelle s'évapore le métal fixateur est constituée par un mélange de nickel pulvérulent et d'un alliage pulvérulent de métal fixateur et d'aluminium. Des métaux fixateurs appropriés sont le baryum, le strontium, le calcium et le magnésium. Une source convenablement utilisée de métal fixateur est constituée par un mélange de poudre de nickel et de poudre de baryum-aluminium (BaAl₄) dans lequel la teneur en poudre de nickel est d'environ 40 à 60 % en poids.

En ce qui concerne la source de métal fixateur, on a déjà proposé de remplacer son composant en poudre de nickel par un composé de nickel-titane ou un composé de fer-titane, substances chimiquement plus résistantes. Pour une source de métal fixateur constituée par un mélange de poudre de baryum-aluminium (BaAl₄) et de poudre de nickel, le brevet des Etats-Unis d'Amérique N° 4 077 899, dont le contenu est

considéré comme étant inséré dans le présent mémoire, décrit une mesure très appropriée pour améliorer la résistance chimique du mélange. Selon cette mesure, la poudre de nickel présente une grosseur des grains moyenne inférieure à 80 microns et une surface spécifique inférieure à 0,15 m² par gramme, alors que la grosseur moyenne des grains de la poudre de baryum-aluminium est inférieure à 125 microns.

La présente invention vise à fournir un procédé pour la réalisation d'un tube d'images de télévision en couleur utilisant un dispositif fixateur qui peut être monté avant l'assemblage du cône et de la fenêtre du tube à un endroit situé dans ledit cône ou ladite fenêtre et qui peut être exposé sans inconvénient, pendant au moins une heure, à de l'air humide d'environ 450°C, alors que dans le cas de chauffage du dispositif fixateur, la source de gaz a cédé, au moins en majeure partie, son gaz avant que le métal fixateur ne commence à s'évaporer.

Conformément à l'invention, un procédé du genre mentionné dans le préambule est caractérisé en ce qu'on utilise un dispositif fixateur comportant une source de gaz, dont le matériau dégageant le gaz est essentiellement constitué par un alliage ternaire pulvérulent nitrure contenant le fer, le germanium et au moins l'un des métaux chrome et manganèse.

Par nitruration il y a lieu d'entrendre un processus permettant de préparer un nitrure métallique, lors duquel la transformation peut être inférieure à 100 %.

Le dispositif fixateur comporte une source chimiquement résistante de matériau fixateur évaporable, ce qui veut dire une source de matériau fixateur pouvant être exposée sans inconvénients pendant 1 heure à de l'air humide de 450°C.

Un exemple d'une telle source chimiquement résistante de matériau fixateur est décrit dans le

10

05

15

20

25

30

35

10

15

20

25

30

35

brevet des Etats-Unis d'Amérique n° 4.077.899 et est constitué par un mélange de poudre de métal et de poudre de baryum-aluminium (B_a Al_4), ce mélange contenant en poids 40 à 60 % de métal. La poudre de nickel présente une surface spécifique inférieure à 0,15 m² par gramme et une grosseur moyenne des grains inférieure à 80 /um, alors que la poudre de B_a Al_4 présente une grosseur moyenne des grains inférieure à 125 /um.

Une autre possibilité consiste à recouvrir superficiellement la source de matériau fixateur d'une couche protectrice d'aluminium ou un composé d'organosilicium.

La présente invention est basée sur l'idée acquise au cours de l'élaboration que les exigences posées à la résistance chimique et à la température de décomposition du matériau dégageant le gaz peuvent être satisfaites par utilisation d'un matériau dégageant le gaz constitué par des alliages nitrurés de fer, de germanium et de chrome et/ou de manganèse. On a constaté que la température à laquelle ces alliages nitrurés commencent à se décomposer sous vide est surtout déterminée par la teneur en fer. D'une façon générale, une teneur plus élevée en fer provoque une température de décomposition plus basse. La résistance chimique du matériau dégageant le gaz est en général supérieure à celle obtenue dans le cas d'une teneur plus élevée en germanium. De plus, pendant la nitruration, les alliages de fer, de germanium et d'au moins l'un des métaux chrome et manganèse présentent une absorption d'azote, qui accroît avec l'augmentation de la teneur en chrome et/ou de manganèse. Un choix approprié des éléments d'alliage permet ainsi de déterminer, suivant les besoins, la résistance chimique et la température de composition du matériau dégageant le gaz. Un avantage économique obtenu avec la présente invention est en outre le fait que le germanium, matériau assez coûteux, peut être remplacé en majeure partie par les éléments moins

10

15

20

25

30

35

coûteux fer, chrome et/ou manganèse. Eu égard à ce qui précède, une forme de réalisation du procédé conforme à l'invention utilise un dispositif fixateur, dont la source de gaz contient un matériau dégageant du gaz, qui est essentiellement constitué par un alliage ternaire, pulvérulent intruré contenant, en poids, 30 à 80 % de fer ; 5 à 50 % de germanium et jusqu'à 30 % de chrome et/ou de manganèse.

Selon une forme de réalisation de l'invention, qui est très intéressante pour en ce qui concerne la température de décomposition, la résistance chimique et la quantité d'azote dégagée par chauffage, on utilise un dispositif fixateur dans lequel le matériau dégageant le gaz de la source de gaz est essentiellement constitué par un alliage nitruré contenant, en poids, 60 % de fer, environ 7 % de chrome et environ 33 % de germanium.

Une autre forme de réalisation de l'invention utilise un dispositif fixateur contenant une première source de gaz et au moins une deuxième source de gaz, cette dernière contenant un matériau dégageant le gaz, dont la température de décomposition est plus élevée que celle de la première source de gaz. Il en résulte l'avantage que l'effet de dispersion exercé par le gaz sur le métal fixateur qui s'évapore se produit pendant une période plus longue que dans le cas d'utilisation d'un matériau dégageant le gaz ne présentant qu'une seule température de décomposition. Le matériau dégageant le gaz des sources de gaz peut être constitué par des alliages nitrurés contenant une tenew différente en fer, germanium, manganèse et/ou chrome. Selon une forme de réalisation spéciale de l'invention, on utilise un dispositif fixateur qui comporte une première source de gaz qui est au moins essentiellement constituée par un alliage nitruré de fer, de germanium et de chrome et/ou de manganèse et qui contient en outre une seconde source de gaz, qui est au moins es-

10

15

20

25

30

35

sentiellement constituée par du nitrure de germanium (Ge₃N₄). Les matériaux dégageant le gaz des sources de gaz peuvent être disposés de façon mélangée ou bien séparée les unes des autres (par exemple dans des récipients séparés) dans le dispositif fixateur.

A ce sujet, il y a lieu de noter que le brevet allemand n° 2 145 159 décrit un dispositif fixateur muni d'une source de gaz constituée par un mélange de nitrure de Fe₂Ge et de nitrure de FeGe₂. Ainsi, on vise également à étaler l'effet de dispersion exercé par le gaz dégagé sur le métal fixateur, qui s'évapore, sur une période plus longue. Toutefois, le brevet allemand ne concerne pas un procédé selon lequel le dispositif fixateur est monté avant l'assemblage de la fenêtre du cône à un endroit dans le tube. De plus, le brevet allemand n° 2 145 159 ne mentionne nullement la résistance chimique de la source de gaz ou de la source de métal fixateur.

Une méthode de nitruration appropriée est celle selon laquelle on prépare d'abord un alliage de la composition requise. Cet alliage est broyé de façon à obtenir une poudre qui est ensuite soumise à nitruration dans une atmosphère d'ammoniac à une température appropriée comprise entre 500 et 800°C. La quantité d'azote absorbé par l'alliage pendant la nitruration est tributaire, entre de la composition de l'alliage, également de la grosseur des grains de l'alliage pulvérulent et de la durée pendant laquelle l'alliage est soumis au processus de nitruration. D'une façon générale, une teneur en azote d'environ 5 % en poids dans l'alliage nitruré suffit pour l'application connue source de gaz dans un dispositif fixateur. En ce qui concerne la résistance d'un tel nitrure ainsi obtenu à l'air humide de 450°C, on a constaté qu'il est possible d'obtenir au besoin une résistance augmentée lorsque le processus de nitruration s'effectue en au moins deux étapes. L'alliage pulvérulent est nitruré·

10

15

20

25

30

35

une première fois, ensuite broyé en une poudre présentant une grosseur de grains plus petite et puis nitruré une seconde fois.

Le dispositif fixateur décrit ci-dessus convient particulièrement à la réalisation de tubes de télévision en couleurs. Toutefois, le dispositif fixateur peut également être appliqué pour la réalisation de tubes d'images moir et blanc. La résistance du dispositif fixateur à l'effet de l'atmosphère ambiante comme telle est un grand avantage du fait qu'un emmagasinage du dispositif fixateur pendant une plus grande durée est ainsi possible sans que l'utilité n'en soit réduite.

La description ci-après, en se référant aux dessins annexés, le tout donné à titre d'exemple non limitatif, fera bien comprendre comment l'invention peut être réalisée.

La figure 1 représente une coupe axiale d'un tube d'images de télévision en couleur réalisé à l'aide du procédé conforme à l'invention et

la figure 2 un dispositif fixateur convenant audit procédé.

Le tube d'images de télévision en couleur représenté sur la figure 1 comporte un col 10, un cône 11 et une fenêtre 12 en verre. Sur la face intérieure de la fenêtre 12 est appliquée une couche 13 en régions émettant une luminescence rouge, verte et bleue, qui constitue, de façon connue, une configuration de lignes ou de points. De plus, le tube comporte un masque d'ombre métallique 15 qui, tout comme une coiffe de blindage magnétique métallique 17, est fixé sur un cadre porteur métallique 16. Le cône et la fenêtre sont assemblés à l'aide d'un verre de soudure 10. Avant que la fenêtre 12 et le cône 11 ne soient posés, l'un sur l'autre, un dispositif fixateur 21 est monté dans le cône 11. Le dispositif fixateur peut être fixé à la coiffe de blindage 17 par exemple à l'aide d'une bande métal-

10

15

20

25

30

35

lique 19. De plus, il est possible de fixer la bande 19 à un contact à haute tension 26 scellé dans la paroi du tube. Après la mise en place du dispositif fixateur 21, la fenêtre 12 et le cône ll sont assemblés hermétiquement, opération qui s'effectue dans un four pendant une heure à une température d'envrion 450°C. Puis, le tube est fini par la mise d'un système de canon 14 dans le corps, l'évacuation du tube et application d'une couche de métal fixateur sur une surface intérieure du tube par chauffage inductif du dispositif fixateur 21.

L'une des raisons pour laquelle le dispositif fixateur 21 est disposé si tôt dans le tube pendant la réalisation peut être due au fait que le tube est muni d'une couche de résistance interne 25. Comme on le sait, cette couche de résistance 25 limite le courant qui la traverse par exemple dans le cas d'un claquage à haute tension se produisant dans le système de canon 14. La partie la plus efficace est constituée par la partie s'étendant pratiquement à partir de la jonction col-cône indiquée par la ligne 24 jusque dans le col 10. Ainsi, il est nécessaire de monter le dispositif fixateur 21 à un endroit éloigné de la transition col-cône, afin d'éviter le court-circuit de la couche de résistance dans le col 10 par du métal fixateur évaporé du dispositif fixateur. Etant donné l'accessibilité d'un emplacement, la nécessité s'impose de pouvoir appliquer le dispositif fixateur à cet endroit éloigné de la transition col-cône, avant que le cône ne soit fixé à la fenêtre 12 du tube. Une autre raison pour l'application du procédé conforme à l'invention peut être la possibilité d'omettre la bande métallique élastique utilisée pour le montage usuel du dispositif fixateur au système de canons 14 afin d'éviter l'élasticité exercée par ladite bande métallique sur le système de canons. Le procédé conforme à l'invention nécessite d'utiliser, pour le dispositif fixa-

10

15

20

25

30

35

teur, des composants résistant à l'effet de l'atmosphère ambiante humide d'environ 450°C présente pendant l'assemblage du cône ll dans la fenêtre 12 du tube.

Un dispositif fixateur qui répond à cétte exigence est représenté sur la figure 2. Il est constitué par une gouttière en acier au chrome-nickel l dans laquelle est pressé un matériau de remplissage pulvérulent 2. Le matériau de remplissage 2 comporte une source de métal fixateur constitué par un mélange de poudre de baryum-aluminium (BaAl_k) et de poudre de nickel, dont le teneur en poudre de nickel est de 40 à 60 % en poids, ainsi qu'ume source de gaz d'environ 1,5 à 4 % en poids de matériau dégageant le gaz, qui est constitué par un alliage pulvérulent nitruré contenant, en poids, environ 60 % de fer, environ 7 % de chrome et environ 33 % de germanium, la grosseur de grain moyenne étant comprise entre 10 et 40 microns. Cette source de gaz commence à céder l'azote à environ 615°C. Lors du chauffage inductif du dispositif fixateur, cette source de gaz a déjà cédé son gaz avant que le baryum ne commence à s'évaporer de la source de métal fixateur.

ment celle du métal fixateur doit résister à l'effet de l'air humide de 450°C, ce qui peut être réalisé par un choix approprié des grosseurs de grain de la poudre de baryum-aluminium et de la poudre de nickel, comme il a déjà été décrit dans le susdit brevet des Etats-Unis d'Amérique n° 4 077 899. Dans l'exemple donné, la poudre de nickel présente une grosseur de grains moyenne comprise entre 30 et 60 microns et la poudre de baryum-aluminium une grosseur de grains moyenne d'environ 80 microns. La surface spécifique de la poudre de nickel est inférieure à 0,15 m² par gramme. De plus, comme on le sait, une autre méthode pour améliorer la résistance de la source de métal fixateur consiste à remplacer le nickel par du titane de nickel ou du titane de fer.

10

15

20

25

30

35

D'une façon générale, les matériaux dégageant le gaz constitués par des alliages nitrurés de fer, de germanium et de chrome présentent une température de décomposition comprise entre 500°C et 700°C et ils restent complètement utilisables comme source d'azote, même après avoir été exposés pendant une heure à l'air humide (point de condensation environ 20°C) de 450°C. Comme mesure pour la résistance chimique du matériau dégageant le gaz, on prend l'augmentation du poids que présente le matériau après être exposé à l'air humide de 450°C (point de condensation 20°C) pendant une heure. Plus l'augmentation du poids est élevée, plus la réistance chimique est faible. Les nitrures envisagés ne présentent qu'une augmentation du poids en moyenne de 0,5 % en poids en au maximum d'environ 1,5 % en poids, ce qui répond au but visé par la présente invention. Tout en n'étant pas strictement nécessaire, une augmentation poursuivie de la résistance s'obtient en réalisant le processus de nitruration par étapes. Un alliage pulvérulent présentant une grosseur de grains d'environ 30 microns est alors nitruré une première fois pendant quatre heures par exemple, ensuite pulvérisé à nouveau de façon à obtenir une poudre présentant une plus petite grosseur de grains (par exemple 15 microns) et ensuite il est à nouveau soumis à nitruration pendant quatre heures par exemple. Comparativement à un alliage pulvérulent soumis à une seule nitruration pendant environ huit heures, on constata que la résistance chimique de l'alliage nitruré par étapes est deux fois plus élevée. La fragilité du matériau nitruré, qui est augmentée par suite d'un premier processus de nitruration, facilite en outre la pulvérisation pour obtenir une grosseur de grains plus petite.

En ce qui concerne les propriétés du matériau dégageant le gaz, les éléments chrome et manganèse peuvent être considérés comme pratiquement équivalents. Un remplacement entier ou partiel du chrome par du manganèse n'entraîne pas de variations inacceptables en ce qui concerne la résistance chimique et la température de décomposition du matériau dégageant le gaz.

05

REVENDICATIONS:

05

10

15

20

25

30

35

Procédé permettant de réaliser un tube d'images de télévision en couleur, dont l'enveloppe comporte un cône (11) et une fenêtre (12), qui sont reliés hermétiquement entre eux à l'aide d'un verre de soudure (18), un dispositif fixateur (21) étant monté à un endroit situé dans l'enveloppe du tube avant la susdite soudure, dispositif fixateur (21) comportant une source de métal fixateur évaporable et au moins une source de gaz contenant un matériau dégageant du gaz par chauffage, dispositif fixateur (21), à partir duquel le gaz de la source de gaz est dégagé après la mise à vide du tube d'image et le métal fixateur est évaporé, caractérisé en ce qu'on utilise un dispositif fixateur (21) comportant une source de gaz, dont le matériau dégageant le gaz est essentiellement constitué par un alliage ternaire pulvérulent nitruré contenant le fer, le germanium et au moins l'un des métaux chrome et manganèse. Procédé selon la revendication 1, caractérisé en ce que le matériau dégageant le gaz est essentiellement constitué par un alliage pulvérulent nitruré contenant, en poids, 30 à 80 % de fer ; 5 à 50 % de germanium et jusqu'à 30 % de chrome et/ou de manganèse. Procédé selon la revendication 1 ou 2, ca-3. . ractérisé en ce que le matériau dégageant le gaz est essentiellement constitué par un alliage nitruré contenant, en poids, 60 % de fer, environ 7 % de chrome et environ 33 % de germanium. Procédé selon la revendication 1, 2 ou 3, caractérisé par l'utilisation d'un dispositif fixateur contenant une première source de gaz et au moins une deuxième source de gaz, cette dernière contenant un matériau dégageant le gaz, dont la température de décomposition est plus élevée que celle de la première source de gaz.

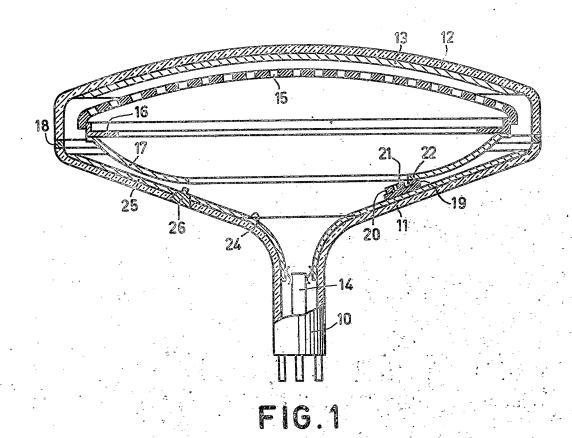
5. Procédé selon la revendication 4, caractérisé en ce que le matériau dégageant le gaz de la première source de gaz est essentiellement constitué par un nitrure d'un alliage de fer, de germanium et de chrome et/ou de manganèse et que la deuxième source de gaz est essentiellement constituée par du nitrure de germanium (Ge₃N₄).

6. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que le matériau dégageant le gaz est au moins essentiellement constitué par un alliage pulvérulent nitruré obtenu par au moins deux pulvérisations et nitrurations successives de l'alliage.

5

10

25


30

35

- 7. Tube d'images de télévision en couleur obtenu par la mise en oeuvre du procédé selon au moins l'une des revendications l à 6.
- Dispositif fixateur, pour la mise en oeuvre du procédé selon l'une des revendications l à 6, comportant une source de métal fixateur évaporable et au moins une source de gaz constitué par du matériau dégageant le gaz, caractérisé en ce que ledit matériau dégageant le gaz est au moins essentiellement constitué par un alliage ternaire pulvérulent nitruré contenant le fer, le germanium et au moins l'un des métaux chrome et manganèse.
 - 9. Dispositif fixateur selon la revendication 8, caractérisé en ce que le matériau dégageant le gaz est au moins essentiellement constitué par un alliage nitruré contenant, en poids, 30 à 80 % de fer, 5 à 50 % de germanium et jusqu'à 30 % de chrome et/ou de manganèse.
 - 10. Dispositif fixateur selon la revendication 8 ou 9, caractérisé en ce que le matériau dégageant le gaz est au moins essentiellement constitué par un alliage nitruré contenant, en poids, environ 60 % de fer, environ 7 % de chrome et environ 33 % de germanium.
 - 11. Dispositif fixateur selon la revendication 8, 9 ou 10, caractérisé en ce qu'il comporte une première source de gaz et au moins une deuxième source de gaz, cette dernière contenant un matériau dégageant le

gaz, dont la température de décomposition est plus élevée que celle de la première source de gaz.

- 12. Dispositif fixateur selon la revendication 11, caractérisé en ce que le matériau dégageant le gaz de la première source de gaz est essentiellement constitué par un nitrure d'un alliage de fer, de germanium et de chrome et/ou de manganèse et de la deuxième source de gaz est essentiellement constitué par du nitrure de germanium (Ge₃N₄).
- 13. Dispositif fixateur selon la revendication 8, 9 ou 10, caractérisé en ce que le matériau dégageant le gaz est au moins essentiellement constitué par un alliage pulvérulent nitruré obtenu par deux pulvérisations et nitrurations successives de l'alliage.

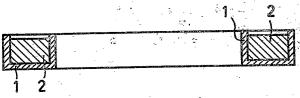


FIG.2