(19) **日本国特許庁(JP)**

(12) 特 許 公 報(B2)

(11)特許番号

特許第5437503号 (P5437503)

(45) 発行日 平成26年3月12日(2014.3.12)

(24) 登録日 平成25年12月20日 (2013.12.20)

E O 5 C 19/16 (2006.01) E O 5 C 19/16 Z E O 5 C 21/02 (2006.01) E O 5 C 21/02 E O 5 B 47/00 A B 6 6 B 13/12 (2006.01) B 6 6 B 13/12 C	(51) Int.Cl.			FI				
EO5B 47/00 (2006.01) EO5B 47/00 A B66B 13/12 (2006.01) B66B 13/12 C	E05C	19/16	(2006.01)	EO5C	19/16	Z		
B66B 13/12 (2006.01) B66B 13/12 C	EO5C	21/02	(2006.01)	EO5C	21/02			
· · · · · · · · · · · · · · · · · · ·	EO5B	47/00	(2006.01)	E O 5 B	47/00	A		
	B66B	13/12	(2006.01)	B66B	13/12	С		
B66B 13/18 (2006.01) B66B 13/18 C	B66B	13/18	(2006.01)	B66B	13/18	C		
						請求項の数 20	(全 13 頁)	最終頁に続く
(21) 出願番号 特願2012-544464 (P2012-544464) (73) 特許権者 591020353 (86) (22) 出願日 平成21年12月18日 (2009.12.18) オーチス エレベータ カンパニー	, ,		,		(73) 特許権者 591020353			

(86) (22) 出願日 平成21年12月18日 (2009.12.18) (65) 公表番号 特表2013-514474 (P2013-514474A)

(43) 公表日 平成25年4月25日 (2013. 4. 25)

(86) 国際出願番号 PCT/US2009/068727 (87) 国際公開番号 W02011/075142

(87) 国際公開日 平成23年6月23日 (2011.6.23) 審査請求日 平成24年8月15日 (2012.8.15)

OTIS ELEVATOR COMPA

NΥ

アメリカ合衆国, コネチカット, ファーミントン, ファーム スプリングス 10

|(74)代理人 100086232

弁理士 小林 博通

|(74)代理人 100092613

弁理士 富岡 潔

|(72)発明者 ピエヒ,ズビグニエフ

アメリカ合衆国, コネチカット, チェシャー, ヴィクトリア ドライブ 106

最終頁に続く

(54) 【発明の名称】ドアの移動を制御する磁気装置及びその方法

(57)【特許請求の範囲】

【請求項1】

磁化方向をそれぞれ有する複数の磁石と、

選択された磁石の間に配された複数の磁極片と、

磁石の一部及び磁極片の一部を支持する可動支持部と、

を備えるロック又は連結装置であって、

可動支持部は、第1の相対配向と、これと異なる第2の相対配向との間で磁化方向の相対配向を選択的に変えるように移動可能であり、

(i)第1の相対配向では、磁束の流れは、磁石間でかつ磁極片に亘って主に導かれ、磁束は、磁石及び磁極片を含む平面内に実質的に留まり、

(ii)第1の相対配向と異なる第2の相対配向では、磁束の流れは、磁極片から横断方向へと前記平面を離れるように主に導かれることを特徴とする装置。

【請求項2】

第1の相対配向は前記装置の非作動状態に対応しており、第1の相対配向では、前記装置は前記平面の外側に位置する対象物と磁気連結を確立せず、

第2の相対配向は前記装置の作動状態に対応ており、第2の相対配向では、前記装置は 近接する対象物と磁気連結を確立することを特徴とする請求項1に記載の装置。

【請求項3】

前記平面の外側で磁石及び磁極片に近接して配設される連結部材を備え、横断方向に導かれる前記磁束は、前記装置と連結部材とを磁気的に連結するように作用することを特徴

とする請求項1に記載の装置。

【請求項4】

第1の磁化方向をそれぞれ有する複数の第1の磁石と、

第1の磁化方向と異なる第2の磁化方向をそれぞれ有する複数の第2の磁石と、

を借え.

第1の磁石の一部及び第2の磁石の一部は、他の第1および第2の磁石に対して移動可能なように、可動支持部によって支持されることを特徴とする請求項1に記載の装置。

【請求項5】

少なくとも1つの列における他の第1および第2の磁石を支持するベースを備え、

可動支持部は、ベースに対して移動可能であり、可動支持部は、他の一の列における第 1 の磁石の一部及び第 2 の磁石の一部を支持することを特徴とする請求項 4 に記載の装置 10

【請求項6】

ベースに支持される第1の磁石は、ベースに支持される第2の磁石と交互に配され、 可動支持部に支持される第1の磁石は、可動支持部に支持される第2の磁石と交互に配

磁極片のうちの1つは、可動支持部及びベースに支持される隣接する1つの磁石と各磁石との間に位置することを特徴とする請求項5に記載の装置。

【請求項7】

ベースは、2つの列における他の第1および第2の磁石を支持し、可動支持部は、少なくとも部分的に前記2つの列の間に受容されることを特徴とする請求項5に記載の装置。

20

【請求項8】

前記装置の非作動状態には、

可動支持部に支持された1つの第2の磁石と直接的に整列する、前記2つの列の各列に おける1つの第1の磁石と、

可動支持部に支持された1つの第1の磁石と直接的に整列する、前記2つの列の各列に おける1つの第2の磁石と、

が含まれ、

前記装置の作動状態には、

可動支持部に支持された1つの第1の磁石と直接的に整列する、前記2つの列の各列における1つの第1の磁石と、

30

可動支持部に支持された1つの第2の磁石と直接的に整列する、前記2つの列の各列に おける1つの第2の磁石と、

が含まれることを特徴とする請求項7に記載の装置。

【請求項9】

非作動状態には、磁化方向に対して直交する方向において第2の磁石と直接的に整列する第1の磁石が含まれ、

作動状態には、第1の磁化方向に対して直交する方向において互いに直接的に整列する 第1の磁石と、第2の磁化方向に対して直交する方向において互いに直接的に整列する第 2の磁石と、が含まれることを特徴とする請求項8に記載の装置。

40

【請求項10】

可動支持部は、

- (i)第1の相対配向および第2の相対配向の間で変える第1の移動方向、
- (ii)第1の移動方向と異なる、前記平面に対して横断する第2の移動方向、

において、他の磁石に対して移動可能であることを特徴とする請求項1に記載の装置。

【請求項11】

他の磁石を支持するベースと、

可動支持部とベースとの間の相対的な移動を促進するように可動支持部及びベースの一方に支持される複数のローラと、

可動支持部及びベースの他方に配された複数の傾斜面と、

を備え、

複数の傾斜面は、可動支持部の第1の移動方向への移動中にローラと係合し、第2の移動方向への移動を生じさせることを特徴とする請求項10に記載の装置。

【請求項12】

前記装置は、ドアに対応するドアロックからなり、

磁化方向により生じる磁気連結は、ドアの閉位置から開位置への移動に抵抗する第2の相対配向にあることを特徴とする請求項1に記載の装置。

【請求項13】

前記装置は、磁化方向が第2の相対配向にあるときにエレベータかごドアと昇降路ドアを選択的に連結するエレベータドア連結器からなることを特徴とする請求項1に記載の装置。

10

【請求項14】

アクチベータを備え、該アクチベータは、エレベータかごドアが閉位置から移動するときに可動支持部を第2の相対配向に対応する位置へと移動させ、エレベータかごドアが閉位置へと移動するときに可動支持部を第1の相対配向に対応する位置へと移動させることを特徴とする請求項13に記載の装置。

【請求項15】

アクチベータは、付勢面を有するブラケットからなり、

可動支持部は、閉位置付近におけるエレベータかごドアの移動に応じて付勢面に沿って 移動するフォロアを含むことを特徴とする請求項14に記載の装置。

20

【請求項16】

付勢面は、複数の傾斜面からなり、フォロアは、傾斜面の間に受容されるローラからなることを特徴とする請求項15に記載の装置。

【請求項17】

第2の相対配向に対応する位置へと可動支持部を付勢する付勢部材を備え、

アクチベータは、付勢部材の付勢に対抗して可動支持部を移動させるように機能することを特徴とする請求項15に記載の装置。

【請求項18】

磁気連結を制御する方法であって、

磁石及び磁極片を含む平面に磁束が実質的に留まるように、磁石の間でかつ磁石の間に配された磁極片に亘って主に磁束の流れを導くため、複数の磁石の磁化方向を第 1 の相対配向に選択的に配置するステップと、

30

前記平面から離れて横断方向へと磁極片から磁束の流れを主に導くように、第1の相対配向と異なる第2の相対配向に前記磁化方向を選択的に配置するステップと、

を含むことを特徴とする方法。

【請求項19】

第2の相対配向により生じる磁束を用いてエレベータかごドアと昇降路ドアを連結する ステップを含むことを特徴とする請求項18に記載の方法。

【請求頃20】

第2の相対配向により生じる磁束を用いて閉位置からのドアの移動を防止するステップ 40 を含むことを特徴とする請求項18に記載の方法。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、ドアの移動を制御する磁気装置及びその方法に関する。

【背景技術】

[0002]

ドアの移動を制御することが重要である状況は多い。例えば、通常、権限下以外ではドアが開かないようにするためドアをロックする。多くのドアロック機構が周知である。従来、機械的なロック機構は、ロックを操作してドアを開放するための鍵を必要とする。よ

り最近では、機械的な鍵を必要とせずドアのロックを制御する電子ロックが様々な状況下で利用されている。

[0003]

また、エレベータシステムには制御されたドアの移動が要求される。エレベータかごが乗場にあるときにエレベータかごと乗場との間の移動を可能にするように、エレベータかごドア及び昇降路ドアは共に移動する。エレベータかごドア及び昇降路ドアを一緒に結合するための種々の構成は、通常、機械的なものである。

【先行技術文献】

【特許文献】

[0004]

【特許文献1】米国特許第5,487,449号明細書

【特許文献2】米国特許第3,638,762号明細書

【発明の概要】

【発明が解決しようとする課題】

[0005]

機械的なドア連結器(カプラ)には、特定の位置合わせ(アライメント)が要求されるため取り付け工程が複雑になるという欠点がある。さらに、機械的な構成要素は時間の経過につれて摩耗や損傷が生じ、メンテナンスが必要となる。

[0006]

他のエレベータドア連結器では、機械的な連結器の構成要素に代えて又はこれに加えて、磁石を含むものも提案されている。この例としては、上記特許文献 1 , 2 に開示されている。エレベータドア連結機構に磁石を用いることにより、機械的な連結機構に伴う欠点を克服することができる。

【課題を解決するための手段】

[0007]

例示的なロック又は連結装置は、磁化方向をそれぞれ有する複数の磁石を備える。複数の磁極片は、選択された磁石の間に配される。可動支持部は、磁石の一部及び磁極片の一部を支持する。可動支持部は、第1の相対配向と、これと異なる第2の相対配向との間で磁化方向の相対配向を選択的に変えるように移動可能である。第1の相対配向は、磁束の流れを磁石間でかつ磁極片に亘って主に導き、磁束は、磁石及び磁極片を含む平面内に実質的に留まる。第1の相対配向と異なる第2の相対配向は、磁束の流れを磁極片から横断方向へと前記平面を離れるように主に導く。

[0008]

例示的な磁気連結を制御する方法は、磁石及び磁極片を含む平面に磁束が実質的に留まるように、磁石の間でかつ磁石の間に配された磁極片に亘って主に磁束の流れを導くため、複数の磁石の磁化方向を第1の相対配向に選択的に配置するステップを含む。前記方法は、前記平面から離れて横断方向へと磁極片から磁束の流れを主に導くように、第1の相対配向と異なる第2の相対配向に前記磁化方向を選択的に配置するステップを含む。

[0009]

開示した本発明の種々の特徴及び利点は、以下に記載する発明を実施するための形態により当業者に明らかになるであろう。発明を実施するための形態に伴う図面について、以下に簡単に説明する。

【図面の簡単な説明】

[0010]

【図1】本発明の実施例により設計された例示的な装置の概略図。

【図2】異なる運転条件における図1の実施例の概略図。

【図3】図1の実施例の特徴を示す概略図。

【図4】図2の実施例の特徴を示す概略図。

【図5】図1,2の実施例と同様の特徴を有するロック装置を含む例示的なドアロック機構を示す概略図。

20

10

30

40

- 【図 6 】図 1 , 2 の実施例と同様の特徴を有するドア連結装置を含む例示的なエレベータシステムの一部を示す図。
- 【図7】例示的なエレベータドア連結装置の概略図。
- 【図8】図7の実施例の一部の特徴を示す概略図。
- 【図9】図7の実施例の他の一部の特徴を示す概略図。
- 【図10】図6,7に示した例示的なドアなどのドアのロックや連結に有用な例示的な装置の正面図。
- 【図11】図10の実施例の側面図。
- 【図12】図10,11に示す実施例の端面図。
- 【図13】図11に示す図と類似するが異なる運転条件における装置の図。
- 【図14】図12に示す図と類似するが図13に示したものと一致する作動状態下の装置を示す端面図。

【発明を実施するための形態】

[0011]

図1は、例えば、ドアをロック又は連結するために有用である例示的な装置20の一部を示す図である。複数の磁石22,24は、磁化の方向23,25(以下、磁化方向という)をそれぞれ有する。磁化方向は、装置20が該装置の付近にある目的物と磁気連結を確立するか否かを制御すべく異なる相対配向(relative orientation)に選択的に配置される。

[0012]

図示した実施例には、複数の第1の磁石22が含まれる。矢印23として第1の磁石22の磁化方向を概略的に示す。磁化方向23は、例えば、各磁石のN極及びS極の配置に依存する。複数の第2の磁石24は、矢印25として概略的に示す磁化方向をそれぞれ有する。図から分かるように、磁化方向23,25は、互いに異なる。本実施例では、磁化方向23,25は、互いに対向する方向に向かっている。

[0013]

図1の実施例には、隣接する磁石の間に位置する複数の磁極片26が含まれる。磁極片26により、磁石間に所望のスペースがもたらされ、磁束28の主方向の制御が促進される。

[0014]

図1において、磁化方向は、第1の相対配向にある。この相対配向は、磁石22と磁石24との間でかつ磁極片26に亘って磁束28のフローを主に導く。磁束28は、大部分が磁石22,24及び磁極片26を含む平面内にある。他の方向へいくらか磁束の漏れが生じ得るが、主磁束流路は図1に概略的に示すとおりである。図1における磁束28の方向は、装置20付近にある目的物との磁気連結を確立するのを防ぐように装置20を制御することを可能にする。

[0015]

図2は、異なる第2の相対配向における磁化方向を示している。図2では、相対配向は、主に、図1において磁束28が主に存する平面と横断する方向における磁極片26から外れて、磁石22,24からの磁束のフローを磁極片26に向けて導く。一実施例では、磁化方向が図2に示す第2の相対配向であるとき、磁束28は、主に(図による)頁から外れて流れる。磁束28を磁極片26から外れるように流すことにより、装置20は近接する目的物と磁気連結を確立することができる。

[0016]

例示的な装置20は、少なくともいくつかの磁石22,24を他の磁石22,24に対して移動させることにより、相対配向を選択的に変更し得るように構成される。説明を目的として、全ての第1の磁石22が同一の磁化方向23を有するため、集合的に第1の磁石を複数として考える。同様に、全ての第2の磁石24が同一の磁化方向25を有するため、集合的に第2の磁石を複数として考える。第1の磁石22は、構成や組成等において第2の磁石24と異なる必要はない。磁化方向23,25は一方と他方が区別される。

10

20

30

40

[0017]

図1の実施例には、第1の列30をなす第1の磁石22、第2の列32をなす第2の磁石24及び第3の列34をなす第1の磁石22が含まれる。本実施例では、第3の列34は、第1の列30と第2の列32との間に位置する。一部の第2の磁石24は、第1の列30及び第2の列32に位置し、他の第2の磁石24は、第3の列34に位置する。

[0018]

図1に示す装置20は、非作動状態にあり、この状態では、装置20は、装置20に近接する目的物と磁気連結を確立しない。図1の構成には、磁石22,24から連結方向に発する磁束量を制限するように互いに対して配向された磁化方向23,25が含まれる。相対配向は、第1の磁石22と第2の磁石24との間でかつ磁極片26に亘って磁束28のフローを主に導く。例えば、図3から分かるように、磁束28は、主に磁石22,24及び磁極片26を含む平面内にある。

[0019]

この相対配向において、第3の列34における第2の磁石24は、第1の列30及び第2の列32における第1の磁石22と直接的に整列する。同様に、第3の列34における第1の磁石22は、第1の列30及び第2の列32における第2の磁石24と直接的に整列する。直接的な磁石の整列(アライメント)の方向は、磁化方向23,25と直交する。この配向に磁化方向23,25を整列させることにより、図1の頁へと又は頁から出て、図2の右側又は左側の方向(図による)へと発する磁束量が制限される。磁化方向が図示した非作動状態の相対配向にあるとき、磁束は、主に図3に示す平面42内にあるか、あるいは図1に示す平面内にある。

[0020]

図2は、互いに対して異なる磁石の第2の位置及び磁化方向23,25の異なる相対配向を示している。矢印36で概略的に示すように、磁石の第3の列34は移動している。図2の位置は作動位置である。これは、図4に示すように、装置20に対して磁気的に連結される連結部材40へと連結方向に磁極片26から磁束が発せられるためである。

[0021]

図2から分かるように、第1の磁石22が磁化方向23に対して直交する方向に沿って互いに直接的に整列しているため、磁化方向23,25は、第2の相対配向にある。同様に、第2の磁石24が磁化方向25に対して直交する方向に沿って互いに直接的に整列している。磁化方向23,25が図2,4の双方にあるとき、装置20は、該装置と連結部材40とに磁気連結を確立するように位置する。例えば、連結部材40は強磁性物質を含む。

[0022]

図4は、磁石が図2に示す作動位置にあるときの構成を示している。この状態において、磁束28は、主に、磁極片26から連結部材40に向けて連結方向へと導かれ、連結部材40に亘った後、隣接する磁極片26へと再び導かれる。第2の相対配向における磁化方向では、連結部材40は装置20と磁気的に連結される。

[0023]

例示的な構成により、磁気連結を確立するために作動状態又は非作動状態へと選択的に制御される受動的な(パッシブ)磁気装置がもたらされる。本実施例において、磁石22,24は、永久磁石である。電磁石を用いる必要がないため、電源を設ける必要はない。これにより、高価な電磁石でなく永久磁石を利用することができ、電源を設ける必要性がないという利点がもたらされる。これと同時に、装置20は、磁石22,24の磁化方向23,25の相対配向を制御することにより磁気連結を確立するように選択的に利用され得る。

[0024]

図5は、上記のような装置の一つの実施例を示している。本実施例では、装置20は、 ドア50の開放を制御するように用いられるドアロックの一部である。ドア50は、領域 52(例えば、部屋、ビル又はエレベータかご)へのアクセスを制御する。本実施例では 10

20

30

40

、連結部材40は、少なくとも1つのドア50に対応し、磁石22,24を含む装置20は、領域52に対する入口において静止構造体54に対して位置する。例えば、図2,4の例示的な実施例で示したように、ドア50が閉位置にあるとき、磁石22,24の位置は、装置20を作動位置に配置し、連結部材40とともに磁気連結を確立するように制御される。装置20を作動位置におくことにより、連結部材40が装置20から離れて移動しなくなり、したがって、ドア50の開放が防止される。ドアの開放が望まれる場合、例えば、図1,3の例示的な実施例で示したように、磁化方向23,25は、装置20の非作動状態に対応する第1の相対配向へとスイッチされ、これにより、連結部材40との間に磁気連結が確立されなくなる。装置20が非作動状態にあるときは、ドアは自由に開位置に移動し得る。

10

[0025]

図6は、例示的な装置20の他の実施例を示しており、エレベータかごドア64を有するエレベータかご62を備えたエレベータシステム60の一部を図示している。装置20は、エレベータかごドア64に対応する。昇降路ドア66は、エレベータかご62が移動する昇降路に沿って乗場に位置する。本実施例では連結ベーンを含む連結部材40は、昇降路ドア66に対応する。本実施例では、装置20により、エレベータかごドア64と昇降路ドア66とが連結されて、該ドアが開位置と閉位置との間を共に移動する。

[0026]

図7は、連結部材40に対応するドアインターロック70を含む例示的な構造を図示しており、これは、昇降路ドア66(図7に図示せず)との移動に適している。インターロック70は、昇降路ドア66のロック及び開放を制御し、一実施例では周知の方法で作動する。

20

[0027]

装置20は、エレベータかごドア64とともに移動するように連結ベーン72とともに支持される。また、図7に周知の方法で作動する抑止部74を示す。

[0028]

図8は、同一の構造を図示するものであるが、連結部材40と装置20の関係を詳細に示すためドアインターロック70を取り除いたものを図示している。エレベータかごドア64が閉位置(図7,8)から開位置へ移動すると、装置20は、昇降路ドア66とともに移動するように支持された連結部材40に接近する。

30

[0029]

エレベータかご62が昇降路を通って移動するとき、装置20は、非作動状態におかれるため、装置20と昇降路ドア66の連結部材40との間に磁気連結が確立されない。エレベータかご62が乗場に停止し、エレベータかごドア64が開き始める際に、装置20は作動状態に移行して、装置20と連結部材40との間に磁気連結を確立する。

[0030]

図から分かるように、本実施例では、エレベータかごドア64が図の左方向に移動する際に連結ベーン72及び装置20は、連結部材40を左方向に押しやる。エレベータかごドア64が閉位置(図の右方向)に戻ると、装置20と連結部材40との間の磁気連結により、これらがともに移動する。この磁気連結により、対応する昇降路ドア66(図6)がエレベータかごドア64とともに閉位置へと移動し得る。

40

[0031]

図9は、図7の構造の一部を示している。特に、ドアインターロック70、連結部材40及び連結ベーン72を図から取り除いて示している。装置20は、フォロア80を有し、本実施例では、フォロアはローラからなる。装置20を作動状態と非作動状態とにスイッチすべく磁化方向の相対配向を変更するため、磁石22,24を他の第2の磁石24に対して移動させることを目的として、フォロア80はアクチベータ82によって選択的に移動される。本実施例では、アクチベータ82は、傾斜面84,86を有するブラケットからなる。エレベータかごドア64が閉位置から移動すると、フォロア80は、傾斜面86に沿って回転してフォロア80は下方へと移動する。本実施例では、アクチベータ82

10

20

30

40

50

は、エレベータかご62に対応するヘッダ88に対して固定されたブラケットからなる。

[0032]

図から分かるように、エレベータかごドア64が、図9の全閉位置から左方向に移動すると、フォロア80は、傾斜面86に沿って下方へと移動する。このような下方への移動により、第1および第2の磁石22,24の磁化方向23,25の相対配向が変わり、装置20と連結部材40とを磁気連結すべく装置20が作動状態におかれる。エレベータかごドア64が全閉位置に戻ると、フォロア80は傾斜面84に沿って上方へと移動し、磁石22,24が他の第2の磁石24に対して移動して、磁化方向が非作動状態に対応する第1の相対配向となる。ここで、連結部材40に向かう連結方向の磁束が制限される。換言すると、エレベータかごドア64が全閉位置に移動する際、傾斜面84に沿ったフォロア80の移動により、装置20が作動状態から非作動状態となり、装置20と連結部材40との間の磁気連結が解放される。

[0033]

図 1 0 ~ 1 2 を参照すると、第 1 の磁石 2 2 及び第 2 の磁石 2 4 の一部を支持する可動支持部 9 0 を有する装置 2 0 の一つの例示的な構成が図示されている。可動支持部 9 0 は、例えば、図 1 , 2 に示す第 3 の列 3 4 に対応する磁石を支持する。この実施例には、 3 つの磁石の列 3 0 , 3 2 , 3 4 が含まれ、可動支持部 9 0 により支持される磁石が他の 2 つの磁石の列の間に位置するように配設されている。本実施例には、磁石 2 2 , 2 4 の第 1 の列 3 0 及び第 2 の列 3 2 を保持するベース 9 2 が含まれる。ベース 9 2 は、エレベータかごドア 6 4 に対して固定されている。可動支持部 9 0 は開口部 9 2 に対して移動可能である。

[0034]

[0035]

図13,14は、作動状態における同様の装置を示している。フォロアつまりローラ80及び可動支持部90は、例えば、図13,11を比較すると、ベース92に対して右方向(図に基づく)に移動している。この位置では、磁化方向23,25は第2の相対配向にある。この配向では、例えば、図2に示すように、第1の磁石22は、互いに直接的に整列し、第2の磁石24は、互いに直接的に整列する。可動支持部90とベース92の間の相対的な移動には、傾斜面98に沿ったローラ94の移動及び傾斜面99に沿ったローラ96の移動が含まれる。このような相対的な移動により、第3の列34における磁極片26及び磁石22,24は、もはや凹んだ位置にはなく、列30,32の磁石と整列し、連結方向における磁石の外側エッジは同一平面上にあり、図14の符号112で示すように整列する。

[0036]

一実施例には、図11,13に示すばねなどの付勢部材100が含まれる。例示的な付

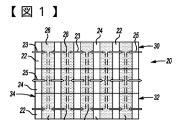
10

20

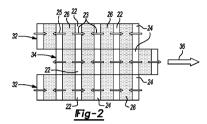
30

勢部材100は、可動支持部90、対応する磁石及び磁極片を装置20の作動状態に対応する位置へと付勢する。本実施例では、付勢部材100は、コイルばね102からなり、このコイルばねは、可動支持部90とともに移動する第1の面104及びベース92に対して固定されたままの第2の面106に対して作用する。コイルばね102の付勢は、磁化方向の第2の相対配向に対応する位置(すなわち、装置20の作動状態)へと磁石及び磁極片を押しやる。ベース92が他の表面(エレベータかごドア64など)に対して固定されている場合、エレベータかごドア64が全閉位置に近づくときに、傾斜面84に沿ったローラ80の移動は、コイルばね102の付勢に対抗して、ローラ80が図13に示す位置から図11に示す位置(例えば、図の左方向)へと押しやられて、装置20が非作動状態に移動する。このような移動は、図12,14から分かるように、連結方向における磁極片及び磁石のエッジの相対配向を変える。

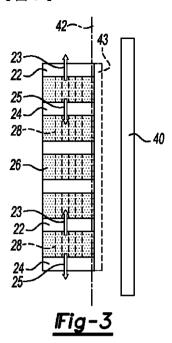
[0037]


他の実施例では、ばねは、その一端が可動支持部90に固定され、他端がベーン72に固定されており、ばねの張力により、磁石及び磁極片が作動状態に対応する位置へと付勢される。アクチベータ82を含む実施例は、ばねなどの付勢部材を有する必要はない。フォロア80とアクチベータ82の相互作用は、装置を所望の状態に保持するように磁石の相対配向を十分に制御する。図示した実施例では、付勢部材100を補助的な特徴部分として示している。

[0038]


図示した実施例において示した装置を用いてドアをロック又は連結するために永久磁石を利用することにより、時間の経過により摩耗する機械的なロック又は連結用部品を排除することが可能となる。さらに、永久磁石を利用し、かつ磁化方向の相対配向を選択的に制御することにより、電源を設けることなく磁気連結を確立するように装置を選択的に作動させることが可能となる。例示的な装置は、受動的であり選択的に制御可能である。磁気連結及びエレベータドア連結機構を利用することができることにより、据付時の公差を減少させること及び時間の経過による摩耗を低下させることができ、これにより、据付及びメンテナンスに要するコストを削減することが可能となる。

[0039]


上記説明は例示的なものであり、限定的なものではない。本発明の趣旨から逸脱することなく、開示した実施例に対して種々の変更や修正がなされることを理解されたい。本発明に付与される法的保護の範囲は、以下の特許請求の範囲を検討することによって決定され得る。

【図2】

【図3】

【図4】

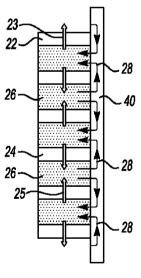
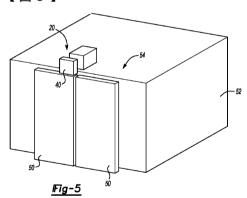
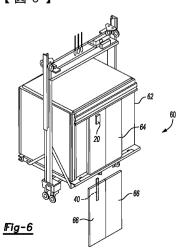
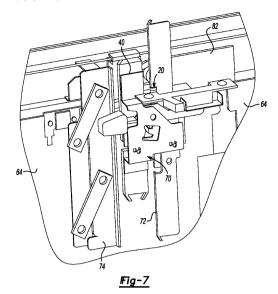
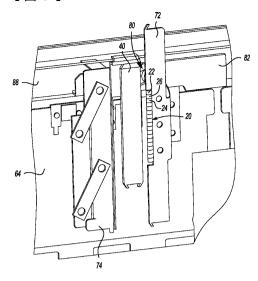
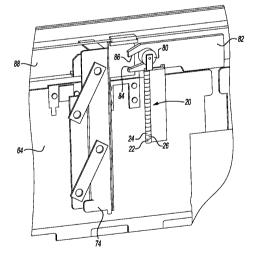




Fig-4

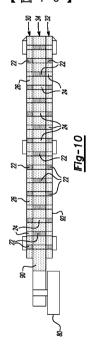



【図6】

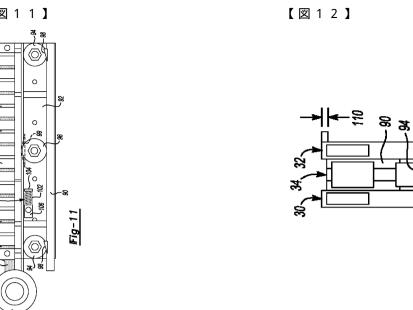
【図7】

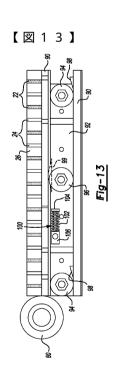


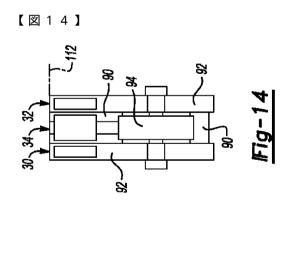
【図8】


<u>Fig-8</u>

【図9】




<u>|Fig-9</u>


【図10】

【図11】

フロントページの続き

(51) Int.CI. F I

B 6 6 B 13/18 A

(72)発明者 フー,グオホン

アメリカ合衆国, コネチカット, ニュー ブリテン, ファーミントン アヴェニュー 418, アパートメント シー9

審査官 神崎 共哉

(56)参考文献 国際公開第2009/086104(WO,A1)

国際公開第2008/118163(WO,A1)

特開平3-211183(JP,A) 特開平2-8471(JP,A)

(58)調査した分野(Int.CI., DB名)

E 0 5 C 1 / 0 0 - 2 1 / 0 2

E05B 1/00-75/00

B 6 6 B 1 3 / 0 0 - 1 3 / 3 0