发明名称：液晶显示体及其制造方法

摘要

在光学特性、耐热性、和耐候性方面具有高可靠性的液晶显示体，其中利用由单体聚合反应形成的聚合物网状结构4，得到一种由胆甾相、液晶性向列液晶、或其组合形式液晶1层组成的液晶显示体，所述液晶层大约是柱状且截面为多角形的，其具有一个被密闭曲线包围，被所述聚合物网状结构划分成最小直径为5μm且最大直径为100μm的区域的近似柱状形式，这样由液晶1得到足够反射而不会光散射。
权利要求书

1. 一种具有在两个中至少一个是透明的导电基材之间形成的液晶层的液晶显示体，包括一种通过单体的聚合反应而得到的网状结构、以及胆甾醇液晶、手性向列液晶、或其组合形式液晶层，它大约是柱状且截面为多角形的，或具有一个被密闭曲线条包围、被所述聚合物网状结构划分成通过游标卡尺测定最小直径为 5μm 且通过游标卡尺测定最大直径为 100μm 的区域的近似柱状形式，其中所述液晶层占整个液晶层的 90% 或更高。

2. 根据权利要求 1 所述的液晶显示体，其中所述胆甾醇液晶、手性向列液晶、或其组合形式液晶层是多角形截面且近似柱状，且所述近似柱状液晶的壁由厚度均匀的聚合物网状结构壁形成。

3. 根据权利要求 1 所述的液晶显示体，其中采用了在常温下分离且通过加热溶解在一起的所述液晶和单体。

4. 根据权利要求 1 所述的液晶显示体，其中所述单体的含量为基于所述液晶的 0.1-20% 重量。

5. 一种生产在两个中至少一个是透明的导电基材之间具有液晶层的液晶显示体的方法，其中胆甾醇液晶、手性向列液晶、或其组合形式液晶的排列扰乱程度通过由单体聚合反应形成的聚合物网状结构来调节。

6. 根据权利要求 5 所述的生产液晶显示体的方法，由其可得到胆甾醇液晶、手性向列液晶、或其组合形式液晶层，其中将所述液晶和单体在两个中至少一个是透明的导电基材之间加热以溶解在一起，然后将它们冷却至出现相分离。

7. 根据权利要求 6 所述的生产液晶显示体的方法，其中调节通过加热溶解在一起的液晶与单体的混合物冷却至室温时的速度。
说明书

液晶显示体及其制造方法

本发明涉及一种具有网状结构的液晶显示体，所述显示体由胆甾醇液晶层、手性向列液晶层、或其混合形式的液晶层制成。

如图5所示，平面阵列构造的液晶显示体是一种具有手性向列液晶的液晶显示体，它在一对ITO 2a和2b与基材3a和3b之间留有胆甾醇层，其中液晶颗粒的螺旋轴规则地与基材2a和2b垂直相交。该液晶显示体满足Bragg反射条件，其中由一基材3a面进入的光被反射到背面(基材3a面)。同时，公众已知，如果平面阵列的螺旋轴过度地排列成一行，视角依赖性(Bragg反射光根据反射光的观察角度而改变波长的特性)增加。

此外，如果与平面阵列螺旋轴的基材3a和3b平面有关的垂直阵列性能被扰乱，且变成一种焦点圆锥阵列，其中液晶的螺旋轴排列成无规则方向或几乎与基材3a和3b的平面平行。由一基材3a面进入的光被向前反射，经过另一基材3b，然后在液晶的螺旋平面上进行Bragg反射。此外，在其中与螺旋轴基材平面有关的垂直阵列性能被扰乱的相应液晶中，使入射光通过液晶阵列进行Bragg反射的角度发生变化，其中反射指数的波长依赖性被消除，且反射光似乎变白，尽管这取决于反射光的观察位置。

在其中正常向列液晶被包封并分散在大分子树脂中的PDLC(聚合物分散液晶)或PNLCC(聚合物网状结构液晶显示体)型液晶显示体中，光散射机理由于液晶与大分子树脂间折射指数不匹配而产生。因此，几乎所有的由一基材3a面进入的光都在液晶层中被散射，然后它经过另一基材3b并向前运动。因此，难以得到具有足够亮度的反射显示体。

相反，由于在胆甾醇液晶或手性向列液晶中，由一基材3a面进入的光被反射，因此反射到相应一基材3a面的背景上的光通量就变得足够。
但由于视角依赖性高，来自 Bragg 反射的色彩变化成眩光在改变视角时出现。为了消除这些缺陷，如图 6 所示，将微量单体掺杂到液晶中并聚合形成一种聚合物网状结构 4，这样可将液晶 1 关于一对 ITO 2a 和 2b 以及螺旋斧基材 3a 和 3b 的平面的垂直阵列性能消散。这已报道于文献(1)Tokuhyo H7-507083、(2)“用于聚合物稳定化液晶的材料”L.-C.Chien 等人,Kent 州立大学,1996,第 11 章,182-189 页,美国化学学会)等。

由于非常微小的聚合物网状结构 4 由单体，如由 Kent 等人提出的 BMBB6(4,4’-二[4-6-(甲基丙烯酰氧基)-乙氧基]苯甲酸)-1,1’-亚联苯基酯)等三维形成，反射光的白度增加，且可以消除眩光，但不能获得足的反射光。

此外，尽管不局限于 Kent 等人的发明，但在其中液晶分散在已有技术所得大分子树脂中的网状结构液晶显示体中，由于网状结构尺寸小，不能由平面结构获得足够反射，其中光由于变成区域边缘的聚合物网状结构而被向前(基材 3b 面)散射，且反射指数可能变差。

还有，作为一种通过将少量大分子树脂分散在手性向列液晶中的方法而得到的液晶显示体，PSCT(聚合物稳定化的胆甾醇结构)早就已知，它在施加电压时变成同型结构的透明体，且在没有施加电压时由于电压的断开波长而变成平面结构的反射体或微聚焦锥形结构的散射体。掺杂在 PSCT 中的单体的量为约 3%，这形成了尺寸 1 微米的微小网状结构。由于网状结构的尺寸非常微小，耐震性能差，其中网状结构由于外力引起内液晶结构变形而容易变形。即，出现这样一个问题：如果液晶板的表面被手指按压，显示可能消失。

尽管可得到具有触摸板的液晶显示体，但上述 PSCT 不能用于这种用途。为了提高 PSCT 的耐震性，公众已知掺杂较多量的单体是有效的。但如果例如在由 Kent 等人制造的 PSCT 中掺杂 10% 或更多的单体，光在聚合物网状结构中被散射的情形增加，反射指数相应降低，且在聚焦锥形部分的光散射增加，这样该液晶显示体的对比度变差。

还有，尽管掺杂在液晶中的单体通过辐射射线如紫外线或热进行
聚合物形成聚合物网状结构，但与液晶接触的表面积会由于聚合物网状结构非常小而增加，这样包含在聚合物中的未反应单体就容易洗脱到液晶中。

因此，本发明的一个目的是提供一种在光学性能和耐震性能方面具有优异可靠性的液晶显示体。

图 1 是按照本发明具有 PSCT 聚合物网状结构的液晶显示体的模拟取向图；

图 2 是按照本发明一个实施方案具有 PSCT 聚合物网状结构的液晶显示体的光学显微照片图；

图 3(a)-3(b) 是按照本发明和已有技术具有 PSCT 聚合物网状结构的液晶显示体的模拟取向图；

图 4 是解释按照本发明的 PSCT 聚合物网状结构的尺寸的图；
图 5 是不含聚合物的液晶颗粒的取向模拟截面图；
图 6 是本发明 PSCT 的聚合物和液晶颗粒的取向模拟截面图；和
图 7 是表示被圆状截面聚合物网状结构所包围的液晶显示体截面的例举性视图。

本发明人等发明了一种具有在两个导电基材(至少一个是透明的)之间形成的液晶层的液晶显示体，其中网状结构最好由通过单体聚合形成的聚合物而形成，这样可在胆甾醇液晶、手性向列液晶、或其组合形式液晶中保证足够的反射，并得到一种胆甾醇液晶、手性向列液晶、或其组合形式液晶层，它大约是柱状且截面为多角形的，或具有一个被密闭曲线包围、被所述聚合物网状结构划分成最小直径(通过游标卡尺测定)为 5μm 且最大直径(通过游标卡尺测定)为 100μm 的区域的近似柱状形式。

如果通过游标卡尺测定的液晶层的直径小于 5μm，光由于网状结构而散射的情形增加，这样液晶显示体的反射指数下降，且其显示表面变暗。另一方面，如果通过游标卡尺测定的液晶层的直径超过 100μm，胆甾醇液晶的螺旋斧过度排成一行，且光在特定方向上的反射被增强，因此产生象在镜面上的眩光，且反射变差由于 Bragg 反射
而变化，这取决于观察显示体表面的角度。即，视角依赖性可能增加。

在本发明中，通过形成较大的聚合物网状结构(区域)，可同时保证足够的液晶层光反射和螺旋轴取向性能的随机性，这样可加宽视角，并可得到能够抑制 Bragg 反射所固有的随视角色彩变化的液晶显示体。

还有，由于被划分成其中最小直径(通过游标卡尺测定)为 5μm 且最大直径为 100μm 的较大区域的液晶层占整个液晶层的 90% 或更高，即使掺杂了超过 20% 重量的单体也能防止在液晶的平面部分发生光反射下降以及在聚焦锥形部分的散射增加。此外，所形成的大网状结构产生增强柱(低分子量树脂壁)，这样其耐震性相对图 5 和图 6 所示的液晶显示体可明显增加。

按照本发明被聚合物网状结构包围的液晶的截面形状可以是任何一种多角或密闭曲线。多角更加优选。原因在于，如果所形成的液晶的截面形状为环状、椭圆状或如葫芦状 8 字母的密闭曲线，划分液晶的网状结构 4 的厚度(壁厚)在其中液晶被划分成三或更多部分的区域 A 增加。即，该部分聚合物网状结构 4 并不仅由薄线形壁形成，其中形成了具有占据一定横截面的点状或块状区域 A 的许多网状结构。

在这种情况下，单位液晶显示体横截面所占据的聚合物网状结构部分(可能变成显示死角)增加，这样有效用于显示的液晶部分的比率下降，因此显示质量下降。

相反，如果被大约均匀壁厚的所得聚合物网状结构 4 包围的大部分液晶是多角截面的，如图 2 所示，那么聚合物网状结构 4 即使在部分 A 也由薄树脂壁构造，如图 7 所示，因此可以防止不用于显示的那部分区域变大。

图 1 给出了液晶显示体的模拟曲线图，其中形成了按照本发明的网状结构。与图 5 所示没有任何聚合物组分的液晶显示体相比，通过在液晶 1 螺旋杆(螺线)上用聚合物网状结构 4 稍微扰乱与一对 ITO 2a 和 2b 以及基材 3a 和 3b 的平面有关的垂直阵列性能，可以降低视角依赖性。
此外，由于在螺线系垂直阵列性能上的这种扰乱程度，几乎所有的由基材 3a 面进入的光都通过 Bragg 反射被反射向后 (基材 3a 面)。因此，与图 6 所示的微小网状结构的液晶显示体相比，可以增加反射指数。

图 2(a)和图 2(b)给出了液晶显示体的光学显微照片，其中形成了按照本发明的网状结构。该网状结构的平面形状可以是多角的，或被密闭曲线所包围的形状，如附图所示。形状并不重要。

图 3 进行了对比，其中将在截面方向上观察的其中形成了本发明网状结构的液晶显示体的例举性视图 (图 3(a)) 及其平面视图 (图 3(b)) 与其中形成了已有技术网状结构的液晶显示体的截面图 (图 3(c)) 及其平面视图 (图 3(d)) 进行比较。比较而言，已有技术网状结构 4 是三维啮合结构，而按照本发明的网状结构 4 的截面则为柱状。

此外，在本发明中，如果术语游标卡尺测定液晶层的截面直径，且通过游标卡尺测定的液晶层的最小直径意味着游标卡尺在该直径下具有如图 4 所示的最小宽度，且通过游标卡尺测定的液晶层的最大直径意味着游标卡尺在该直径下具有如图 4 所示的最大宽度。

在本发明中，与已有技术所述的小网状结构尺寸的液晶光学元件相比，通过增加由聚合物形成的网状结构的尺寸，液晶与聚合物之间的接触面下降。因此，聚合物中的未反应单体不会在液晶中洗脱，因此可提高在显示性能方面的可靠性。

作为用于本发明的液晶，可以列举由通式 (1) 表示的 Schiff 液晶、由通式 (2) 表示的基于氧化偶氨基的液晶、由通式 (3) 表示的基于氰基联苯的液晶、由通式 (4) 表示的基于氰基苯酯的液晶、由通式 (5) 表示的基于苯甲酸苯酯的液晶、由通式 (6) 表示的基于环己烷碳酸酯苯酯的液晶、由通式 (7) 和 (8) 表示的基于氰基苯基环己烷的液晶、由通式 (9) 和 (10) 表示的基于嘧啶的液晶、由通式 (11) 表示的基于苯基环己烷的液晶、由通式 (12) 表示的反式基液晶、和由通式 (13)、(14) 和 (15) 表示的基于链烯基环己烷苯甲腈的液晶、等。

[化学结构式 1]
[化学结构式 2]

[化学结构式 3]

[化学结构式 4]

[化学结构式 5]
[化学结构式 6]

\[\text{R} - \text{CO}_2 - \text{R}' \]

[化学结构式 7]

\[\text{R} - \text{CN} \]

[化学结构式 8]

\[\text{R} - \text{CN} \]

[化学结构式 9]

\[\text{R} - \text{CN} \]

[化学结构式 10]

\[\text{R} - \text{R}' \]
[化学结构式 11]

[化学结构式 12]

[化学结构式 13]

[化学结构式 14]

[化学结构式 15]
不过，n 为整数 0 或 1、2、3、…，R 为烷基、苯基、或环己基，
且 R' 为烷基、苯基、或烷氧基。

至于具体的液晶材料，例如可以列举 4-取代 4''-取代苯酯、4-(4-取
代环己基)苯甲酸 4'-取代环己基酯、4-取代 4''-取代联苯、4-取代苯基 4'-
取代环己烷、4-取代 4''-取代聚氧苯、4-取代联苯 4'-取代环己烷、4-
取代环己烷酸 4'-取代联苯酯、2-(4-取代苯基)-5-取代嘧啶、胆甾醇
衍生物等。

本发明特征还在于，作为用于本发明的单体，使用可通过加热用
液晶溶解但在常温下与液晶的溶解度差的化合物。例如，可以使用
苯乙烯、丙烯酸、丙烯酸酯、丙烯酰胺、甲基丙烯酸、甲基丙烯酸
酯、甲基丙烯酰胺、及其衍生物、和乙烯基化合物等，例如 N-乙烯基吡
咯烷酮、N-乙烯基咔唑、乙烯基酸、乙烯基亚砜等。此外，可以使用
由它们衍生的双官能单体、三官能单体、或四官能单体的二丙烯酸酯
二元酸、二甲基丙烯酸酯、以及丙烯酸酯和甲基丙烯酸酯。优选的是，
单体是一种能够在常温下从液晶中分离的非液晶化合物。

在形成网状结构的已有技术方法中，一般通过在溶液状态下照射辐
射线，如紫外线而将单体立即制成大分子。因此，形成了尺寸为 1-3
微米的非常微小的聚合物网状结构。

本发明人等成功地制成了大尺寸的网状结构，即，由其中单体和
液晶经加热溶解的状态，通过慢慢冷却来进行相分离。还已证实，网
状结构的尺寸取决于冷却速度。如果冷却速度太慢，液晶变成聚集体，
因此形成大聚合物网状结构(区域)。如果冷却速度太快，液晶就聚集不
充分，其中形成了小的网状结构。

在单体和液晶间的相分离充分完成之后，通过照射辐射线如紫外
线将它们热硬化或完全制成大分子。如果在相分离不充分时将它们加
热或用辐射线照射，留在液晶中的单体可能会形成微小的网状结构。
因此，单体与液晶间的相分离进行充分是重要的。考虑到这点，必须
选择在常温下溶解度差的液晶和单体。

尽管对液晶和单体间的溶解度没有明确定义，但液晶与单体间的相分离温度可用作一种指数。随着液晶温度的升高，向列液晶层变成各向同性液晶层，其中相变化温度称作相转变温度 (NI 点)。在高于 NI 点的温度下，单体往往被液晶溶解。但随着温度逐渐下降，液晶和单体之间出现相分离。单体的溶解度越好，相分离温度比 NI 点越低。因此，可以说，NI 点与相分离温度之间的差值越小，溶解度越差。

此外，相分离温度越高，室温下的溶解度越差。但这对非液晶单体是合适的。在液晶单体的情况下，溶解度大体上良好。

此外，由于使用了在常温下与液晶溶解度不好的用于本发明的单体，因此最终在液晶显示体中得到的未反应单体难以洗涤到液晶中，这样可得到一种在显示性能方面具有高可靠性的液晶显示体 (可靠性是指显示性能在使用时的环境中的长期稳定性，例如尤其是耐热性、耐高温性、耐湿度性、等)。

由其中单体和液晶通过加热相互溶解的状态冷却至发生相分离时的温度或室温的速度为 0.5-10°C/分钟，优选 1°C/分钟。此外，光学显微镜已证实相分离是完全的，因此当网状结构没有任何变化时的时间被认为是相分离完成的时间。

使用用于本发明的单体并与液晶按 0.1-20％重量的比率进行混合。为了形成聚合物网状结构以得到被划分成其最小直径 (通过游标卡尺测定) 为 5μm 且最大直径为 100μm 的较大区域的液晶层，重要的是选择与液晶溶解度差的单体。为了形成上述大网状结构，必需调整液晶与单体的溶解度差的混合物。考虑到这点，本发明极大地区别于 Kent 等人所做的发明，其中如已有技术所述使用了易溶解的 PSCT 单体。

此外，作为手性剂，可以使用 Melc Corporation 的商标名称 C15、ER-M、CB15、CM-22、CM-32、CM-34、CN、CM-21、CM-31、CM-33、CM-43、S1011、R1011、S811、R811、以及 Asahi 的商标名称 CNL-611、CNL-617 等。掺杂手性剂以使所得液晶显示体的反射波长为 400-700 纳米，这取决于其种类。
如果需要聚合反应引发剂，它就可以使用。作为聚合反应引发剂，可以列举苯偶姻乙基醚、2-羟基-2-甲基-1-苯基丙-1-酮、1-羟基环己基苯基酮、2-甲基-1-(4-甲基硫基)苯基)-2-吗啉代丙酮-1、二酰基氧化膦等。可以使用这些光聚合反应引发剂之一或其组合形式。

在常温下，通过照射辐射线，如紫外线、电子射线、γ射线等，将单体制成大分子。例如，在使用紫外线时，使用 40-160W 的灯，且照射进行 30-120 秒。

由于被划分成其最小直径(通过游标卡尺测定)为 5μm 且最大直径(通过游标卡尺测定)为 100μm 的较大区域的液晶层通过聚合物网状结构而得到，其中后者通过在常温下与液晶溶解度差的单体而得到，PSCT 具有高反射指数，因此可得到具有视角依赖性小的品质优异的液晶显示体。此外，该液晶显示体具有足够的耐震性能，其中已证实其显示性能方面的可靠性高。

尤其是，如果被聚合物网状结构包围的液晶的截面形状为多角，可以一种形成不能用于显示的块状聚合物网状结构，但用于显示的液晶所占据的面积不会下降。因此，可以提高所得液晶显示体的显示质量。

以下描述本发明的一个实施方案。

实施例 1

按照 38％重量的比率，将商标名称 CB15(Merk Corporation 的 3-(2-甲基)丙基-3’-氰基-1,1’-联苯)容纳到其中将二酰基单体与向列液晶按 20％重量比率进行混合的商标名称 Mixture PNM 108 (Dai-Nippon Ink,Inc.) 中，然后将它们加热至 90℃，在 90℃的气氛下将充分混合的混合物倒在被垫片隔离 6.7μm 的 ITO(氧化铟锡)2a 和 2b 与玻璃基材 3a 和 3b 之间(参见图 1)。倒出该混合物之后 15 分钟，随着该混合物逐渐冷却至室温，液晶层与单体层之间出现相分离。光学显微镜证实该相分离于充分完成之后，通过照射 80W 高压汞灯 1 分钟将其进行光学硬化。

使用光学显微镜观察如此得到的液晶显示体，可观察到形状如图 2
所示的网状结构。通过游标卡尺测定的相应 20 个液晶单元的直径为 5-50μm(最小直径)，且最大直径为 10-100μm.

光学分散受到所用液晶显示体的网状结构的抑制，因此反射指数为 30% 左右。当在角观察该液晶显示体时，没有出现任何色彩变化。

此外，关于反射指数，使用 Ohtsuka Denshi 的 LCD-7000，其中将波长 580 纳米的光在相对液晶显示体垂直线 25 度的方向上照射到显示体上，然后前方的倍加器(光学电子倍加器)接收反射光，其中测定光谱反射指数。

此外，即使用手指强烈按压玻璃表面，使得将约 10 千克/厘米² 的压力施加到其上，也可得到令人满意的显示效果而不受不利影响。

此外，在将用于形成上述液晶显示体的组分在 90℃ 气氛下倾倒之后，如果将冷却速度缩短至 5 分钟，可观察到形状如图 2(b)所示的网状结构。通过游标卡尺测定的其中相应 20 个液晶单元的直径为 10-30μm(最小直径)，且最大直径为 15-50μm。这时可以认为，液晶 1 的颗粒如图 1 取向。

实施例 2

按照 7.0% 重量的比率，将商标名称 S101 手性剂(Melc Corporation 制造)掺杂到其中将二酰基单体与向列液晶按 20% 重量比率进行混合的商标名称 Mixture PNM 108(Dai-Nippon Ink,Inc.)中，然后将它们加热至 90℃。在 90℃ 的气氛下将充分混合的混合物倒在被垫片间隔 6.7μm 的 ITO 2a 和 2b 与玻璃基材 3a 和 3b 之间。倒出该混合物之后 10 分钟，随着该混合物逐渐冷却至室温，液晶层与单体层之间出现相分离。相分离已充分完成之后，通过照射 80W 高压汞灯 1 分钟将其进行光学硬化。

使用光学显微镜观察如此得到的液晶显示体，可观察到一种网状结构。通过游标卡尺测定的其中相应 20 个液晶单元的直径为 10-45μm(最小直径)，且最大直径为 15-100μm。

光学分散受到所用液晶显示体的网状结构的抑制，因此，如果使用 580 纳米波长的光通过类似于实施方案 1 的方法测定反射指数时，
反射指数为 30% 左右。当对角观察该液晶显示体时，没有出现任何色彩变化。

此外，即使使用手指强烈按压玻璃表面，使得将约 10 千克/厘米² 的压力施加到其上，也可得到令人满意的显示效果而不受不利影响。这时可以认为，液晶颗粒如图 1 取向。

对比例 1

将 58.94% 重量的向列液晶 E44(Melc Corporation 的商标名称，基于氰基联苯的液晶)、38% 重量的商标名称 CB15(Merk Corporation 制造)手性剂、38% 重量的商标名称 SL3435(Asahi Denka 制造)单体、和 0.06% 重量的苯偶姻甲基醚在 50℃下充分混合，得到一种均匀混合物。将该混合物倒在被垫片隔离 6.7μm 的两个 ITO 玻璃基材之间，然后在 25℃下，通过照射 80W 高压汞灯 1 分钟将其光学硬化。

使用光学显微镜观察如此得到的液晶显示体中的网状结构，可观察到一种直径(游标卡尺)约 1-3 微米的网状结构。该液晶是白色的，因为光学分散作用通过网状结构变大，因此仅得到约 20% 的反射指数。此外，通过轻微按压玻璃表面，显示消失。这时可以认为，液晶颗粒如图 6 取向。

对比例 2

将 72% 重量的向列液晶 E44(Melc Corporation 制造)、和 38% 重量的手性剂 CB15(Merk Corporation 制造)充分混合，得到一种均匀混合物。将该混合物倒在被垫片隔离 6.7μm 的两个 ITO 玻璃基材之间。没有在所得液晶显示体中观察到任何聚合物网状结构，因为其中没有掺杂聚合物。尽管该液晶显示体的反射指数为 35%，但反射产生 Bragg 反射所特有的眩光，其中反射光发生变化，即，在前方观察到的绿色在视角变化时变成蓝色。此外，通过用手指轻微按压玻璃表面，显示完全消失。这时可以认为，液晶颗粒如图 5 取向。
图 1
图 2

(a)

50 μm

(b)

50 μm