

MINISTERO DELLO SVILUPPO ECONOMICO DIREZIONE GENERALE PER LA LOTTA ALLA CONTRAFFAZIONE UFFICIO ITALIANO BREVETTI E MARCHI

DOMANDA DI INVENZIONE NUMERO	102015000072976	
Data Deposito	16/11/2015	
Data Pubblicazione	16/05/2017	

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
C	07	D	487	04

Titolo

Procedimento per la preparazione della forma amorfa dell'ibrutinib e nuova forma cristallina.

DESCRIZIONE dell'invenzione avente per titolo:

"Procedimento per la preparazione della forma amorfa dell'ibrutinib e nuova forma cristallina"

a nome:

Laboratorio Chimico Internazionale SpA, di nazionalità italiana,

con sede in:

20121 Milano MI, Largo Guido Donegani 2

5

Riassunto dell'invenzione

L'invenzione ha per oggetto un procedimento per la preparazione della forma amorfa dell'ibrutinib e una nuova forma cristallina.

Contesto tecnico

L'ibrutinib è un composto antitumorale, attualmente utilizzato nella terapia di alcuni linfomi.

La sua Denominazione Comune Internazionale (DCI) è 1-[(3R)-3-[4-ammino-3-(4-fenossifenil)-1H-pirazolo[3,4-d]pirimidin-1-il]piperidin-1-il]prop-2-en-1-one ed ha la formula di struttura seguente:

Varie forme cristalline dell'ibrutinib e la forma amorfa sono state descritte in WO2015/081180, WO2013/184572 e in "ip.com Numero IPCOM000238881D". In questo documento, la Forma amorfa veniva ottenuta per essiccamento sotto un flusso di aria di una soluzione di ibrutinib in acetone o metil-tetraidrofurano, mentre in WO2013/184572 si ottiene sciogliendo la Forma A dell'ibrutinib in diclorometano ed evaporando velocemente al rotavapor.

Scopi dell'invenzione

È uno scopo dell'invenzione fornire nuovi procedimenti per la preparazione della forma amorfa dell'ibrutinib che siano riproducibili e industrialmente convenienti.

È un altro scopo dell'invenzione fornire una nuova forma cristallina dell'ibrutinib e dei procedimenti per la sua preparazione.

5 Breve descrizione delle Figure

La Figura 1 mostra lo spettro XRPD della Forma amorfa dell'ibrutinib.

La Figura 2 mostra lo spettro FT-IR della Forma amorfa dell'ibrutinib.

La Figura 3 mostra il profilo DSC della Forma amorfa dell'ibrutinib.

La Figura 4 mostra lo spettro XRPD della nuova Forma L dell'ibrutinib.

La Figura 5 mostra lo spettro FT-IR della nuova Forma L dell'ibrutinib.

La Figura 6 mostra il profilo DSC della nuova Forma L dell'ibrutinib.

Descrizione dell'invenzione

15

20

Secondo uno dei suoi aspetti, l'invenzione ha per oggetto un procedimento per la preparazione della forma amorfa dell'ibrutinib che comprende sciogliere l'ibrutinib in un solvente scelto tra 1,2,-dimetossi-etano e etanolo fino ad ottenere una soluzione satura, aggiungere acqua alla detta soluzione ed isolare il precipitato così ottenuto.

La soluzione satura può essere ottenuta sciogliendo l'ibrutinib nel solvente a temperatura ambiente.

Alternativamente al procedimento sopra descritto, la forma amorfa dell'ibrutinib può essere ottenuta per evaporazione di una soluzione, vantaggiosamente non satura, di ibrutinib in uno o più solventi, ad esempio in un solvente scelto tra 1,4 diossano, metil etil chetone, metanolo, dimetilsolfossido, etanolo, 2-butanolo, acetonitrile, acetato di etile, nitrometano, 2-metossietanolo, 1,2-dimetossi-etano, dimetilformammide, cloruro di metilene e acetone. L'1,2-dimetossi-etano è utilizzabile solo in miscela con altri solventi, come si vedrà in seguito.

I solventi 1,4 diossano, metil etil chetone sono preferiti e quando si opera con detti solventi si può effettuare l'evaporazione della soluzione sostanzialmente a qualsiasi temperatura c pressione. A titolo di esempio, si può operare nelle seguenti condizioni:

- bassa temperatura e pressione ambiente (4-10°C/1 atm)
- 5 temperatura e pressione ambiente (17-25°C/1 atm)
 - alta temperatura e pressione ambiente (60°C/1 atm)
 - temperatura ambiente e bassa pressione (17-25°C/10-2 atm)
 - alta temperatura e bassa pressione (40°C/10-2 atm)

Quando invece si opera con gli altri solventi sopra menzionati l'evaporazione è effettuata nelle seguenti condizioni:

- temperatura e pressione 17-25°C/1 atm in metanolo, acetone;
- temperatura e pressione 60°C/1 atm in un solvente scelto tra 2-butanolo, 2-metossietanolo, acetonitrile, dimetilformammide, dimetilsolfossido, e acetato d'etile;
- temperatura e pressione 17-25°C/10⁻² atm in un solvente scelto tra 2-butanolo, acetonitrile, cloruro di metilene, metanolo, etanolo, nitrometano e acetato d'etile;
- temperatura e pressione 40°C/10⁻² atm in un solvente scelto tra 2-butanolo, 2-metossietanolo, acetonitrile, dimetilformammide, dimetilsolfossido, acetato d'etile, etanolo e nitrometano;

Come detto, è altresì possibile evaporare una miscela di solventi per ottenere la Forma amorfa.

20 Delle miscele di solventi preferite sono le seguenti:

- metil etil chetone/1,2-dimetossi-etano;
- metil etil chetone/1,4-diossano;

È anche possibile ottenere la Forma amorfa per evaporazione alla temperatura ambiente, ad una temperatura intorno a 60°C e a pressione ambiente, o a bassa pressione (circa 10⁻² atmosfere) a temperatura ambiente o a circa 40°C, nelle seguenti miscele di solventi:

- 2-propanolo/1,4-diossano;
- metil etil chetone/2-propanolo;

5

- metil etil chetone/acetonitrile; e
- metil etil chetone/etanolo.

È anche possibile ottenere la Forma amorfa per evaporazione ad una temperatura intorno a 60°C e a pressione ambiente, o a bassa pressione (circa 10⁻² atmosfere) a temperatura ambiente o a circa 40°C, nelle seguenti miscele di solventi:

- metil etil chetone/acetato di etile;
- metil etil chetone/2-butanolo;
- 2-propanolo/1,2-dimetossi-etano;
- 2-propanolo /acetato di etile; e
- 2-propanolo/2-butanolo.

È anche possibile ottenere la Forma amorfa per evaporazione alla pressione e temperatura ambiente o a circa 40° a bassa pressione (circa 10⁻² atmosfere), nella seguente miscela di solventi:

- 2-propanolo/acetonitrile
- 20 È anche possibile ottenere la Forma amorfa per evaporazione a 60°C e a pressione ambiente o a circa 40° a bassa pressione (circa 10⁻² atmosfere), nella seguente miscela di solventi
 - 2-propanolo/etanolo

È anche possibile ottenere la Forma amorfa per evaporazione alla pressione e temperatura ambiente o alla temperatura ambiente e a bassa pressione (circa 10⁻² atmosfere) o a bassa temperatura (4-10°C), nella seguente miscela di solventi:

- metil etil chetone/acetone.
- È infine anche possibile ottenere la Forma amorfa per evaporazione alla pressione e temperatura ambiente o alla temperatura ambiente e a bassa pressione (circa 10⁻² atmosfere), nella seguente miscela di solventi:
 - 2-propanolo/acetone.

10

20

La Forma amorfa dell'ibrutinib ottenibile e/o ottenuta con i procedimenti sopra descritti rappresenta un ulteriore oggetto dell'invenzione.

Lo spettro XRPD della forma amorfa è mostrato nella Figura 1 e mostra che non è presente nessuna forma cristallina; lo spettro FT-IR è riportato nella Figura 2 e il profilo DSC è riportato nella Figura 3. La Forma amorfa dell'ibrutinib caratterizzata da detto spettro FT-IR e da detto profilo DSC rappresenta un ulteriore oggetto dell'invenzione.

15 Come si può apprezzare dall'analisi DSC, la forma amorfa ottenuta dal procedimento sopra descritto mostra un picco endotermico a circa 58°C dovuto all'acqua intrappolata. Durante un secondo riscaldamento, un picco esotermico si rileva a circa 144°C a causa della degradazione della molecola.

La forma amorfa è particolarmente stabile, sia alla macinazione e all'impastamento (in inglese "kneading"), sia all'esposizione a svariate combinazioni di temperatura e umidità.

Secondo un altro dei suoi aspetti, l'invenzione ha per oggetto l'uso della Forma amorfa dell'ibrutinib in terapia ed in particolare nel trattamento dei tumori come i linfomi e le leucemie. L'invenzione ha altresì per oggetto una composizione farmaceutica che comprende la Forma amorfa dell'ibrutinib insieme a veicoli e/o eccipienti convenzionali, preferibilmente una

composizione orale ad esempio una compressa o una capsula. Tali composizioni comprenderanno da 40 a 300 mg di Forma amorfa dell'ibrutinib, ad esempio 120-150 mg, vantaggiosamente circa 140 mg e saranno somministrate da 1 a 5 volte al giorno, vantaggiosamente 3 volte al giorno. Altri dosaggi e somministrazioni potranno comunque essere previsti a seconda della patologia e delle condizioni del soggetto da trattare.

Secondo un altro dei suoi aspetti, l'invenzione ha per oggetto un metodo per il trattamento dei tumori, come i linfomi e le leucemie, che comprende somministrare ad un soggetto che lo necessita una dose efficace della Forma amorfa dell'ibrutinib.

Per "soggetto" si intende qui indicare un mammifero, preferibilmente un essere umano.

5

15

Secondo un altro dei suoi aspetti, l'invenzione ha per oggetto un solvato di ibrutinib con 1,2dimetossi-etano.

Secondo una forma di realizzazione preferita, il solvato di ibrutinib con 1,2-dimetossi-etano è in forma cristallina e rappresenta una nuova forma cristallina dell'ibrutinib, qui denominata "Forma L", che presenta lo spettro di diffrazione ai raggi X allegato alla presente descrizione come Figura 4, lo spettro FT-IR della Figura 5 e il profilo DSC della Figura 6.

In particolare, la nuova Forma L dell'ibrutinib presenta i seguenti picchi principali:

Pos. [°2Th.]	Height [cts]	FWHM [°2Th.]	d-spacing [Å]	Int. Rel. [%]
6,6787	2958,98	0,1004	13,23507	90,66
6,9321	1694,32	0,1506	12,75179	51,91
9,8563	235,01	0,1338	8,97416	7,20
10,3728	608,51	0,2007	8,52841	18,64
10,6814	1263,47	0,1004	8,28269	38,71
10,8263	1406,98	0,1338	8,17220	43,11
12,5982	76,74	0,2007	7,02650	2,35
13,3783	1257,52	0,1004	6,61846	38,53
13,5977	1227,74	0,1338	6,51216	37,62
15,0077	101,93	0,2342	5,90336	3,12
15,5213	646,62	0,1171	5,70915	19,81
15,6574	457,84	0,0836	5,65985	14,03
16,4966	151,00	0,1338	5,37375	4,63
16,8148	214,20	0,1004	5,27277	6,56
17,3130	2163,77	0,1004	5,12217	66,30
17,4179	2833,10	0,0669	5,09153	86,80

17,7776	1397,25	0,1840	4,98932	42,81
18,2364	1028,69	0,1171	4,86481	31,52
18,3932	1197,57	0,1171	4,82370	36,69
18,6861	429,93	0,1004	4,74874	13,17
19,1251	472,06	0,1338	4,64072	14,46
19,4492	349,67	0,2342	4,56413	10,71
20,2046	3263,76	0,1506	4,39516	100,00
20,3189	2809,48	0,0836	4,37069	86,08
20,6131	865,75	0,1428	4,30539	26,53
20,7066	743,23	0,1020	4,29682	22,77
21,5565	3045,62	0,3060	4,11906	93,32
22,1836	3193,73	0,1632	4,00402	97,85
22,3005	3097,82	0,1428	3,98329	94,92
23,1193	556,97	0,1224	3,84404	17,07
23,5168	1579,10	0,0816	3,77996	48,38
23,7528	543,90	0,1224	3,74293	16,66
24,5069	62,78	0,2448	3,62943	1,92
25,4403	416,72	0,3264	3,49834	12,77
26,1500	213,55	0,2448	3,40500	6,54
26,5774	386,98	0,2040	3,35120	11,86
27,0626	605,97	0,1632	3,29221	18,57
27,5144	296,96	0,1632	3,23916	9,10
27,8633	353,34	0,1428	3,19939	10,83
28,3417	366,22	0,1632	3,14646	11,22
28,7403	286,08	0,2448	3,10372	8,77
29,3096	60,64	0,1632	3,04472	1,86
29,8684	553,73	0,2856	2,98902	16,97
30,1973	219,49	0,1428	2,95721	6,73
30,7585	124,10	0,2448	2,90452	3,80
31,3718	220,39	0,3264	2,84913	6,75
31,9224	90,00	0,2448	2,80122	2,76
33,4214	196,91	0,2448	2,67893	6,03
34,1047	79,08	0,2448	2,62681	2,42
35,0086	90,13	0,4896	2,56103	2,76
36,5111	142,39	0,3264	2,45901	4,36
38,3076	52,38	0,3264	2,34772	1,60
39,2997	57,36	0,3264	2,29071	1,76

La nuova Forma L contiene del 1,2-dimetossi-etano nel cristallo.

La nuova Forma L dell'ibrutinib si è mostrata stabile anche dopo manipolazioni meccaniche come la macinazione e l'impastamento (kneading) ed ha un punto di fusione di 104,5°C.

In alcune condizioni tuttavia la Forma L si converte nella Forma A o nella Forma amorfa e per questo motivo la Forma L può essere utilizzata come intermedio nella preparazione della Forma amorfa o della Forma A.

Si è infatti osservato che riscaldando la Forma L in presenza di umidità, ad esempio mantenendola a 60°C/75% di umidità relativa, detta Forma si converte in Forma A. La stessa conversione si ottiene sospendendo ed agitando una sospensione di Forma L in acqua per parecchie ora, ad esempio 50-300 ore, preferibilmente circa 200-250 ore.

5

15

Alternativamente, è possibile ottenere la Forma amorfa dell'ibrutinib scaldando il campione a 60-120 °C preferibilmente 80-100° per un periodo di 1-12 ore preferibilmente 2-10 ore.

10 L'uso della Forma L dell'ibrutinib come intermedio per la preparazione della Forma amorfa rappresenta un ulteriore oggetto dell'invenzione.

Secondo un altro dei suoi aspetti, l'invenzione ha per oggetto un procedimento per la preparazione della Forma L dell'ibrutinib che comprende far passare dei vapori di isopropiletere su una soluzione satura di ibrutinib in 1,2-dimetossi-etano fino ad ottenere una precipitazione e isolare la Forma L così ottenuta.

Il procedimento dell'invenzione può essere condotto a temperatura ambiente.

La soluzione satura può essere ottenuta sciogliendo l'ibrutinib nel solvente a temperatura ambiente. La soluzione è vantaggiosamente filtrata prima di procedere alla vaporizzazione di isopropiletere e il tempo di vaporizzazione può durare da 2 a 24 ore, ad esempio circa 7-10 ore.

20 L'isolamento della Forma L può essere effettuato per filtrazione, ad esempio per filtrazione sottovuoto.

Una qualsiasi forma dell'ibrutinib può essere utilizzata come prodotto di partenza nel procedimento sopra descritto.

Alternativamente, la nuova Forma L può anche essere ottenuta per semplice agitazione ("slurry") di ibrutinib in 1,2-dimetossi-etano, Una qualsiasi forma dell'ibrutinib, può essere utilizzata. Il tempo di agitazione va da 24 a 100 ore, ad esempio intorno a 50-70 ore. L'esperto del ramo è comunque in grado di seguire l'andamento della reazione con le tecniche convenzionali.

Degli esempi di preparazione sono forniti nella sezione sperimentale della presente descrizione. La Forma L dell'ibrutinib ottenibile e/o ottenuta con il procedimento sopra descritto rappresenta un ulteriore oggetto dell'invenzione.

Sezione sperimentale

10 <u>XRPD</u>

5

I campioni sono stati sottoposti a diffrazione ai raggi X su polvere sui campioni non trattati.

Strumento: X'Pert PRO

	Asse di scansione (Scan Axis)	Gonio
	Posizione di partenza (Start Position) [°2Th.]	3,0094
15	Posizione finale (End Position) [°2Th.]	39,9844
	Dimensione dei passaggi (Step Size) [°2Th.]	0,0170
	Tempo dei passaggi di scansione (Scan Step Time) [s]	12,9218
	Tipo di scansione (Scan Type)	continuo
	Modalità PSD (PSD Mode)	Scansione
20	Lunghezza PSD (PSD Length) [°2Th.]	2,12
	Offset [°2Th.]	0,0000
	Tipo di fessura di divergenza (Divergence Slit Type)	Fissa
	Dimensione della fessura di divergenza (Divergence Slit Size) [°]	0,4354
	Lunghezza del campione (Specimen Length) [mm]	10,00

	Misurazione della temepratura (Measurement Temperature) [°C]	25,00
	Materiale dell'anodo (Anode Material)	Cu
	K-Alpha1 [Å]	1,54060
	K-Alpha2 [Å]	1,54443
5	K-Beta [Å]	1,39225
	Rapporto K-A2 / K-A1	0,50000
	Parametri del generatore (Generator Settings)	40 mA, 40 kV
	Tipo di diffrattometro (Diffractometer Type)	0000000011019590
	Numero di diffrattomero (Diffractometer Number)	0
10	Radio Goniometro (Goniometer Radius) [mm]	240,00
	Dist. Focus-Diverg. Slit [mm]	100,00
	Monocromatore a raggio incidente (Incident Beam Monochromator)	No
	Spinning	Si

FT-IR

L'analisi è stata condotta su campioni non trattati usando un Thermo Nicolet 6700 FT-IT spettrometro dotato di Smart performer ZnSe; DTGS Kbr Detector; IR Source; KBr Beam Splitter.

DSC

L'analisi è stata condotta su campioni non trattati usando un DSC 200 F3 Maia®

20 Il campione è stato pesato in un contenitore di alluminio e sigillato con un coperchio di alluminio. L'analisi è stata condotta scaldando il campione da 25°C a 350°C a 10K/minuto.

<u>TGA</u>

L'analisi è stata condotta su campioni non trattati usando il Mettler Toledo Star^e System.

Il campione è stato pesato in un contenitore di alluminio e sigillato con un coperchio di

alluminio forato. L'analisi è stata condotta scaldando il campione da 25°C a 450°C a 10K/minuto.

EGA

L'analisi è stata condotta sui gas prodotti con la TGA.

5 Automazione

34 posizioni dei campioni

TGA-FTIR

accoppiato con spettrometro Thermo Nicolet 6700

"Balance data"

XP5

Intervallo di misurazione

≤5 g

Risoluzione

 $1.0 \mu g$

10 Accuratezza della pesata

0,005%

Precisione della pesata

0,0025%

Pesi dell'anello interno

2

Riproducibilità della curva controllo: superiore a $\pm 10~\mu g$ su tutto l'intervallo di temperatura

Esempio 1

15 Preparazione generale per le prove di precipitazione

Un campione di ibrutinib è stato sciolto in 2 ml di solvente per ottenere una soluzione satura a temperatura ambiente o scaldando se necessario. La sospensione è stata lasciata in agitazione per una notte ed è stata poi filtrata su un filtro Whatman da 0,45 micron. Alla soluzione trasparente così ottenuta sono stati aggiunti 10 ml dell'antisolvente alla temperatura ambiente sotto agitazione meccanica. Il precipitato è stato isolato per filtrazione ed essiccato sotto vuoto.

Esempio 2

20

Preparazione della Forma amorfa dell'ibrutinib per precipitazione

Operando come descritto nella procedura generale dell'esempio 1, utilizzando 1,2-dimetossietano come solvente e acqua come antisolvente, si ottiene la Forma amorfa dell'ibrutinib.

Esempio 3

Preparazione della Forma amorfa dell'ibrutinib per precipitazione

Operando come descritto nella procedura generale dell'esempio 1, utilizzando etanolo come solvente e acqua come antisolvente, si ottiene la Forma amorfa dell'ibrutinib.

5 <u>Esempio 4</u>

10

15

20

Preparazione generale per le prove di evaporazione

Un campione di 50 mg di ibrutinib è stato sciolto in 5 ml di solvente o di una miscela di due solventi 1/1 (v/v), scaldando quando necessario. La soluzione è stata agitata alla temperatura ambiente per circa 60 minuti, filtrata su un filtro Whatman da 0,45 micron e lasciata evaporare nelle seguenti condizioni:

- Bassa temperatura e pressione ambiente (4-10°C/1 atm)
- Temperatura e pressione ambiente (17-25°C/1 atm)
- Alta temperatura e pressione ambiente (60°C/1 atm)
- Temperatura ambiente e bassa pressione (17-25°C/10⁻² atm)
- Alta temperatura e bassa pressione (40°C/10⁻² atm)

Esempio 5

Preparazione della Forma amorfa dell'ibrutinib per evaporazione in un solo solvente

Operando come descritto nella procedura generale dell'esempio 4, in qualsiasi condizione di temperatura e pressione riportate nell'esempio 4, utilizzando un solvente scelto tra 1,4 diossano e metil etil chetone si ottiene la Forma amorfa dell'ibrutinib.

Esempio 6

Preparazione della Forma amorfa dell'ibrutinib per evaporazione in un solo solvente

Esempio 6.a

Operando come descritto nella procedura generale dell'esempio 4, utilizzando le condizioni di temperatura e pressione 17-25°C/1 atm in metanolo o in acetone si ottiene la Forma amorfa dell'ibrutinib.

Esempio 6.b

Operando come descritto nella procedura generale dell'esempio 4, utilizzando le condizioni di temperatura e pressione 60°C/1 atm in un solvente scelto tra 2-butanolo, 2-metossietanolo, acetonitrile, dimetilformammide, dimetilsolfossido, e acetato d'etile si ottiene la Forma amorfa dell'ibrutinib.

Esempio 6.c

Operando come descritto nella procedura generale dell'esempio 4, utilizzando le condizioni di temperatura e pressione 17-25°C/10⁻² atm in un solvente scelto tra 2-butanolo, acetonitrile, cloruro di metilene, metanolo, etanolo, nitrometano e acetato d'etile si ottiene la Forma amorfa dell'ibrutinib.

Esempio 6.d

Operando come descritto nella procedura generale dell'esempio 4, utilizzando le condizioni di temperatura e pressione 40°C/10⁻² atm in un solvente scelto tra 2-butanolo, 2-metossietanolo, acetonitrile, dimetilformammide, dimetilsolfossido, acetato d'etile, etanolo e nitrometano si ottiene la Forma amorfa dell'ibrutinib.

Esempio 7

20 <u>Preparazione della Forma amorfa dell'ibrutinib per evaporazione in miscele di solventi</u>

Operando come descritto nella procedura generale dell'esempio 4, utilizzando le seguenti miscele di solventi:

- miscela di metil etil chetone/1-2-dimetossi-etano
- metil etil chetone/1,4-diossano

si ottiene la Forma amorfa dell'ibrutinib.

Esempio 8

Si ottiene la forma amorfa dell'ibrutinib secondo gli esempi che seguono.

Esempio 8.a

- Operando come descritto nella procedura generale dell'esempio 4, alla temperatura ambiente, ad una temperatura intorno a 60°C e a pressione ambiente, o a bassa pressione (circa 10-2 atmosfere) a temperatura ambiente o a circa 40°C, nelle seguenti miscele di solventi:
 - 2-propanolo/1,4-diossano;
 - metil etil chetone/2-propanolo;
- 10 metil etil chetone/acetonitrile; e
 - metil etil chetone/etanolo.

Esempio 8.b

15

Operando come descritto nella procedura generale dell'esempio 4, ad una temperatura intorno a 60°C e a pressione ambiente, o a bassa pressione (circa 10-2 atmosfere) a temperatura ambiente o a circa 40°C, nelle seguenti miscele di solventi:

- metil etil chetone/acetato di etile;
- metil etil chetone/2-butanolo;
- 2-propanolo/1,2-dimetossi-etano;
- 2-propanolo /acetato di etile; c
- 20 2-propanolo/2-butanolo.

Esempio 8.c

Operando come descritto nella procedura generale dell'esempio 4, a temperatura ambiente o a circa 40°, in entrambi i casi a bassa pressione (circa 10⁻² atmosfere), nella seguente miscela di solventi:

2-propanolo/acetonitrile.

Esempio 8.d

Operando come descritto nella procedura generale dell'esempio 4, ad una temperatura intorno a 60°C e a pressione ambiente o a circa 40° a bassa pressione (circa 10⁻² atmosfere), nella seguente miscela di solventi:

- 2-propanolo/etanolo. 2-propanolo/acetonitrile

Esempio 8.e

5

Operando come descritto nella procedura generale dell'esempio 4, alla pressione e temperatura ambiente o alla temperatura ambiente e a bassa pressione (circa 10-2 atmosfere) o a bassa temperatura (4-10°C), nella seguente miscela di solventi:

metil etil chetone/acetone.

Esempio 8.f

Operando come descritto nella procedura generale dell'esempio 4, alla pressione e temperatura ambiente o alla temperatura ambiente e a bassa pressione (circa 10-2 atmosfere), nella seguente miscela di solventi:

2-propanolo/acetone.

Esempio 9

15

20

Preparazione della Forma cristallina L dell'ibrutinib

Un campione di ibrutinib è stato sciolto in 1,2-dimetossi-etano per ottenere una soluzione satura, a temperatura ambiente. La sospensione è stata lasciata in agitazione per una notte ed è stata poi filtrata su un filtro Whatman da 0,45 micron. La soluzione trasparente così ottenuta, è stata esposta a vapori di isopropil etere per 8 giorni. Il precipitato è stato isolato per filtrazione ed essiccato sotto vuoto fornendo la Forma L dell'ibrutinib.

Esempio 10

Preparazione della Forma cristallina L dell'ibrutinib

Un campione di 1 g ibrutinib è stato sciolto in 20 ml di 1,2-dimetossi-etano per ottenere una soluzione a temperatura ambiente. Alla soluzione sono stati aggiunti 25 ml di isopropil etere a temperatura ambiente, sotto agitazione. La soluzione è stata quindi raffreddata velocemente a 0°C. Il precipitato ottenuto è stato isolato per filtrazione ed essiccato sotto vuoto fornendo la Forma L dell'ibrutinib.

Esempio 11

5

10

Preparazione della Forma cristallina L dell'ibrutinib

Un campione di 100 mg ibrutinib è stato sospeso in 1 ml di 1,2-dimetossi-etano. La sospensione è stata lasciata in agitazione per 65 ore. Il precipitato formatosi è stato isolato per filtrazione ed essiccato sotto vuoto fornendo la Forma L dell'ibrutinib.

Esempio 12

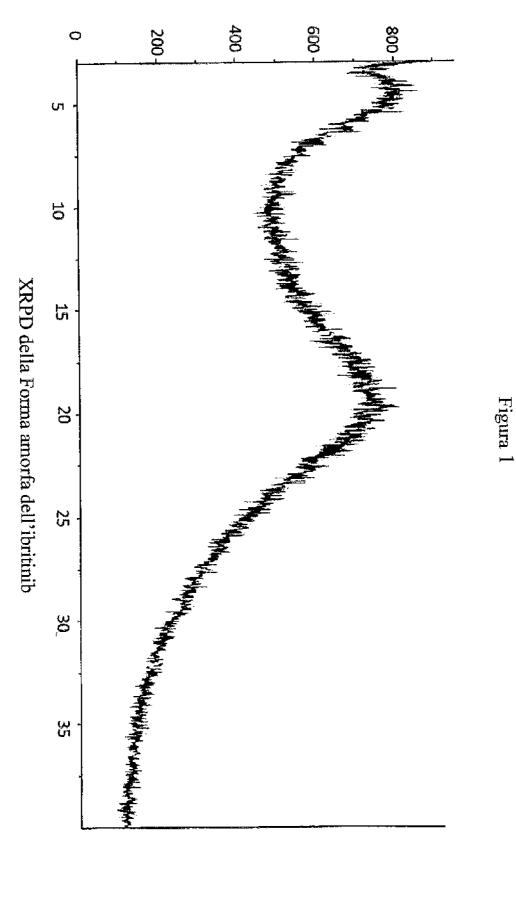
Prove di stabilità

La forma amorfa, debitamente essiccata, si è mostrata stabile nel tempo.

- Sono state in particolare effettuate le seguenti prove:
 - stabilità a 25°C/40% Umidità Relativa per 7 giorni
 - stabilità a 40°C/75% Umidità Relativa per 7 giorni
 - stabilità a 25°C/60% Umidità Relativa per 7 giorni
 - stabilità a 60°C/40% Umidità Relativa per 7 giorni
- 20 In tutte le prove, la Forma amorfa è risultata stabile.

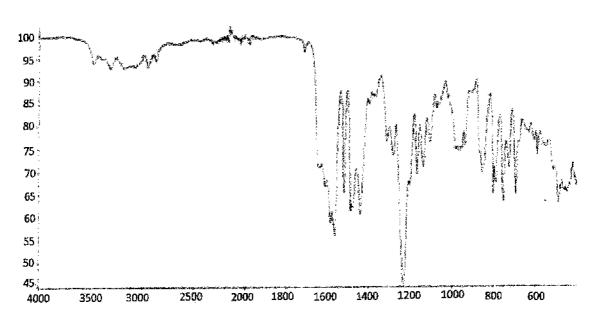
La Forma amorfa è risultata stabile anche dopo macinazione e impastamento (kneading).

RIVENDICAZIONI


 Procedimento per la preparazione della Forma amorfa dell'ibrutinib che comprende sciogliere l'ibrutinib in un solvente scelto tra 1,2,-dimetossi-etano e etanolo fino ad ottenere una soluzione satura, aggiungere acqua alla detta soluzione ed isolare il precipitato così ottenuto.

5

- 2. Procedimento per la preparazione della Forma amorfa dell'ibrutinib che comprende evaporare una soluzione di ibrutinib in un solvente scelto tra 1,4 diossano, metil etil chetone, metanolo, dimetilsolfossido, etanolo, 2-butanolo, acetonitrile, acetato di etile, nitrometano, 2-metossietanolo, dimetilformammide e cloruro di metilene.
- 3. Procedimento per la preparazione della Forma amorfa dell'ibrutinib che comprende evaporare una soluzione di ibrutinib in una miscela di solventi scelta tra metil etil chetone/1,2-dimetossi-etano; metil etil chetone/1,4-diossano; 2-propanolo/1,4-diossano; metil etil chetone/acetone; metil etil chetone/2-propanolo; metil etil chetone/2-propanolo; metil etil chetone/acetato di etile; metil etil chetone/2-butanolo; 2-propanolo/1,2-dimetossi-etano; 2-propanolo/acetato di etile; e 2-propanolo/2-butanolo, 2-propanolo/etanolo e 2-propanolo/acetonitrile.
 - 4. Procedimento secondo le rivendicazioni 2 o 3, caratterizzato dal fatto che detta soluzione non è satura.
 - 5. Forma amorfa dell'ibrutinib ottenibile e/o ottenuta con il procedimento di una qualsiasi delle rivendicazioni da 1 a 4.
 - Forma amorfa dell'ibrutinib caratterizzata dallo spettro FT-IR della Figura 2 e dal profilo DSC della Figura 3.
 - 7. Forma amorfa dell'ibrutinib di una qualsiasi delle rivendicazioni 5 o 6 per il suo uso in terapia e nel trattamento dei tumori come i linfomi e le leucemie.


- 8. Composizione farmaceutica che comprende la Forma amorfa dell'ibrutinib di una qualsiasi delle rivendicazioni 5 o 6 insieme a veicoli e/o eccipienti convenzionali.
- 9. Ibrutinib 1,2-dimetossi-etano solvato.

- 10. Forma cristallina L dell'ibrutinib che presenta lo spettro di diffrazione ai raggi X allegato alla presente descrizione come Figura 4, lo spettro FT-IR della Figura 5 e il Profilo DSC della Figura 6.
- 11. Uso dell'ibrutinib 1,2-dimetossi-etano solvato o della Forma cristallina L dell'ibrutinib come intermedio per la preparazione della Forma amorfa dell'ibrutinib.

di C


Figura 2

Spettro FT-IR della Forma amorfa dell'ibrutinib

Position	Intensity	Position	Intensity
405	66,509	1134	70,716
413	68,218	1166	69,231
433	66,701	1199	66,968
446	65,390	1227	44,687
488	62,887	1277	73,275
513	70,188	1309	76,560
550	75,182	1362	86,465
588	73,406	1394	84,879
605	76,744	1437	60,358
630	78,351	1477	61,925
677	76,081	1487	61,250
692	64,582	1520	65,028
725	70,385	1563	55,741
754	63,009	1584	58,605
790	67,216	1609	66,482
801	64,874	1640	70,832
855	69,316	1710	96,394
937	75,417	2861	94,477
965	74,334	2941	92,955
982	74,817	3062	92,982
1022	86,107	3173	92,755
1071	83,726	3303	92,666
1103	76,302	3474	93,651

Figura 3

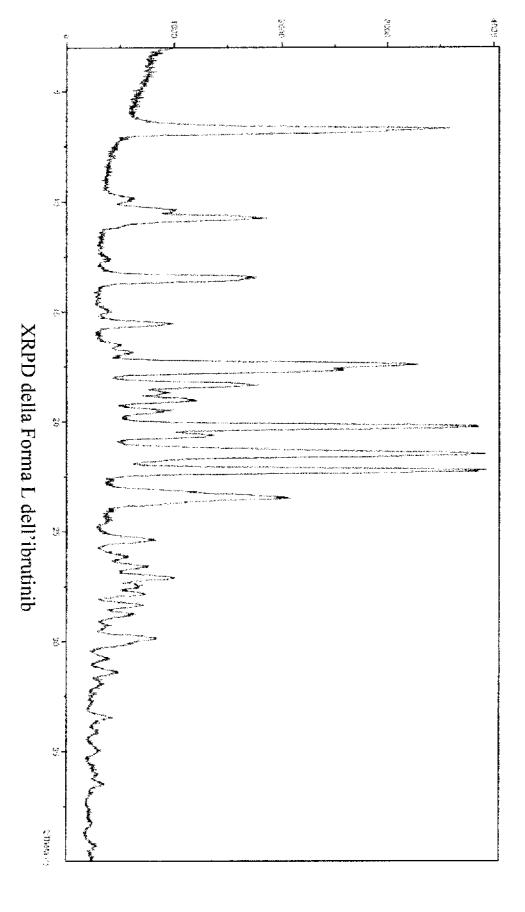
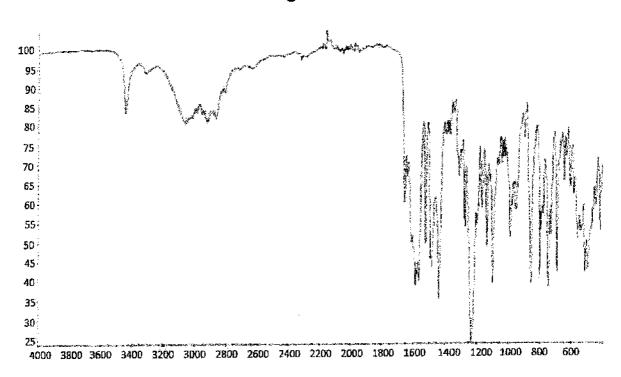
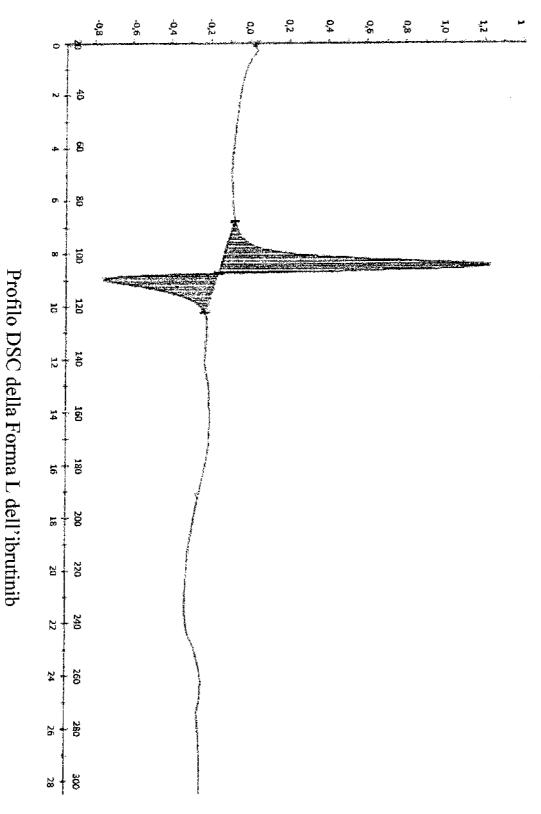



Figura 4


Figura 5

Spettro FT-IR della Forma L dell'ibrutinib

Position	Intensity	Position	Intensity
419	52,607	1039	70,010
449	59,029	1100	39,016
467	54,322	1137	48,672
499	42,728	1168	58,875
518	41,582	1200	54,329
544	52,410	1235	23,939
561	50,374	1274	53.527
587	61.968	1310	66,774
607	63,937	1364	77,352
632	71,872	1392	77,567
647	65,225	1436	34,662
672	41.496	1482	43,324
729	51,415	1520	48,740
745	37.910	1561	39,639
793	53,003	1584	38,356
802	40,265	1635	66,741
856	38,868	1652	60,036
897	76,596	2919	80,880
949	58,139	3055	80,428
988	50.81.5	3443	83.187
1026	71,928		

