Title: NIGHT VISION APPARATUS AND METHODS

Abstract: A portable night vision apparatus comprising at least one image intensifier tube and a memory. The at least one image intensifier tube is coupled to a power supply and coupled to a processor. The memory is coupled to the processor for the storage of data relating to the apparatus and to the use of the apparatus.
TITLE
NIGHT VISION APPARATUS AND METHODS

FIELD OF THE INVENTION

The present invention relates to night vision apparatus or devices, such as night vision binoculars, monoculars, goggles and the like and to associated methods.

BACKGROUND TO THE INVENTION

Night vision apparatus or devices, such as night vision binoculars, goggles, monoculars and scopes, enable users to have improved vision in low light or no light conditions, for example, in military, surveillance, law enforcement, hunting and rescue applications. Night vision apparatus typically comprise an image intensifier tube and associated circuitry for capturing photons which are converted to electrons, amplified and converted back to photons to produce an enhanced image of the scene being viewed through the apparatus. Such devices are typically hand-held, head-mounted, helmet-mounted or mounted to equipment, such as a weapon.

Developments in the design of night vision apparatus over seven decades include improvements in light amplification, image resolution and contrast, signal to noise ratios and reliability, a reduction in power consumption, size and weight of the apparatus and the inclusion of features such as auto-gating to protect users against temporary blindness. Further
improvements in the design of night vision apparatus continue to be sought.

One feature of night vision apparatus is that they have a limited useful lifetime due to degradation of the image intensifier tube through activation and use of the image intensifier tube. Degradation of the image intensifier tube can lead to a reduction in the amplification of light levels and a degradation in the image displayed to the user, such as the representation of distances inaccurately. Whilst certain levels of degradation can be tolerated depending on the application for which the night vision apparatus are being used, beyond certain levels of degradation, the night vision apparatus must not be used, for example in aviation and other critical applications.

Consequently, it is important that night vision apparatus are maintained and their performance monitored to ensure the apparatus are in working order and replaced when necessary. Such maintenance is typically performed by taking the apparatus apart and inspecting the components and recording and tracking relevant information on a spreadsheet or the like. In many countries certain restrictions apply to night vision apparatus and it is a requirement to also record certain data relating to the night vision apparatus, such as serial numbers and types of apparatus. These maintenance and recordal obligations can be very time consuming and laborious particularly where a fleet of night vision apparatus is maintained, such as in military and law enforcement organisations.
OBJECT OF THE INVENTION

It is a preferred object of the present invention to provide an apparatus and/or a system and/or a method that addresses or at least ameliorates one or more of the aforementioned problems and/or provides a useful commercial alternative.

SUMMARY OF THE INVENTION

Generally, embodiments of the present invention relate to night vision apparatus, such as night vision binoculars, goggles, monoculars and scopes comprising an on board memory for the storage of data relating to the apparatus and the use of the apparatus and to associated methods.

Generally, embodiments of the present invention also relate to night vision apparatus comprising a transmitter, such as an infra red (IR) transmitter, for transmitting the data relating to the apparatus and the use of the apparatus and to associated methods.

Generally, embodiments of the present invention also relate to night vision apparatus comprising a processor for calibrating the apparatus and to associated methods.

According to one aspect, but not necessarily the broadest aspect, the present invention resides in a portable night vision apparatus comprising:

at least one image intensifier tube coupled to a power supply and coupled to a processor; and
a memory coupled to the processor to store data relating to the apparatus and to the use of the apparatus.

According to another aspect, but not necessarily the broadest aspect, the present invention resides in a method of monitoring and maintaining one or more portable night vision apparatus, the apparatus comprising at least one image intensifier tube coupled to a power supply and coupled to a processor and a memory coupled to the processor, the method comprising:

storing in the memory data relating to the apparatus and to the use of the apparatus; and

transmitting at least some of the data stored in the memory to an external reader via a transmitter coupled to the processor.

Preferably, the transmitter is a low energy, short range transmitter, such as an infra red (IR) light emitting diode (LED).

Preferably, transmitting at least some of the data occurs when the apparatus is switched on and only for a short time period.

Suitably, the IR LED is also used for illumination purposes.

Preferably, the apparatus comprises a sensor coupled to the processor to detect ambient light levels.

Suitably, the sensor is a photoresistor or light-dependent resistor.

Suitably, the processor is configured to cut off the power supply to the at least one image intensifier tube via a switch if the ambient light levels are
greater than a specified illumination threshold.

Suitably, the apparatus comprises a communications device to transmit and receive data relating to the apparatus and to the use of the apparatus to/from an external device.

Suitably, the apparatus comprises one or more accelerometers coupled to the processor to detect a predefined movement and switch off one or more of the at least one image intensifier tube.

Suitably, one of the accelerometers is associated with a movement of a circuit board comprising the power supply and/or the processor.

Suitably, one or more of the accelerometers are associated with a movement of the at least one image intensifier tubes.

Suitably, the data relating to the apparatus includes, but is not limited to one or more of the following: a serial number and/or date of manufacture of the apparatus; a serial number and/or date of manufacture of the at least one image intensifier tube; a serial number and/or date of manufacture of a circuit board comprising the components; a type of the apparatus, such as monocular or binocular; a class of the apparatus, such as a particular generation or Figure of Merit (FOM); capabilities of the apparatus; an image of a surface of the image intensifier tube at one or more specified dates; an image obtained through the image intensifier tube at one or more specified dates.

Suitably, the data relating to the apparatus includes images recording the state of the image intensifier tube at the beginning of its working life and
at subsequent dates.

Suitably, the data relating to the use of the apparatus includes, but is not limited to one or more of the following: usage time of the apparatus; number of times the apparatus has been switched on and off; periods of high illumination or above a specified illumination threshold. Suitably, the data is used to monitor the apparatus for maintenance and or warranty purposes.

Suitably, the method includes calibrating the apparatus using the processor of the apparatus.

Further aspects and/or features of the present invention will become apparent from the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the invention may be readily understood and put into practical effect, reference will now be made to embodiments of the present invention with reference to the accompanying drawings, wherein like reference numbers refer to identical elements. The drawings are provided by way of example only, wherein:

FIG 1 is a block diagram of a night vision apparatus according to embodiments of the present invention;

FIG 2 is a block diagram of a night vision apparatus according to other embodiments of the present invention; and

FIG 3 is a general flow diagram illustrating methods according to embodiments of the present invention.
Skilled addressees will appreciate that elements in the drawings are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the relative dimensions of some of the elements in the drawings may be distorted to help improve understanding of embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention relate to portable night vision apparatus or devices, such as night vision binoculars, monoculars, goggles, scopes and the like and to associated methods as will be described in detail herein.

With reference to FIG 1, a schematic block diagram illustrates a portable night vision apparatus 100, which comprises a processor 105 in the form of a micro controller coupled to at least one image intensifier tube 110. The processor 105 is coupled to the image intensifier tube 110 via an analogue/digital input of the processor 105 and via a digital/analogue output of the processor 105. A gain control input 112 for the image intensifier tube 110 is received via another analogue/digital input of the processor 105.

It will be appreciated that where the apparatus 100 is in the form of a night vision monocular or a night vision scope, for example for attachment to equipment such as a weapon, the apparatus 100 will typically comprise a single image intensifier tube 110. Where the apparatus 100 is in the form of night vision binoculars or night vision goggles, the apparatus will typically
comprise a pair of image intensifier tubes 110 with appropriate adjustments to the apparatus 100 as will be appreciated by a person skilled in the art.

The image intensifier tube 110 is coupled to a power supply 115, such as a 3V power supply and can be coupled to the power supply via a switch 120, as shown in FIG 1. Processor 105 can also be coupled to the switch 120 via an input/output of the processor 105 to control the power supply to the image intensifier tube 110.

The apparatus 100 also comprises a storage medium in the form of a memory 125 coupled to the processor 105 for the storage of data relating to the apparatus and data relating to the use of the apparatus. Memory 125 comprises a computer readable medium, such as a random access memory (e.g. static random access memory (SRAM), ferroelectric random access memory (FRAM), or synchronous dynamic random access memory (SDRAM)), or hybrid memory (e.g., FLASH), or other types of memory as are well known in the art.

In addition to the data relating to the apparatus and use of the apparatus described further herein, the computer readable medium can comprise computer readable program code components at least some of which are selectively executed to cause transmitting at least some of the data stored in the memory 125 to an external reader as described herein.

A transmitter 130 is coupled in parallel with the processor 105 via a switch 135 and to the power supply 115. Control of the switch 135 can be via another input/output of the processor 105. In preferred embodiments,
transmitter 130 is a low energy, short range transmitter, such as an infra red (IR) light emitting diode (LED). Transmission of data from the apparatus 100 is described further herein. Where the transmitter is in the form of an IR LED, the IR LED can also be used for illumination purposes as is known in the art.

Processor 105 is also coupled to one or more other light emitting diodes (LEDs) 140, 145 for indication purposes. For example, LED 140 can be in the form of a red LED indicating when the transmitter 130 is on and LED 145 can be in the form of a green LED indicating that a battery 150 of the apparatus is low.

Battery 150 is coupled to a switch or selector 155 via a diode 160, which provides reverse polarity protection. Selector 155 is coupled via a reed switch 165 to power supply 115 and can be moved by a user between on and off positions. Selector 155 can also be moved to a magnetic bypass position and to a position to activate the transmitter 130. For example, the switch can be a four position rotary switch.

A sensor, such as a photoresistor or light-dependent resistor 170, is coupled to the processor 105 via at least one analogue/digital input for the detection of ambient light levels. Detection of ambient light levels enables the processor 105 to control the level of amplification required by the image intensifier tube 110 and to cut off the power supply to the image intensifier tube 110 via switch 120 in circumstances of high light levels, for example if the ambient light levels are greater than a specified illumination threshold, to
avoid eyesight damage to the user and to preserve the useful life of the image intensifier tube 110. This function can be calibrated by the processor 105, via software and via password protection or encryption, by adjusting the illumination threshold and the time to power cut-off. In one example, the illumination threshold is 5000 Lux.

A communications device is provided to transmit and receive data, such as the data relating to the apparatus and to the use of the apparatus to/from an external device. Communication with processor 105 to external devices can be used, for example, for maintenance, programming, upgrades, calibration, etc. In the embodiment, shown in FIG. 1, the communications device is in the form of a universal asynchronous receiver/transmitter (UART) 175.

In one embodiment, the apparatus is calibrated via the UART 175 using an external device, for example, a computer. For example, software running on the external device can be used via the UART 175 to adjust values and/or settings of the apparatus, such as the illumination threshold.

Persons skilled in the art will appreciate that the portable night vision apparatus 100 can comprise other known elements required for the apparatus to perform its known functions, but which are not shown in FIG 1 and which can vary according to the specific type of portable night vision apparatus.

In accordance with embodiments of the present invention, the data stored in the memory 125 relating to the apparatus 100 includes, but is not
limited to one or more of the following: a serial number and/or date of manufacture of the apparatus 100; a serial number and/or date of manufacture of the at least one image intensifier tube 110; a serial number and/or date of manufacture of a circuit board comprising the components a type of apparatus, such as a monocular, binoculars, goggles or a scope; a class of the apparatus 100, such as a particular generation or Figure of Merit (FOM); capabilities of the apparatus; import/export restrictions; an image of a surface of the image intensifier tube 110 at one or more specified dates; an image obtained through the image intensifier tube 110 at one or more specified dates. In one example, images of the image intensifier tube are uploaded to the memory 125 via the UART 175, for example, during maintenance, upgrade or manufacture. In another example, a serial number and/or date of manufacture of the at least one image intensifier tube 110 is uploaded to the memory 125 via the UART 175, for example, when the image intensifier tube 110 is installed in the apparatus.

The images of the image intensifier tube 110 stored in the memory 125 of the apparatus record the state of the image intensifier tube 110 at the beginning of its working life and at subsequent dates such that the change in characteristics or degradation of the image intensifier tube 110 can be monitored and the apparatus 100, or the image intensifier tube 110, can be replaced when appropriate. Recording images of the image intensifier tube 110 is also useful for warranty purposes. Recording images of the image intensifier tube 110 can include recording any black spots detected,
illumination levels, resolution etc.

For example, the images of the image intensifier tube at each date can be compared to determine whether the image intensifier tube has deteriorated due to misuse or mistreatment of the apparatus. For example, the data relating to the use of the apparatus can be used to determine whether, for example, the deterioration is due to long periods of exposure to high ambient light levels, which would suggest that the apparatus has been left in the sun.

The data stored in the memory 125 relating to the use of the apparatus 100 includes, but is not limited to one or more of the following: usage time or operational duration of the apparatus; a number of times the apparatus has been switched on and off (activated/deactivated); periods of high illumination or above a specified illumination threshold. These values influence the useful lifetime of the image intensifier tube 110.

In some embodiments, the images of the image intensifier tube 110 are stored in a FRAM and the other data is stored in FLASH.

According to another aspect, embodiments of the present invention include the transmitter 130 transmitting at least some of the data stored in the memory 125 to an external reader, which can be carried by the user. In preferred embodiments, transmitting at least some of the data occurs automatically when the apparatus 100 is switched on and transmission only occurs for a short time period. The transmission of the data is low energy, short range and is not continuous for security and power consumption
purposes.

Referring to FIG 2, a schematic block diagram illustrates a portable night vision apparatus 200 according to one embodiment of the invention. The night vision apparatus 200 comprises a circuit board 102, which comprises a number of on-board components shown within a dotted box. The circuit board 102 is connected to a number of off-board components of the apparatus shown outside the dotted box.

Tube contacts 112, 114 and 116 are provided on-board for connecting an image intensifier tube 110. The tube contacts can be, for example, flexible copper contacts. The tube contacts include a positive tube contact 112, a negative tube contact 114 and a tube gain contact 116. A person skilled in the art will appreciate that some image intensifier tubes 110 will not have a tube gain contact and therefore will only connect to the positive tube contact 112 and negative tube contact 114.

Where the apparatus 200 comprises more than one image intensifier tubes 110, such as binoculars, a separate set of contacts 112, 114, 116 and a switch 120 is provided for each image intensifier tube 110 to enable the image intensifier tubes to be controlled and calibrated separately.

Battery terminals 152 and 154 are provided off-board, for example, in a battery compartment, for connecting a battery 150. The battery 150 provides power to the power supply 115 which sets the voltage across the processor 105 and image intensifier tube 110.

The apparatus 200 also comprises one or more accelerometers
coupled to the processor 105 to detect a predefined movement and switch off one or more of the at least one image intensifier tube 110. In preferred embodiments, each accelerometer can resolve acceleration in three dimensions. In some embodiments, data relating to the use of the apparatus received from the accelerometers is stored in the memory 125. The data can be used for warranty purposes, for example, to determine whether the apparatus 200 has been dropped.

A first accelerometer 180 is provided on-board and therefore is associated with a movement of the circuit board 102. In one embodiment, the first accelerometer 180 is configured to detect a translation in the y-axis, such as a lifting of the circuit board 102 and hence the apparatus 200, and turn off the image intensifier tube 110. For example, the first accelerometer 180 can detect a user removing the apparatus 200 in a head-mounted or helmet-mounted apparatus.

One or more of the accelerometers can be associated with a movement of the at least one image intensifier tubes 110. For example, when the apparatus is a binocular apparatus, a second accelerometer 185 is located on and/or associated with a first image intensifier tube 110 and a third accelerometer 190 is located on and/or associated with a second image intensifier tube 110. The accelerometers each detect a predefined movement of the respective image intensifier tube 110, for example, a turning or translation in the x-axis, and turn off the respective image intensifier tube 110. This enables each eye of the night vision binocular to
be switched on/off separately. In a binocular apparatus, the circuit board 102 comprises two sets of image intensifier tube contacts to enable to the gain of each image intensifier tube 110 to be adjusted and/or each image intensifier tube 110 to be switched on/off separately. A skilled addressee will appreciate that in a monocular apparatus with only one image intensifier tube 110, the third accelerometer 190 is not required.

In the embodiment shown in FIG. 2, a switch or selector 155 is provided off-board, and is for example, mounted at an exterior of the apparatus 200.

Selector 155 is coupled to power supply 115 and can be moved by a user between on and off positions. Selector 155 can also be moved to a magnetic position where the selector 155 is coupled to power supply 115 via a reed switch 165 and to a position to activate the transmitter 130.

The reed switch is activated via a magnet. For example, a magnet is configured on the apparatus such that the reed switch is activated when the at least one image intensifier tubes 110 is moved into position over a user’s eye(s) for use.

Referring to FIG 3, a general flow diagram illustrates a method 300 of monitoring and maintaining one or more portable night vision apparatus 100 or 200 in accordance with embodiments of another aspect of the present invention. The method 300 comprises at step 310 storing in the memory 125 data relating to the apparatus 100 as described herein. For example, data may be received from one or more sensors of the apparatus or uploaded to
the apparatus via the communications device 175. At step 320, the apparatus 100 is switched on (activated). Activation of the apparatus 100 causes at step 330 transmitting at least some of the data stored in the memory 125 to an external reader via the transmitter 130 as described herein. The method 300 comprises at 340 storing in the memory 125 data relating to the use of the apparatus 100 as described herein. At step 350, the apparatus 100 is switched off (deactivated), which is also recorded in the memory 125 at step 360. The cycle from steps 320 to 360 is repeated when the apparatus is re-activated.

According to further aspects of the present invention, calibration of the apparatus 100 and control of the gain of the apparatus 100 via gain control 112 is carried out using the processor 105. Inverse polarity protection is also provided by the circuit board rather than mechanically as in the prior art.

Embodiments of the present invention thus provide a solution the aforementioned problems and provide a useful commercial alternative. Storing in the on-board memory 125 of the portable night vision apparatus 100 data relating to the apparatus and to the use of the apparatus 100 as described herein is much more efficient and accurate than the prior art method of recording the data via a spreadsheet and is particularly useful when managing a fleet of night vision apparatus. Such recording and monitoring reduces the likelihood of any particular apparatus in a fleet being overused or underused, increases the likelihood that devices or components
will be replaced when due and increases the likelihood that the best apparatus in a fleet are being sent out into the field.

Transmission of the data automatically upon activation of the apparatus 100 via transmitter 130, such as a low energy, short range IR LED, is secure, efficient and reliable. Also, a connector or cable is not required for such transmission, which reduces the component count and therefore the weight and production cost of the apparatus. Furthermore, the apparatus 100 does not need to be opened to obtain the information.

In this specification, the terms “comprises”, “comprising” or similar terms are intended to mean a non-exclusive inclusion, such that an apparatus that comprises a list of elements does not include those elements solely, but may well include other elements not listed.

Throughout the specification the aim has been to describe the invention without limiting the invention to any one embodiment or specific collection of features. Persons skilled in the relevant art may realize variations from the specific embodiments that will nonetheless fall within the scope of the invention.
CLAIMS

1. A portable night vision apparatus comprising:
 at least one image intensifier tube coupled to a power supply and
 coupled to a processor; and
 a memory coupled to the processor to store data relating to the
 apparatus and to the use of the apparatus.

2. The apparatus of claim 1, further comprising a transmitter coupled to
 the processor for transmitting at least some of the data stored in the
 memory to an external reader.

3. The apparatus of claim 2, wherein the transmitter is a low energy, short
 range transmitter.

4. The apparatus of claim 2 or 3, wherein the transmitter is an infra red
 light emitting diode that is also used for illumination.

5. The apparatus of any one of claims 2 to 4, wherein the apparatus is
 configured to transmit the data when the apparatus is switched on and
 only for a short time period.

6. The apparatus of any preceding claim, comprising a sensor coupled to
the processor to detect ambient light levels.

7. The apparatus of claim 6, wherein the sensor is a photoresistor or light-dependent resistor.

8. The apparatus of claim 6 or 7, wherein the processor is configured to cut off the power supply to the at least one image intensifier tube via a switch if the ambient light levels are greater than a specified illumination threshold.

9. The apparatus of any preceding claim, comprising a communications device to transmit and receive data relating to the apparatus and to the use of the apparatus to/from an external device.

10. The apparatus of any preceding claim, comprising one or more accelerometers coupled to the processor to detect a predefined movement and switch off one or more of the at least one image intensifier tube.

11. The apparatus of claim 10, wherein one of the accelerometers is associated with a movement of a circuit board comprising the power supply and/or the processor.
12. The apparatus of claim 10 or 11, wherein one or more of the accelerometers are associated with a movement of the at least one image intensifier tubes.

13. A method of monitoring and maintaining one or more portable night vision apparatus, the apparatus comprising at least one image intensifier tube coupled to a power supply and coupled to a processor and a memory coupled to the processor, the method comprising:

 storing in the memory data relating to the apparatus and to the use of the apparatus; and

 transmitting at least some of the data stored in the memory to an external reader via a transmitter coupled to the processor.

14. The method of claim 13, including transmitting at least some of the data when the apparatus is switched on and only for a short time period.

15. The method of claim 13 or 14, including calibrating the apparatus using the processor of the apparatus.

16. The apparatus of any of claims 1 to 12 or the method of any of claims 13 to 15, wherein the data relating to the apparatus includes one or more of the following:
a serial number and/or date of manufacture of the apparatus;
a serial number and/or date of manufacture of the at least one
image intensifier tube;
a serial number and/or date of manufacture of a circuit board
comprising components of the apparatus;
a type of the apparatus;
a class of the apparatus;
a particular generation or Figure of Merit (FOM) of the
apparatus; and
capabilities of the apparatus.

17. The apparatus of any of claims 1 to 12 or 16 or the method of any of
claims 13 to 16, wherein the data relating to the apparatus includes
one or more of the following:

an image of a surface of the image intensifier tube at one or
more specified dates; and

an image obtained through the image intensifier tube at one or
more specified dates.

18. The apparatus of any of claims 1 to 12, 16 or 17 or the method of any
of claims 13 to 17, wherein the data relating to the apparatus includes
images recording the state of the image intensifier tube at the
beginning of its working life and at subsequent dates.
19. The apparatus of any of claims 1 to 12, 16, 17 or 18 or the method of any of claims 13 to 18, wherein the data relating to the use of the apparatus includes one or more of the following:

usage time of the apparatus;

a number of times the apparatus has been switched on and off;

and

periods of high illumination or above a specified illumination threshold.

20. The apparatus or method of any preceding claim, wherein the data is used to monitor the apparatus for maintenance and or warranty purposes.
Store apparatus data in memory

Switch apparatus on

Transmit at least some of data in memory

Store usage data in memory

Switch apparatus off

Store data in memory

FIG 3
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 G02B 23/12 (2006.01) F41G 1/32 (2006.01)

According to International Patent Classification (IPC) or to both: national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 EPDOC, WPI/APP: IPC & CPC (F41G1/32-), G02B23/12-); Keywords (night vision, image intensifier, light level, shock) and like terms.
 GOOGLE PATENTS and GOOGLE: Keywords (night vision, image intensifier, light level, shock, point trading group, photonis) and like terms.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Documents are listed in the continuation of Box C</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Further documents are listed in the continuation of Box C</th>
<th>See patent family annex</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>Special categories of cited documents:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"A" document defining the general state of the art which is not considered to be of particular relevance</td>
<td>"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</td>
</tr>
<tr>
<td></td>
<td>"E" earlier application or patent but published on or after the international filing date</td>
<td>"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</td>
</tr>
<tr>
<td></td>
<td>"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</td>
<td>"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</td>
</tr>
<tr>
<td></td>
<td>"O" document referring to an oral disclosure, use, exhibition or other means</td>
<td>"&" document member of the same patent family</td>
</tr>
<tr>
<td></td>
<td>"P" document published prior to the international filing date but later than the priority date claimed</td>
<td></td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search: 14 May 2015
Date of mailing of the international search report: 14 May 2015

Name and mailing address of the ISA/AU
 AUSTRALIAN PATENT OFFICE
 PO BOX 200, WODEN ACT 2606, AUSTRALIA
 Email address: pct@ipaustralia.gov.au

Authorised officer
 Marie Vezzo
 AUSTRALIAN PATENT OFFICE
 (ISO 9001 Quality Certified Service)
 Telephone No. 0262832384

Form PCT/ISA/218 (fifth sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2004/0198336 A1 (JANCIC et al.) 07 October 2004</td>
<td>1-6, 9, 13-17</td>
</tr>
<tr>
<td></td>
<td>Figures; abstract; paras. [0009], [0044], [0046]-[0047], [0052], [0054]</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 6898890 B2 (GABER) 31 May 2005</td>
<td>7-8, 10-12</td>
</tr>
<tr>
<td></td>
<td>Figures 2-3; abstract; col. 3, 1. 31-51; col. 4, 1. 22 to col. 5, 1. 50</td>
<td>1-2, 9, 13, 18-20</td>
</tr>
<tr>
<td>X</td>
<td>US 4853529 A (MEYERS) 01 August 1989</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>col. 2, 1. 27-46; col. 4, 1. 26-37; claim 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>US 2013/0320192 A1 (SALDANA) 05 December 2013</td>
<td>10-12</td>
</tr>
<tr>
<td></td>
<td>Figure 4; paras. [0038]-[0042]</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Publication Number</td>
<td>Publication Number</td>
<td></td>
</tr>
<tr>
<td>07 October 2004</td>
<td>08 Feb 2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 2009111454 A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30 Apr 2009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 8093992 B2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Jan 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 2005022067 A2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 Mar 2005</td>
<td></td>
</tr>
<tr>
<td>US 6898890 B2</td>
<td>US 6898890 B2</td>
<td></td>
</tr>
<tr>
<td>31 May 2005</td>
<td>31 May 2005</td>
<td></td>
</tr>
<tr>
<td>US 4853529 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 August 1989</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 December 2013</td>
<td>15 Apr 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 2014031208 A2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 Feb 2014</td>
<td></td>
</tr>
</tbody>
</table>

End of Annex

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

Form PCT/ISA/210 (Family Annex)(July 2009)