

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2007/0249111 A1 Lin

Oct. 25, 2007 (43) **Pub. Date:**

(54) TFT ARRAY SUBSTRATE AND PHOTO-MASKING METHOD FOR FABRICATING SAME

Yao-Nan Lin, Miao-Li (TW) (75) Inventor:

> Correspondence Address: WEI TE CHUNG FOXCONN INTERNATIONAL, INC. 1650 MEMOREX DRIVE SANTA CLARA, CA 95050

(73) Assignee: INNOLUX DISPLAY CORP.

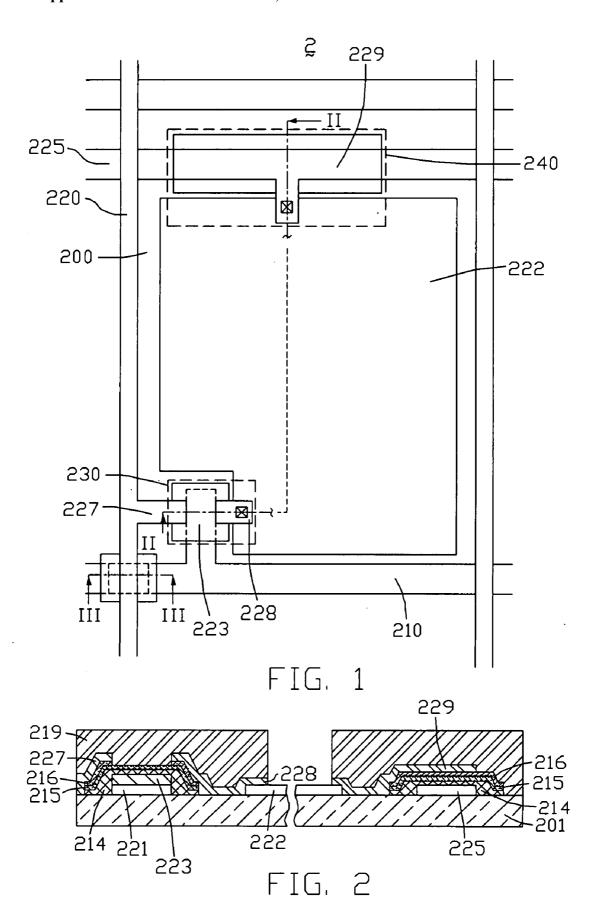
(21) Appl. No.: 11/788,908

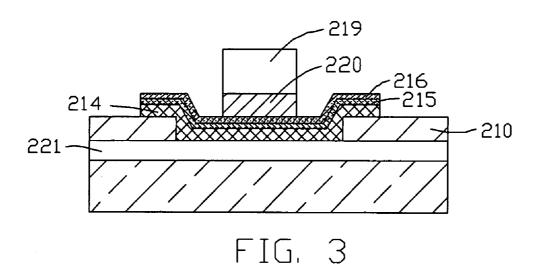
(22) Filed: Apr. 23, 2007

(30)Foreign Application Priority Data

Apr. 21, 2006 (TW) 95114351

Publication Classification


(51) Int. Cl.


(2006.01)H01L 21/338 H01L 31/112 (2006.01)

(52) **U.S. Cl.** 438/182; 257/258

ABSTRACT (57)

An exemplary TFT array substrate (2) includes an insulating substrate (201); a transparent conductive line (221) formed on the insulating substrate; a plurality of gate lines (210) formed on the transparent conductive line, that are parallel to each other and that each extend along a first direction; a plurality of data lines (220) formed on the insulating substrate, that are parallel to each other and that each extend along a second direction orthogonal to the first direction. The gate line at an intersection point of the gate line and the data line are disconnected.

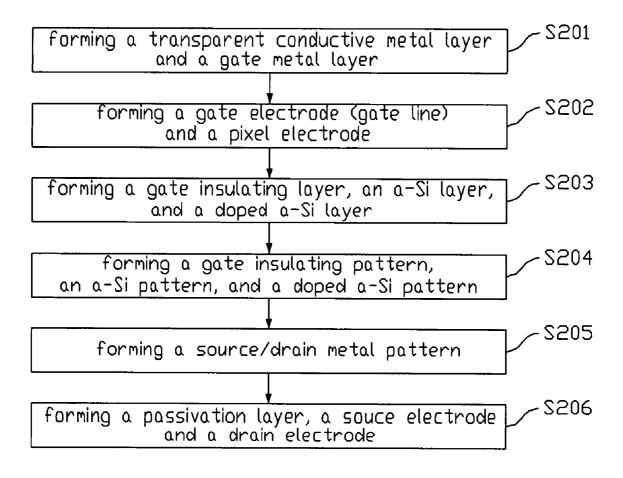
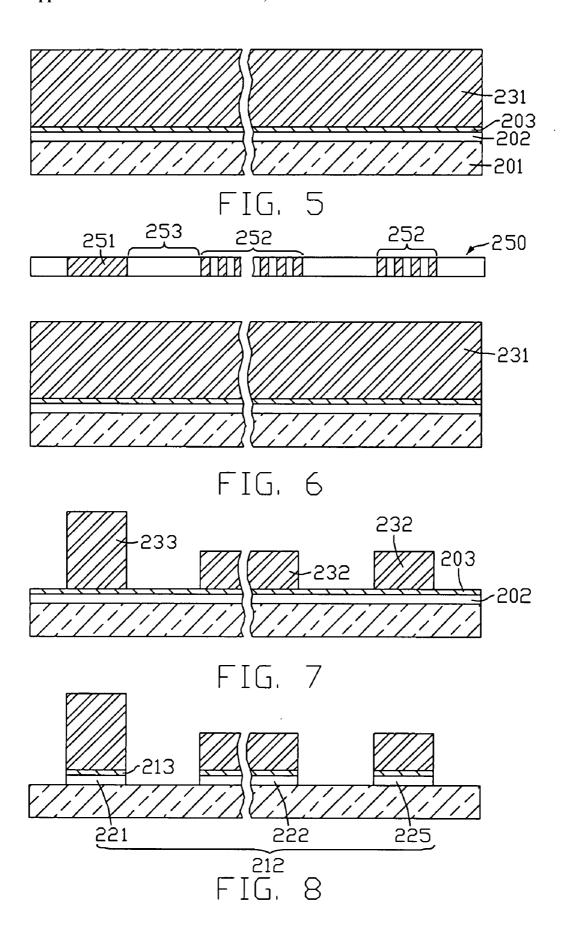
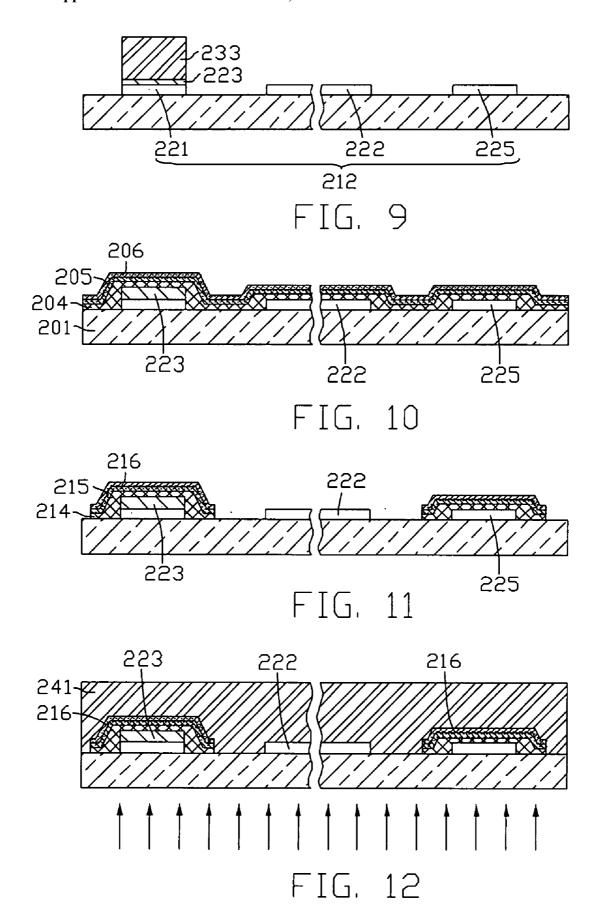




FIG. 4

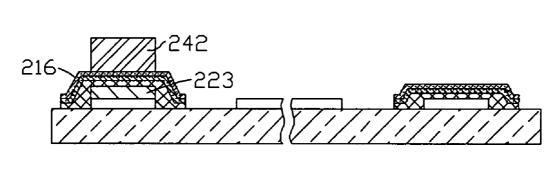


FIG. 13

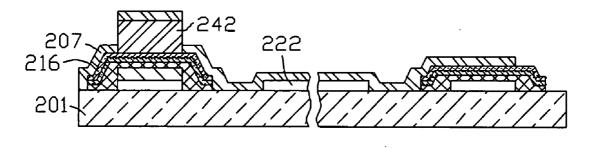


FIG. 14

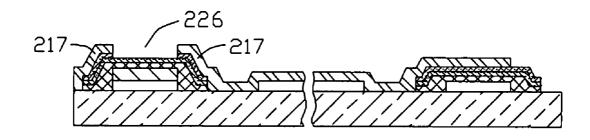
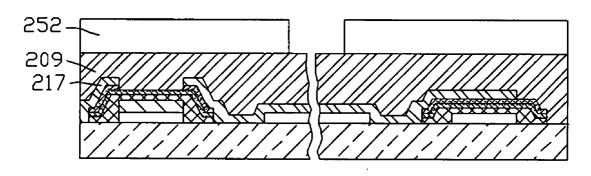


FIG. 15



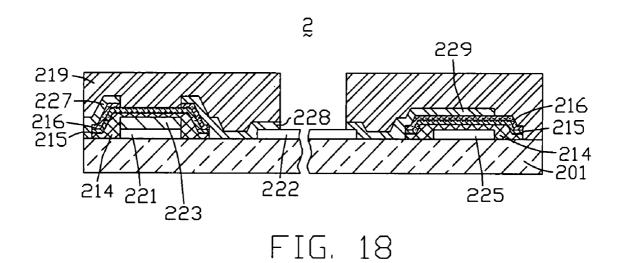
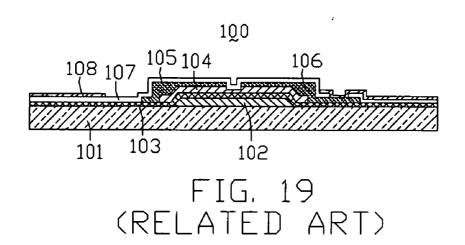



FIG. 16

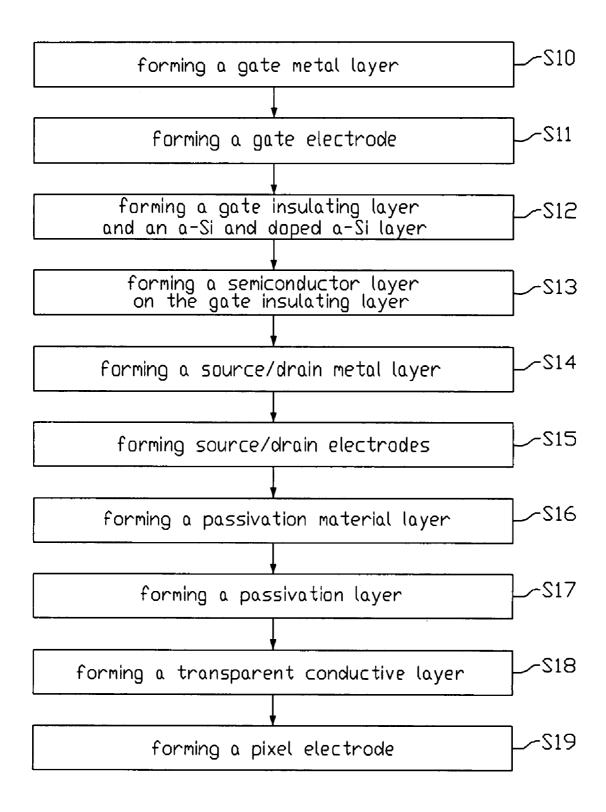


FIG. 20 (RELATED ART)

formed thereon.

TFT ARRAY SUBSTRATE AND PHOTO-MASKING METHOD FOR FABRICATING SAME

FIELD OF THE INVENTION

[0001] The present invention relates to thin film transistor (TFT) array substrates used in liquid crystal displays (LCDs) and methods of fabricating these substrates, and particularly to a TFT array substrate and a method for fabricating the substrate which efficiently uses minimal photo-masking.

GENERAL BACKGROUND

[0002] A typical liquid crystal display (LCD) is capable of displaying a clear and sharp image through millions of pixels that make up the complete image. The liquid crystal display has thus been applied to various electronic equipments in which messages or pictures need to be displayed, such as mobile phones and notebook computers. A liquid crystal panel is a major component of the LCD, and generally includes a thin film transistor (TFT) array substrate, a color filter substrate opposite to the TFT array substrate, and a liquid crystal layer sandwiched between the two substrates

[0003] Referring to FIG. 19, part of a typical TFT array substrate is shown. The TFT array substrate 100 includes a substrate 101, a gate electrode 102 formed on the substrate 101, a gate insulating layer 103 formed on the substrate 101 having the gate electrode 102, a semiconducting layer 104 formed on the gate insulating layer 103, a source electrode 105 and a drain electrode 106 formed on the gate insulating layer 104, a passivation layer 107 formed on the gate insulating layer 103, the source electrode 105 and the drain electrode 106, and a pixel electrode 108 formed on the passivation layer 107.

[0004] Referring to FIG. 20, this is a flowchart summarizing a typical method for fabricating the TFT array substrate 100. For simplicity, the flowchart and the following description are couched in terms that relate to the part of the TFT array substrate 100 shown in FIG. 19. The method includes: step S10, forming a gate metal layer; step S11, forming a gate electrode; step S12, forming a gate insulating layer and an amorphous silicon (a-Si) and doped a-Si layer; step S13, forming a semiconducting layer on the gate insulating layer; step S14, forming a source/drain metal layer; step S15, forming source/drain electrodes; step S16, forming a passivation material layer; step S17, forming a passivation layer; step S18, forming a transparent conductive layer; and step S19, forming a pixel electrode.

[0005] In step S10, an insulating substrate is provided. The substrate may be made from glass or quartz. A gate metal layer and a first photo-resist layer are formed on the substrate.

[0006] In step S11, the first photo-resist layer is exposed by a first photo-mask, and then is developed, thereby forming a first photo-resist pattern. The gate metal layer is etched, thereby forming a pattern of the gate electrode 102, which corresponds to the first photo-resist pattern. The residual first photo-resist layer is then removed by an acetone solution.

[0007] In step S12, a gate insulating layer 103, an a-Si and doped a-Si layer, and a second photo-resist layer are sequentially formed on the substrate 101 having the gate electrode 102.

[0008] In step S13, the second photo-resist layer is exposed by a second photo-mask, and then is developed, thereby forming a second photo-resist pattern. The a-Si and doped a-Si layer is etched, thereby forming a pattern of the semiconducting layer 104, which corresponds to the second photo-resist pattern. The residual second photo-resist layer is then removed by an acetone solution.

[0009] In step S14, a source/drain metal layer and a third photo-resist layer are sequentially formed on the semiconducting layer 104.

[0010] In step S15, the third photo-resist layer is exposed by a third photo-mask, and then is developed, thereby forming a third photo-resist pattern. The source/drain metal layer is etched, thereby forming a pattern of the source electrode 105 and the drain electrode 106, which corresponds to the third photo-resist pattern. The residual third photo-resist layer is then removed by an acetone solution. [0011] In step S16, a passivation material layer and a fourth photo-resist layer are sequentially formed on the substrate 101 having the three electrodes 102, 105, 106

[0012] In step S17, the fourth photo-resist layer is exposed by a fourth photo-mask, and then is developed, thereby forming a fourth photo-resist pattern. The passivation material layer is etched, thereby forming a pattern of the passivation layer 107, which corresponds to the fourth photo-resist pattern. The residual fourth photo-resist layer is then removed by an acetone solution.

[0013] In step S18, a transparent conductive layer and a fifth photo-resist layer are sequentially formed on the passivation layer 107.

[0014] In step S19, the fifth photo-resist layer is exposed by a fifth photo-mask, and then is developed, thereby forming a fifth photo-resist pattern. The transparent conductive layer is etched, thereby forming a pattern of the pixel electrode 108, which corresponds to the fifth photo-resist pattern. The residual fifth photo-resist layer is then removed by an acetone solution.

[0015] The method includes five photo-mask processes, each of which is rather complicated and costly. Thus, the method for fabricating the TFT array substrate 100 is correspondingly complicated and costly.

[0016] What is needed, therefore, is a method for fabricating a TFT array substrate that can overcome the above-described problems. What is also needed is a TFT array substrate fabricated by the above method.

SUMMARY

[0017] In one preferred embodiment, a method for fabricating a thin film transistor (TFT) array substrate includes providing an insulating substrate; forming a transparent conductive metal layer and a gate metal layer on the insulating substrate; forming a gate electrode, a gate line and a pixel electrode through a first photolithograph process; forming a gate insulating layer, an amorphous silicon pattern, and a doped amorphous silicon pattern through a second photolithograph process; forming a photo-resist pattern on the gate electrode through a third photolithograph process, using the gate electrode as a photo-mask; forming a source/drain metal layer on the insulating substrate, the doped amorphous silicon layer, the photo-resist pattern and the pixel electrode; forming a source/drain metal pattern through removing the photo-resist pattern and a portion of the source/drain metal layer on the photo-resist pattern; and

forming a passivation layer pattern, a source/drain electrode through a fourth photolithograph process.

[0018] An exemplary TFT array substrate includes an insulating substrate; a transparent conductive line formed on the insulating substrate; a plurality of gate lines formed on the transparent conductive line, that are parallel to each other and that each extend along a first direction; a plurality of data lines formed on the insulating substrate, that are parallel to each other and that each extend along a second direction orthogonal to the first direction. The gate line at an intersection point of the gate line and the data line are disconnected.

[0019] Other advantages and novel features will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 is a schematic, top view of a pixel of a TFT array substrate according to an exemplary embodiment of the present invention.

[0021] FIG. 2 is a schematic, side cross-sectional view of the TFT array substrate of FIG. 1, taken along the line II-II. [0022] FIG. 3 is a schematic, side cross-sectional view of the TFT array substrate of FIG. 1, taken along the line III-III. [0023] FIG. 4 is a flowchart summarizing an exemplary method for fabricating the TFT array substrate of FIG. 1.

[0024] FIG. 5 is a schematic, side cross-sectional view relating to a step of providing a substrate and forming a transparent conductive metal layer, a gate metal layer, and a first photo-resist layer on the substrate according to the method of FIG. 4.

[0025] FIG. 6 is a schematic, side cross-sectional view relating to a next step of exposing a first photo-resist layer using a slit photo-mask according to the method of FIG. 4.
[0026] FIG. 7 is a schematic, side cross-sectional view relating to a next step of forming a first photo-resist pattern according to the method of FIG. 4.

[0027] FIG. 8 is a schematic, side cross-sectional view relating to a next step of forming a gate electrode pattern and a transparent conductive metal layer pattern according to the method of FIG. 4.

[0028] FIG. 9 is a schematic, side cross-sectional view relating to a next step of forming a gate electrode and a gate line according to the method of FIG. 4.

[0029] FIG. 10 is a schematic, side cross-sectional view relating to a next step of forming a gate insulating layer on the substrate having the gate electrode according to the method of FIG. 4.

[0030] FIG. 11 is a schematic, side cross-sectional view relating to a next step of forming a third photo-resist layer on the substrate according to the method of FIG. 4.

[0031] FIG. 12 is a schematic, side cross-sectional view relating to a next step of exposing the third photo-resist layer from a bottom side of the substrate according to the method of FIG. 4.

[0032] FIG. 13 is a schematic, side cross-sectional view relating to a next step of forming a third photo-resist pattern according to the method of FIG. 4.

[0033] FIG. 14 is a schematic, side cross-sectional view relating to a next step of depositing a source/drain metal layer on the substrate and the third photo-resist pattern according to the method of FIG. 4.

[0034] FIG. 15 is a schematic, side cross-sectional view relating to a next step of removing the third photo-resist

pattern and a portion of the source/drain metal layer on the photo-resist pattern according to the method of FIG. 4.

[0035] FIG. 16 is a schematic, side cross-sectional view relating to a next step of depositing a passivation layer and a fourth photo-resist layer on the substrate according to the method of FIG. 4.

[0036] FIG. 17 is a schematic, side cross-sectional view relating to a step of etching away a portion of the passivation material layer and a portion of the source/drain metal layer pattern according to the method of FIG. 2.

[0037] FIG. 18 is a schematic, side cross-sectional view relating to a step of removing the remained fourth photoresist layer according to the method of FIG. 2.

[0038] FIG. 19 is a schematic, side cross-sectional view of part of a conventional TFT array substrate.

[0039] FIG. 20 is a flowchart summarizing a conventional method for fabricating the TFT array substrate of FIG. 17.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0040] Referring to FIG. 1, part of a thin film transistor (TFT) array substrate according to an exemplary embodiment of the present invention is shown. The TFT array substrate 2 includes a plurality of gate lines 210 that are parallel to each other and that each extend along a first direction, a plurality of data lines 220 that are parallel to each other and that each extend along a second direction orthogonal to the first direction, and a plurality of common line 225. The smallest rectangular area formed by any two adjacent gate lines 210 together with any two adjacent data lines 220 defines a pixel region thereat. In each pixel region, a TFT 230 is provided in the vicinity of a respective point of intersection of one of the gate lines 210 and one of the data lines 220. A pixel electrode 222 is connected to the TFT 230. Each TFT 230 has a gate electrode 223 electrically connecting with the gate line 210, a source electrode 227 electrically connecting with the data line 220, and a drain electrode 228 connected to the pixel electrode 222. The common line 225 is disposed between the pixel electrode 222 and its adjacent gate line 210, extending along a direction parallel to the gate line 210. A storage capacitor 240 is parallel to the gate lines 210 above part of the common line 225. The storage capacitor 240 has a capacitor electrode 229, which is connected to one side of the pixel electrode 222, far away the corresponding TFT 230.

[0041] The TFT array substrate 2 further includes an insulating substrate 201, a transparent conductive line 221, a gate insulating pattern 214, an amorphous silicon (a-Si) pattern 215, a doped a-Si pattern 216 and a passivation layer 219. The transparent conductive line 221, the pixel electrode 222 and the common line 225 are formed on the insulating substrate 201. The gate electrode 223 and the gate line 210 are formed on the transparent conductive line 221. The gate insulating pattern 214 is formed on a part of the intersections of the gate electrode 212, the common line 225, the gate line 210 with the data line 220. The a-Si pattern 215 and the doped a-Si pattern 216 are orderly formed on the gate insulating layer pattern 214. The source electrode 227 and the drain electrode 228 are formed on the doped a-Si pattern 216. The capacitor electrode 229 are disposed on the doped amorpuous silicon pattern 216, corresponding to the common line 225. The passivation layer 219 is formed on the TFT 230 and the storage capacitor 240.

[0042] Referring to FIG. 3, the gate line 210 at the intersection point of the gate line 210 and the data line 220 are disconnected, forming a disconnected region thereat. The gate line 210 keeps electrical connection through the underlie transparent conductive line 221. The disconnected region of the gate line 210 can prevent a short circuit or open circuit between the gate line 210 and the corresponding data line 220.

[0043] Referring to FIG. 4, this is a flowchart summarizing an exemplary method for fabricating the TFT array substrate 2. For simplicity, the flowchart and the following description are couched in terms that relate to the part of the TFT array substrate 2 shown in FIG. 1. The method includes: step S201, forming a transparent conductive metal layer and a gate metal layer; step S202, forming a gate electrode (gate line) and a pixel electrode; step S203, forming a gate insulating layer, an a-Si layer, and a doped a-Si layer; step S204, forming a gate insulating pattern, an a-Si pattern, and a doped a-Si pattern; step S205, forming a source/drain metal pattern; step S206, forming a passivation layer, a source electrode and a drain electrode.

[0044] In step S201, referring to FIG. 5, an insulating substrate 201 is provided. The substrate 201 may be made from glass or quartz. A transparent conductive metal layer 202, a gate metal layer 203, and a first photo-resist layer 231 are sequentially formed on the substrate 201. The trans parent conductive metal layer 202 may be Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZO). The gate metal layer 203 may be made from material including any one or more items selected from the group consisting of aluminum (Al), molybdenum (Mo), copper (Cu), chromium (Cr), and tantalum (Ta).

[0045] In step S202, referring to FIG. 6 to FIG. 8, a light source (not shown) and a first photo-mask 250 are used to expose the first photo-resist layer 231. The first photo mask 250 is a slit mask having a light shield area 251, a slit area 252, and a transparent area 253. The first photo-resist layer 231 is exposed using the first photo mask 250. Then the exposed second photo-resist layer is developed, thereby forming a first photo-resist pattern. A first thickness of a first part 233 of the first photo-resist pattern, corresponding to the shield area 251 is greater than a second thickness of a second part 232 of the first photo-resist pattern, corresponding to the slit area 252, because the slit area 252 has a larger luminous flux. Using the first photo-resist pattern as a mask, the transparent conductive metal layer 202 and the gate metal layer 203 are etched, thereby forming a gate electrode pattern 213 and a transparent conductive metal pattern 212. The transparent conductive metal pattern 212 includes the pixel electrode 222, the common line 225 and the transparent conductive line 221.

[0046] Then, as shown in FIG. 9, through an etching process, the second part 232 of the first photo-resist pattern, part of the first part 232 of the first photo-resist pattern, a part of the gate metal pattern 213 corresponding to the second part 232 are etched away. And then, the remained first part 232 of the first photo-resist pattern is removed away, thereby forming the gate electrode 223 and the gate line 210 on the transparent conductive line 221. The gate line 210 at the intersection point of the gate line 210 and the data line 220 are disconnected, forming a disconnected region thereat. The gate line 210 keeps electrical connection through the underlie transparent conductive line 221.

[0047] Because the gate metal line 203 are formed on the transparent conductive metal layer 202, and the gate electrode 223 and the pixel electrode 222 don't overlap with each other, only one photo-mask process is used to form the gate electrode 223 and the pixel electrode 222, thus saving one photo-mask process.

[0048] In step S203, referring to FIG. 10, a gate insulating layer 204 is formed on the substrate 201 having the gate electrode 223, the pixel electrode 222 and the common line 225 by a chemical vapor deposition (CVD) process. In this process, silane (SiH₄) reacts with alkaline air (NH4+) to obtain silicon nitride (SiN_x), a material of the gate insulating layer 204. An amorphous silicon (a-Si) material is deposited on the gate insulating layer 204 by a CVD process. The a-Si layer is doped, thereby respectively forming the a-Si layer 205 and the doped a-Si layer 206.

[0049] In step S204, referring to FIG. 11, a second photoresist layer is coated on the doped a-Si layer 206. An ultra violet (UV) light source and a photo-mask (not shown) are used to expose the second photo-resist layer. Then the exposed second photo-resist layer is developed, thereby forming a second photo-resist pattern. Using the second photo-resist pattern as a mask, portions of the gate insulating layer 204, the a-Si layer 205 and the doped a-Si layer 206 which are not covered by the second photo-resist pattern are etched away, thereby forming a gate insulating layer pattern 214, an a-Si pattern 215 and a doped a-Si pattern 216.

[0050] In step S205, referring to FIG. 12, a third photoresist layer 241 is coated on the gate insulating layer pattern 214, the substrate 201 and the pixel electrode 222. An ultra violet (UV) light source is used to expose the third photoresist layer 241, from a bottom side of the substrate 201 which is opposite to a top side where the gate electrode 223 and the pixel electrode 22 are formed thereon, using the gate electrode 223 as a photo-mask. Then the exposed third photo-resist layer 241 is developed, thereby forming a third photo-resist pattern 242 (as shown in FIG. 13). Referring to FIG. 14, a source/drain metal layer 207 is then deposited on the doped a-Si pattern 216, the substrate 201, the third photo-resist pattern 242 and the pixel electrode 222. The source/drain metal layer 207 may be made from material including any one or more items selected from the group consisting of aluminum, aluminum alloy, molybdenum, tantalum, and molybdenum-tungsten alloy. After that, the third photo-resist pattern 242 and a portion of the source/drain metal layer 207 on the third photo-resist pattern 242 are removed away, thereby forming a source/drain metal pattern 217. Using the source/drain metal pattern 217 as a mask, portions of the doped a-Si pattern 216 which are not covered by the source/drain metal pattern 217 are etched away, thereby forming a groove 226 thereof (as shown in FIG. 15). [0051] In step S206, referring to FIG. 16, a passivation material layer 209 and a fourth photo-resist layer (not labeled) are deposited on the source/drain metal layer pattern 217 and the groove 226. A light source and a third photo-mask (not labeled) are used to expose the fourth photo-resist layer, thereby forming a fourth photo-resist pattern 252. Referring also to FIG. 17, a portion of the passivation material layer 209 and a portion of the source/ drain metal layer pattern 217 which are not covered by the fourth photo-resist pattern 252 is etched away; thereby exposing a portion of the pixel electrode 222 and forming

the source electrode 227, the drain electrode 228 and the capacitor electrode 229 and the passivation layer 219 (as shown in FIG. 18).

[0052] In summary, compared to the above-described conventional method, in the above-described exemplary method for fabricating the TFT array substrate 2, only one photomask process is used to form the gate electrode 223 and the pixel electrode 222. In addition, in the step of forming the source/drain metal layer 217, the gate electrode 223 is used as a mask, thereby a predetermined mask is saved. That is, the method for fabricating the TFT array substrate 2 only includes a total of four photo-mask processes. Therefore, a simplified method at a reduced cost is provided.

[0053] It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the invention.

What is claimed is:

1. A method for fabricating a thin film transistor (TFT) array substrate, the method comprising:

providing an insulating substrate;

forming a transparent conductive metal layer and a gate metal layer on the insulating substrate;

forming a gate electrode, a gate line and a pixel electrode through a first photolithograph process;

forming a gate insulating layer, an amorphous silicon pattern, and a doped amorphous silicon pattern through a second photolithograph process;

forming a photo-resist pattern on the gate electrode through a third photolithograph process, using the gate electrode as a photo-mask;

forming a source/drain metal layer on the insulating substrate, the doped amorphous silicon layer, the photo-resist pattern and the pixel electrode;

forming a source/drain metal pattern through removing the photo-resist pattern and a portion of the source/ drain metal layer on the photo-resist pattern; and

forming a passivation layer pattern, a source/drain electrode through a fourth photolithograph process.

- 2. The method as claimed in claim 1, wherein the first photolithograph process comprises coating a photo-resist layer on the gate metal layer, exposing the photo-resist layer using a photo-mask having a plurality of slits, and developing the exposed photo-resist layer to form a photo-resist pattern.
- 3. The method as claimed in claim 2, wherein the first photolithograph process comprises etching the transparent conductive metal layer and the gate metal layer which are not covered by the photo-resist pattern, thereby forming a gate metal pattern and a transparent conductive metal pattern.
- **4**. The method as claimed in claim **3**, wherein the photoresist pattern comprises a first part and a second part, a first thickness of the first part being greater than a second thickness of the second part of the first photo-resist layer.

- 5. The method as claimed in claim 4, wherein the first photolithograph process comprises etching away the second part of the first photo-resist layer pattern.
- 6. The method as claimed in claim 5, wherein the first photolithograph process comprises etching a part of gate metal layer pattern corresponding to the second part of the first photo-resist layer pattern, thereby forming the integrated gate electrode and the gate line.
- 7. The method as claimed in claim 6, wherein the gate line at the intersection point of the gate line and a data line of the TFT array substrate is disconnected, forming a disconnected region thereat.
- 8. The method as claimed in claim 7, wherein the gate line keeps electrical connection through the underlie transparent conductive line.
- **9**. The method as claimed in claim **6**, wherein the transparent conductive metal layer pattern includes the pixel electrode, a common line and a transparent conductive line.
- 10. The method as claimed in claim 1, wherein the third photolithograph process comprises using an ultra violet (UV) light source to expose a photo-resist layer, from a bottom side of the substrate, which is opposite a top side where the gate electrode and the pixel electrode are formed thereon
- 11. The method as claimed in claim 1, wherein the substrate is made from glass or quartz.
- 12. The method as claimed in claim 1, wherein the transparent conductive layer is made from indium tin oxide or indium zinc oxide.
- 13. The method as claimed in claim 1, wherein the gate metal layer is made from material including any one or more items selected from the group consisting of aluminum, molybdenum, copper, chromium, and tantalum.
- 14. The method as claimed in claim 1, wherein the source/drain metal layer is made from material including any one or more items selected from the group consisting of aluminum, aluminum alloy, molybdenum, tantalum, and molybdenum-tungsten alloy.
 - 15. A TFT array substrate comprising:

an insulating substrate;

- a transparent conductive line formed on the insulating substrate
- a plurality of gate lines formed on the transparent conductive line, that are parallel to each other and that each extend along a first direction,
- a plurality of data lines formed on the insulating substrate, that are parallel to each other and that each extend along a second direction orthogonal to the first direction:
- wherein the gate line at the intersection point of the gate line and the data line are disconnected.
- **16**. The TFT array substrate as claimed in claim **15**, wherein the gate line keeps electrical connection through the underlie transparent conductive line.
- 17. The TFT array substrate as claimed in claim 15, wherein the disconnected region of the gate line can prevent a short circuit or open circuit between the gate line and the corresponding data line.

* * * * *