WO 01/01250 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2001 (04.01.2001)

000 A I O O T

(10) International Publication Number

WO 01/01250 Al

(51) International Patent Classification”: GO6F 11/14
(21) International Application Number: PCT/US00/18020
(22) International Filing Date: 29 June 2000 (29.06.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

09/345,698 30 June 1999 (30.06.1999) US
60/141,758 30 June 1999 (30.06.1999) US
09/345,699 30 June 1999 (30.06.1999) US
60/141,762 30 June 1999 (30.06.1999) US

(71) Applicant: COMPUTER SCIENCES CORPORA-
TION [US/US]; 9500 Arboretum Blvd., Austin, TX 78759
Us).

(72) Inventors: KERULIS, John; 1403 Hillcrest Dr., Little
Elm, TX 75068 (US). NGAN, Robert; 420 East Ohio St.,

Chicago, IL 60611 (US). RASMUSSEN, Jay; 1279 Brad-
ford Dr., Coppell, TX 75019 (US). RITTENHOUSE,
Brian; 8208 Stern St., Frisco, TX 75035-6321 (US).
BARTLETT, James; 1926 Guinevere, Arlington, TX
76014 (US).

(74) Agent: Meyertons, Eric, B.; Conley, Rose & Tayon, P.C,,
P.O. Box 398, Austin, TX 78767-0398 (US).

(81) Designated State (national): CA.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR LOGGING TRANSACTION RECORDS IN A COMPUTER SYSTEM

[Bystem 300
arver 350
Timing
Facility __
- g Program Logger
352 351
v N Y]

=3
Ny
o

Bystem 310

(57) Abstract: An improved method and system for
logging transaction records in a computer system. The
method may include writing a confirmation log record
to the log file for a transaction that completes normally,
and not writing a confirmation log record for transac-
tions that are aborted. The log file may be unloaded
periodically by an unload program. The unload pro-
gram may write transaction log records accompanied
by a confirmation log record to a good output file and
transaction log records not accompanied by a confir-

Ferver 360
Coupling \ p*
Facility \

Program

Log file

mation log record to a suspended output file. On a
subsequent execution, the unload program may com-
bine the log records in the log file and the suspended

w0 'N\\‘* Logger ’//'

\ 3s1

\[server 370
335

Program Logger

351

then be processed normally by log processing programs.

file. The unload program may write transaction log
records accompanied by a confirmation log record to a
good output file. The unload program may write trans-
action log records not accompanied by a confirmation
log record and which have not exceeded a transaction
time limit to a suspended output file. The unload pro-
gram may write transaction log records not accompa-
nied by a confirmation log record and which have ex-
ceeded a transaction time limit to a disposal output file.
The transaction log records in the good output file may

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

TITILE: SYSTEM AND METHOD FOR LOGGING TRANSACTION RECORDS IN A
COMPUTER SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to the logging of transaction records in a computer system. More
particularly, the present invention relates to the logging of transaction records in large-scale transaction-based
computer application programs.

2. Description of the Related Art

In a transaction-based computer program, it is often advantageous to record the steps in a transaction in
records, and to write the records to a file on non-volatile storage. The process of generating the records and
writing them to a file may be commonly called logging, event logging, or transaction logging. The file on non-
volatile storage may be commonly called a log file. The records are commonly written to the log file as soon as
they are created. As used herein, a “transaction” may include a series of instructions executed by a computer
system for carrying out a financial operation. A transaction may include muitiple steps, and each step may
produce one or more records written to the log file. Examples of transactions include, but are not limited to,
financial transactions such as deposits, withdrawals, and funds transfers between accounts. Exampies of the
contents of records in a transaction include, but are not limited to, account numbers, deposit amounts, account
balances, interest rates and calculations. In addition, each record may include the time the transaction began, and
the time the record was generated. Other fields may be included in a record. The fields may include, but are not
limited to, a field indicating which program or program module generated the record, and a field indicating which
business unit initiated the transaction. As used herein, a “log file” may include information relating to
transactions which is stored in memory and which may be structured into fields, records, and/or other suitable data
structures.

It may be necessary to periodically unload transaction log records from a log file. One reason for the
periodic unloading is that transaction log files may grow rapidly, especially in a large-scale transaction-based
application where applications on several servers may be writing records to the log files, so it may be necessary to
reduce the size of the log files. Another reason for the periodic unloading is that the transaction log records may
require periodic processing for business purposes, such as for account balancing in a financial application. The
log file unloading may occur at periodic intervals ranging from every few minutes to every few days. As used
herein, a “logger unload program” is a computer program that unloads information relating to transactions from a
log file.

A demand for processing performance and scalability greater than that provided by single- and multi-
processor systems led to the development of clusters. In general, a cluster is a group of servers that may share
resources and cooperate in processing. One type of cluster is the single-system image cluster. The servers in a
single-system image cluster appear as one logical system to clients and to application programs running on the
cluster, hence the name “single-system.” Single-system image clusters typically share external, non-volatile data
storage, such as disk drives. Databases and other types of data permanentiy reside on the external storage. The
servers, however, do not generally share volatile memory. Each server in the cluster operates in a dedicated local
memory space.

Copies of a program may run concurrently on several servers in the cluster. The workload may be dynamically

distributed among the servers. The copies of the programs may appear as one logical program to the client. All

1

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

servers in the cluster have access to all of the data stored in external storage, and a program running on any server
in the cluster may run any transaction.

The single-system image cluster solves the availability and scalability problems and adds a level of
stability by the use of redundant systems with no single points of failure. Effectively, the one logical system may
be available year-round to clients and application programs without any outages. Hardware and software
maintenance and upgrades may be performed without the loss of availability of the cluster and with little or no
impact to active programs. The combination of availability, scalability, processing capability, and the logical
system image make the single-system image cluster a powerful environment on which to base a large-scale
transaction-based enterprise server.

A single-system image cluster may include at least one Coupling Facility (CF) which provides hardware
and software support for the cluster’s data sharing functions. The single-system image cluster may also provide a
timer facility to maintain time synchronization among the servers. On such a system, several operating system
images such as MVS images may be running on at least one computer system. MVS and 0S/390 are examples of
mainframe operating systems. OS/390 is a newer version of the MV'S operating system, and the terms 0S/390
and MVS are used interchangeably herein. “MVS image” is used synonymously with “server” herein. Operating
systems other than MVS may also run as servers on a single-system image cluster. Each server is allocated its
own local memory space. The servers appear as one logical server to a client. Programs may be duplicated in the
memory space of several servers. The workload of a program may be divided among several copies of the
program running on different servers. As in the case with the multiple servers appearing as one logical server,
multiple copies of a program running on a single-system image cluster may appear as one logical program to the
client. Mainframe operating systems often include a logging utility to provide a common, centralized logging
function to programs running on a computer system.

A common event in a transaction-based computer program is the aborting of a transaction. As used
herein, “aborting” includes terminating a transaction before all of the steps of the transaction have been executed.
If transactions are being logged, several log records for the transaction may have been stored in a log file at the
time of the abort. Leaving the log records for an aborted transaction in a log file may cause problems in the
processing of the transactions after they are unloaded from the log file. For example, in a banking application, a
bank may attempt to transfer funds from one account to another through an intermediate account. The transaction
may first withdraw the funds from a first account generating a log record, put the funds in the second account
generating a log record, and then attempt to transfer the funds to the third account. Finding the third account
closed, the desired action may be to abort the entire transaction and leave the funds in the first account. The
existence of a withdrawal log record and a deposit log record for an aborted transaction in the log file may be
problematic for programs processing transaction log records from a log file.

It is therefore desirable to provide a method for indicating a completion status for a transaction in
transaction log records written to a log file for a large-scale transaction-based application. It is also desirable to
provide a method for distinguishing between aborted and successfully compieted transactions as the log records
are processed.

Logging utilities provided by operating systems, such as MVS Logger and OS/390 logger, typically do
not provide a method for indicating a completion status for transactions, and thus do not fully support transaction
logging as described herein. The system-provided loggers do provide a common, centralized logging function

with many useful features. It is therefore desirable that a method for indicating a completion status for a

2

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

transaction in transaction log records written to a log file be applicable to logging utilities provided by operating
systems, such as MVS Logger and OS/390 Logger.

The problem of aborted transactions may also occur in computer systems in general where a program or
programs log transactions or events to log files. Therefore, a solution to the aborted transaction problem should
preferably be applicable to computer programs in general as well as specifically to large-scale transaction-based

applications.

SUMMARY OF THE INVENTION

The present invention provides various embodiments of an improved method and system for logging
transaction records in a computer system. In one embodiment, the method may include writing a confirmation log
record to the log file for a transaction that completes normally, and not writing a confirmation log record for
transactions that are aborted. The log file may be unloaded periodically by an unload program. The unload
program may write transaction log records accompanied by a confirmation log record to a good output file and
transaction log records not accompanied by a confirmation log record to a suspended output file. On a subsequent
execution, the unload program may combine the log records in the log file and the suspended file. The unload
program may write transaction log records accompanied by a confirmation log record to a good output file. The
unload program may write transaction log records not accompanied by a confirmation log record and which have
not exceeded a transaction time limit to a suspended output file. The unload program may write transaction log
records not accompanied by a confirmation log record and which have exceeded a transaction time limit to a
disposal output file. The transaction log records in the good output file may then be processed normally by log
processing programs.

In one embodiment, a transaction-based application program (hereinafter referred to as “the program”)
running on a server, may start a first transaction, and the first transaction may create a first transaction log record.
The first transaction may also create a second transaction log record. The generated first and second transaction
log records may be written to a log file immediately. In one embodiment, more than one program may be running
on a server, the programs may be running transactions, and the transactions may be writing log records to a log
file.

At some point, the program completes the first transaction. The program may generate a transaction
confirmation log record for the first transaction and write the confirmation log record to the log file. The program
may then start a second transaction. The second transaction may generate a first transaction log record and a
second transaction log record, and the transaction log records may be written to the log file. The program may
also start a third transaction, and the third transaction may generate a first transaction log record and the
transaction log record may be written to the log file.

Periodically, an unload program unloads the log file. The unload program may collect all of a
transaction’s log records from the log file and examine the records to see if a transaction confirmation log record
exists for the transaction. The unload program may examine the first transaction log records, find the log records
for the first transaction, and also find the transaction confirmation log record generated for the first transaction.
The unload program may write the first transaction log records to an output file for completed transaction log
records. The unload program may also examine the second transaction log records, finding the log records
generated so far for the second transaction, but not finding a transaction confirmation log record for the second

transaction. The unload program may write the second transaction log records to a suspended file for

3

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

uncompleted transaction log records. The unload program may also examine the third transaction log records,
finding the log record generated so far for the third transaction, but not finding a transaction confirmation log
record for the third transaction. The unload program may write the third transaction log records to a suspended
file for uncompleted transaction log records. At this point, the unload of the log file has completed.

At some point, the program completes the second transaction. The program may generate a transaction
confirmation log record for the second transaction and write it to the log file. The third transaction may generate a
second transaction log record and write it to the log file.

At some point, the unload program begins the periodic unioading of the entries made in the log file since
the last unload, and the entries made in the suspended file during the last unload. The unload program may collect
all of a transaction’s log records from the log file and the suspended file and examine the records to see if a
transaction confirmation log record exists for the transaction. The unload program may examine the second
transaction log records, finding the log records generated for the second transaction, and also finding the
transaction confirmation log record generated for the second program. The unload program may write the second
transaction log records to the output file for completed transaction log records. The unload program may also
examine the third transaction log records, find the log records generated so far for the third transaction, but not
find a transaction confirmation log record for the third transaction.

The unload program may further examine transaction log records that do not include a transaction
confirmation log record. The unload program may examine the time stamp for the transaction log records. The
time stamp may be the start time of the transaction that created the transaction log records. The unioad program
may calculate the elapsed time of a transaction by subtracting the start time of the transaction from the current
system time read from a system clock. The calculated elapsed time of the transaction may be compared to a
transaction time limit.

The unload program may examine the third transaction log records, calculate the elapsed time of the third
transaction, and compare the elapsed time to a transaction time limit. The unload program may assume that
transaction log records that do not have an accompanying confirmation log record, and for which the transaction
elapsed time has exceeded the transaction time limit, are transaction log records for a transaction that has been
aborted. Aborted transaction log records are written to a transaction log record disposal file. Finding that the
third transaction has not exceeded the transaction time limit, the unload program may write the third transaction
log records to a suspended file for uncompleted transaction log records. At this point the unload of the log file and
suspended file has completed.

At some point, the program aborts the third transaction. Significantly, no transaction confirmation log
record is written for the third transaction.

At some point, the unload program begins the periodic unloading of the entries made in the log file since
the last unload, and the entries made in the suspended file during previous unloads. The unioad program may
collect all of a transaction’s log records from the log file and the suspended file and examine the records to see if a
transaction confirmation log record exists for the transaction. The unload program may examine a transaction’s
log records and find a transaction confirmation log record. The unload program may write the transaction log
records to the output file for completed transaction log records. The unload program may also examine the third
transaction log records, find the log record generated for the third transaction that were in the suspended file, but
not find a transaction confirmation log record for the third transaction.

The unload program may further examine transaction log records that do not include a transaction

4

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

confirmation log record. The unioad program may examine the third transaction log records, calculate the elapsed
time of the third transaction, and compare the elapsed time to a transaction time limit. The unload program may
assume that transaction log records that do not have an accompanying confirmation log record, and for which the
transaction elapsed time has exceeded the transaction time limit, are transaction log records for a transaction that
has been aborted. Finding that the third transaction has exceeded the transaction time limit, the unload program
may write the third transaction log records to a disposal file for aborted transaction log records. The unload
program may write the transaction log records of transactions that have not exceeded the transaction time limit to
a suspended file for uncompleted transaction log records. At this point the unioad of the log file and suspended
file has completed.

One advantage of the method described herein, including writing a confirmation log record for a
successfully completed transaction and not writing a confirmation log record for an aborted transaction, is that the
confirmation log record provides positive evidence that a transaction has successfully completed during
processing of a log file. Another advantage is that the method may be used with logger utilities provided with
operating systems, such as MVS Logger and OS/390 Logger. Yet another advantage is that the method may be

applied in computer systems in general where programs perform event logging.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a server in which programs send log records to a logger module;

Figure 2 illustrates a server with programs sending log records with end records to a logger module
according to one embodiment;

Figure 3 illustrates a process of an unload module moving records from a log file to an output file;

Figure 4 illustrates an unload module reading a log file and moving records with end records to an output
file and records without end records to a suspend file according to one embodiment;

Figure 5 illustrates an unload module reading a log file and a suspend file and moving records with end
records to an output file, records without end records to a suspend file, and timed-out records to a dispose file
according to one embodiment;

Figure 6 is a high-level block diagram of a single-system image cluster system;

Figure 7a is a flowchart illustrating a process of sorting transaction logs into different output categories
according to one embodiment;

Figure 7b is a continuation of flowchart 7a;

Figure 7c is a continuation of flowchart 7b;

Figure 7d is a continuation of flowchart 7c.

While the invention is susceptible to various modifications and alternative forms, specific embodiments
thereof are shown by way of example in the drawings and will herein be described in detail. It should be
understood, however, that the drawings and detailed description thereto are not intended to limit the invention to
the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and

alternatives falling within the spirit and scope of the present invention as defined by the appended claims.

DETAILED DESCRIPTION OF THE DRAWINGS

The term “computer system” as used herein generally describes the hardware and software components

that in combination allow the execution of computer programs. The computer programs may be stored in

5

10

15

20

25

30

35

WO 01/01250 PCT/US00/18020

software, hardware, or a combination or software and hardware. A computer system’s hardware generally
includes a processor, memory media, and Input/Output (/O) devices. As used herein, the term “processor” or
“processing unit” generally describes the logic circuitry that responds to and processes the basic instructions that
operate a computer system. The term “memory medium” includes an installation medium, e.g., a CD-ROM, or
floppy disks; a volatile computer system memory such as DRAM, SRAM, EDO RAM, Rambus RAM, etc.; or a
non-volatile memory such as optical storage or a magnetic medium, e.g., a hard drive. The memory medium may
comprise other types of memory or combinations thereof. In addition, the memory medium may be located in a
first computer in which the programs are executed, or may be located in a second computer connected to the first
computer over a network. The term “memory” is used synonymously with “memory medium” herein. A
computer system also generally includes a system clock to provide the current time to programs.

A computer system’s software generally includes at least one operating system, a specialized software
program that manages and provides services to other sofiware programs on the computer system. Software may
also include one or more programs to perform various tasks on the computer system and various forms of data to
be used by the operating system or other programs on the computer system. The data may include but are not
limited to databases, text files, and graphics files. A computer system’s software generally is stored in non-
volatile memory or on an installation medium. A program may be copied into a volatile memory when running
on the computer system. Data may be read into volatile memory as required by a program. Some operating
systems may include a logging utility to provide a common, centralized logging function to programs running on
a computer system.

A computer system may comprise more than one operating system. When there is more than one
operating system, resources such as volatile and non-volatile memory, installation media, and processor time may
be shared among the operating systems, or specific resources may be exclusively assigned to an operating system.
For example, each operating system may be exclusively allocated a region of volatile memory. The region of
volatile memory may be referred to as a “partition” or “memory space.” A combination of an operating system
and assigned or shared resources on a computer system may be referred to as a “server.” A computer system thus
may include one or more servers.

Figure 1 — A server in which programs send log records to a logger moduie

Figure 1 illustrates a server 10 including a system memory 20 connected to a data storage 30 by a data
bus 35, a system clock 15, and a processing unit 12 connected to system memory 20 and system clock 15.
Processing unit 12 may include a single processor or several processors performing in parallel. Processing unit
may be coupled to data storage 30 by a data bus. A log file 40 may be stored on the data storage 30 and may be
maintained by logger module 50. A program 60 and a program 70, running on server 10, may run transactions
that generate transaction log records 65 and 75. Program 60 and program 70 may send the log records to logger
module 50, which then may write the transaction log records to log files 40. Programs 60 and 70 do not send a
transaction log record indicating the end of a transaction to logger module 50. The system clock 15 may be used
in generating the current time and/or creating time stamps for log records. As used herein, a “time stamp” is a
record of the time at which part of a log file was written or a record of the time at which a transaction or a step in

a transaction was generated.

10

15

20

25

30

35

WO 01/01250 PCT/US00/18020

Figure 2 — A server with programs sending log records with end records to a logger module according to one

embodiment

Figure 2 illustrates a server 10 including a system memory 20 connected to a data storage 30 by a data
bus 35, a system clock 15, and a processing unit 12 connected to system memory 20 and system clock 15.
Processing unit 12 may include a single processor or several processors performing in parallel. Processing unit
may be coupled to data storage 30 by a data bus. A log file 40 may be stored on the data storage 30 and may be
maintained by logger module 50. A program 60 running on server 10 may run a transaction that may generate a
set of transaction log records 65. Program 60 may send the log records to logger module 50, which then may
write the transaction log records 65 to log files 40. When the transaction generating transaction log records 65
ends in program 60, program 60 generates a transaction end record 66 and sends it to logger module 50. Logger
module 50 then may write transaction end record 66 to log files 40. Similarly, a program 70 running on server 10
may run a transaction that may generate a set of transaction log records 75. Program 70 may send the log records
to logger module 50, which then may write the transaction log records 75 to log files 40. When the transaction
generating transaction log records 75 ends in program 60, program 60 generates a transaction end record 76 and
sends it to logger module 50. Logger module 50 then may write transaction end record 76 to log files 40. The
system clock 15 may be used in generating the current time and/or creating time stamps for log records.
Figure 3 - A process of an unload moduie moving records from a log file to an output file

Figure 3 illustrates an unload module 110 extracting transaction log records 120 from a log file 100 and
moving them to an output file 125. Note that the unload module 110 has no mechanism for determining if
transaction log records 120 is complete, so all of transaction log records 120 are moved into output files 125
Figure 4 - An unload module reading a log file and moving records with end records to an output file and records
without end records to a suspend file according to one embodiment

Figure 4 illustrates an unload module 160 extracting transaction log records from a log file 150 and
sorting the transaction log records based upon the presence of a transaction end record. Unload module 160
comprises a logger unload program. Unload module 160 may perform periodic unloading of log files on a
computer system. At the time unload module 160 performs the unload of the records from log file 150, a
transaction generating transaction log records 170 may have completed. A transaction end record 171 may have
been generated in response to the completion of the transaction and written to the log file. A “transaction end
record” is used herein as a synonym for a “completion record,” i.e., a sequence of characters or binary data
indicating that a transaction has compieted. Unload module 160 may read one or more transaction records 170
from log file 150. Unload module 160 may then detect the transaction end record 171 and write the transaction
records 170 to an output file 175 in response to detecting the transaction end record 171. In one embodiment, an
unload module may dispose of a transaction end record after the transaction end record is used. In another
embodiment, an unload module may send a transaction end record to an output file with the rest of the transaction
records.

Unload module 160 also may read one or more transaction records 180 from log file 150. When all
records in the log file 100 have been processed by unload module 160 and no transaction end record is found for

transaction records 180, unload module 160 may write transaction records 180 to a suspend file 185.

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

Figure 5 - An unload module reading a log file and a suspend file and moving records with end records to an
output file, records without end records to a suspend file, and timed-out records to a dispose file according to one
embodiment

Figure 5 illustrates an unload module 160 extracting transaction log records from a log file 200 and a
suspend file 201 and sorting the transaction log records based upon the presence of a transaction end record and a
time limit for incomplete transactions. At the time the unload module 160 performs the unload of the transaction
log records from log file 200 and suspend file 201, a transaction generating transaction log records 210 may have
completed. Transaction end record 211 may have been generated and written to log file 200 upon completion of
the transaction. Another transaction may have started and written transaction log records 220 to log file 200.
Transaction log records 212 and transaction log records 230 may have been written to a suspend file by an earlier
unload of a log file by unload module 160. After the earlier unload, additional transaction log records 212 may
have been written to log file 200, a transaction generating the transaction log records 212 may have completed,
and transaction end record 213 may have been written to log file 200.

Unload module 160 may read one or more transaction records 210 from log file 200. Unload module 160
may then detect the transaction end record 211 and write the transaction records 210 to one of output files 215 in
response to detecting the transaction end record 211. In this case, the output file is a completed transaction file.
As used herein, a “completed transaction file” may include a file in memory which stores information relating to
completed transactions. Output files may also include an uncompleted transaction file and an aborted transaction
file. As used herein, an “uncompleted transaction file” may include a file in memory which stores information
relating to uncompleted transactions. As used herein, an “aborted transaction file” may include a file in memory
which stores information relating to aborted transactions. Unload module 160 may also read one or more
transaction records 212 from suspend file 201 and one or more transaction records 212 including transaction end
record 213 from log file 200. Unload module 160 may then detect the transaction end record 213 and write the
transaction records 212 to one of output files 215 in response to detecting the transaction end record 213.

When all records in the log file 200 have been read by unload module 160, unload module 160 may
examine transaction records that have no transaction end record associated with them. No transaction end record
is found for transaction records 220 and 230. Unload module 160 may then examine transaction records 220 and
determine that the transaction has not exceeded a transaction time limit 16. Unload module 160 may subtract a
time stamp in transaction record 220 from the system time read from a system clock 15 to determine the
transaction elapsed time. Unioad module 160 may then write transaction records 220 to a suspend file 225.
Unload module 160 may then examine transaction records 230 and determine that the transaction has exceeded
the transaction time limit. Unload module 160 may then write transaction records 230 to a dispose file 235.

Figure 6 - A high-level block diagram of a single-system image cluster system

Figure 6 illustrates an embodiment of a single-system image cluster system that is suitable for
implementing the logging system and method as described herein. The system may include multiple systems (two
systems, systems 300 and 310, are shown) running mainframe operating systems such as 0S/390 or MVS
operating systems; at least one coupling facility 330 to assist in multisystem data sharing functions, wherein the
coupling facility 330 is physically connected to systems in the cluster with high-speed coupling links 335; a timer
facility 340 to synchronize time functions among the servers; and various storage and 1/0 devices 320, such as
DASD (Direct Access Storage Devices), tape drives, terminals, and printers, connected to the systems by data

buses or other physical communication links.

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

Shown in system 300 is a server 350 running a mainframe operating system such as MVS. A logger 351
is shown running on server 350. The logger 351 accepts records to be logged from program 352 and writes them
to a log file 321 shown on external storage. Also shown in system 310 is a system partitioned into more than one
logical system or server (two servers, servers 360 and 370, both running a mainframe operating system such as
MVS, are shown on system 310). Servers 360 and 370 may also have programs interfacing with a logger.

The single-system image cluster system provides dynamic workload balancing among the servers in the
cluster. To a client working at a terminal or to an application program running on the cluster, the servers and
other hardware and software in a single-system image cluster system appear as one logical system.

Figures 7a-7d - A flowchart illustrating a process of sorting transaction logs into different output categories

according to one embodiment

Figures 7a through 7d present a flowchart illustrating one embodiment of a method of transaction
logging providing the ability to sort transaction logs into different output categories. The flowchart may describe
a logging process similar to that shown in Figure 2. At step 400, a log file is opened. Opening a log file may
include creating a new log file, or it may include opening a previously created log file. In one embodiment, the
log file may be created on an external storage device such as a disk drive. In another embodiment, the log file
may be created in a volatile memory and later written to a non-volatile storage. In one embodiment, an
application program running on a server may create the log file. In another embodiment, a system logging utility
may provide log file creation and maintenance to application programs running on the server. In yet another
embodiment, a logger interface program may provide log file creation and maintenance to application programs,
and may interface to a system logging utility. As used herein, a “logger interface program” includes a program
which is configured to accept transactions generated by programs and send the transactions to a system logging
utility.

At step 401, a first transaction generates a first transaction log record. At step 402, the first transaction
generates a second transaction log record. In this flowchart, generating a transaction log record may include the
creation of the transaction log record and writing the transaction log record to a log file. In one embodiment, a
program may directly write a transaction log record to a log file. In another embodiment, a program may send a
transaction log record to a logging program and the logging program may write the transaction log record to a log
file. In yet another embodiment, a program may send a transaction log record to a system logging utility and the
system logging utility may write the transaction log record to a log file. In one embodiment, a transaction may
include a number of steps, wherein each step in the transaction may generate one or more transaction log records.

In step 403, the first transaction may complete. The program may generate a transaction confirmation
log record for the first transaction in step 404. The terms transaction confirmation log record, transaction end
record, and transaction completion record are synonymous as used herein. As used herein, a “transaction
completion record” may include information, such as a sequence of characters or binary data, indicating that a
transaction has completed. A second transaction may generate a first transaction log record in step 405, and a
second transaction log record in step 406. In step 407, a third transaction may generate a first transaction log
record.

In step 408, an unioad program as illustrated in Figure 6 begins unloading the log file. In step 409, the
unload program may collect all of a transaction’s log records from the log file and examine the records to see if a
transaction confirmation log record exists for the transaction. In step 409, the unload program may examine the

first transaction log records, finding the log records generated in steps 401 and 402, and also finding the

9

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

transaction confirmation log record generated in step 404. The unload program may write the first transaction log
records to an output file for completed transaction log records in step 410. In one embodiment, all of a completed
transaction’s log records may be written to a completed transaction output file. In another embodiment,
transaction confirmation log records are deleted after they are used to identify completed transactions and are not
written to a completed transaction output file. In step 409, the unload program may also examine the second
transaction log records, finding the log records generated in steps 405 and 406, but not finding a transaction
confirmation log record. The unload program may write the second transaction log records to a suspended file
for uncompleted transaction log records in step 411. In step 409, the unload program may also examine the third
transaction log records, finding the log record generated in steps 407, but not finding a transaction confirmation
log record. The unioad program may write the third transaction log records to a suspended file for uncompleted
transaction log records in step 412. In step 413, the unload of the log file is completed.

In step 414, the second transaction may complete. The program may generate a transaction confirmation
log record for the second transaction in step 415. In step 416, the third transaction may generate a second
transaction log record.

In step 417, the unload program begins unloading the entries made in the log file since the last unload,
and the entries made in the suspended file during the last unload. In step 418, the unload program may collect all
of a transaction’s log records from the log file and the suspended file and examine the records to see if a
transaction confirmation log record exists for the transaction. In step 418, the unload program may examine the
second transaction log records, finding the iog records generated in steps 405 and 406, and also finding the
transaction confirmation log record generated in step 415. The unioad program may write the second transaction
log records to the output file for completed transaction log records in step 419. In step 418, the unload program
may also examine the third transaction log records, find the log records generated in steps 407 and 416, but not
find a transaction confirmation log record.

In step 420, the unload program may further examine a transaction’s log records that do not include a
transaction confirmation log record. In one embodiment, a transaction log record may include at least one time
stamp. A transaction start time is one example of a time stamp, wherein a transaction start time may indicate the
time at which a transaction was generated or written to a log file. In one embodiment of a transaction log record
including a time stamp, the time stamp may be represented as a text representation of a year, month, day of the
month, hour, minute, seconds, and fractions of seconds. In another embodiment of a transaction log record
inciuding a time stamp, the time stamp may be represented as a binary number, and the binary number may
represent a number of fractions of a second since a system-determined base time. Other methods of representing
a time stamp in a transaction log record will be obvious to one skilled in the art. In one embodiment, a transaction
that generates transaction log records may use the start time of the transaction as a time stamp for transaction log
records. In one embodiment, a time stamp used by a transaction may be unique for that transaction and may be
used to uniquely identify the transaction. In step 420, the unload program may examine the time stamp for the
transaction log records. The time stamp may be the start time of the transaction that generated the transaction log
records. The unload program may calculate the elapsed time of a transaction by subtracting the start time of the
transaction from the current system time read from a system clock (see Figure 5, item 15). The calculated elapsed
time of the transaction may be compared to a transaction time limit (see Figure 5, item 16). In one embodiment, a
transaction time limit for a transaction log record may be read from a program that generated the transaction log

record. In another embodiment, a transaction time limit may be set in the unload program. In yet another

10

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

embodiment, a transaction time limit may be entered by a user of the unload program before transaction log
records in a log file and suspended file are processed.

In step 420, the unload program may examine the third transaction log records, calculate the elapsed time
of the third transaction, and compare the elapsed time to a transaction time limit. In step 420, the unload program
may assume that a transaction having transaction log records that do not have an accompanying confirmation log
record, and for which the transaction elapsed time has exceeded the transaction time limit, has been aborted.
Aborted transaction log records are written to a transaction log record disposal file in step 421. In one
embodiment the disposal log file may be kept after the unioad program completes. In another embodiment, the
record disposal file is deleted by the unload program before the unload program completes. Finding that the third
transaction has not exceeded the transaction time limit, the unload program may write the third transaction log
records to a suspended file for uncompleted transaction log records in step 422. In step 423, the unioad program
finishes the unload of the log file and suspended file.

In step 424, the third transaction is aborted. No transaction confirmation log record is written for the
third transaction.

In step 425, the unjoad program begins unloading the entries made in the log file since the last unload,
and the entries made in the suspended file during previous unloads. In step 426, the unload program may collect
all of a transaction’s log records from the log file and the suspended file and examine the records to see if a
transaction confirmation log record exists for the transaction. In step 427, the unload program may examine a
transaction’s log records and find a transaction confirmation log record. The unload program may write the
transaction log records to the output file for completed transaction log records in step 427. In step 426, the unload
program may also examine the third transaction log records, find the log record generated in steps 407 and 416,
but not find a transaction confirmation log record.

In step 428, the unload program may further examine a transaction’s log records that do not include a
transaction confirmation log record. The unload program may examine the third transaction log records, calculate
the elapsed time of the third transaction, and compare the elapsed time to a transaction time limit. In step 420, the
unload program may assume that a transaction having transaction log records that do not have an accompanying
confirmation log record, and for which the transaction elapsed time has exceeded the transaction time limit, has
been aborted. Finding that the third transaction has exceeded the transaction time limit, the unload program may
write the third transaction log records to a disposal file for aborted transaction log records in step 429. The unload
program may write the transaction log records of transactions that have not exceeded the transaction time limit to
a suspended file for uncompleted transaction log records in step 430. In step 431, the unload program finishes the
unload of the log file and suspended file.

Various embodiments further include receiving or storing instructions and/or data implemented in
accordance with the foregoing description upon a carrier medium. Suitable carrier media include memory media
or storage media such as magnetic or optical media, e.g., disk or CD-ROM, as well as signals such as electrical,
electromagnetic, or digital signals, conveyed via a communication medium such as networks and/or a wireless

link.

Additional Information

For several years, there has been a generalized high-speed logging facility to ease migration of all

applications to a true 24 / 7 environment. The logging facility may provide multiple physical files and the ability

11

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

to switch physical logs for batch off-load with no application interrupts. It may also provide a flexible and
extendable unload by source, target, or time of the logged transaction. While the logging facility provides fast
efficient logging, some operational issues have always proved troublesome to clients. The OS/390 System Logger
provided as part of OS/390 would remove or ease these issues. However, it is not RECOVERABLE and does not
provide any flexible unload facilities.

Any significant production use of the MVS Logger by any syspiex-exploiting system may tend to require
either a non-volatile coupling facility (for example, UPS on CPU running the CF) or dual CFs to ensure integrity
of the logged data within the CF. Numerous Log streams may exist on one MVS Logger List structure. As the
characteristics (Maximum buffer size and Maximum allocation) of a List are fixed, and the resources represented
by a List are evenly divided among all logstreams using a list, an important tuning is to correctly assign various
MVS Logs to List structures.

Use of the MVS Logger may vastly ease the scheduling of log offloads required
before batch processing. While an unload job must still be run, in one embodiment, it need be run only once
regardless of the number of MVS images or processing regions. In one embodiment, the first step unloads the
MVS Log, both the data contained in VSAM Linear Data Sets and the data from within the CF, to a sequential
format. Subsequent steps are unchanged and data may be extracted using any supported criteria.

The ability to unload data without any requirement to schedule the LOG SWITCH transactions required
by earlier logging facilities provides the opportunity to more tightly schedule unloads before batch.

Use of the MVS logger may tend to require correctly sizing the Structure used to house the Logstreams
and the Logstreams themselves. As a Policy may contain only 128 structures, not every logstream may have its
own structure.

Several changes may be recommended to implement an MVS Log. Additional Logs may reuse the Log
List Structure or create their own as required. To size a List Structure, the maximum and average buffer sizes
may be required. For each Logstream, the Low and High off-load percent, the number of writes per second, and
the required residency time of data in the log may be required. A utility provides the sizing for Policy Definition.

Programs may have a built-in online and/or batch Logging facility of some type. This Logging facility
collects various types of data, such as online transactions for batch processing, and audit/reporting information.
Each of these facilities may be specifically designed for the processing application and uses unique logging data
sets. In most cases, the log data sets are keyed index files that add considerable overhead to transaction
processing in both online and batch environments. Additionally, the online log data sets may tend to require
special processing measures to accommodate offline processing, or in some cases to interrupt online processing.
Therefore, log data sets have caused significant concern from an application processing perspective, despite the
fact that they perform the required functions.

Consequently, a new logging facility was conceived to resolve the application concerns created by
existing log facilities. The log service may provide a generalized logging facility for Umbrella-based applications
that improves logging performance and
increases online log file availability. In various embodiments, the requirements for individual application log files
can be eliminated. A single set of log files can be utilized without internal application modifications. The log
files can accommodate any application log record format and can provide continuous online log availability. This

facility may deliver enhanced application logging capabilities for existing and future applications.

12

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

Additionally, the Logging facility service may provide offline processing services that can be tailored for
each application. A batch log utility may provide the ability for batch processing to unload, warehouse, and split
out the individual application log records. Basic and customized record selection capabilities may be available
through this utility to enhance batch processing flexibility.

In one embodiment, the basic function of the logging process is to intercept online I/O requests made to
application log files and reroute them to the log file. Multiple log files are supported, with manual and automated
switching capabilities. The logging facility service may be available in the online and batch environment, for both
IMS and CICS. However, due to the environmental differences, the log file's physical structure and access
method may vary.

In one embodiment, for IMS, the log file includes Fast Path Data Entry Databases (DEDB) with the
individual log records being Sequential Dependent Segments (SDEPs). DEDB:s are designed to provide efficient
storage for large-volume data accessing, and offer high levels of availability through the use of area data sets.
SDEP segments, within a DEDB, are designed for very fast insert capabilities, making them ideal for online
audit/log files. Also, DEDBs are recoverable through Database Resource Control (DBRC) in ail IMS
environments (for example, BMP, DC, and so on).

In one embodiment, for CICS, the log file includes VSAM Relative Record Data Set (RRDS) files. The
advantages here are also the fast insert capabilities and CICS recoverability.

Using the system logger for the logging facility may allow a sysplex-wide sharing of a common
repository for log data from any TP and/or environment and even for a combination of CICS, IMS, and batch
systems. Each application file may have its own individual log stream or the data may be placed into a common
log stream.

An additional performance feature is built into the online log service. A program can buffer up
application log records, within a log record, and only perform the actual I/O at end of transaction. Consequently,
a single log record may contain one or more actual
application log records. This may reduce the number of I/Os performed and further improve transaction
processing time.

The entire logging process may take place within a load module and require no application program
modifications. However, some additional batch processing steps are required to remove the application log
records from the log file and place them on the desired application log file. For this purpose, a log utility may be
provided to split application log records off the log and place them on the original designated application files.
This utility may provide basic record selection and a user exit point for further customization. In summary, this
logging facility may provide improved online and batch logging performance, increased online log file
availability, and flexible log record separation facility.

In one embodiment, ,the target database for an application write request is evaluated to determine if it is
defined as an application log data set by examining the LOG FILE TYPE flag on the sequential database (SDB) or
the Hierarchical Database (HDB) definition. If it is an application log file, the following steps may occurs. The
application records for the transaction may be buffered. Output may be deferred until the end of transaction, or
until the buffer's space is exceeded. Buffer space may be calculated as the number of buffers multiplied by the log
buffer size. The buffer data may be identified by system header, application record header, data group header,
and data group data. If the transaction /O requests exceed the data set space allowance, an internal log switch

may occur, and a new log file may be activated. The active Logging facility database may have concurrent

13

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

accessibility through status information tabled in permanent data group 48634, the log control record. The
address of this area may be stored in a Program Vector Table (PVT) field. Online regions under the same system
CPU may share the Logging facility database set if the Common Storage Area (CSA) is active for the regions.

Activating the system logger feature may cause all records that would have been written to a Logging
facility to be written to the system logger instead. With the system logger, a user may have the choice of using a
single log stream to house all application records or individual log streams for each of the application files. The
records may be written as they are received by the logger function. In one embodiment, there is no switching or
stopping of the log streams required, and both batch and online may write to the same log streams. A new batch
unload program may be used to read and delete the log streams. The output from this program may be used as
input to the consolidate step of the Batch Log Processing utility.

In one embodiment, the basic batch logging flow may have several major differences from the online
flow. For example, the batch log file may be a sequential database. The records that are written to the sequential
log file may not be blocked and buffered for deferred output. Each application record may be written out at the
time of the database request with a system, application, and data group header. The application records may be
ready to be included directly into the batch utility split step. A single batch Log file may be utilized with no
switching capability. No log file space evaluation may be performed.

In offline log processing, the Batch Log Processing utility may unioad, consolidate, and split application
data records to the application log file. Offline processing is recommended to be performed before exhausting all
of the available online log files. A file may become available for offline processing through Logging facility
service internal switching, or through the explicit online switch transaction. To become available for online
processing again, the log file is recommended to be unloaded and reinitialized.

In one embodiment, the steps that occur to split application records to the application log file from the
time the active log file may be taken offline. First. a Batch Log Processing utility may assesse which Log files
may be available for offline processing. The offline log files may be unioaded to a flat sequential file. The log
buffer may be broken into one application record per output buffer and consolidated with the warehouse
consolidated log file, if one exists. The consolidated records may be split, based on any selection criteria, to the
target application log files. The split records, by default, may not be written to the newly-created warehouse log
file, to prevent duplicate processing.

In one embodiment, the system logger may utilize a different program to unload data from the system
logger data sets. The output from this program may be used as input to the Batch Log Processing utility for
consolidation or splitting into individual application log streams. This unload program may also delete the
accumuiated records from the log stream.

In one embodiment, implementing logging using the system logger may tend to require an active system
logger within the sysplex. Among the items to be considered before using the system logger for logs are the
number and location of coupling facility structures, the number of log streams required, mapping of log streams to
coupling facilities, sizing of each coupling facility structure, DASD requirements for each log stream, and proper
security authorization to access the system logger. If the data being logged is of a critical nature (audit data, for
example), then duplexing of the data is recommended.

A batch utility may be provided to extract and process the records that were written to the Logging
facility during online or batch processing. This utility may perform a plurality of functions, which are described

as follows. The utility may unload the Log file(s). This stand alone step reads the log(s) and writes the records to

14

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

a sequential file. Depending on the environment in which it is executing, it may also delete the records just read.
Each environment requires a unique procedure for unloading the records and is described in the following
sections. The utility may consolidate unloaded records. The records just unloaded may be combined with
previously unloaded records to form a single repository for later processing by the split or purge functions of this
utility. The utility may split warehoused records. The consolidated records may be split into their respective
application files based on criteria specified with control statements. The utility may purge warehoused records.
Based on control statements, records may be deleted.

In one embodiment, the Batch Split utility step to unioad the VSAM RRDS log files may include
querying each Log file to determine which files require unload processing, and then dumping the targeted records
to a flat sequential file. The file may be flagged as unloaded. The file may not be available for online processing
until it is reinitialized. The Initialize VSAM Database utility may delete the records from the unloaded log file,
and flags the file as available for online processing. In one embodiment, it may not be necessary to run this step
in the same job as the batch unload step, but the Logging facility may not recognize the unloaded file as available
until it has been run.

A batch utility may consolidate the previously unloaded application records with records from a
warehoused records sequential file. The warehoused record file may include a collection of application records
collected from previous unload steps. In one embodiment, it is not a required data set, and it may be bypassed by
using DUMMY as the Data Set Name (DSN) for DD SEQLOGI. If using a warehouse file, it is recommended that
the files be created as Generation Data Group (GDG) data sets.

A batch utility may split the consolidated application log records to the original application log files. An
example uses the optional selection criteria control cards to select only those log files destined for database names
prefixed with a particular name. In one embodiment, these application databases are online application log
databases that were specified on the original HDB activity. The application records that are selected and split to
the application databases may be purged from the new warehouse sequential log file. The HDB activities
captured with the application log records may be issued to split the application records to the application
databases.

In one embodiment, to write records directly to an application database defined as an application log file,
logging should be disabled. To process records directly in batch from an application database defined as a log
file, logging should also be disabled. In one embodiment, there are two methods for disabling the logging facility
for specific programs or transactions. First, a logging flag can be set to N within an application program. Second,
for batch, the bypass logging transaction can be executed before the transaction(s) performing the logging.

In one embodiment, ,setting the logging flag in the UTCB may temporarily disable logging for the
duration of the transaction or until the flag is reset. However, if a more permanent system-wide disabling is
desired, a global variable may be set to disable logging. This may disable the Logging facility service for all
application log files in the environment.

Each log record, passing the initial selection criteria, may be manipulated before the SPLIT processing is
performed. Once an application log record passes the initial selection criteria, the data contained in the log record
may be placed back into the originating data groups (i.e., the data groups where the data was obtained during the
online logging process). Additionally, the Log file Header and the Application Record Header information is also

available. Once the application log record information is in the appropriate data groups, the supplied activity may

15

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

be invoked. Upon return to the Log Utility, a determination may be made as to whether SPLIT and/or PURGE
processing continues against the application record.

Consequently, the data group being passed to the exit module may be based upon the data groups of the
databases being processed. To access these data groups, the exit module may need only to specify them on the
program definition and in the appropriate area within the source module.

In one embodiment, the Log file Header and the Application Record Header information may be
available and may all be specified in the user exit module. The result field can be used to communicate to the Log
Utility that SPLIT process is to be bypassed. Upon return to the Log Utility, the result field is interrogated for a
nonzero value. If the value of this field is nonzero, the Log Utility may bypass both the SPLIT and PURGE
processes.

In one embodiment, the existing Logging facility has received a heart transplant by using the 0S/390
System Logger as the transport layer replacing the VSAM RRDS or IMS/DEDB w/SDEP used in prior releases.
This may provide a very high-speed, flexible logging tool that addresses substantially all the operational problems
experienced with the original Logging facility. In one embodiment, all log streams and their supporting CF List
structures must be defined via standard utilities.

Once MVS LOG support is active, the logging facility may be switched from its internal log structures to
the system logger. The most noticeable change may be in the processing required to unload the system logger
with integrity.

The unload program may process records written to the system logger. These records may have been
written to the system logger by online and/or batch systems. As this unload may be an asynchronous process with
the jobs that are still writing to the logger and because the logger function is a non-recoverable resource (that is,
no backout is performed), specialized processing may be required. Records written to the log may be grouped by
transaction. Every record written during the life of a program transaction may have the same key. At the end of a
transaction, a control record may be written with the same key and an identifier that indicates that the record set is
valid (that is, the transaction did not abend).

In one embodiment, multiple address spaces may be writing to the logger at the same time so records are
interspersed (do not have a set grouping). As these logging processes may be continuing during the unload, the
unload program may read valid records that do not yet have a matching control record. The basic logic of this
program may include: getting the log stream to be unloaded; getting warehoused records that did not have a
matching control record during the last execution of this job (this data set does not exist on the very first execution
of this job) and passing these records to sort; reading all the records on the specified log stream and passing them
to sort; sorting the records so that they are grouped by transaction key with the control record, if any, sorting first;
and reading the records from sort. If there is a matching control record, the logic of the program may further
include writing all the records with the same transaction key to SEQLOGO. If a record does not have a matching
control record, then, if the record is more than 1 hour and 11 minutes old, it may be written to a reject file because
it is probably the result of a transaction that abended and did not write a control record. Otherwise, it may be
written to SYSLOGO, the warehouse file. The records may then be deleted from the system logger.

In one embodiment, the implementation of the MVS System Logger may be thought of as a “heart
transplant” into the logging facility. The transport layer of the logging facility may be replaced by the System
Logger. Additional functionality may be provided by allowing any application to designate SDB/HDB as a pure
System Log.

16

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

WHAT IS CLAIMED iS:
1. A method comprising:
writing a first transaction to a log file;
completing the first transaction;
writing a completion record for the first transaction to the log file, wherein the completion
record indicates that the first transaction has completed;
writing a second transaction to the log file;
reading the completed first transaction from the log file;
reading the second transaction from the log file;
writing the completed first transaction to a completed transaction file; and

writing the second transaction to an uncompleted transaction file.

2. The method of claim 1, further comprising:

completing the second transaction;

writing a completion record for the second transaction to the log file, wherein the compietion
record indicates that the second transaction has completed;

reading contents of the log file and contents of the uncompieted transaction file, wherein the
contents of the log file include the completion record for the second transaction, and wherein the contents
of the uncompleted transaction file include the second transaction;

determining that the second transaction from the uncompleted transaction file corresponds to the
completion record for the second transaction from the log file; and

writing the completed second transaction to the completed transaction file in response to
determining that the second transaction from the uncompleted transaction file corresponds to the

completion record for the second transaction from the log file.

3. The method of claim 2, further comprising:

providing a transaction time limit for transactions, wherein the transaction time limit indicates a
time by which the transaction must complete to be valid;

providing a current time;

writing a third transaction to the log file, wherein the third transaction includes a transaction
start time, wherein the transaction start time indicates a time at which the third transaction began;

reading contents of the log file and contents of the uncompleted transaction file;

calculating a transaction elapsed time for the third transaction by subtracting the current time
from the transaction start time;

comparing the transaction elapsed time of the third transaction to the transaction time limit; and

writing the third transaction to an aborted transaction file when the transaction elapsed time of

the third transaction has exceeded the transaction time limit.

4, The method of claim 1, wherein each transaction comprises at least one transaction record, and wherein a

transaction record comprises at least one field.

17

10

15

20

25

30

35

40

10.

1.

12.

13.

14.

WO 01/01250 PCT/US00/18020

The method of claim 4, wherein each transaction record further comprises an identifier field, wherein the
identifier field is unique to the transaction, such that the identifier field uniquely identifies a transaction
record as belonging to a particular transaction, and such that the identifier field is used to distinguish the

particular transaction from other transactions.

The method of claim 5, wherein each transaction record further comprises a time field, wherein the time

field comprises a time stamp.

The method of claim 6, wherein the identifier field is the time field, wherein the time stamp is a time at

which the transaction was started.

The method of claim 7, wherein one transaction record is a completion record comprising a time field
and a transaction complete field, wherein the transaction complete field includes information identifying

arecord as a completion record.

The method of claim 1, wherein each transaction includes a program identifier, wherein the program
identifier is a unique piece of data that indicates which program of a plurality of programs generated the

transaction.

The method of claim 9, wherein a logger interface program is configured to accept transactions generated

by programs and send the transactions to a system logger.

The method of claim 10, wherein the system logger is a component of an operating system.

The method of claim 10, further comprising:
the logger interface program receiving the first transaction from a first program;
the logger interface program sending the first transaction to the system logger;
the logger interface program receiving the second transaction from a second program;

the logger interface program sending the second transaction to the system logger.

The method of claim 12, wherein the logger interface program is executable by a mainframe computer

system.

The method of claim 1,

wherein reading transactions from the log file further comprises a logger unload program
reading transactions from the log file;

wherein writing the completed first transaction to a completed transaction file further comprises
the logger unload program writing the completed first transaction to a completed transaction file; and

wherein writing the second transaction to an uncompleted transaction file further comprises the

logger unload program writing the second transaction to an uncompleted transaction file.

18

10

15

20

25

30

35

40

15.

16.

17.

WO 01/01250 PCT/US00/18020

The method of claim 14, further comprising:

writing a completion record for the second transaction to the log file, wherein the completion
record indicates that the second transaction has compieted;

the logger unload program reading contents of the log file and contents of the uncompleted
transaction file;

the logger unload program determining that the second transaction from the uncompleted
transaction file corresponds to the completion record for the second transaction from the log file; and

the logger unload program writing the completed second transaction to the completed
transaction file in response to the logger unload program determining that the second transaction from
the uncompleted transaction file corresponds to the completion record for the second transaction from the

log file.

The method of claim 15, further comprising:

providing a transaction time limit for transactions, wherein the transaction time limit indicates a
time by which the transaction must complete to be valid;

providing a current time;

writing a third transaction to the log file, wherein the third transaction includes a transaction
start time, wherein the transaction start time indicates a time at which the third transaction began; .

the logger unload program reading contents of the log file and contents of the uncompieted
transaction file;

the logger unload program calculating a transaction elapsed time for the third transaction by
subtracting the current time from the transaction start time;

the logger unioad program comparing the transaction elapsed time of the third transaction to the
transaction time limit; and

the logger unload program writing the third transaction to an aborted transaction file when the

transaction elapsed time of the third transaction has exceeded the transaction time limit.

A method for logging transactions in a computer system, the method comprising:

starting a first transaction;

writing a first record for the first transaction to a log file;

starting a second transaction;

writing a first record for the second transaction to the log file;

starting a third transaction;

writing a first record for the third transaction to the log file;

completing the first transaction;

writing a completion record for the first transaction to the log file, wherein the completion
record indicates that the first transaction has completed;

reading the first record for the first transaction, the first record for the second transaction, the
first record for the third transaction, and the completion record for the first transaction from the log file;

writing the completed first transaction to a completed transaction file; and

writing the second transaction and the third transaction to an uncompleted transaction file.

19

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

18. The method of claim 17, further comprising:

providing a transaction time limit for transactions, wherein the transaction time limit indicates a
time by which the transaction must complete to be valid;

providing a current time;

compieting the second transaction;

writing a completion record for the second transaction to the log file, wherein the completion
record indicates that the second transaction has completed;

aborting the third transaction;

reading contents of the log file and contents of the uncomplieted transaction file;

determining that the second transaction from the uncompleted transaction file corresponds to the
completion record for the second transaction from the log file;

writing the completed second transaction to the completed transaction file in response to
determining that the second transaction from the uncompleted transaction file corresponds to the
completion record for the second transaction from the log file;

calculating a transaction elapsed time for the third transaction by subtracting a time stamp of the
first record of the third transaction from the current time;

comparing the transaction elapsed time of the third transaction to the transaction time limit; and

writing the third transaction to an aborted transaction file when the transaction elapsed time of

the third transaction has exceeded the transaction time limit.

19. A system comprising:
a processing unit;
a system memory coupled to the processing unit;
a data storage coupled to the processing unit;
wherein the system memory stores program instructions, wherein the program instructions are
executable by the processing unit to:
write a first transaction to a log file in the data storage;
write a completion record for the first transaction to the log file, wherein the
completion record indicates that the first transaction has completed;
write a second transaction to the log file;
read the completed first transaction from the log file;
read the second transaction from the log file;
write the completed first transaction to a completed transaction file in the data storage;
and

write the second transaction to an uncompleted transaction file in the data storage.

20. The system of claim 19, wherein the program instructions are further executable to:
complete the second transaction;
write a completion record for the second transaction to the log file, wherein the completion

record indicates that the second transaction has completed;

20

10

15

20

25

30

35

40

21.

22.

23.

24.

25.

WO 01/01250 PCT/US00/18020

read contents of the log file and contents of the uncompleted transaction file, wherein the
contents of the log file include the completion record for the second transaction, and wherein the contents
of the uncompleted transaction file include the second transaction;

determine that the second transaction from the uncompleted transaction file corresponds to the
completion record for the second transaction from the log file; and

write the completed second transaction to the completed transaction file in response to
determining that the second transaction from the uncompieted transaction file corresponds to the

completion record for the second transaction from the log file.

The system of claim 20, further comprising:

a system clock coupled to the processing unit;
wherein the program instructions are further executable to:

providing a transaction time limit for transactions, wherein the transaction time limit
indicates a time by which the transaction must complete to be valid;

determine a current time by reading the system clock;

write a third transaction to the log file, wherein the third transaction includes a
transaction start time, wherein the transaction start time indicates a time at which the third
transaction began;

read contents of the log file and contents of the uncompleted transaction file;

calculate a transaction elapsed time for the third transaction by subtracting the current
time from the transaction start time;

compare the transaction elapsed time of the third transaction to the transaction time
limit; and

write the third transaction to an aborted transaction file when the transaction elapsed

time of the third transaction has exceeded the transaction time limit.

The system of claim 19, wherein each transaction comprises at least one transaction record, and wherein

a transaction record comprises at least one field.

The system of claim 22, wherein each transaction record further comprises an identifier field, and
wherein the identifier field is unique to the transaction, such that the identifier field uniquely identifies a
transaction record as belonging to a particular transaction, and such that the identifier field is used to

distinguish the particular transaction from other transactions.

The system of claim 23, wherein each transaction record further comprises a time field, and wherein the

time field comprises a time stamp.

The system of claim 24, wherein the identifier field is the time field, and wherein the time stamp is a

time at which the transaction was started.

21

10

15

20

25

30

35

40

26.

27.

28.

29.

30.

31.

32.

WO 01/01250 PCT/US00/18020

The system of claim 25, wherein one transaction record is a completion record comprising a time field
and a transaction compiete field, wherein the transaction compiete field includes information identifying

arecord as a completion record.

The system of claim 19, wherein each transaction includes a program identifier, wherein the program
identifier is a unique piece of data that indicates which program of a plurality of programs generated the

transaction.

The system of ciaim 27, wherein a logger interface program is configured to accept transactions

generated by programs and send the transactions to a system logger.

The system of claim 28, wherein the system logger is a component of an operating system.

The system of claim 28,

wherein the program instructions further comprise a first application program and a second
application program;

wherein the logger interface program is executable to receive the first transaction from a first
program;

wherein the logger interface program is executable to send the first transaction to the system
logger;

wherein the logger interface program is executable to receive the second transaction from a
second program,;

wherein the logger interface program is executable to send the second transaction to the system
logger;

wherein the system logger is executable to write the first transaction to the log file and write the

second transaction to the log file.

The system of claim 19, wherein the system is a mainframe computer system.

A system comprising:
a processing unit;
a system memory coupled to the processing unit;
a data storage coupled to the processing unit;
wherein the system memory stores program instructions, wherein the program instructions are
executable by the processing unit to:
start a first transaction;
write a first record for the first transaction to a log file in the data storage;
start a second transaction;
write a first record for the second transaction to the log file;
start a third transaction;

write a first record for the third transaction to the log file;

22

10

15

20

25

30

35

40

WO 01/01250 PCT/US00/18020

complete the first transaction;

write a completion record for the first transaction to the log file, wherein the
completion record indicates that the first transaction has completed;

reading the first record for the first transaction, the first record for the second
transaction, the first record for the third transaction, and the completion record for the first
transaction from the log file into the system memory;

write the completed first transaction to a completed transaction file in the data storage;
and

write the second transaction and the third transaction to an uncompleted transaction file

in the data storage.

33. The system of claim 32, further comprising:

a system clock coupled to the processing unit;
wherein the program instructions are further executable to:

providing a transaction time limit for transactions, wherein the transaction time limit
indicates a time by which the transaction must complete to be valid;

determine a current time by reading the system clock;

complete the second transaction;

write a completion record for the second transaction to the log file, wherein the
completion record indicates that the second transaction has completed;

abort the third transaction;

read contents of the log file and contents of the uncompleted transaction file into the
system memory,

determine that the second transaction from the uncompleted transaction file
corresponds to the completion record for the second transaction from the log file;

write the completed second transaction to the completed transaction file in response to
determining that the second transaction from the uncompleted transaction file corresponds to the
completion record for the second transaction from the log file;

calculate a transaction elapsed time for the third transaction by subtracting a time
stamp of the first record of the third transaction from the current time;

compare the transaction elapsed time of the third transaction to the transaction time
limit; and

write the third transaction to an aborted transaction file when the transaction elapsed

time of the third transaction has exceeded the transaction time limit.

34. A carrier medium comprising program instructions, wherein the program instructions are executable by a
machine to implement:
writing a first transaction to a log file;
completing the first transaction;
writing a completion record for the first transaction to the log file, wherein the completion

record indicates that the first transaction has completed;

23

10

15

20

25

30

35

40

35.

36.

37.

38.

WO 01/01250 PCT/US00/18020

writing a second transaction to the log file;

reading the completed first transaction from the log file;

reading the second transaction from the log file;

writing the completed first transaction to a completed transaction file; and

writing the second transaction to an uncompleted transaction file.

The carrier medium of claim 34, wherein the program instructions are further executable by the machine
to implement:

completing the second transaction;

writing a completion record for the second transaction to the log file, wherein the completion
record indicates that the second transaction has completed;

reading contents of the log file and contents of the uncompleted transaction file, wherein the
contents of the log file include the completion record for the second transaction, and wherein the contents
of the uncompleted transaction file include the second transaction;

determining that the second transaction from the uncompleted transaction file corresponds to the
completion record for the second transaction from the log file; and

writing the completed second transaction to the compieted transaction file in response to
determining that the second transaction from the uncompleted transaction file corresponds to the

completion record for the second transaction from the log file.

The carrier medium of claim 35, wherein the program instructions are further executable by the machine
to implement:

providing a transaction time limit for transactions, wherein the transaction time limit indicates a
time by which the transaction must complete to be valid,

providing a current time;

writing a third transaction to the log file, wherein the third transaction includes a transaction
start time, wherein the transaction start time indicates a time at which the third transaction began;

reading contents of the log file and contents of the uncompleted transaction file;

calculating a transaction elapsed time for the third transaction by subtracting the current time
from the transaction start time;

comparing the transaction elapsed time of the third transaction to the transaction time limit; and

writing the third transaction to an aborted transaction file when the transaction elapsed time of

the third transaction has exceeded the transaction time limit.

The carrier medium of claim 34, wherein each transaction comprises at least one transaction record, and

wherein a transaction record comprises at least one field.

The carrier medium of claim 37, wherein each transaction record further comprises an identifier field,
and wherein the identifier field is unique to the transaction, such that the identifier field uniquely
identifies a transaction record as belonging to a particular transaction, and such that the identifier field is

used to distinguish the particular transaction from other transactions.

24

10

15

20

25

30

35

40

39.

40.

41.

42

43.

44.

45.

46.

47.

48.

WO 01/01250 PCT/US00/18020

The carrier medium of claim 38, wherein each transaction record further comprises a time field, wherein

the time field comprises a time stamp.

The carrier medium of claim 39, wherein the identifier field is the time field, wherein the time stamp is a

time at which the transaction was started.

The carrier medium of claim 40, wherein one transaction record is a completion record comprising a time
field and a transaction complete field, wherein the transaction complete field includes information

identifying a record as a compietion record.

The carrier medium of claim 34, wherein each transaction includes a program identifier, wherein the
program identifier is a unique piece of data that indicates which program of a plurality of programs

generated the transaction.

The carrier medium of claim 42, wherein a logger interface program is configured to accept transactions

generated by programs and send the transactions to a system logger.

The carrier medium of claim 43, wherein the system logger is a component of an operating system.

The carrier medium of claim 43, wherein the program instructions are further executable by the machine
to impiement:

the logger interface program receiving the first transaction from a first program;

the logger interface program sending the first transaction to the system logger;

the logger interface program receiving the second transaction from a second program;

the logger interface program sending the second transaction to the system logger.

The carrier medium of claim 34, wherein the machine is a mainframe computer system.

The carrier medium of ciaim 34,

wherein reading transactions from the log file comprises a logger unload program executable for
reading transactions from the log file;

wherein writing the completed first transaction to a completed transaction file comprises the
logger unload program executable for writing the completed first transaction to a completed transaction
file; and

wherein writing the second transaction to an uncompleted transaction file comprises the logger

unload program executable for writing the second transaction to an uncompleted transaction file.

The carrier medium of claim 47, wherein the program instructions are further executable by the machine
to implement:

writing a completion record for the second transaction to the log file, wherein the completion

record indicates that the second transaction has completed;

25

15

20

25

30

35

40

49.

50.

51

WO 01/01250 PCT/US00/18020

the logger unioad program reading contents of the log file and contents of the uncompieted
transaction file;

the logger unload program determining that the second transaction from the uncompleted
transaction file corresponds to the completion record for the second transaction from the log file; and

the logger unload program writing the compieted second transaction to the completed
transaction file in response to the logger unload program determining that the second transaction from
the uncompleted transaction file corresponds to the compietion record for the second transaction from the

log file.

The carrier medium of claim 48, wherein the program instructions are further executable by the machine
to implement:

providing a transaction time limit for transactions, wherein the transaction time limit indicates a
time by which the transaction must complete to be valid;

providing a current time;

writing a third transaction to the log file, wherein the third transaction inciudes a transaction
start time, wherein the transaction start time indicates a time at which the third transaction began;

the logger unload program reading contents of the log file and contents of the uncompleted
transaction file;

the logger unload program calculating a transaction elapsed time for the third transaction by
subtracting the current time from the transaction start time;

the logger unload program comparing the transaction elapsed time of the third transaction to the
transaction time limit; and

the logger unload program writing the third transaction to an aborted transaction file when the

transaction elapsed time of the third transaction has exceeded the transaction time limit.
The carrier medium of claim 34, wherein the carrier medium is a memory medium.

A carrier medium comprising program instructions, wherein the program instructions are executable by a
machine to implement:

starting a first transaction;

writing a first record for the first transaction to a log file;

starting a second transaction;

writing a first record for the second transaction to the log file;

starting a third transaction;

writing a first record for the third transaction to the log file;

completing the first transaction;

writing a completion record for the first transaction to the log file, wherein the completion
record indicates that the first transaction has completed;

reading the first record for the first transaction, the first record for the second transaction, the
first record for the third transaction, and the completion record for the first transaction from the log file;

writing the completed first transaction to a completed transaction file; and

26

10

15

20

25

30

35

40

52.

53.

54.

55.

WO 01/01250 PCT/US00/18020

writing the second transaction and the third transaction to an uncompleted transaction file.

The carrier medium of claim 51, wherein the program instructions are further executabie by the machine
to implement:

providing a transaction time limit for transactions, wherein the transaction time limit indicates a
time by which the transaction must complete to be valid,;

providing a current time;

completing the second transaction;

writing a completion record for the second transaction to the log file, wherein the completion
record indicates that the second transaction has completed;

aborting the third transaction;

reading contents of the log file and contents of the uncompleted transaction file;

determining that the second transaction from the uncompleted transaction file corresponds to the
compietion record for the second transaction from the log file;

writing the completed second transaction to the compieted transaction file in response to
determining that the second transaction from the uncompleted transaction file corresponds to the
completion record for the second transaction from the log file;

calculating a transaction elapsed time for the third transaction by subtracting a time stamp of the
first record of the third transaction from the current time;

comparing the transaction elapsed time of the third transaction to the transaction time limit; and

writing the third transaction to an aborted transaction file when the transaction elapsed time of

the third transaction has exceeded the transaction time limit.

The carrier medium of claim 51, wherein the carrier medium is a memory medium.

A method comprising:

writing a completion record for a first transaction to a log file, wherein the completion record
indicates that the first transaction has completed;

writing a second transaction to the log file;

writing the completed first transaction to a completed transaction file; and

writing the second transaction to an uncompleted transaction file.

A system comprising:

a processing unit;

a system memory coupled to the processing unit;

a data storage coupled to the processing unit;

wherein the system memory stores program instructions, wherein the program instructions are
executable by the processing unit to:

write a completion record for a first transaction to a log file in the data storage, wherein
the completion record indicates that the first transaction has completed;

write a second transaction to the log file;

27

WO 01/01250 PCT/US00/18020

write the completed first transaction to a completed transaction file in the data storage;
and

write the second transaction to an uncompleted transaction file in the data storage.

5 56. A carrier medium comprising program instructions, wherein the program instructions are executable by a
machine to implement:
writing a completion record for a first transaction to a log file, wherein the completion record
indicates that the first transaction has completed;
writing a second transaction to the log file;
10 writing the completed first transaction to a completed transaction file; and

writing the second transaction to an uncompleted transaction file.

28

WO 01/01250 PCT/US00/18020

Server 10
/-———x
Memory 20 _3_9___/
Program
—p Q ' ——j
60 Log records
4 Logger Log files
65
75 | Module |« |
40
/ 50 35 40
Program | l E — — | —~
10 Log records
A
L)
ystem Processing unit
Clock 12 1 re 1
15 12 Figu
Server 10
End record |50 Memory 20 @
Program 1
—> |
60 }
/_I— Log records
A 65 Logger Log files
Moduie |« |
40
50 35 40
76
\ N—
Program End record] /75
s Nrwv
Log records
A
ystem Proces;n unit
Clock 12 9 .
15 = Figure 2

1/8

WO 01/01250 PCT/US00/18020

Log file Unload Output
—>» Module —>p > files
Log records

100 110
,\ 19

120
Figure 3

I End record 17
Log file Unload Output
t—»1 Module —» » files
150 160 Log records
N 175
170
180
| | -
Log records
Figure 4

Suspend
file
185

2/8

WO 01/01250 PCT/US00/18020

Dispose

file
235
System
230 Clock
N 15
211
/
210
Log file Log records End record o
200 T Log records

Unload T
Module

160 [/

Suspend

file 213
201 [l

— Log records
7 g

Log records

~
\

220 212
Suspend
file
225
Figure 5

3/8

WO 01/01250

Coupling
Facility

30

335

PCT/US00/18020

Log file

321

4/8

System 300
Server 350
Program Logger
352 351 \
System 310
JServer 360
R Program Logger %
351
\ e—
\ Perver 370
Program Logger //
351
Figure 6

WO 01/01250

(Start)

A 4

Logfile opened
400

I

First transaction
generates first log
record
401

v

First transaction
generates second
log record
402

¥

First transaction
ends
403

:

Confirmation log
record for first
transaction
generated
404

S/8

PCT/US00/18020

Second transaction
generates first log
record
405

l

Second transaction
generates second
log record
406

l

Third transaction
generates first log
record
407

Figure 7a

WO 01/01250 PCT/US00/18020

Begin unioad
process
408

. Second
log zr:t;zzc:;nntain transacpon's log
confirmation record? No® entries to
) suspended file
409 411
Yes
A 4
First transaction's
log entries to good
output file
410 A 4
Third transaction's
log entries to
suspended file
412
End unload
process
413
v
Second transaction
ends
414
v
Confirmation log
record for second
transaction _
generated Flgure 7b
415

®

6/8

WO 01/01250

Third transaction
generates second
log record
416

v

Unload of log file
and suspended file
begins
417

Transaction
log entries contain
confirmation record?

Second
transaction's log
entries to good
output file
419

Time limit
expired on
suspended entries?
420

Yes

Aborted entries to
disposal file
421

PCT/US00/18020

h 4

L

Unload of log file
and suspended file
ends
423

v

Third transaction
aborts
424

®

7/8

Third transaction's
log entries to
suspended file
422

Figure 7c

WO 01/01250 PCT/US00/18020

Unload of log file
and suspended file
begins
425

ransaction log Time limit

entries contain No expired on
confirmation record? suspended entries?
426 ‘ 428

Yes
\ 4 No
Yes
Log entries go to
goad file
427
h 4
Third transaction's
< log entries to
disposal file
429
h 4
Log entries remain
< in suspended file
Y 430
Unload of log file
and suspended file
ends
431
Figure 7d

INTERNATIONAL SEARCH REPORT

intern 1al Application No

PCT/US 00/18020

A._CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F11/14

According to intemational Patent Ciassification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

EPO-Internal, WPI Data, PAJ, INSPEC

Etectronic data base consuited during the intemationai search (name of data base and, where practicai, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropnate, of the relevant passages

Relevant to claim No.

X US 4 878 167 A (KAPULKA KENNETH M ET AL)
31 October 1989 (1989-10-31)

abstract; figure 1
column 2, line 21 - line 37
column 4, line 4 - line 36

-/

1,2,4,
9-15,17,
19,20,
22,
27-32,
34,35,
37,
42-48,
51,53-56
3,5-8,
16,18,
21,
23-26,
33,36,
38-41,
49,52

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categones of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the intemational
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to estabiish the publication date of another
citation or other special reason (as specified)

*0O" document referring to an oral disclosure, use, exhibition or
other means

"P* document published prior to the intemational filing date but
later than the prionty date claimed

"T" later document published after the intemational filing date
or priority date and not in confiict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be consigered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particutar relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-—
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the intemational search

3 November 2000

Date of mailing of the intemational search report

10/11/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016

Authorized officer

Renault, S

Form PCT/ISA/210 {second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

intern: al Application No

PCT/US 00/18020

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

8 January 1992 (1992-01-08)
column 5, line 45 -column 8, line 2
column 25, line 42 -column 27, Tine 23

Category ° | Citation of document, with indication,where appropnate, of the relevant passages Relevant to ciaim No.
column 5, line 52 - line 61
column 6, line 44 - line 51
Y US 5 907 848 A (DEHOND GUY ET AL) 3,5-8,
25 May 1999 (1999-05-25) 16,18,
21,
23-26,
33,36,
38-41,
49,52
figure 1
column 1, Tine 50 - line 67
column 3, line 55 -column 4, line 14
column 6, 1ine 36 - line 63
column 7, Tine 29 - line 40
column 10, Tine 53 - line 59
A US 5 638 508 A (KANAI SADASABUROH ET AL) 1,2,14,
10 June 1997 (1997-06-10) 15,19,
20,30,
34,35,
47,48,
54-56
abstract; figure 1
column 6, 1ine 45 -column 7, line 4
A EP 0 280 773 A (IBM) 3,16,18,
7 September 1988 (1988-09-07) 21,33,
36,49,52
page 3, line 25 - line 35
claim 1
A EP 0 465 018 A (DIGITAL EQUIPMENT CORP) 1-56

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

w.ormation on patent family members

Intern:

PCT/US 00/18020

al Application No

Patent document Publication Patent family Publication

cited in search report date member(s) date

Us 4878167 A 31-10-1989 DE 3786956 A 16-09-1993
DE 3786956 T 17-03-1994
EP 0250847 A 07-01-1988
JP 1856908 C 07-07-1994
JpP 5060617 B 02-09-1993
JP 63010252 A 16-01-1988

US 5907848 A 25-05-1999 AU 6557398 A 29-09-1998
EP 1008059 A 14-06-2000
WO 9840827 A 17-09-1998

US 5638508 A 10-06-1997 JP 1021649 A 25-01-1989
JP 2718031 B 25-02-1998

EP 0280773 A 07-09-1988 JP 1763638 C 28-05-1993
JP 4054258 B 28-08-1992
JP 63175951 A 20-07-1988

EP 0465018 A 08-01-1992 DE 69126066 D 19-06-1997
DE 69126066 T 25-09-1997
JP 2501152 B 29-05-1996
JP 6083682 A 25-03-1994
KR 9408605 B 24-09-1994
us 5524205 A 04-06-1996

Form PCT/ISA/210 (patent family annex) {July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

