发明名称 液晶显示面板及其液晶显示器与驱动方法

摘要

本发明涉及一种液晶显示器，该液晶显示器包含若干个以矩阵方式排列在一块透明基板上的像素。每个像素包括第一切换元件，该第一切换元件是一薄膜晶体管，其栅极端连接到一扫描线，而其余两端分别连接到一像素电极和一个数据线上。此外，该像素还包括第二切换元件，该第二切换元件也是一薄膜晶体管，其栅极端连接到黑色选择线，而其余两端则是分别连接到该像素电极和一个共同电极上。
1. 一种液晶显示面板，其特征在于其包含：若干条扫描线、若干条黑色选择线、若干条数据线、一共同电极，及由该若干条数据线和该若干条扫描线相交而构成的若干个像素；该若干个像素各包括：一像素电极、一第一切换元件，及一第二切换元件；该第一切换元件栅极端连接至一该扫描线，另两端子电气连接至该像素电极及一该数据线；该第二切换元件栅极端连接至一该黑色选择线，另两端子电气连接至该像素电极及该共同电极。

2. 如权利要求 1 所述的液晶显示面板，其特征在于所述第一切换元件是一薄膜晶体管。

3. 如权利要求 1 所述的液晶显示面板，其特征在于所述第二切换元件是一薄膜晶体管。

4. 如权利要求 1 所述的液晶显示面板，其特征在于当所述第一切换元件开启时，该数据线会将一色阶电压写入该像素电极。

5. 如权利要求 1 所述的液晶显示面板，其特征在于当所述第二切换元件开启时，该像素电极和该共同电极电气连接。

6. 如权利要求 1 所述的液晶显示面板，其特征在于所述每一该像素另包含一液晶电容，该液晶电容的两电极分别连接至该共同电极及该像素电极。

7. 一种液晶显示器，其特征在于其包含：一液晶显示面板，以及一用于驱动该液晶显示面板显示图像的驱动电路；该液晶显示面板包括：若干条扫描线、若干条黑色选择线、若干条数据线、一共同电极，及由该若干条数据线和该若干条扫描线相交而构成的若干个像素；该若干个像素各包括：

一像素电极；

一第一切换元件，其栅极端连接至一该扫描线，另两端子电气连接至该像素电极及一该数据线；

一第二切换元件，其栅极端连接至一该黑色选择线，另两端子电气连接至该像素电极及该共同电极。

8. 如权利要求 7 所述的液晶显示器，其特征在于所述驱动电路包括一扫描线驱动电路、一数据线驱动电路及一液晶显示器控制器。
9. 如权利要求8所述的液晶显示器，其特征在于所述扫描线驱动电路是用于驱动该扫描线及该黑色选择线。

10. 如权利要求9所述的液晶显示器，其特征在于所述扫描线驱动电路藉由其若干个门驱动元件先后驱动该扫描线及该黑色选择线。

11. 如权利要求7所述的液晶显示器，其特征在于所述第一换元件是一薄膜晶体管。

12. 如权利要求7所述的液晶显示器，其特征在于所述第二换元件是一薄膜晶体管。

13. 如权利要求7所述的液晶显示器，其特征在于选择所述第二换元件会使得该像素电极和该共同电极形成电气连接。

14. 如权利要求7所述的液晶显示器，其特征在于所述液晶显示器控制器产生若干个起始垂直信号，并驱使该扫描线驱动电路顺序输出若干个门脉冲至该若干条扫描线及输出若干条黑色选择脉冲至该若干条黑色选择线。

15. 如权利要求7所述的液晶显示器，其特征在于在同一帧周期内，该门脉冲及该黑色选择脉冲分别作用于该同一像素的间隔约为半个帧周期。

16. 一种液晶显示器的驱动方法，其特征在于该驱动方法是用于驱动一种包括若干条扫描线及若干条黑色选择线的液晶显示器：该液晶显示器上每像素具有第一薄膜晶体管及第二薄膜晶体管，其中该第一薄膜晶体管与该扫描线及一像素电极相连接，该第二薄膜晶体管与该黑色选择线、一共同电极、及该像素电极相连接；该驱动方法包含下列步骤：

 藉由该扫描线上的一脉冲信号开启该像素的第一薄膜晶体管，使得一阶梯电压写入该像素电极；

 在同一帧周期内，藉由该黑色选择线上的一脉冲信号开启该像素的第二薄膜晶体管，使得该共同电极与该像素电极电气连接。

17. 如权利要求16所述的驱动方法，其特征在于所述扫描线上的脉冲信号与该黑色选择线上的脉冲信号相距约半个帧周期。

18. 如权利要求16所述的驱动方法，其特征在于所述第一薄膜晶体管电气连接至一数据线。
19. 如权利要求 16 所述的驱动方法，其特征在于所述色阶电压是作用于该数据线上。

20. 如权利要求 16 所述的驱动方法，其特征在于所述液晶显示器另包含一驱动电路。

21. 如权利要求 20 所述的驱动方法，其特征在于所述驱动电路包括一扫描线驱动电路、一数据线驱动电路及一液晶显示器控制器。

22. 如权利要求 21 所述的驱动方法，其特征在于所述扫描线驱动电路是用于驱动该扫描线及该黑色选择线。

23. 如权利要求 22 所述的驱动方法，其特征在于所述扫描线驱动电路是藉由其若干个门驱动元件先后驱动该扫描线及该黑色选择线。

24. 如权利要求 21 所述的驱动方法，其特征在于所述液晶显示器控制器产生若干个起始垂直信号，并驱使该扫描线驱动电路顺序输出若干个门脉冲至该若干条扫描线及输出若干条黑色选择脉冲至该若干条黑色选择线。
说明书

液晶显示面板及其液晶显示器与驱动方法

技术领域

本发明是关于一种液晶显示面板以及其液晶显示器（LCD）与驱动方法，特别是关于一种适合显示动态图像的有源式矩阵液晶显示器。

背景技术

液晶显示面板的制造技术在产生高对比度及广视角的画面效果上不断地进步。然而，在显示快速度的连续动作时，往往会产生图像模糊或动作重叠的不良画质。目前已提出各种相关的驱动技术以改进液晶显示面板的图像质量，其中又以日本电气股份有限公司提出黑白数据插入（black data insertion）的驱动方法，比较能有效改善液晶显示面板在显示动态画面时的视觉效果。该已知技术是将黑色的数据电压（data voltage）在垂直扫描周期内依次写入每个像素的液晶电容内，目的在于模拟阴极射线管的脉冲式（impulse-type）的视觉效果，让观赏者感受到移动物体的图像在每一瞬间都很清晰。

图1是美国专利公开第2003/0001983号的液晶显示面板10的驱动信号的波形示意图。扫描信号VG1~VGn分别作用于对应的扫描线G1~Gn12上，且一数据信号VD是将产生图像的数据输出至数据线D113。该扫描信号VG1~VGn在同一垂直扫描周期内都包含两种主要波形111及112，其中波形111是作用于扫描信号VG1上以开启薄膜晶体管（TFT）141，从而使得数据181的电压得以写至像素电极（pixel electrode）151，该波形111可称为门脉冲（gate pulse）。此时，共同电极（common electrode）16的电压Vcom较对应的像素电极151的电压低，为正极性。该扫描信号VG1~VGn、数据信号VD及共同电极的Vcom电压是由一驱动电路产生，该驱动电路包含多种驱动元件及逻辑元件等。当波形111将薄膜晶体管141关闭后，另一种波形112出现于扫描信号VGj上，其会开启与扫描线Gj相连接的薄膜晶体管142，而使得一黑数据182写至像素电极152，同时该对应像素的显示会由前一帧的色阶变为黑色。

当第一行扫描线G1接收到扫描信号VG1的波形111后，随即第二条扫描
线 G2 也接收到波形 111 的扫描信号 VG2，同时数据 183 的电压会写入第二条扫描线 G2 的第一个像素内。由于共同电极 16 的电压 Vcom 高于该像素的像素电极 151 的电压，故像素的极性为负极性。数据信号 VD 在接数据 183 又送出一黑数据 184。该黑数据 184 在扫描信号 VGj+1 的波形 112 输出后而写入扫描线 Gj+1 的第一个像素。一般黑数据插入会和图像数据更新隔开半个帧同时进行，由于黑数据写至液晶电容的充电时间不足，因此一扫描信号在同一垂直扫描周期需要有多个波形 112 才能将对应的像素完全变成黑色。

图 2 是图 1 的数据信号及扫描信号的栅极波形图。实际上大尺寸或高清晰度的液晶显示面板在传输扫描信号时存在 RC 延迟（RC delay）的问题，方波的波形 111 在扫描线 12 传输时会变形为波形 111'。还有可能因栅极延迟（gate delay）的问题，使得充电时间变短，且使薄膜晶体管的闭时间需要拉长。以高清晰度数字电视（HDTV）所使用的液晶显示面板 WUXGA（1,920×1,200 像素）为例，前后条扫描线送出波形 111 的时间差 H 应小于或等于 13.3 μ sec，而 H=t1+t2+t3+t4，其中 t2 及 t4 分别为波形 111'及 112'在栅极延迟关闭所需的多余时间。由于 t2 和 t4 的存在，而导致压缩到数据 181 及黑数据 182 的正常充电时间 t1 及 t3。

<table>
<thead>
<tr>
<th></th>
<th>t1</th>
<th>t2</th>
<th>t3</th>
<th>t4</th>
</tr>
</thead>
<tbody>
<tr>
<td>案例一</td>
<td>5</td>
<td>2.5</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>案例二</td>
<td>4</td>
<td>3</td>
<td>3.3</td>
<td>3</td>
</tr>
</tbody>
</table>

在上表案例一中，t2 及 t4 各设为 2.5 μ sec，相对应的 t1 及 t3 分别为 5 μ sec 及 3.3 μ sec。而案例二 t2 及 t4 各设为 3 μ sec，则 t1 及 t3 分别缩减为 4 μ sec 及 3.3 μ sec。t1 代表波形 111 启动薄膜晶体管 141 的作用时间，也就是当薄膜晶体管 141 启动时数据线 13 的电压才得以写至像素电极 151。故可得知已知技术对于像素的液晶电容的充电时间相当有限，尤其会造成数据 181 的充电时间较短，势必影响图像的显示质量，或者是造成液晶显示面板的尺寸与分辨率升级的瓶颈。

发明内容

本发明的主要目的是提供一种高分辨率的液晶显示器可增加显示数据的充
电时间，每一像素通过增加一薄膜晶体管可使一黑色电压写入对应的液晶电容内。

本发明的第二目的是提供一种可应用标准规格的数据驱动元件的液晶显示器，并不需要以特殊规格的数据驱动元件才能驱动液晶显示器呈现脉冲式动态图像。

本发明的第三目的是提供一种能快速反应黑数据插入的液晶显示器。

为了达到上述目的，本发明揭示一种液晶显示器，其包含若干个以矩阵方式排列在一透明基板上的像素。每个像素包括一第一切换元件，该第一切换元件是一薄膜晶体管，其栅极端连接到一扫描线，而其余两端则分别连接到一像素电极和一个数据线上。此外，该像素还包括一第二切换元件，该第二切换元件也是一薄膜晶体管，其栅极端连接到黑色选择线，而其余两端则分别连接到该像素电极和一个共同电极上。

该液晶显示器有一次输出起始垂直信号的驱动电路，该起始垂直信号使每一该扫描线和每一该黑色选择线开始扫描。在一个垂直扫描周期内，当作用在扫描线上的第一门脉冲开启一该像素的第一开关元件后，作用于该黑色选择线的第二门脉冲会使该像素的像素电极和共同电极短路。

附图说明
图 1 是美国专利公开第 2003/0001983 号的液晶显示面板的驱动信号的波形示意图；
图 2 是图 1 的数据信号及扫描信号的波形图；
图 3 是本发明优选实施例的液晶显示面板的电路示意图；
图 4 是本发明作用在数据线、扫描线和黑色选择线上脉冲的波形图；
图 5 是图 4 中作用于像素电极的脉冲的波形图；
图 6 是本发明的门驱动元件所输出不同信号的时序图；
图 7 是本发明的门驱动元件的功能方块示意图。
图中元件符号说明：

<p>| 10 | 液晶显示面板 |
| 111, 112, 111', 112' | 波形 |
| 12 | 扫描线 G1Gn |
| 13 | 数据线 D1Dm |</p>
<table>
<thead>
<tr>
<th>141, 142 薄膜晶体管</th>
<th>151, 152 像素电极</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 共同电极</td>
<td>181, 183 数据</td>
</tr>
<tr>
<td>182, 184 黑数据</td>
<td></td>
</tr>
<tr>
<td>3 液晶显示器</td>
<td>30 液晶显示面板</td>
</tr>
<tr>
<td>31 像素</td>
<td>311 第一薄膜晶体管</td>
</tr>
<tr>
<td>312 第二薄膜晶体管</td>
<td>313 液晶电容</td>
</tr>
<tr>
<td>314 像素电极</td>
<td>32 信号线</td>
</tr>
<tr>
<td>33 黑色选择线</td>
<td>34 扫描线</td>
</tr>
<tr>
<td>35 共同电极</td>
<td>36 数据线驱动电路</td>
</tr>
<tr>
<td>37 液晶显示器控制器</td>
<td>38 扫描线驱动电路</td>
</tr>
<tr>
<td>381 门驱动元件</td>
<td></td>
</tr>
<tr>
<td>411, 412 图像数据</td>
<td>42 门脉冲</td>
</tr>
<tr>
<td>42’ 黑色选择脉冲</td>
<td>43 扭曲的门脉冲</td>
</tr>
<tr>
<td>44 共同电位</td>
<td>511, 512 电位（画素电极）</td>
</tr>
<tr>
<td>71 电位转换电路</td>
<td>72 移位寄存器单元</td>
</tr>
<tr>
<td>73 电位转换器单元</td>
<td>74 输出缓冲器</td>
</tr>
</tbody>
</table>

具体实施方式

图3是本发明优选实施例的液晶显示器3的电路示意图。若干扫描线G1～Gn 34 横向形成于一透明基板（如玻璃）上，黑色选择线 G1'-Gn'33 平行该扫描线 G1-Gn 34，并横越过液晶显示面板 30 上的每一像素列。

像素 31 包括一个第一变换元件，亦即为第一薄膜晶体管 331，其栅极端连接到扫描线 G1 33，其余两端子则分别连接到像素电极 314 和数据线 D1 32。像素 31 内还包括一个第二变换元件，亦即为第二薄膜晶体管 312，其栅极端连接到黑色选择线 G1'33，其余两个端子则分别连接到像素电极 314 和共同电极 35。又液晶电容 313 的二个电极分别连接至像素电极 314 和共同电极 35，藉由改变液晶电容 313 内的电场就能控制充满在其中的液晶分子的方向。

扫描线驱动电路 38 内的门驱动元件 381 会产生驱动信号作用在扫描线 G1-Gn 34 上，接着连续作用具有高电位的门脉冲以开启各第一薄膜晶体管 311
而执行扫描动作，之后数据线 32 即输出一阶级电压写入像素电极 314 上。而在同一个垂直扫描周期，当该阶级电压已写入像素电极 314 上后，受门驱动元件 381 所驱动的黑色选择线 G1’-Gn’ 33 会接续地应用另外的具有高电位的黑色选择脉冲来开启第二薄膜晶体管 312，以便使像素电极 314 和共同电极 35 电性连接。数据线驱动电路 36 驱动数据线 D1-Dm32 传输信号数据，而液晶显示器控制器 37 则负责控制数据线驱动电路 36 和扫描线驱动电路 38。

图 4 是本发明作用在数据线、扫描线和黑色选择线上门脉冲的波形图。符号 VG1-VG2 分别代表施于每个扫描线 G1-G2 34 上门脉冲的扫描信号，而符号 VG1’-VG2’分别代表施于每个扫描线 G1-G2 34 上的黑色选择脉冲，符号 VD 表示作用在数据线 D1 32 上的脉冲。在时间间隔 t1 中，门脉冲 42 被施加于扫描线 G1 34 上，同时图像数据 411 的电压会被第一薄膜晶体管 311 允许而写入像素 31 中。

为了进一步解决上述的延迟效应，亦即在扫描线 34 上传递的门脉冲 42 会逐渐地变形为扭曲的门脉冲 43，特别是在扫描线 34 末端其变形最为严重。为了避免扭曲的门脉冲 43 造成串音问题，必须将另一时间间隔 t2 设于时间间隔 t1 之后。在时间间隔 t2 后，图像数据 412 会接着图像数据 411 后出现在数据信号 VD 上。在时间间隔 T1 之后，图像数据 411 的电压能完全将液晶电容器 313 充电，而后再黑色选择脉冲 42’选择开启同一像素 31 中的第二薄膜晶体管 312。该时间间隔 T1 建议应该约是半个帧周期（frame period），而一个帧周期等同于一个垂直扫描周期。当第二薄膜晶体管 312 被开启，像素电极 314 和共同电极 35 将会形成电气连接，因此像素电极 314 和共同电极 35 就会有一样的电位 Vcom 44。也就是像素 31 会从原图像数据 411 所定义的显示色阶转变为黑色。在先前技术的段落中曾提及的 WUXGA 型式液晶显示器(60 赫兹)其时间间隔 H 差不多是 13.3 微秒。然而本发明的时间间隔 H 只需要包括 t1 和 t2，并不需要包括 t3 和 t4 在内。与该先前技术相比，本发明的时间间隔 H 已扣除黑数据插入所需的时间 t3 和 t4。因此，图像数据 411 的充电时间 t1 可以延长至 10 微秒，比先前技术中案例一还多出了 5 微秒。另一方面，黑色充电时间 t3 则建议和 t1 一样为较好，以使得像素 31 的显示有足够的时间能转为纯黑。而且，在第二薄膜晶体管 312 被开
启时，像素电极 314 和共同电极 35 会接在一起而形成短路，因此会使得本发明在反应至转为纯黑的时间快于先前技术。

图 5 是图 4 中作用于像素电极的脉冲的波形图。像素电极 31 的电位 VP 可以有充分的时间被充电至和显像数据 411 一样的电位 511，并维持到时间间隔 T1 的结束。当黑色选择脉冲 412 开始作用，电位 VP 会即刻改变为与共同电极 35 相同的电位 512。

本发明的液晶显示器 3 在信号线驱动电路 38 上亦提供一个修改的门驱动元件 381 来驱动每条扫描线 34 和每条黑色选择线 33 传递信号。图 6 是本发明的门驱动元件 381 所输出不同信号的时序图。起始垂直信号 STV，栅极时脉信号 CPV，和输出激活信号 OE 都是来自液晶显示器控制器 37 所输出。起始垂直信号 STV1 和 STV2 驱使每个门驱动元件 381，藉由输出扫描信号 VG1-VGn 开始扫描每条扫描线 34，而起始垂直信号 STV3 和 STV4 分别驱使每个门驱动元件 381 输出黑色选择脉冲 VG1'-VGn'至黑色选择线 33。然而经过一段时间，输出激活信号 OE 是用来控制其它的扫描线 34 或黑选择线 33 是否要被选择。

图 7 是本发明的门驱动元件 381 的功能方块示意图。门驱动元件 381 包括一个电位转换（level shift）电路 71，一个移位寄存器(shift register)单元 72，一个电位转换器单元(level shifter unit) 73，和一个输出缓冲器(output buffer) 74。信号 CPV，STV1 或 STV2，OE，L/R，和 STV3 或 STV4，从液晶显示器控制器 37 输入至电位转换电路 71。如果移位方向切换信号 L/R="L"，STV1 及 2 和 STV3 及 4 将会根据 OE 信号和 CPV 时脉信号同步地转换数据。当移位方向切换信号 L/R 处于"H"时，STV1，2 和 STV3，4 的方向则会倒转。

电位转换电路（或称做第一电位转换器）71 将外部信号的电位，例如：OE 的电位，转变为可供门驱动元件 381 内部运作的电位。移位寄存器单元 72 配置了若干个的移位缓冲器，且每一次运算是响应由电位转换电路 71 改变的信号电位，并为了依次地转移作用于扫描线 34 的扫描信号。电位转换器单元 73 配置了若干个电位转换器，每个转换器会把从移位寄存器 72 传来的驱动信号电位转换至电位 Vcom 或 VSS。输出缓冲器 74 则输出依次作用在扫描线的信号。举例来说，一开始当一个第一缓冲器提供高电位的信号 Vcom(VH)，剩下的缓冲器则
提供低电位的信号 VL。之后，输出缓冲器 74 转换电位，以使一个第二缓冲器提供高电位的信号 Vcom，而剩余的缓冲器，包含原先的第一缓冲器，则提供一低电位的信号 VL。VDD 和 VSS 是从外部电源供至电位转换器单元 73 的电位，VSS 和 VEE 也是从外部电源供至电位转换器单元 73 或者输出缓冲器 74。VEE 是用来补偿扫反信号的门脉冲作用在像素电极 314 上的电位。逻辑输入和逻辑输出，如 STV1 及 2 和 STV3 及 4，应该是和 VDD 至 VSS 的振幅相同。扫描信号，如 VG1-VGn 和 VG1'-VGn'，则应该是和 Vcom 至 VL 的振幅相同（或者是 Vcom 至 VEE 的振幅，特别适用于三阶驱动元件）。

本发明的技术内容及技术特点已揭示如上，然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰。因此，本发明的保护范围应不限于实施例所揭示的内容，而应包括各种不背离本发明的替换及修饰，并为本专利申请权利要求所涵盖。