METHOD OF MANUFACTURING CONNECTOR FOR FLAT CABLE, CONNECTOR FOR FLAT CABLE, AND APPLYING MEMBER FOR APPLYING ULTRASONIC VIBRATIONS TO BE USED FOR THE SAME METHOD

Inventors: Hideki Adachi, Shizuoka-ken (JP); Taro Imai, Shizuoka-ken (JP)

Assignee: Yazaki Corporation, Tokyo (JP)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 636 days.

Appl. No.: 10/998,546
Filed: Nov. 30, 2004

Prior Publication Data
US 2005/0095887 A1 May 5, 2005

Related U.S. Application Data
Division of application No. 10/121,669, filed on Apr. 15, 2002, now Pat. No. 7,034,226, which is a division of application No. 09/293,770, filed on Apr. 19, 1999, now Pat. No. 6,393,697.

Foreign Application Priority Data
May 12, 1998 (JP) P 10-128999

Int. Cl.
HO1R 12/24 (2006.01)

U.S. Cl. 439/499

Field of Classification Search 439/164, 439/492, 495, 874, 656, 724, 499
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
3,440,118 A 4/1996 Obeda
4,589,584 A 5/1986 Christiansen
4,640,562 A 2/1987 Shoemaker 439/77
5,429,517 A 7/1995 Bolen
5,962,813 A 10/1999 Shirako et al.
6,023,022 A 2/2000 Nakamura et al.
6,514,100 B2 * 2/2003 Maegawa 439/492

FOREIGN PATENT DOCUMENTS
DE 196O4797 A1 8/1996

Primary Examiner—Jean F Duverne
Attorney, Agent, or Firm—Finnegan, Henderson, Farabow, Garrett & Dunner, L.L.P.

ABSTRACT
A first cable conductor portion is placed on a first connector terminal. The first cable conductor portion is accommodated in a pressing recessed portion formed in an applying member. Ultrasonic vibration is applied to the first cable conductor portion and the first connector terminal and the first cable conductor portion and the first connector terminal are pressed, and thereby to be welded to each other.

2 Claims, 5 Drawing Sheets
METHOD OF MANUFACTURING CONNECTOR FOR FLAT CABLE, CONNECTOR FOR FLAT CABLE, AND APPLYING MEMBER FOR APPLYING ULTRASONIC VIBRATIONS TO BE USED FOR THE SAME METHOD

RELATED APPLICATIONS

This is a division of application Ser. No. 10/121,669, filed Apr. 15, 2002 now U.S. Pat No 7,034,226, which is a division of application Ser. No. 09/293,770, filed Apr. 19,1999, now U.S. Pat. No. 6,393,697, issued May 28, 2002, all of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to a method of manufacturing a connector for a flat cable which is applied to an electrical connection device which receives and transmits electrical signals between a rotary body connected to a steering wheel and a fixed body connected to a steering column in a steering mechanism of a vehicle, for example, a connector for a flat cable and an applying member for applying ultrasonic vibrations to be used for the method.

2. Description of Related Art
When a kind of an electrical connection device transmits signals from a flat cable wound around a rotary body to an outside by a connector, as a connection means between the flat cable and the connector there is used a connector for the flat cable which is connected to a tip portion of the flat cable.

Conventionally, a connector for a flat cable is composed as the following. Plural connector terminals are exposed on obverse surfaces and reverse surfaces and are insert molded in a first holder at a pitch equal to that between conductor portions of the flat cable. Plural bus bars are exposed on obverse surfaces and reverse surfaces and are insert molded in a second holder assembled to the first holder at a pitch equal to that between the conductor portions of the flat cable. The conductor portions of the flat cable are interposed between the plural connector terminals and the plural bus bars, and are collectively welded with the connector terminals and bus bars by ultrasonic welding, thereby being connected together.

In this case, the plural connector terminals are insert molded in the first holder so that are parallel to one another and are each separated therebetween by insulation walls which are integrally formed to the first holder.

In the ultrasonic welding, the conductor portions of the flat cable is set, and is positioned between the connector terminals and the bus bars. In this state, an anvil is putted under the connector terminals and an ultrasonic applying member which is to be inserted between the insulation walls is pressed on bus bars from upside. Ultrasonic energy is applied to them, and thus the connector terminals, the conductor portions of the flat cable and the bus bars are collectively welded by ultrasonic welding.

However, according to the conventional connector, a width of a contact portion with a bus bar in the ultrasonic applying member is narrower than that of the bus bar, and if the ultrasonic applying member is off determined position relative to the bus bar, it cause connection strength to be degraded at the ultrasonic welding. Thus, a high work precision is required at the ultrasonic welding.

The connector terminals are insert molded in the first holder with neighboring insulation walls, the insulation walls ensure an insulating state of a circuit of each connector terminal. However, it is easy to appear a phenomenon that excessive resin of the insulation wall mounts on the connector terminal when forming the connector terminal, and the phenomenon causes connection strength to be degraded at the ultrasonic welding.

SUMMARY OF THE INVENTION

In view of the above, an object of the present invention is to provide a method of manufacturing a connector for a flat cable which has a high connection strength at a connection portion of a connector terminal and a flat cable without complicating a work at a ultrasonic welding, is obtained stably and thereby to improve a reliability, a connector for a flat cable, and an applying member for applying ultrasonic vibrations to be used for the same method.

From a first aspect of the present invention, there is provided a method of manufacturing a connector for a flat cable comprising the steps of: placing a first cable conductor portion on a first connector terminal; accommodating the first cable conductor portion in a pressing recessed portion formed to an applying member; and applying ultrasonic vibrations to and pressing the first cable conductor portion and the first connector terminal to be welded to each other.

Preferably, further comprising the steps of: placing a second cable conductor portion on a second connector terminal spaced from the first connector terminal; accommodating the second cable conductor portion in a pressing recessed portion formed to an applying member; applying ultrasonic vibrations to and pressing the second cable conductor portion and the second connector terminal to be welded to each other; and inserting an insulation wall between the first connector terminal and the second connector terminal.

From a second aspect of the present invention, there is provided an applying member for applying ultrasonic vibrations used for manufacturing a connector for a flat cable. The applying member comprises a main body which has a pressing recessed portion which has a first side portion and a second side portion. The pressing recessed portion is deep to accommodate a cable conductor portion and has an opening wider than a connector terminal. The first side portion is to be interposed between a first connector terminal and a second connector terminal. The second side portion is to be interposed between the second connector terminal and a third connector terminal.

Preferably, the pressing recessed portion of the main body is deep to accommodate a bus bar to be placed on the cable conductor portion.

From a third aspect of the invention, there is provided a connector for a flat cable comprising: a first holder; a first connector terminal which is in the first holder and is welded to a first cable conductor portion by application of ultrasonic vibrations and pressing; a second connector terminal which is in the first holder, is spaced from the first connector terminal and is welded to a second cable conductor portion by application of ultrasonic vibrations and pressing; and a casing which is fixed to the first holder and has an insulation wall inserted between the first connector terminal and the second connector terminal.

Preferably, further comprising a second holder which is fixed to the first holder, and a bus bar which is in the second holder and is welded to the first cable conductor portion by application of ultrasonic vibrations and pressing.
In above-mentioned invention, the applying member for applying ultrasonic vibrations accommodates and arranges the bus bar and the cable conductor portion, and is placed at a proper welding position easily. Further, a connector terminal, the cable conductor portion and the bus bar are collectively welded to each other within a width of the connector terminal by application of ultrasonic vibrations and pressing.

Though the main body of the applying member has a pressing recessed portion wider than the connector terminal, the connector terminal has a neighboring space and is insert molded. Thus, there is no insulation wall, and a space to use the applying member is ensured. Both side portions of the pressing recessed portion correspond to spaces neighboring to the connector terminal, and thus the applying member is allowed to descend.

There is no insulation wall at a neighboring position of the connector terminal, and there disappear the phenomenon that resin mounts on the connector terminal due to an excessive resin of the insulation wall. Thus, connection strength is improved at ultrasonic welding and a connection portion in ultrasonic welding step is visually viewed.

Further, circuits of connector terminals are each separated by the insulation wall of the casing, and, with vibration stress to be supposed after a vehicle loads with the circuit, an insulating state between neighboring circuits is ensured.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view illustrating an electrical connection device using a connector according to the present embodiment;

FIG. 2 is a enlarged perspective view of a connection element on FIG. 1;

FIG. 3 is a cross-sectional view illustrating a connector which is mounted with a protective casing and is manufactured by method of the present embodiment;

FIG. 4 is a exploded perspective view illustrating a connector without the protective casing in FIG. 1;

FIG. 5A is a plane view illustrating the connector of FIG. 1 in a mounting state;

FIG. 5B is a sectional view taken along a line VB-VB of FIG. 5A;

FIGS. 6A and 6B are a schematic views illustrating the step of applying ultrasonic vibrations according to the connector of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

An embodiment of the present invention will hereafter be explained with reference to the drawings.

As illustrated in FIG. 1, an electric connection device comprises a cylindrical rotary body 53, an upper cover 55a and under cover 55b constituting a housing 55, a flexible flat cable 2, a guide roller 57, and two connecting elements 61, 63. Into the rotary body 53 there is passed through a steering wheel shaft not illustrated. The housing 55 is fixed to a steering column side and supports the rotary body 53 to be rotated.

Both ends of the flat cable 2 are respectively fixed to the connecting elements and the flat cable 2 is folded back within a space 59.

An inner side portion of the flat cable 2 as viewed from an inverted portion 2a is wound around an outer circumferential surface of the rotary body 53 while, on the other hand, an outer side portion thereof is wound around an inner circumferential surface of the under cover 55b in a direction reverse from that in the case of the inner side portion.

Both ends of the flat cable 2 are connected to a control circuit (not illustrated) of the steering column side through the connecting elements 61, 63.

The two connecting elements 61, 63 are of substantially the same construction. Therefore, one connecting element 61 alone will hereafter be explained in detail.

As illustrated in FIG. 2, the connecting element 61 comprises a connecting connector 10 for connecting an end of the flat cable 2 and ends of electric wires 4 to each other, and a synthetic resin material 69 that covers the connector 10 from around the same in such a way that this covering partially includes the flat cable 2 and electric wires 4. The connecting element 61 is formed with the use of an insert molding technique.

FIGS. 3 to 5 illustrate the connecting connector 10 for use on a flat cable.

In FIG. 3, the connector 10 is constructed in such a way that conductor portions 2a of the flat cable 2, or first and second cable conductor portions, are interposed between a plurality of connector terminals 1 and a plurality of bus bars 4 and are connected thereto by being collectively ultrasonically welded jointly with the connector terminals 1 and bus bars 4, a plurality of the connector terminals 1 being insert molded in a first holder 3 with their obverse and reverse surfaces being exposed and at the same pitches as those of the connector portions of the flat cable 2, a plurality of the bus bars 4 being insert molded in a second holder 5 (mounted) to the first holder 3 with their obverse and reverse surfaces being exposed and at the same pitches as those of the connector portions of the flat cable 2.

At this time, as shown in FIG. 4, a plurality of the connector terminals 1 is insert molded in the first holder 3 in such a way as to have space portions 7 that are adjacent to each other in the widthwise direction of the respective connector terminals 1. The first holder 3 is schematically constructed in such a way as to have formed in substantially a central part thereof a window portion 3c having a width substantially the same as that of the flat cable 2, the window portion 3c having formed at a rear part thereof a flat cable retaining portion 3d that has a flat surface. A plurality of connector terminals 1 are insert molded in such a way as to be bridged over the window portion 3c of the first holder 3 in parallel with one another. As a result of this, the window portions 3c are partitioned by the respective connector terminals 1, whereby the space portions 7 are formed adjacent to the respective connector terminals 1.

In a plurality of the connector terminals 1, frontal portions 1a protrude from a frontward side wall 3e of the first holder 3 and constitute connecting end portions that are to be inserted into a mated connector.

Also, a plurality of the bus bars 4 are insert molded in the second holder 5 in such a way as to have space portions 11 that are adjacent to one another in the widthwise directions of the respective bus bars 4. The second holder 5 is constructed schematically in such a way as to have formed on a frontal portion side thereof a window portion 5a having a width that is substantially the same as that of the flat cable 2 and to have formed a linear projection 5b on a rear portion side thereof.

And, a plurality of the bus bars 4 are insert molded in such a way as to be bridged over the window portion 5a of the second holder 5 in parallel with one another. As a result of this, the window portion 5a is partitioned by the respective bus bars 4, whereby space portions 11 are formed adjacent to the respective bus bars 4. A plurality of the bus bars 4 are insert molded in such a way that the rear portion side thereof are bent in the form of a letter "L" along the linear projection 5b of the second holder 5.
Also, in this embodiment, the respective conductor portions 2a of the flat cable 2 are pressed, applying ultrasonic vibrations thereto, by pressing recessed portions 9 through the bus bars by the use of an ultrasonic applying member 6 (see FIG. 6A), and thereby these conductor portions 2a are ultrasonically welded to the bus bars 4 and the connector terminals 1. In this case, a main body of the applying member 6 is equipped with the pressing recessed portions 9 that have been formed each having an opening width d1 greater than the width of the connector terminal 1 and a depth d2 that enables the pressing recessed portion 9 to accommodate the bus bar 4 and conductor portion 2a therein.

This ultrasonic welding is performed as follows.

FIGS. 5A, 5B, 6A and 6B illustrate the manufacturing process steps for manufacturing the connecting connector 10 for use on a flat cable.

First, as shown in FIGS. 4, 5A and 5B, the flat cable 2 is set such that an ear portion 2b which has been formed on the forward ends of the exposed conductor portions 2a in such a way as to have an insulating covering thereon is hooked by protruding portions 3a provided on the front portion side of the window 3c of the first holder 3, and so that an insulating covering portion 2c is abutted on the flat surface of the flat cable retaining portion 3d of the first holder 3. In the state of this setting, the exposed conductor portions 2a are disposed in correspondence with their respective connector terminals 1 (see FIG. 5B).

Next, the second holder 5 is assembled to the first holder 3. This assembly is done by engaging engagement recessed portions 5e formed on both sides of the window 5a of the second holder 5 with engagement pawl portions 3b formed on both sides of the window 3c of the first holder 3, respectively (see FIG. 5B). In this assembled state, the insulating covering portion 2c of the flat cable 2 is retained between the linear projection 5b of the second holder 5 and the flat cable retaining portion 3d of the first holder 3. In addition, the respective bus bars 4 in the window 5a are disposed correspondingly to their respective exposed conductor portions 2a of the flat cable 2. In addition, the space portions 7, 11 are located at their mutually corresponding positions and communicate with one another.

After the performance of such setting, as illustrated in FIG. 6A, an anvil 8 is applied to the underside of the connector terminals 1. Then, the ultrasonic applying member 6 is pressed from above the bus bar 4 to thereby apply an ultrasonic vibration energy to it and thereby perform ultrasonic welding.

The main body of the ultrasonic applying member 6 is constructed being equipped with the pressing recessed portion 9 having an opening width d1 greater than the width of the connector terminal 1. In spite of this, since the connector terminal 1 is insert molded having the space portions 7 adjacent thereto, without insulation walls (the conventional insulation walls 101 indicated by a broken line in FIG. 6A) at the positions adjacent to the connector terminals 1. As a result, it is possible to ensure the provision of a space for use thereof. Namely, when both side portions 6a, or first and second portions, of the pressing recessed portion 9 at ultrasonic welding are inserted into the space portions 11 of the second holder 5, side portions 6a are in correspondence with the space portions 7 adjacent to the connector terminal 1. As a result of this, a free fall of the ultrasonic applying member 6 is permitted to be made.

The bus bar 4 and conductor portion 2a are brought to a state of being enclosed into the pressing recessed portion 9 by the pressing done by the ultrasonic applying member 6 (FIG. 6D). Owing to this enclosed state, the ultrasonic apply-
wherein the pressing recessed portion has an opening wider than a width of each connector terminal, and wherein the first side portion is interposed between the first connector terminal and the second connector terminal, and the second side portion is interposed between the second connector terminal and the third connector terminal.

2. The applying member for applying ultrasonic vibration as set forth in claim 1, wherein the first connector terminal, the second connector terminal, and the third connector terminal are arranged in parallel and insert molded in a first holder, and wherein the bus bar is insert molded in a second holder.

* * * * *