woO 2019/060663 A1 | I 000V T 00000 0000 0 00 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
28 March 2019 (28.03.2019)

(10) International Publication Number

WO 2019/060663 Al

WIPO I PCT

(51) International Patent Classification:

Condor Daffodils, Upper Meridian Rd, Kuravankonam,

GO6F 8/656 (2018.01) GO6F 8/658 (2018.01) Kowdiar P.O. Trivandrum, Kerala 695003 (IN).
(21) International Application Number: (74) Agent: VADERA, Sameer et al.; 1100 Peachtree Street
PCT/US2018/052131 NE, Suite 2800, Mailstop: [P Docketing - 22, Atlanta, Geor-
(22) International Filing Date: gia 30309 (US).
21 September 2018 (21.09.2018) (81) Designated States (unless otherwise indicated, for every
- . kind of national protection available). AE, AG, AL, AM,
(25) Filing Language: English AO, A]"I", AU, AZ{)BA, BB, BG, BH, BN, BR, BW, BY, BZ,
(26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
L. DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO. JP, KE. KG, KH, KN, KP,
62/561,599 21 September 2017 (21.09.2017) US KR, KW, KZ LA.LC, LK, LR, LS, LU, LY. MA, MD, ME,
(71) Applicant: ORACLE INTERNATIONAL CORPO- MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
RATION [US/US]; 500 Oracle Parkway M/S 50P7, Red- OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
wood Shores, California 94065 (US). SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(72) Inventors: KRISHNAPPA, Nagendra; Level 4, No. 12/1
& 2, N S Palya, Bangalore 560029 (IN). NARAYANAN, (84) Designated States (unless otherwise indicated, for every

Biju; Plot 54, Santhi Nagar, Sreekaryam, Trivandrum, Ker-
ala 695017 (IN). SUJATHA, Aneesh Azhakesan; SujaB-
havan, Vellimon P.O Keralapuram, Kollam, Kerala 691511
(IN). ALDONCAR, Milind Xete Chatim; Flat No S-5,
Valmiki Building, Near PWD Office, Baina, Vasco-da-
gama, Goa 403802 (IN). NARAYANAN, Deepankar, 1A2

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, [E, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

(54) Title: SYSTEMS AND METHODS FOR UPDATING MULTI-TIER CLOUD-BASED APPLICATION STACKS

(57) Abstract: The present disclosure relates to automatically and periodically
updating a multi-tier application stack in a cloud environment. More particular-
ly, the present disclosure relates to systems and methods that access a central
server to determine if new updates have been released, and when new updates
have been released, automatically apply the new updates to an application en-
vironment with minimal network burden and service interruption.

Fig. 18

[Continued on next page]

WO 2019/060663 A1 |11)00 0 00 0 DT 0 000 O

TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

5

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

SYSTEMS AND METHODS FOR UPDATING MULTI-TIER CLOUD-BASED
APPLICATION STACKS

RELATED APPLICATIONS

[0001] This application claims the benefit and priority under 35 U.S.C. 119 (e) of
U.S. Provisional Application Ser. No. 62/561,599, filed September 21, 2017, entitled
“SYSTEMS AND METHODS FOR UPDATING MULTI-TIER CLOUD-BASED
APPLICATION STACKS,” the contents of which is herein incorporated by reference in its

entirety for all purposes.

TECHNICAL FIELD

[0002] The present disclosure relates to automatically and periodically updating a
multi-tier application stack in a cloud network environment. More particularly, the present
disclosure relates to systems and methods that periodically (e.g., on a regular or irregular
interval) access a central server to determine if new updates to an application have been
released. When new updates to the application have been released, the systems and methods
automatically apply the new updates to an application environment associated with the

application with minimal network burden and service interruption.

BACKGROUND

[0003] Generally, an application stack may be implemented using multiple tiers,
including a web tier (e.g., web server), an application tier (e.g., an application server), and a
database tier (e.g., a database server). Software components may be independently running on
each of these tiers. The software components of the various tiers may be configured to
communicate within the same server or across multiple servers. Further, these servers may be
virtual machines or physical machines, running within the same datacenter or across
datacenters in different regions. Over time, the application stack may need to be updated, for
example, to fix bugs or add functionality to services provided using the application stack.
Updating the application stack typically involves hiring vendors to update and test the
different software components of each tier to test for issues arising out of installing the

software components. However, this updating process is burdensome on network resources

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

because complex application stacks can be very large (e.g., 1 terabyte) and the servers
typically need to be taken offline for long periods of time to enable testing of the servers.
[0004] Even in application environments without a traditional application stack,
applications can have dependencies on various resources or components in the cloud network
environment. Updating the application by overwriting the image of the application may
destroy these dependencies, causing further bugs and/or failures. After the application image
was overwritten, the manager of the application environment would need to follow up on the
update process by reconnecting or reestablishing all of those dependencies. Such a follow-up
process is tedious in general, but even more tedious in larger application environments with

large numbers of these dependencies.

SUMMARY

[0005] Certain aspects and features of the present disclosure relate to systems and
methods for automatically updating a multi-tier application stack in a cloud environment with
minimal burden on processing resources and limited server downtime. In particular, certain
embodiments relate to an application running on an application stack in a cloud environment
(e.g., the 3-tier model of an application, including a web server hosting the web code, an
application server hosting the application code, and a database server providing database
services). The application can be configured to periodically communicate with a central
server (e.g., an update server, a central server, and the like) to check for new updates to the
application stack. Updates to the application stack can be periodically stored (e.g., at a regular
or irregular interval) at the central server. Non-limiting examples of an update may include
update images and patchsets that are configured to fix application bugs and/or to add or
modify features of the application. Update images (e.g., major releases issued once a quarter)
may be data packages that include all bug fixes and new features of a particular version of the
application. Patchsets (e.g., minor bug fixes issued between the major releases) may be data
packages that contain individual bug fixes that were reported since the last update image was
released. In some embodiments, an update may be in the form of a binary change to an object
(e.g.. a bug fix) included in the application code of the application. If a new update is
available for downloading from the central server, the application can download the new
updates to a network location associated with the application stack (e.g., downloading the

new updates to a repository associated with the application stack).

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0006] In some embodiments, the application is associated with a currently running
instance in a production environment. The currently running instance may correspond to a
version of the application that does not include the new updates stored in the central server
(e.g., an old version of the application that has yet to be updated and/or the most recent
version of the application on which the new update has not yet been installed). The
application can be configured to spawn a virtual machine and run a new instance of the
application stack on the virtual machine. Further, the application can install the downloaded
new updates on the new instance of the application. For example, the new instance with the
installed new updates would incorporate any bug fixes or new features that were included in
the new updates. Additionally, the application may compare the currently running instance
with the new instance to identify whether there are any differences. For example, a difference
between the currently running instance and the new instance may represent a new update
(e.g.. anewly added object into the application code, a new feature added to the application, a
fixed bug in the binary code of the application, etc.) that is included in the new instance. The
differences that were detected during the comparison can be serialized into an update data
package and exported to the currently running instance for installation. The update data
package can be installed in the currently running instance, and as a result, the current instance
would be updated with the new bug fixes and/or new features. For example, installing the
update data package in the currently running instance can include identifying the objects
associated with the detected differences (e.g., file reference objects modified, deleted, or
added by the new updates) and incorporating the modified, deleted, or added objects into the
application code stored at the application server of the currently running instance. The new
update can update the software components that run on any of the multiple tiers. To illustrate,
and as a non-limiting example, the new updates can fix bugs in the software components of
the web server without updating the software components of the database server. In some
embodiments, an application environment can include dependencies on one or more
components (e.g., software components) on which the application environment depends (e.g.,
the executable image of the application environment is different because of these
dependencies).

[0007] In some embodiments, the comparison of the currently running instance to the
new instance can be implemented by comparing metadata associated with the currently
running instance to metadata associated with the new instance (which includes the new

updates). In some embodiments, the metadata associated with either or both of the currently

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

running instance and the new instance can include software feature flags, identifiers of file
reference objects included in code, installation or execution settings or other metadata
parameters. In these embodiments, comparing the metadata between the currently running
instance of the new instance can include comparing feature flags enabled/disabled in the old
instance with feature flags enabled/disabled in the new instance, comparing installation or
execution setting or parameter values in the old instance to installation or execution setting or
parameter values in the new instance, comparing identifiers of file reference objects of the
currently running instance with identifiers of file reference objects of the new instance to
identify which file reference objects have been modified, deleted, or added into the code. In
some embodiments, the metadata associated with the currently running instance can include
one or more bug numbers. A bug number can uniquely identify a bug report that describes a
bug that was fixed or modified for the current instance. Similarly, the metadata associated
with the new instance, which includes the new updates, can also include one or more bug
numbers representing the bugs that were fixed for the new instance. When the set of bug
numbers associated with the currently running instance differs from the set of bug numbers
associated with the new instance, the application can determine that an update was performed
on the new instance. The application can query and retrieve the bug reports for the bugs that
were fixed for the new instance, but not for the currently running instance (e.g., the delta
between the bug numbers). Each bug number and/or bug report is associated with one or
more objects (e.g., file reference objects) that facilitated, implemented, or executed the bug
fix. The bug numbers that are different between the set of bug numbers for the currently
running instance and the set of bug numbers for the new instance can be identified and
exported, and the identified bug numbers can be performed or executed on the currently
running instance, which results in updating the currently running instance to include the
updates in the new instance.

[0008] In some embodiments, the new updates may include a source code with
changes to one or more objects involving a database server. The change to the one or more
objects may be added to the metadata associated with the new updates as a file reference
object, which represents the changed objects, and stored in a source directory. For example, a
file reference object may have an identifier that is stored in a metadata table for future
reference and extraction. As another example, a binary change to a code, file, or script (e.g., a
change in ajava file, such as a Java Archive (JAR) file) can be added to the metadata of the

code, file, or script as a file reference object. A file reference object represents a path

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

directing to a network location where the file is deployed. In these embodiments, when the
currently running instance is compared to the new instance, the difference between the file
reference objects of the currently running instance and the new instance can be stored,
serialized, and applied to the currently running instance.

[0009] Advantageously, certain embodiments of the present invention can
automatically update a multi-tier application stack while the application is operating in a
production environment. Further, the technical problem of burdened and/or interrupted
network resources during application updates is solved by the technical point of novelty
described above and herein. For instance, comparing the metadata of the new virtual instance
of the application with the metadata of the original or currently running instance of the
application (i.e., the application running in a production environment), and installing the
metadata representing the differences detected based on the comparison improves usage of
processing resources in the cloud network environment and reduces service interruptions of
the application stack. Additionally, the multi-tier application stack can be updated regardless
of a size of the update or a number of iterations or versions of the application that were issued

between the version of the currently running instance and the version of the new instance.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The specification makes reference to the following appended figures, in which
use of like reference numerals in different figures is intended to illustrate like or analogous
components.

[0011] FIG. 1A illustrates an example system for configuring, collecting, and
analyzing log data according to some embodiments of the present disclosure.

[0012] FIG. 1B illustrates a flowchart of an approach to use a system to configure,

collect, and analyze log data.

[0013] FIG. 2 illustrates an example of a reporting user interface.

[0014] FIGS. 3A-3C are flow diagrams illustrating the internal structure of the log
analytics system at a host environment.

[0015] FIG. 4 is a block diagram illustrating an example network environment.

[0016] FIG. 5 is a block diagram illustrating a process flow for automatically

updating a multi-tier application stack.

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0017] FIG. 6-8 are example interfaces according to certain embodiments.
[0018] FIG. 9 is a flowchart illustrating a process for creating templates.
[0019] FIG. 10 is a simplified diagram illustrating a distributed system for

implementing one of the embodiments.

[0020] FIG. 11 is a simplified block diagram illustrating one or more components of a
system environment.

[0021] FIG. 12 illustrates an exemplary computer system, in which various

embodiments of the present invention may be implemented.

DETAILED DESCRIPTION

[0022] In the following description, for the purposes of explanation, specific details
are set forth in order to provide a thorough understanding of embodiments of the invention.
However, it will be apparent that various embodiments may be practiced without these
specific details. The figures and description are not intended to be restrictive.

[0023] Many types of computing systems and applications generate vast amounts of
data pertaining or resulting from operation of that computing system or application. These
vast amounts of data are frequently then stored into collected locations, such as log
files/records, which can be reviewed at a later time period if there is a need to analyze the
behavior or operation of the system or application.

[0024] While the below description may describe embodiments by way of illustration
with respect to "log" data, processing of other types of data are further contemplated.
Therefore, embodiments are not to be limited in its application only to log data. In addition,
the following description may also interchangeably refer to the data being processed as
"records" or "messages", without intent to limit the scope of the invention to any particular
format for the data.

[0025] FIG. 1A illustrates an example system 100 for configuring, collecting, and
analyzing log data according to some embodiments of the invention. System 100 includes a
log analytics system 101 that in some embodiments is embodied as a cloud-based and/or
SaaS-based (software as a service) architecture. This means that log analytics system 101 is
capable of servicing log analytics functionality as a service on a hosted platform, such that
each customer that needs the service does not need to individually install and configure the

service components on the customer's own network. The log analytics system 101 is capable

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

of providing the log analytics service to multiple separate customers, and can be scaled to
service any number of customers.

[0026] Each customer network 104 may include any number of hosts 109. The hosts
109 are the computing platforms within the customer network 104 that generate log data as
one or more log files. The raw log data produced within hosts 109 may originate from any
log-producing source. For example, the raw log data may originate from a database
management system (DBMS), database application (DB App), middleware, operating system,
hardware components, or any other log-producing application, component, or system. One or
more gateways 108 are provided in each customer network to communicate with the log
analytics system 101.

[0027] The system 100 may include one or more users at one or more user stations
103 that use the system 100 to operate and interact with the log analytics system 101. The
user station 103 comprises any type of computing station that may be used to operate or
interface with the log analytics system 101 in the system 100. Examples of such user stations
include, for example, workstations, personal computers, mobile devices, or remote computing
terminals. The user station comprises a display device, such as a display monitor, for
displaying a user interface to users at the user station. The user station also comprises one or
more input devices for the user to provide operational control over the activities of the system
100, such as a mouse or keyboard to manipulate a pointing object in a graphical user interface
to generate user inputs. In some embodiments, the user stations 103 may be (although not
required to be) located within the customer network 104.

[0028] The log analytics system 101 comprises functionality that is accessible to
users at the user stations 101, where log analytics system 101 is implemented as a set of
engines, mechanisms, and/or modules (whether hardware, software, or a mixture of hardware
and software) to perform configuration, collection, and analysis of log data. A user interface
(UI) mechanism generates the Ul to display the classification and analysis results, and to
allow the user to interact with the log analytics system.

[0029] FIG. 1B shows a flowchart of an approach to use system 100 to configure,
collect, and analyze log data. This discussion of FIG. 1B will refer to components illustrated
for the system 100 in FIG. 1A.

[0030] At 120, log monitoring is configured within the system. This may occur, for
example, by a user/customer to configure the type of log monitoring/data gathering desired

by the user/customer. Within system 101, a configuration mechanism 129 comprising Ul

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

controls is operable by the user to select and configure log collection configuration 111 and
target representations 113 for the log collection configuration.

[0031] The log collection configuration 111 comprises the set of information (e.g.,
log rules, log source information, and log type information) that identify what data to collect
(e.g.. which log files), the location of the data to collect (e.g., directory locations), how to
access the data (e.g., the format of the log and/or specific fields within the log to acquire),
and/or when to collect the data (e.g., on a periodic basis). The log collection configuration
111 may include out-of-the-box rules that are included by a service provider. The log
collection configuration Ill may also include customer-defined/customer-customized rules.
[0032] The target representations 113 identify "targets", which are individual
components within the customer environment that that contain and/or produce logs. These
targets are associated with specific components/hosts in the customer environment. An
example target may be a specific database application, which is associated with one or more
logs and/or one or more hosts.

[0033] The next action at 122 is to capture the log data according to the user
configurations. The log data may originate from any log-producing source location, such as a
database management system, database application, middleware, hardware logs, operating
system logs, application logs, application server logs, database server logs, and any other type
of log that monitors the behavior of a system or application.

[0034] In some instances, the association between the log rules 111 and the target
representations is sent to the customer network 104 for processing. An agent of the log
analytics system is present on each of the hosts 109 to collect data from the appropriate logs
on the hosts 109.

[0035] In some embodiments, data masking may be performed upon the captured
data. The masking is performed at collection time, which protects the customer data before it
leaves the customer network. For example, various types of information in the collected log
data (such as user names and other personal information) may be sensitive enough to be
masked before it is sent to the server. Patterns are identified for such data, which can be
removed and/or changed to proxy data before it is collected for the server. This allows the
data to still be used for analysis purposes, while hiding the sensitive data. Some embodiments
permanently remove the sensitive data (e.g., change all such data to"***" symbols), or

changed to data that is mapped so that the original data can be recovered.

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0036] At 124, the collected log data is delivered from the customer network 104 to
the log analytics system 101. The multiple hosts 109 in the customer network 104 provide the
collected data to a smaller number of one or more gateways 108, which then sends the log
data to edge services 106 at the log analytics system 101. The edge services 106 receives the
collected data one or more customer networks, perform any intake processing (e.g., applying
grammar rules to transform each message into a normalized message or skeleton message
that lacks components of inter-cluster message variability and assigning each transformed
message to an initial cluster identified using a hash of the transformed message) and may
place the data into an inbound data store for further processing by a log processing pipeline
107.

[0037] At 126, the log processing pipeline 107 performs a series of data processing
and analytical operations upon the collected log data. In various instances, the processing and
analytical operations can include actions performed prior to storing the data and/or by
performing actions on data retrieved from a data store. For example, one or more log
messages may be assigned to initial clusters at an ingest time (e.g., upon receiving the log
message(s) from a source), and the log message(s) may be subsequently retrieved in response
to a query to modify or supplement the initial clustering and generate statistics and/or
presentations based on the clustering.

[0038] At 128, the processed data is then stored into a data storage device 110. The
computer readable storage device 110 comprises any combination of hardware and software
that allows for ready access to the data that is located at the computer readable storage device
110. For example, the computer readable storage device 110 could be implemented as
computer memory operatively managed by an operating system. The data in the computer
readable storage device 110 could also be implemented as database objects, cloud objects,
and/or files in a file system. In some embodiments, the processed data is stored within both a
text/indexed data store 110a (e.g., as a SOLR cluster) and a raw/historical data store 110b
(e.g., as a HDFS cluster).

[0039] A SOLR cluster corresponds to an Apache™ open source local search
platform . The SOLR cluster can use a search library to perform full-text indexing and
searching of data stored in a HDFS cluster. The SOLR cluster can provide APIs compatible
with various languages to interface the searching functions with other programs and

applications. Indexing can be performed in near real-time. The cluster can operate on a set of

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

servers so as to facilitate fault tolerance and availability. Indexing and search tasks can be
distributed across the set of servers.

[0040] An HDFS cluster corresponds to a Hadoop Distributed File System cluster.
The HDFS cluster can include many (e.g., thousands) of servers to host storage (e.g., directly
attached storage) and execute tasks, such as tasks defined by user applications. The HDFS
cluster can include a master/slave architecture with a single master server for managing a
namespace of the cluster. A file can be divided into blocks to be stored at multiple DataNodes
of the HDFS cluster. The master server can perform file operations (e.g., open, close, etc.)
and determine which blocks are to be stored on which data nodes. The master server can
communicate with data nodes for requests to read or write data in response to receipt of
corresponding file operations.

[0041] At 130, reporting may be performed on the processed data using a reporting
mechanism/UI 115. As illustrated in FIG. 2, the reporting UI 200 may include a log search
facility 202, one or more dashboards 204, and/or any suitable applications 206 for
analyzing/viewing the processed log data. Examples of such reporting components are
described in more detail below.

[0042] At 132, incident management may be performed upon the processed data. One
or more alert conditions can be configured within log analytics system such that upon the
detection of the alert condition, an incident management mechanism 117 provides a
notification to a designated set of users of the incident/alert.

[0043] At 134, a Corrective Action Engine 119 may perform any necessary actions to
be taken within the customer network 104. For example, alog entry may be received that a
database system is down. When such a log entry is identified, a possible automated corrective
action is to attempt to bring the database system back up. The customer may create a
corrective action script to address this situation. A trigger may be performed to run the script
to perform the corrective action (e.g., the trigger causes an instruction to be sent to the agent
on the customer network to run the script). In an alternative embodiment, the appropriate
script for the situation is pushed down from the server to the customer network to be
executed. In addition, at 136, any other additional functions and/or actions may be taken as
appropriate based at last upon the processed data.

[0044] FIG. 3A provides a more detailed illustration of the internal structure of the
log analytics system at a host environment 340 and the components within the customer

environment 342 that interact with the log analytics system. This architecture 300 is

10

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

configured to provide a flow for log monitoring that is able to handle large amounts of log
data ingest.

[0045] In the customer environment 342 within a single customer host/server 344, the
LA (log analytics) agent 333 takes the log monitoring configuration data 332 (e.g., sniffer
configuration or target-side configuration materials), and calls a log file 336 sniffer (also
referred to herein as the "log collector") to gather log data from one or more log files 338.
[0046] A daemon manager 334 can be employed to interface with the log file sniffer
336. The log file sniffer 336 reads from one or more log files 338 on the host machine 344.
The daemon manager 334 takes the log content and packages it up so that it can be handed
back to the LA agent 333. It is noted that the system may include any number of different
kinds of sniffers, and a log sniffer 336 is merely an example of a single type of sniffer that
can be used in the system. Other types of sniffers may therefore be employed within various
embodiments of the invention, e.g., sniffers to monitor registries, databases, windows event
logs, etc. In addition, the log sniffer in some embodiments is configured to handle
collective/compressed files, e.g., a Zip file.

[0047] The LA agent 333 sends the gathered log data to the gateway agent 330. The
gateway agent 330 packages up the log data that is collected from multiple customer
hosts/servers, essentially acting as an aggregator to aggregate the log content from multiple
hosts. The packaged content is then sent from the gateway agent 330 to the edge services 306.
The edge services 306 receive a large amount of data from multiple gateway agents 330 from
any number of different customer environments 342,

[0048] Given the potentially large volume of data that may be received at the edge
services 306, the data can be immediately processed to assign each log message to an initial
cluster and stored into an inbound data storage device 304 (the "platform inbound clustering
store"). In some instances, an initial or preliminary processing may be performed at an ingest
time, which can include a time corresponding to (e.g., before, shortly or immediately after, or
concurrent with) storage of the data. The initial or preliminary processing may include (for
example) detecting which parts of the data are non-variable components and determining an
initial cluster for each log message based on the non-variable components detected in the
message. For example, a hashing technique may be applied to a value of each non-variable
component to generate an identifier of the initial cluster. The log message may then be stored
in association with the identifier of the initial cluster or other cluster data can be stored to

indicate that the log message is associated with the initial cluster. Cluster assignments may be

11

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

further refined, enhanced and/or used during subsequent processing, such as during
processing that occurs during a time of subsequent resource availability and/or in response to
receiving a query for data corresponding to or potentially corresponding to the associated log
messages.

[0049] Thus, in some instances, a queue is managed and maintained, where queue
elements corresponding to one or more log messages for which cluster assignments are to be
refined, enhanced and/or used. An element may be added to the queue (for example)
subsequent to an initial storing of the queue element and/or in response to receiving a query
for data corresponding to or potentially corresponding to one or more associated log
messages. The queue can be used for the log processing pipeline 308.

[0050] A data structure is provided to manage the items to be processed within the
inbound data store. In some embodiments, a messaging platform 302 (e.g., implemented
using the Kafka product) can be used to track the to-be-processed items within the queue.
Within the log processing pipeline 308, a queue consumer 310 identifies the next item within
the queue to be processed, which is then retrieved from the platform inbound store. The
queue consumer 310 comprises any entity that is capable of processing work within the
system off the queue, such as a process, thread, node, or task.

[0051] The retrieved log data undergoes a "parse" stage 312, where the log entries are
parsed and broken up into specific fields or components. The "log type" configured for the
log specifies how to break up the log entry into the desired fields.

[0052] At a “cluster” stage 313, log data is further analyzed to assign individual log
messages to a cluster. Specifically, multiple initial clusters to which log messages were
assigned during an intake process (e.g., at 304) can be assessed to determine whether some of
the initial clusters are to be merged together. The assessment can include identifying one or
more representative samples for each cluster and performing pair-wise quantitative
comparative assessments. Cluster pairs assessed via a pair-wise comparative assessment can
include clusters with log messages having same or similar number of components (or words).
In some instances, each pair of clusters includes clusters associated with a number of
components that are the same or different from each other by less than a threshold number
(e.g., that is predefined, a default number, or identified by a user) is evaluated using the
assessment. The comparative assessment may be performed iteratively and/or in a structured
manner (e.g., such that pairs with a same number of components are evaluated prior to

evaluating pairs with a different number of components).

12

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0053] The pair-wise quantitative comparative assessment can include, for example,
generating a similarity metric using the representative messages and determining whether the
metric exceeds a threshold metric (e.g., that is predefined, a default number of identified by a
user). The similarity metric may be based on (for example) whether the representative
messages include a same (or similar) number of components, number of variable (or non-
variable) components, content of each of one or more non-variable components,
characteristic (e.g., format, character type or length) of one or more variable components, and
so on. The similarity metric may be based on generating a correlation coefficient between the
inter-cluster messages or by performing a clustering technique using a larger set of messages
to an extent to which representative messages of the clusters are assigned to a same cluster or
share components (e.g., if a technique includes using a component analysis, such as principal
component analysis or independent component analysis.

[0054] In the "normalize" stage 314, the identified fields are normalized. For
example, a "time" field may be represented in any number of different ways in different logs.
This time field can be normalized into a single recognizable format (e.g., UTC format). As
another example, the word "error" may be represented in different ways on different systems
(e.g., all upper case "ERROR", all lower case "error", first letter capitalized "Error", or
abbreviation "err"). This situation may require the different word forms/types to be
normalized into a single format (e.g., all lower case un-abbreviated term "error").

[0055] The "transform" stage 316 can be used to synthesize new content from the log
data. As an example, "tags" can be added to the log data to provide additional information
about the log entries. As another example, a tag may identify a cluster to which a log message
is assigned.

[0056] A "condition evaluation" stage 318 is used to evaluate for specified conditions
upon the log data. This stage can be performed to identify patterns within the log data, and to
create/identify alerts conditions within the logs. Any type of notifications may be performed
at this stage, including for example, emails/text messages/call sent to
administrators/customers or alert to another system or mechanism. As one example, a
condition may define an event that corresponds to a change in cluster assignments, such as
detecting that a quantity (e.g., number or percentage) of log messages assigned to a given
cluster has exceeded a threshold (e.g., that is fixe and pre-defined or defined by a user, a
client or rule), such as being below a lower threshold or above an upper threshold. As another

example, a condition may define an event that corresponds to a degree to which a quantity of

13

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

log messages being assigned to a given threshold is changing, such as by identifying a
threshold for a slope of a time series or a threshold for a difference in counts or percentages
or log message assigned to the cluster between two time bins. As yet another example, a
condition may define an event that corresponds to multiple cluster assignments, such as an
event that indicates that a time series of each of the multiple clusters has a similar shape (e.g.,
by determining whether curve-fit coefficients are similar enough to be within a threshold
amount, by determining whether a time of one or more peaks in time series are within a
defined threshold time, determining whether a correlation coefficient between time series of
the clusters exceeds a threshold, and/or determining whether a difference between a
variability of a time series of each of the individual clusters and a variability of a sum of the
time series exceeds a threshold value).

[0057] A log writer 320 then writes the processed log data to one or more data stores
324. In some embodiments, the processed data is stored within both a text/indexed data store
(e.g.. as a SOLR cluster) and a raw and/or historical data store (e.g., as a HDFS cluster). The
log writer can also send the log data to another processing stage 322 and/or downstream
processing engine.

[0058] As shown in FIG. 3B, some embodiments provide a side loading mechanism
350 to collect log data without needing to proceed through an agent 333 on the client side. In
this approach, the user logs into the server to select one or more files on a local system. The
system will load that file at the server, and will sniff through that file (e.g., by having the user
provide the log type, attempting likely log types, rolling through different log types, or by
making an educated "guess" of the log type). The sniffing results are then passed to the Edge
Services and process as previously described. In the embodiment, of FIG. 3C, only the side
loading mechanism 350 exists to gather the log files - where the agent/sniffer entities are
either not installed and/or not needed on the client server 344.

[0059] FIG. 4 shows an example network environment 400 for exporting on-premises
applications to cloud systems. Network environment 400 can include local system 410 and
cloud system 450. Local system 410 can include one or more internal subsystems, such as
databases 420, applications servers 430, and web servers 440. Each of the internal subsystems
of local system 410 may not be included in a cloud system. In some implementations, the
physical components of the databases 420, application servers 430, and the web servers 440

may be on-premises at a facility associated with a company. Each of databases 420,

14

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

application servers 430, and web servers 440 can, at least in part, execute one or more
applications.

[0060] It will be appreciated that while the term “on-premises™ is used to refer to
systems being located at a facility of the company, the present disclosure is not limited
thereto. For example, local system 410 and its internal subsystems may or may not be
physically on-premises at a facility of the company, but rather, the internal subsystems can be
distributed across areas that are not affiliated with the company (e.g., rented servers). In
addition, local system 410 can be used to run the one or more applications that are managed
by the company.

[0061] In some implementations, cloud system 450 can include repository 460, cloud
manager 470, cloud manager application stack 475, and central server 480. Updates to multi-
tier application stacks may be periodically stored in central server 480. For example, update
490 may include code that updates one or more applications. Non-limiting examples of
update 490 may include bug fixes, added features to an application, added functionality to the
application, modified features, modified functionality, deleted features, and/or deleted
functionality. Update 490 may be defined (e.g., the code was written) by one or more
programmers or, in some cases, update 490 may be automatically created based on one or
more rules and/or machine-learning techniques. As new updates are periodically defined, the
updates may be stored at central server 480 as update 490. Central server 480 can store
multiple updates for various applications. Repository 460 can include one or more storage
systems for storing the deployment packages of incoming applications that are being exported
from local systems to cloud system 450. For example, a deployment package may be
serialized version of an application that is exportable across systems. Cloud manager 470 can
be one or more applications, systems or engines that are configured to manage one or more
aspects of cloud manager application stack 475. For example, a cloud manager administrator
can operate or access cloud manager 470 to run a cloud manager application using the cloud
manager application stack 475. Cloud manager 470 may be an application that provides
deployment of environments in cloud system 450. For example, cloud manager 470 can
deploy various applications on cloud system 450 in an automated manner. For additional
details on the Cloud Manager application, see U.S. Serial No. 62/507,086, filed May 16,
2017, entitled “Distributed Versioning of Applications Using Cloud-Based Systems,” the

disclosure of which is incorporated by reference herein in its entirety for all purposes.

15

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0062] In some examples, the network administrators of local system 410 may need
to export their enterprise applications to the cloud (e.g., to increase scalability of the
enterprise application). Embodiments of the present disclosure enable the network
administrators of the local system to export their enterprise applications from the internal
subsystems to the cloud system 450. In some examples, during the life cycle of an
application, application administrators may migrate their on-premises applications to cloud
system 470. During the migration process, application administrators can export the on-
premises environment using deployment packages and import the deployment packages to
cloud system 450. Cloud manager 470 can read the deployment packages of the enterprise
applicatin and deploy the application on cloud system 450.

[0063] It will be appreciated that a new feature set or a new image can be published,
available at, or stored at a central server. The new feature set or the new image can include all
the new features of the latest version of the application. That new feature set or new image
can be compared with an outdated version of the application, and the new features set or new
image can be moved to the outdated version of the application in an automated, one-step
process. For instance, with a single input from the user, the new feature set or new image can
be applied to the outdated version of the application.

[0064] It will also be appreciated that cloud system 450 may be implemented as a
metadata-driven architecture. For example, software components, java code, python code,
any other suitable source code may individually be represented as a database object within a
runtime environment. Continuing with this example, a software component included in the
source code underlying an application may be referred to as a file reference object. Each file
reference object may be associated with metadata that is stored in a metadata table. For
instance, the metadata of a file reference object may include an internal version identifier of
the file reference object. The internal version number may be a unique identifier that uniquely
identifies the file reference object and/or the version of the file reference object. If a new
version of the file reference object is created (e.g., if the file reference object is modified or
updated), then the new version of the file reference object may be associated with a new
internal version number. In some implementations, the file reference object may be
represented as a binary object and a reference of that binary object (e.g., a unique identifier)
may be stored in a database to associated the reference with the binary object and/or a

network location of the binary object.

16

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0065] In some implementations, a block of code may correspond to, be referred to
as, or may be a database object. The database object may correspond to an internal unique
identifier and/or additional internal metadata that describes attributes of the database object.
For example, attributes of the database object that are stored as metadata associated with the
database object may include how the block of code is executed, how the block of code or the
database object is represented at runtime, and the like. It will be appreciated that the present
disclosure is not limited to file reference objects and database objects; instead any type of
object may be used in the embodiments of the present disclosure.

[0066] Additionally, when an object (e.g., a database object) is created, a version of
the object is generated and metadata defining or describing attributes of the object are stored
in a development table or a representation table. For example, by querying the metadata
stored in the representation tables for two objects, the application and/or the change assistant
tool may be configured to identify the difference(s) and/or similarities between the two
objects. As a non-limiting example, the application and/or the change assistant tool may be
configured to compare a target (e.g., the currently running instance of the application) with a
source (e.g., the new instance of the application) to identify the differences between the target
and the source. The result of the comparison may be a determination that the source includes
file reference object ABC, version 12 (associated with unique identifier ABC12), whereas,
the target includes file reference object ABC, version 11 (associated with unique identifier
ABCI11). Accordingly, the application can access a representation table that stores the
metadata associated with each of unique identifiers ABC12 and ABC11. The application can
then serialize the file reference object associated with identifier ABC12 into an update data
package, and apply (e.g., install) that update data package to the current running instance so
that the file reference object ABC version 11 of the currently running instance can be updated
to version 12. In some implementations, any other metadata that is different between ABC12
and ABC11 can be identified and installed in the currently running instance so as to update
the currently running instance to include all of the updates installed in the new instance.
Additionally, the update data package may be a file that is exportable between systems. The
update data package enables the features of metadata stored in the representation table to be
exported to the currently running instance, instead of exporting the entirety of the new
instance to the currently running instance. Advantageously, the exportation of updated
objects only improves network resource usage by reducing the size of the export file that is

transmitted or moved to the currently running instance.

17

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0067] FIG. 5 is a block diagram illustrating a process flow for automatically
updating a multi-tier application stack. Periodically updates to a multi-tier application stack
can be stored in central server 480. Application environment 530 can include a repository 460
that is configured to retrieve and store the updates (e.g., update 490) from central server 480.
Non-limiting examples of an update may include update images and patchsets. For example,
an update image (e.g., a major application update that issues approximately once a quarter)
may be one or more data packages that include all bug fixes and new features of a particular
version of the application. A patchset (e.g., a minor application update, e.g., to fix bugs, that
issues between the major application updates) may be one or more data packages that contain
individual bug fixes that were reported since the last update image was released. Whenever
an update image is released, the source files of the update image may be stored in central
server 480. For example, in FIG. 5, central server 480 can store update 490 as an update
image or a patchset. Central server 480 is accessible to all application stacks in the cloud
system 450, and thus, central server 480 can store any number of updates for any number of
application stacks. Referring to FIG. 5, update 490 may be an update for a particular multi-
tier application stack.

[0068] In some implementations, the application stack associated with update 490
may be configured to periodically (at a regular or irregular interval) query central server 480
for updates. In some implementations, central server 480 may transmit a notification to one or
more application stacks. The notification may serve to notify a user of the application or the
application itself that update 490, for example, is currently available for downloading from
central server 480. FIG. 6 illustrates an example interface that shows a notification that a new
update is available in central server 480. When a new update is available in central server
480, a version of the currently running instance of the application stack may be outdated.
Certain embodiments of the present invention enable the application to automatically update
itself to the latest version when new updates are available in central server 480.

[0069] In some embodiments, repository 460 can store the updates retrieved from
central server 480. For example, repository 460 can query central server 480 for any updates
and, if available, update 490 can be downloaded to repository 460. Further, application
environment 530 can include a currently running instance 500 associated with the multi-tier
application stack. For example, currently running instance 500 may be executed in
application environment 530 and may run on an application stack in a production

environment. For example, real user devices may be communicating with the currently

18

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

running instance 500 in the production environment to enable the application to provide a
service to users. Because the application is running in a production environment, any server
downtime for updates has a negative impact because users may not be able to access the
application and its corresponding services. Advantageously, and as a technical point of
novelty, embodiments of the present invention enable the application to be updated with
minimal server downtime, regardless of the size of the update (e.g., 1 bug fix or 10,000 bug
fixes).

[0070] As described above, current instance 500 may be an outdated version of the
application. For example, current instance 500 may be a version of the application that does
not include update 490. To update current instance 500 with update 490, application
environment 530 can generate new instance 510. Each of the current instance 500 and new
instance 510 may run on the same or different virtual machine with predefined configuration
settings (e.g., CPU parameters, RAM allocation, and so on). Further, application environment
530 may be configured to install update 490 in new instance 510. Accordingly, new instance
510 may be the latest version of the application (e.g., the version of the application with
update 490 installed and available to users).

[0071] Application environment 530 can be configured to compare current instance
500 with new instance 510 to identify whether there is any delta 520 (e.g., differences)
between the current instance 500 and the new instance 510. In some embodiments,
comparing current instance 500 and new instance 510 to identify delta 520 may include
comparing the bug numbers associated with each instance. For example, a bug number may
be a unique identifier that identifies a particular bug report that corresponds to one or more
bugs that were fixed (or the source code was modified to address a bug) within the
application’s source code. For example, the bug numbers of an instance may be stored as
metadata associated with the instance. In this example, metadata for current instance 500 may
store data indicating that bug numbers 1 and 3 were previously fixed or applied to current
instance 500. Further, metadata for new instance 510 may store data indicating that bug
numbers 1, 3, and 6 were applied to new instance 510. In this example, bug numbers 1 and 3
would already have been applied to new instance 510 since new instance 510 is a newly
spawned instance of current instance 500, and thus, bug number 6 would be detected as the
update. For instance, application environment 530 can compare the metadata of current
instance 500 with the metadata of new instance 510 to determine that delta 520 between these

two instances is bug number 6.

19

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0072] Accordingly, in a situation where update 490 is the next version or iteration of
the application after the version of the application running in current instance 500, then
update 490 would correspond to bug number 6, indicating that update 490 fixes one or more
bugs associated with bug number 6. When application environment 530 identifies that delta
520 corresponds to bug number 6, application environment 530 can access the one or more
objects associated with the bugs addressed by the bug report of bug number 6. Application
environment 530 can export the one or more objects and incorporate the bug fixes associated
with bug number 6 into the source code of application environment 530. Since a bug may be
fixed in a particular software component that runs on a web server, application server, and/or
database server, the one or more objects may be applied to the relevant software components
(e.g., if the bug was fixed in the software components of the web server, the one or more
objects would be applied to the software components of the web server associated with
current instance 500). Advantageously, the current instance 500, which is running in the
production environment and accessible to users, can be automatically updated with minimal
downtime.

[0073] It will be appreciated that when the comparison is performed, the current
instance 500 can still be providing services to users (e.g., no downtime of the servers). When
the application stack is being updated based on delta 520, then application environment 530
may initiate a lock, which prevents transactions during a defined period of time. During the
lock, the current instance 500 can be updated with the one or more objects associated with
delta 520. After the current instance 500 is updated, then the current instance 500 may be
rebooted, and the lock may be released so that the update 490 may be available or
incorporated in current instance 500.

[0074] It will be appreciated that when a new version of an application is released, a
new image of the application is published to the central server (e.g., the update is stored at the
central server). The new image includes all of the features of the new version of the
application. The application may be configured to provision a new instance of the application
with the features of the new version. A change assistant tool can be configured to compare
metadata of the new instance with the currently running instance of the application, which
will be a more outdated version of the application than the new version. The application can
then install the metadata of the updated source code or the updated binary code, which may

include both database objects plus the binary runtime. Further, the metadata of the updated

20

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

source code can be moved to the currently running instance in a serialized form as an update
data package and installed or applied to the currently running instance.

[0075] FIGS. 6-8 illustrate example interfaces presented on a user device when a user
accesses the application that runs on the multi-tier application stack. For example, interface
600 presents a notification that “New fixes are available for Cloud Manager and ready to
apply.” In some implementations, interface 600 may be presented on a user device when a
user accesses the application’s settings configuration page. As non-limiting examples, several
configurations can be defined on the settings configurations page, such as file server
configurations, virtual machine configurations, and update management configurations.
While interface 600 can present a notification when new updates are stored and available in
the central server (e.g., central server 480), in some embodiments, the new updates available
in the central server are automatically downloaded and applied to the application, and thus,
no notification would be necessary. In some embodiments, a user may be notified after an
available update is downloaded from the central server and installed in the currently running
instance (e.g., after the comparison is performed and the deltas are determined). FIG. 7 is an
example interface illustrating the updates that are available (e.g., stored at) the central server
(e.g., central server 480). As can be seen from interface 700, an example of an update can be
a bug number that represents one or more bugs that were fixed as part of the update. To
illustrate, item number 10 shown in interface 700 corresponds to bug number 22093199. The
description of bug number 22093199 is “Ok button not being displayed when using the
design form wizard.” In this illustration, bug number 22093199 is configured to fix an error
in the application — and specifically, the error of the “OK” button not being displayed in a
design form wizard. In this example, the currently running instance would not have had bug
number 22093199 installed yet, and thus, the currently running instance would be an outdated
version of the application. The bug fix corresponding to bug number 22093199 would,
however, be installed on the new instance of the application. Comparing the metadata of the
currently running instance with the metadata of the new instance would result in bug number
2209199 being identified as a bug number that has not yet been applied to the currently
running instance. In some embodiments, some or all of the available updates stored in the
central server are automatically downloaded to the repository associated with the application
(e.g., repository 460). In some embodiments, interface 700 enables a user to select which
updates the user wants to apply to the currently running instance of the application. In some

embodiments, the updates associated with the currently running instance would be

21

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

automatically applied to the currently running instance without needing to receive input or
instructions from a user. In these embodiments, the currently running instance is always
running at the most-up-to-date version.

[0076] FIG. 8 is an example interface 800 illustrating the exemplary steps that are
performed to automatically update the currently running instance of the application. A status
of each step can be individually presented on interface 800. Step 1 may include creating a
new environment template, in which a new instance of the application can be deployed. Step
2 may include deploying the new instance in the new environment template. Step 3 includes
installing a “change assistant,” which is a tool that compares a source database (e.g., the new
instance which will have the update installed) with a target database (e.g., the currently
running instance without the update installed). At step 4, the update (e.g., a patchset, which
can include a bug fix within source code) can be applied to the source database (e.g., the new
instance now with the update installed). At step 5, an update data package can be defined
(e.g.. a “make me current” change package). The update data package may include identifiers
of objects that are different between the source database and the target database. For instance,
the identifiers of objects that are different between the source database and the target database
may represent the update that was installed on the source database. In some examples, once
the differences between the source database and the target database are identified, the change
assistant can generate the update data package, which includes all of the objects that were
changed by the update. If an object is different between the source database and the target
database, that object may represented by a unique identifier. Once identified, that object can
be downloaded to a file, and then exported in a serialized form. At step 6, the update data
package is created (e.g., the data packing including the identifiers of the objects that were
detected as having been changed between the source database and the target database). At
step 7, the update data package can be applied to the target database, so that the files of the
target database can be updated and brought to the most up-to-date version of the application.
[0077] FIG. 9 is a flowchart illustrating an example process 900 for automatically
updating a multi-tier application. As described above, major releases can be available
periodically on a regular or irregular basis, and minor releases can be available periodically
between the major releases. For example, between the major releases, minor updates may be
available to fix bugs found in the major releases. Certain embodiments enable an application
stack to be updated automatically with minimal downtime and minimal network burden,

regardless of whether the most recent update was a major release or a minor update.

22

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[0078] Process flow 900 begins at block 910, where the application periodically
accesses a central server to determine whether an update is stored at the central server. For
example, the application can be configured to randomly or regularly query the central server
for any new updates that are available or stored at the central server. At block 920, the
application can determine if an update is available. If no updates are available, then the
application continues to query the central server for updates at another time. However, if one
or more updates are stored at the central server, then the one or more updates can be
downloaded to a repository associated with the application, as in block 930. Once the update
is downloaded from the central server to the repository, the update can be deleted from the
central server or flagged as having been downloaded. At block 940, the application
environment can then provision a new instance of itself in the cloud and install the one or
more updates in the new instance. For example, provisioning a new instance can include
generating a new virtual machine with pre-defined or defined-on-the-fly configuration
settings (e.g., CPU and RAM allocations), and running the application stack on the new
virtual machine with the one or more updates installed. At this time, the application
environment can be associated with both a currently running instance of the application (e.g.,
the instance of the application that is currently interacting with users) and the new instance of
the application, which has the downloaded updates installed. However, in some
implementations, the currently running instance is in a production environment, whereas, the
new instance of the application in not in a production environment. In these implementations,
end users cannot communicate with the new instance of the application and/or the new
instance of the application does not process transactions based on interactions between the
new instance and end user devices. Instead, the end users continue to communicate with the
currently running instance.

[0079] At block 950, the application compares the currently running instance with the
new instance to determine if there are any differences (e.g., a delta) between the two
instances. For example, and as described above, comparing the two instances can include
comparing the metadata of the currently running instance against the metadata of the new
instance. In some implementations, the metadata can include the bug numbers that have been
or were previously applied to the source code of the instance. If the set of bug numbers
included in the metadata of the new instance are different from the set of bug numbers
included in the metadata of the current instance, then the application can determine that the

update corresponds to the difference (e.g., delta) in bug numbers. For example, bug numbers

23

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

1 and 3 were previously applied to the current instance, and if bug numbers 1, 3, and 5 were
previously applied to the new instance, the delta of bug number 5 is determined to be applied
to the current instance to update the current instance to the latest version of the application. It
will be appreciated that the metadata may include data other than bug numbers. For example,
identifiers of file reference objects and/or the file reference objects, which represent modified
source code, can be stored as metadata. In this example, comparing metadata of the new
instance with metadata of the current instance can identify the file reference objects, which
were modified by the update installed in the new instance. At block 960, the application can
create an update data package that includes the delta between the metadata of the current
instance and the metadata of the new instance. At block 970, the current instance can apply
the data package to itself, which in effect, updates the current instance. Advantageously, the
update to the current instance minimally interrupts the service provided by the application
and improves network efficiency.

[0080] FIG. 10 depicts a simplified diagram of a distributed system 1000 for
implementing one of the embodiments. In the illustrated embodiment, distributed system
1000 includes one or more client computing devices 1002, 1004, 1006, and 1008, which are
configured to execute and operate a client application such as a web browser, proprietary
client (e.g., Oracle Forms), or the like over one or more network(s) 1010. Server 1012 may be
communicatively coupled with remote client computing devices 1002, 1004, 1006, and 1008
via network 1010.

[0081] In various embodiments, server 1012 may be adapted to run one or more
services or software applications provided by one or more of the components of the system.
In some embodiments, these services may be offered as web-based or cloud services or under
a Software as a Service (SaaS) model to the users of client computing devices 1002, 1004,
1006, and/or 1008. Users operating client computing devices 1002, 1004, 1006, and/or 1008
may in turn utilize one or more client applications to interact with server 1012 to utilize the
services provided by these components.

[0082] In the configuration depicted in the figure, the software components 1018,
1020 and 1022 of system 1000 are shown as being implemented on server 1012. In other
embodiments, one or more of the components of system 1000 and/or the services provided by
these components may also be implemented by one or more of the client computing devices
1002, 1004, 1006, and/or 1008. Users operating the client computing devices may then utilize

one or more client applications to use the services provided by these components. These

24

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

components may be implemented in hardware, firmware, software, or combinations thereof.
It should be appreciated that various different system configurations are possible, which may
be different from distributed system 1000. The embodiment shown in the figure is thus one
example of a distributed system for implementing an embodiment system and is not intended
to be limiting.

[0083] Client computing devices 1002, 1004, 1006, and/or 1008 may be portable
handheld devices (e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a
personal digital assistant (PDA)) or wearable devices (e.g., a Google Glass® head mounted
display), running software such as Microsoft Windows Mobile®, and/or a variety of mobile
operating systems such as 10S, Windows Phone, Android, BlackBerry 10, Palm OS, and the
like, and being Internet, e-mail, short message service (SMS), Blackberry®, or other
communication protocol enabled. The client computing devices can be general purpose
personal computers including, by way of example, personal computers and/or laptop
computers running various versions of Microsoft Windows®, Apple Macintosh®, and/or
Linux operating systems. The client computing devices can be workstation computers
running any of a variety of commercially-available UNIX® or UNIX-like operating systems,
including without limitation the variety of GNU/Linux operating systems, such as for
example, Google Chrome OS. Alternatively, or in addition, client computing devices 1002,
1004, 1006, and 1008 may be any other electronic device, such as a thin-client computer, an
Internet-enabled gaming system (e.g., a Microsoft Xbox gaming console with or without a
Kinect® gesture input device), and/or a personal messaging device, capable of
communicating over network(s) 1010.

[0084] Although exemplary distributed system 1000 is shown with four client
computing devices, any number of client computing devices may be supported. Other
devices, such as devices with sensors, etc., may interact with server 1012,

[0085] Network(s) 1010 in distributed system 1000 may be any type of network
familiar to those skilled in the art that can support data communications using any of a variety
of commercially-available protocols, including without limitation TCP/IP (transmission
control protocol/Internet protocol), SNA (systems network architecture), IPX (Internet packet
exchange), AppleTalk, and the like. Merely by way of example, network(s) 1010 can be a
local area network (LAN), such as one based on Ethernet, Token-Ring and/or the like.
Network(s) 1010 can be a wide-area network and the Internet. It can include a virtual

network, including without limitation a virtual private network (VPN), an intranet, an

25

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

extranet, a public switched telephone network (PSTN), an infra-red network, a wireless
network (e.g., anetwork operating under any of the Institute of Electrical and Electronics
(IEEE) 802.11 suite of protocols, Bluetooth®, and/or any other wireless protocol); and/or any
combination of these and/or other networks.

[0086] Server 1012 may be composed of one or more general purpose computers,
specialized server computers (including, by way of example, PC (personal computer) servers,
UNIX® servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server
farms, server clusters, or any other appropriate arrangement and/or combination. In various
embodiments, server 1012 may be adapted to run one or more services or software
applications described in the foregoing disclosure. For example, server 1012 may correspond
to a server for performing processing described above according to an embodiment of the
present disclosure.

[0087] Server 1012 may run an operating system including any of those discussed
above, as well as any commercially available server operating system. Server 1012 may also
run any of a variety of additional server applications and/or mid-tier applications, including
HTTP (hypertext transport protocol) servers, FTP (file transfer protocol) servers, CGI
(common gateway interface) servers, JAVA® servers, database servers, and the like.
Exemplary database servers include without limitation those commercially available from
Oracle, Microsoft, Sybase, IBM (Intermational Business Machines), and the like.

[0088] In some implementations, server 1012 may include one or more applications
to analyze and consolidate data feeds and/or event updates received from users of client
computing devices 1002, 1004, 1006, and 1008. As an example, data feeds and/or event
updates may include, but are not limited to, Twitter® feeds, Facebook® updates or real-time
updates received from one or more third party information sources and continuous data
streams, which may include real-time events related to sensor data applications, financial
tickers, network performance measuring tools (e.g., network monitoring and traffic
management applications), clickstream analysis tools, automobile traffic monitoring, and the
like. Server 1012 may also include one or more applications to display the data feeds and/or
real-time events via one or more display devices of client computing devices 1002, 1004,
1006, and 1008.

[0089] Distributed system 1000 may also include one or more databases 1014 and
1016. Databases 1014 and 1016 may reside in a variety of locations. By way of example, one

or more of databases 1014 and 1016 may reside on a non-transitory storage medium local to

26

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

(and/or resident in) server 1012. Alternatively, databases 1014 and 1016 may be remote from
server 1012 and in communication with server 1012 via a network-based or dedicated
connection. In one set of embodiments, databases 1014 and 1016 may reside in a storage-area
network (SAN). Similarly, any necessary files for performing the functions attributed to
server 1012 may be stored locally on server 1012 and/or remotely, as appropriate. In one set
of embodiments, databases 1014 and 1016 may include relational databases, such as
databases provided by Oracle, that are adapted to store, update, and retrieve data in response
to SQL-formatted commands.

[0090] FIG. 11 is a simplified block diagram of one or more components of a system
environment 1100 by which services provided by one or more components of an embodiment
system may be offered as cloud services, in accordance with an embodiment of the present
disclosure. In the illustrated embodiment, system environment 1100 includes one or more
client computing devices 1104, 1106, and 1108 that may be used by users to interact with a
cloud infrastructure system 1102 that provides cloud services. The client computing devices
may be configured to operate a client application such as a web browser, a proprietary client
application (e.g., Oracle Forms), or some other application, which may be used by a user of
the client computing device to interact with cloud infrastructure system 1102 to use services
provided by cloud infrastructure system 1102.

[0091] It should be appreciated that cloud infrastructure system 1102 depicted in the
figure may have other components than those depicted. Further, the embodiment shown in
the figure is only one example of a cloud infrastructure system that may incorporate an
embodiment of the invention. In some other embodiments, cloud infrastructure system 1102
may have more or fewer components than shown in the figure, may combine two or more
components, or may have a different configuration or arrangement of components.

[0092] Client computing devices 1104, 1106, and 1108 may be devices similar to
those described above for 1002, 1004, 1006, and 1008.

[0093] Although exemplary system environment 1100 is shown with three client
computing devices, any number of client computing devices may be supported. Other devices
such as devices with sensors, etc. may interact with cloud infrastructure system 1102.

[0094] Network(s) 1110 may facilitate communications and exchange of data
between clients 1104, 1106, and 1108 and cloud infrastructure system 1102. Each network
may be any type of network familiar to those skilled in the art that can support data

27

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

communications using any of a variety of commercially-available protocols, including those
described above for network(s) 1010,

[0095] Cloud infrastructure system 1102 may comprise one or more computers and/or
servers that may include those described above for server 1012,

[0096] In certain embodiments, services provided by the cloud infrastructure system
may include a host of services that are made available to users of the cloud infrastructure
system on demand, such as online data storage and backup solutions, Web-based e-mail
services, hosted office suites and document collaboration services, database processing,
managed technical support services, and the like. Services provided by the cloud
infrastructure system can dynamically scale to meet the needs of its users. A specific
instantiation of aservice provided by cloud infrastructure system is referred to herein as a
“service instance.” In general, any service made available to a user via a communication
network, such as the Internet, from a cloud service provider's system is referred to as a “cloud
service.” Typically, in a public cloud environment, servers and systems that make up the
cloud service provider's system are different from the customer's own on-premises servers
and systems. For example, a cloud service provider's system may host an application, and a
user may, via a communication network such as the Internet, on demand, order and use the
application.

[0097] In some examples, a service in a computer network cloud infrastructure may
include protected computer network access to storage, a hosted database, a hosted web server,
a software application, or other service provided by a cloud vendor to a user, or as otherwise
known in the art. For example, a service can include password-protected access to remote
storage on the cloud through the Internet. As another example, a service can include a web
service-based hosted relational database and a script-language middleware engine for private
use by a networked developer. As another example, a service can include access to an email
software application hosted on a cloud vendor's web site.

[0098] In certain embodiments, cloud infrastructure system 1102 may include a suite
of applications, middleware, and database service offerings that are delivered to a customer in
a self-service, subscription-based, elastically scalable, reliable, highly available, and secure
manner. An example of such a cloud infrastructure system is the Oracle Public Cloud
provided by the present assignee.

[0099] In various embodiments, cloud infrastructure system 1102 may be adapted to

automatically provision, manage and track a customer’s subscription to services offered by

28

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

cloud infrastructure system 1102. Cloud infrastructure system 1102 may provide the cloud
services via different deployment models. For example, services may be provided under a
public cloud model in which cloud infrastructure system 1102 is owned by an organization
selling cloud services (e.g., owned by Oracle) and the services are made available to the
general public or different industry enterprises. As another example, services may be
provided under a private cloud model in which cloud infrastructure system 1102 is operated
solely for a single organization and may provide services for one or more entities within the
organization. The cloud services may also be provided under a community cloud model in
which cloud infrastructure system 1102 and the services provided by cloud infrastructure
system 1102 are shared by several organizations in a related community. The cloud services
may also be provided under a hybrid cloud model, which is a combination of two or more
different models.

[00100] In some embodiments, the services provided by cloud infrastructure system
802 may include one or more services provided under Software as a Service (SaaS) category,
Platform as a Service (PaaS) category, Infrastructure as a Service (I1aaS) category, or other
categories of services including hybrid services. A customer, via a subscription order, may
order one or more services provided by cloud infrastructure system 1102. Cloud
infrastructure system 1102 then performs processing to provide the services in the customer’s
subscription order.

[00101] In some embodiments, the services provided by cloud infrastructure system
1102 may include, without limitation, application services, platform services and
infrastructure services. In some examples, application services may be provided by the cloud
infrastructure system via a SaaS platform. The SaaS platform may be configured to provide
cloud services that fall under the SaaS category. For example, the SaaS platform may provide
capabilities to build and deliver a suite of on-demand applications on an integrated
development and deployment platform. The SaaS platform may manage and control the
underlying software and infrastructure for providing the SaaS services. By utilizing the
services provided by the SaaS platform, customers can utilize applications executing on the
cloud infrastructure system. Customers can acquire the application services without the need
for customers to purchase separate licenses and support. Various different SaaS services may
be provided. Examples include, without limitation, services that provide solutions for sales
performance management, enterprise integration, and business flexibility for large

organizations.

29

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[00102] In some embodiments, platform services may be provided by the cloud
infrastructure system via a PaaS platform. The PaaS platform may be configured to provide
cloud services that fall under the PaaS category. Examples of platform services may include
without limitation services that enable organizations (such as Oracle) to consolidate existing
applications on a shared, common architecture, as well as the ability to build new applications
that leverage the shared services provided by the platform. The PaaS platform may manage
and control the underlying software and infrastructure for providing the PaaS services.
Customers can acquire the PaaS services provided by the cloud infrastructure system without
the need for customers to purchase separate licenses and support. Examples of platform
services include, without limitation, Oracle Java Cloud Service (JCS), Oracle Database Cloud
Service (DBCS), and others.

[00103] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also
control the deployed services. In some embodiments, platform services provided by the cloud
infrastructure system may include database cloud services, middleware cloud services (e.g.,
Oracle Fusion Middleware services), and Java cloud services. In one embodiment, database
cloud services may support shared service deployment models that enable organizations to
pool database resources and offer customers a Database as a Service in the form of a database
cloud. Middleware cloud services may provide a platform for customers to develop and
deploy various business applications, and Java cloud services may provide a platform for
customers to deploy Java applications, in the cloud infrastructure system.

[00104] Various different infrastructure services may be provided by an IaaS platform
in the cloud infrastructure system. The infrastructure services facilitate the management and
control of the underlying computing resources, such as storage, networks, and other
fundamental computing resources for customers utilizing services provided by the SaaS
platform and the PaaS platform.

[00105] In certain embodiments, cloud infrastructure system 1102 may also include
infrastructure resources 1130 for providing the resources used to provide various services to
customers of the cloud infrastructure system. In one embodiment, infrastructure resources
1130 may include pre-integrated and optimized combinations of hardware, such as servers,
storage, and networking resources to execute the services provided by the PaaS platform and

the SaaS platform.

30

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[00106] In some embodiments, resources in cloud infrastructure system 1102 may be
shared by multiple users and dynamically re-allocated per demand. Additionally, resources
may be allocated to users in different time zones. For example, cloud infrastructure system
1130 may enable a first set of users in a first time zone to utilize resources of the cloud
infrastructure system for a specified number of hours and then enable the re-allocation of the
same resources to another set of users located in a different time zone, thereby maximizing
the utilization of resources.

[00107] In certain embodiments, a number of internal shared services 1132 may be
provided that are shared by different components or modules of cloud infrastructure system
1102 and by the services provided by cloud infrastructure system 1102. These internal shared
services may include, without limitation, a security and identity service, an integration
service, an enterprise repository service, an enterprise manager service, a virus scanning and
white list service, a high availability, backup and recovery service, service for enabling cloud
support, an email service, a notification service, a file transfer service, and the like.

[00108] In certain embodiments, cloud infrastructure system 1102 may provide
comprehensive management of cloud services (e.g., SaaS, PaaS, and IaaS services) in the
cloud infrastructure system. In one embodiment, cloud management functionality may
include capabilities for provisioning, managing and tracking a customer’s subscription
received by cloud infrastructure system 1102, and the like.

[00109] In one embodiment, as depicted in the figure, cloud management functionality
may be provided by one or more modules, such as an order management module 1120, an
order orchestration module 1122, an order provisioning module 1124, an order management
and monitoring module 1126, and an identity management module 1128. These modules may
include or be provided using one or more computers and/or servers, which may be general
purpose computers, specialized server computers, server farms, server clusters, or any other
appropriate arrangement and/or combination.

[00110] In exemplary operation 1134, a customer using a client device, such as client
device 1104, 1106 or 1108, may interact with cloud infrastructure system 1102 by requesting
one or more services provided by cloud infrastructure system 1102 and placing an order for a
subscription for one or more services offered by cloud infrastructure system 1102. In certain
embodiments, the customer may access a cloud User Interface (UI), cloud UI 1112, cloud Ul
1114 and/or cloud UI 1116 and place a subscription order via these Uls. The order

information received by cloud infrastructure system 802 in response to the customer placing

31

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

an order may include information identifying the customer and one or more services offered

by the cloud infrastructure system 1102 that the customer intends to subscribe to.

[00111] After an order has been placed by the customer, the order information is
received via the cloud Uls, 1112, 1114 and/or 1116.
[00112] At operation 1136, the order is stored in order database 1118. Order database

1118 can be one of several databases operated by cloud infrastructure system 1118 and
operated in conjunction with other system elements.

[00113] At operation 1138, the order information is forwarded to an order management
module 1120. In some instances, order management module 1120 may be configured to
perform billing and accounting functions related to the order, such as verifying the order, and
upon verification, booking the order.

[00114] At operation 1140, information regarding the order is communicated to an
order orchestration module 1122. Order orchestration module 1122 may utilize the order
information to orchestrate the provisioning of services and resources for the order placed by
the customer. In some instances, order orchestration module 1122 may orchestrate the
provisioning of resources to support the subscribed services using the services of order
provisioning module 1124,

[00115] In certain embodiments, order orchestration module 1122 enables the
management of business processes associated with each order and applies business logic to
determine whether an order should proceed to provisioning. At operation 1142, upon
receiving an order for a new subscription, order orchestration module 1122 sends a request to
order provisioning module 1124 to allocate resources and configure those resources needed to
fulfill the subscription order. Order provisioning module 1124 enables the allocation of
resources for the services ordered by the customer. Order provisioning module 1124 provides
a level of abstraction between the cloud services provided by cloud infrastructure system
1100 and the physical implementation layer that is used to provision the resources for
providing the requested services. Order orchestration module 1122 may thus be isolated from
implementation details, such as whether or not services and resources are actually
provisioned on the fly or pre-provisioned and only allocated/assigned upon request.

[00116] At operation 1144, once the services and resources are provisioned, a
notification of the provided service may be sent to customers on client devices 1104, 1106

and/or 1108 by order provisioning module 1124 of cloud infrastructure system 1102,

32

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[00117] At operation 1146, the customer’s subscription order may be managed and
tracked by an order management and monitoring module 1126. In some instances, order
management and monitoring module 1126 may be configured to collect usage statistics for
the services in the subscription order, such as the amount of storage used, the amount data
transferred, the number of users, and the amount of system up time and system down time.
[00118] In certain embodiments, cloud infrastructure system 1100 may include an
identity management module 1128. Identity management module 1128 may be configured to
provide identity services, such as access management and authorization services in cloud
infrastructure system 1100. In some embodiments, identity management module 1128 may
control information about customers who wish to utilize the services provided by cloud
infrastructure system 1102. Such information can include information that authenticates the
identities of such customers and information that describes which actions those customers are
authorized to perform relative to various system resources (e.g., files, directories,
applications, communication ports, memory segments, etc.) Identity management module
1128 may also include the management of descriptive information about each customer and
about how and by whom that descriptive information can be accessed and modified.

[00119] FIG. 12 illustrates an exemplary computer system 1200, in which various
embodiments of the present invention may be implemented. The system 1200 may be used to
implement any of the computer systems described above. As shown in the figure, computer
system 1200 includes a processing unit 1204 that communicates with a number of peripheral
subsystems via a bus subsystem 1202. These peripheral subsystems may include a processing
acceleration unit 1206, an I/O subsystem 1208, a storage subsystem 1218 and a
communications subsystem 1224. Storage subsystem 1218 includes tangible computer-
readable storage media 1222 and a system memory 1210.

[00120] Bus subsystem 1202 provides a mechanism for letting the various components
and subsystems of computer system 1200 communicate with each other as intended.
Although bus subsystem 1202 is shown schematically as a single bus, alternative
embodiments of the bus subsystem may utilize multiple buses. Bus subsystem 1202 may be
any of several types of bus structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus architectures. For example, such
architectures may include an Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards

33

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus, which can
be implemented as a Mezzanine bus manufactured to the IEEE P1386.1 standard.

[00121] Processing unit 1204, which can be implemented as one or more integrated
circuits (e.g., a conventional microprocessor or microcontroller), controls the operation of
computer system 1200. One or more processors may be included in processing unit 1204,
These processors may include single core or multicore processors. In certain embodiments,
processing unit 1204 may be implemented as one or more independent processing units 1232
and/or 1234 with single or multicore processors included in each processing unit. In other
embodiments, processing unit 1204 may also be implemented as a quad-core processing unit
formed by integrating two dual-core processors into a single chip.

[00122] In various embodiments, processing unit 1204 can execute a variety of
programs in response to program code and can maintain multiple concurrently executing
programs or processes. At any given time, some or all of the program code to be executed can
be resident in processor(s) 1204 and/or in storage subsystem 1218. Through suitable
programming, processor(s) 1204 can provide various functionalities described above.
Computer system 1200 may additionally include a processing acceleration unit 1206, which
can include a digital signal processor (DSP), a special-purpose processor, and/or the like.
[00123] I/O subsystem 1208 may include user interface input devices and user
interface output devices. User interface input devices may include a keyboard, pointing
devices such as a mouse or trackball, a touchpad or touch screen incorporated into a display,
a scroll wheel, a click wheel, a dial, a button, a switch, a keypad, audio input devices with
voice command recognition systems, microphones, and other types of input devices. User
interface input devices may include, for example, motion sensing and/or gesture recognition
devices such as the Microsoft Kinect® motion sensor that enables users to control and
interact with an input device, such as the Microsoft Xbox® 360 game controller, through a
natural user interface using gestures and spoken commands. User interface input devices may
also include eye gesture recognition devices such as the Google Glass® blink detector that
detects eye activity (e.g., ‘blinking” while taking pictures and/or making a menu selection)
from users and transforms the eye gestures as input into an input device (e.g., Google
Glass®). Additionally, user interface input devices may include voice recognition sensing
devices that enable users to interact with voice recognition systems (e.g., Siri® navigator),

through voice commands.

34

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[00124] User interface input devices may also include, without limitation, three
dimensional (3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and
audio/visual devices such as speakers, digital cameras, digital camcorders, portable media
players, webcams, image scanners, fingerprint scanners, barcode reader 3D scanners, 3D
printers, laser rangefinders, and eye gaze tracking devices. Additionally, user interface input
devices may include, for example, medical imaging input devices such as computed
tomography, magnetic resonance imaging, position emission tomography, medical
ultrasonography devices. User interface input devices may also include, for example, audio
input devices such as MIDI keyboards, digital musical instruments and the like.

[00125] User interface output devices may include a display subsystem, indicator
lights, or non-visual displays such as audio output devices, etc. The display subsystem may
be a cathode ray tube (CRT), a flat-panel device, such as that using a liquid crystal display
(LCD) or plasma display, a projection device, a touch screen, and the like. In general, use of
the term "output device" is intended to include all possible types of devices and mechanisms
for outputting information from computer system 1200 to a user or other computer. For
example, user interface output devices may include, without limitation, a variety of display
devices that visually convey text, graphics and audio/video information such as monitors,
printers, speakers, headphones, automotive navigation systems, plotters, voice output devices,
and modems.

[00126] Computer system 1200 may comprise a storage subsystem 1218 that
comprises software elements, shown as being currently located within a system memory
1210. System memory 1210 may store program instructions that are loadable and executable
on processing unit 1204, as well as data generated during the execution of these programs.
[00127] Depending on the configuration and type of computer system 1200, system
memory 1210 may be volatile (such as random access memory (RAM)) and/or non-volatile
(such as read-only memory (ROM), flash memory, etc.) The RAM typically contains data
and/or program modules that are immediately accessible to and/or presently being operated
and executed by processing unit 1204. In some implementations, system memory 1210 may
include multiple different types of memory, such as static random access memory (SRAM) or
dynamic random access memory (DRAM). In some implementations, a basic input/output
system (BIOS), containing the basic routines that help to transfer information between
elements within computer system 1200, such as during start-up, may typically be stored in the

ROM. By way of example, and not limitation, system memory 1210 also illustrates

35

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

application programs 1212, which may include client applications, Web browsers, mid-tier
applications, relational database management systems (RDBMS), etc., program data 1214,
and an operating system 1216. By way of example, operating system 1216 may include
various versions of Microsoft Windows®, Apple Macintosh®, and/or Linux operating
systems, a variety of commercially-available UNIX® or UNIX-like operating systems
(including without limitation the variety of GNU/Linux operating systems, the Google
Chrome® OS, and the like) and/or mobile operating systems such as i0S, Windows® Phone,
Android® OS, BlackBerry® 10 OS, and Palm® OS operating systems.

[00128] Storage subsystem 1218 may also provide a tangible computer-readable
storage medium for storing the basic programming and data constructs that provide the
functionality of some embodiments. Software (programs, code modules, instructions) that
when executed by a processor provide the functionality described above may be stored in
storage subsystem 1218. These software modules or instructions may be executed by
processing unit 1204. Storage subsystem 8112 may also provide a repository for storing data
used in accordance with the present invention.

[00129] Storage subsystem 1200 may also include a computer-readable storage media
reader 1220 that can further be connected to computer-readable storage media 1222. Together
and, optionally, in combination with system memory 1210, computer-readable storage media
1222 may comprehensively represent remote, local, fixed, and/or removable storage devices
plus storage media for temporarily and/or more permanently containing, storing, transmitting,
and retrieving computer-readable information.

[00130] Computer-readable storage media 1222 containing code, or portions of code,
can also include any appropriate media known or used in the art, including storage media and
communication media, such as but not limited to, volatile and non-volatile, removable and
non-removable media implemented in any method or technology for storage and/or
transmission of information. This can include tangible computer-readable storage media such
as RAM, ROM, electronically erasable programmable ROM (EEPROM), flash memory or
other memory technology, CD-ROM, digital versatile disk (DVD), or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices,
or other tangible computer readable media. This can also include nontangible computer-
readable media, such as data signals, data transmissions, or any other medium which can be
used to transmit the desired information and which can be accessed by computing system

1200.

36

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

[00131] By way of example, computer-readable storage media 1222 may include a
hard disk drive that reads from or writes to non-removable, nonvolatile magnetic media, a
magnetic disk drive that reads from or writes to a removable, nonvolatile magnetic disk, and
an optical disk drive that reads from or writes to a removable, nonvolatile optical disk such as
a CD ROM, DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage
media 1222 may include, but is not limited to, Zip® drives, flash memory cards, universal
serial bus (USB) flash drives, secure digital (SD) cards, DVD disks, digital video tape, and
the like. Computer-readable storage media 1222 may also include, solid-state drives (SSD)
based on non-volatile memory such as flash-memory based SSDs, enterprise flash drives,
solid state ROM, and the like, SSDs based on volatile memory such as solid state RAM,
dynamic RAM, static RAM, DRAM-based SSDs, magnetoresistive RAM (MRAM) SSDs,
and hybrid SSDs that use a combination of DRAM and flash memory based SSDs. The disk
drives and their associated computer-readable media may provide non-volatile storage of
computer-readable instructions, data structures, program modules, and other data for
computer system 1200.

[00132] Communications subsystem 1224 provides an interface to other computer
systems and networks. Communications subsystem 1224 serves as an interface for receiving
data from and transmitting data to other systems from computer system 1200. For example,
communications subsystem 924 may enable computer system 1200 to connect to one or more
devices via the Internet. In some embodiments communications subsystem 1224 can include
radio frequency (RF) transceiver components for accessing wireless voice and/or data
networks (e.g., using cellular telephone technology, advanced data network technology, such
as 3G, 4G or EDGE (enhanced data rates for global evolution), WiFi (IEEE 1202.11 family
standards, or other mobile communication technologies, or any combination thereof), global
positioning system (GPS) receiver components, and/or other components. In some
embodiments communications subsystem 1224 can provide wired network connectivity (e.g.,
Ethernet) in addition to or instead of a wireless interface.

[00133] In some embodiments, communications subsystem 1224 may also receive
input communication in the form of structured and/or unstructured data feeds 1226, event
streams 1228, event updates 1230, and the like on behalf of one or more users who may use
computer system 1200.

[00134] By way of example, communications subsystem 1224 may be configured to

recelve data feeds 1226 in real-time from users of social networks and/or other

37

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

communication services such as Twitter® feeds, Facebook® updates, web feeds such as Rich
Site Summary (RSS) feeds, and/or real-time updates from one or more third party
information sources.

[00135] Additionally, communications subsystem 1224 may also be configured to
receive data in the form of continuous data streams, which may include event streams 1228 of
real-time events and/or event updates 1230, that may be continuous or unbounded in nature
with no explicit end. Examples of applications that generate continuous data may include, for
example, sensor data applications, financial tickers, network performance measuring tools
(e.g. network monitoring and traffic management applications), clickstream analysis tools,
automobile traffic monitoring, and the like.

[00136] Communications subsystem 1224 may also be configured to output the
structured and/or unstructured data feeds 1226, event streams 1228, event updates 1230, and
the like to one or more databases that may be in communication with one or more streaming
data source computers coupled to computer system 1200.

[00137] Computer system 1200 can be one of various types, including a handheld
portable device (e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a
wearable device (e.g., a Google Glass® head mounted display), a PC, a workstation, a
mainframe, a kiosk, a server rack, or any other data processing system.

[00138] Due to the ever-changing nature of computers and networks, the description of
computer system 1200 depicted in the figure is intended only as a specific example. Many
other configurations having more or fewer components than the system depicted in the figure
are possible. For example, customized hardware might also be used and/or particular
elements might be implemented in hardware, firmware, software (including applets), or a
combination. Further, connection to other computing devices, such as network input/output
devices, may be employed. Based on the disclosure and teachings provided herein, a person
of ordinary skill in the art will appreciate other ways and/or methods to implement the
various embodiments.

[00139] In the foregoing specification, aspects of the invention are described with
reference to specific embodiments thereof, but those skilled in the art will recognize that the
invention is not limited thereto. Various features and aspects of the above-described
invention may be used individually or jointly. Further, embodiments can be utilized in any

number of environments and applications beyond those described herein without departing

38

WO 2019/060663 PCT/US2018/052131

from the broader spirit and scope of the specification. The specification and drawings are,

accordingly, to be regarded as illustrative rather than restrictive.

39

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

Claims
What is claimed is:

1. A computer-implemented method, comprising;

running an instance of an application environment, wherein the application
environment includes one or more dependencies on one or more components on which the
application environment depends;

detecting one or more updates configured to modify at least one component of the one
or more components;

in response to detecting the one or more updates, accessing an update server to
retrieve the one or more updates;

automatically generating a new instance of the application environment;

installing the one or more updates on the new instance of the application environment;

identifying metadata associated with the instance;

identifying new metadata associated with the new instance;

comparing the metadata associated with the instance with the new metadata
associated with the new instance;

determining, based on the comparison, one or more differences between the metadata
associated with the instance with the new metadata associated with the new instance;

generating update data that includes each of the one or more identified differences;
and

updating the instance using the update data by incorporating the one or more

1dentified differences into the instance.

2. The computer-implemented method of claim 1, wherein updating the instance
further comprises:

initiating a lock period during which all transactions associated with an application
running in the application environment are stopped;

updating the instance with the update data during the lock period; and

releasing the lock period, the release of the lock period enabling transactions

associated with the application to continue.

40

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

3. The computer-implemented method of claim 1, wherein the metadata includes
a first set of bug numbers associated with the instance, wherein the new metadata includes a
second set of bug numbers associated with the new instance, wherein when the first set of
bug numbers is different from the second set of bug numbers, a difference between the first
set and the second set corresponds to one or more bug fixes included in the one or more

updates.

4. The computer-implemented method of claim 3, wherein the update data
includes an object associated with the one or more bug fixes included in the one or more

updates.

5. The computer-implemented method of claim 1, wherein detecting the one or
more updates stored on a central server includes periodically polling the central server for

updates at a regular or irregular interval.

6. The computer-implemented method of claim 1, wherein the metadata is
associated with source code without the one or more updates, and wherein the new metadata

is associated with the source code with the one or more updates.

7. The computer-implemented method of claim 1, further comprising:

rebooting the updated instance.

8. A system, comprising:
one or more data processors; and
anon-transitory computer-readable storage medium containing instructions which,
when executed on the one or more data processors, cause the one or more data processors to
perform operations including:
running an instance of an application environment, wherein the application
environment includes one or more dependencies on one or more components on which the
application environment depends;
detecting one or more updates configured to modify at least one component of

the one or more components;

41

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

in response to detecting the one or more updates, accessing an update server to
retrieve the one or more updates;

automatically generating a new instance of the application environment;

installing the one or more updates on the new instance of the application
environment;

identifying metadata associated with the instance;

identifying new metadata associated with the new instance;

comparing the metadata associated with the instance with the new metadata
associated with the new instance;

determining, based on the comparison, one or more differences between the
metadata associated with the instance with the new metadata associated with the new
instance;

generating update data that includes each of the one or more identified
differences; and

updating the instance using the update data by incorporating the one or more

1dentified differences into the instance.

9. The system of claim 8, wherein updating the instance further comprises:

initiating a lock period during which all transactions associated with an application
running in the application environment are stopped.;

updating the instance with the update data during the lock period; and

releasing the lock period, the release of the lock period enabling transactions

associated with the application to continue.

10. The system of claim 8, wherein the metadata includes a first set of bug
numbers associated with the instance, wherein the new metadata includes a second set of bug
numbers associated with the new instance, wherein when first set of bug numbers is different
from the second set of bug numbers, a difference between the first set and the second set

corresponds to one or more bug fixes included in the one or more updates.

11. The system of claim 11, wherein the update data includes an object associated

with the one or more bug fixes included in the one or more updates.

42

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

12. The system of claim 8, wherein detecting the one or more updates stored on a
central server includes periodically polling the central server for updates at a regular or

irregular interval.

13. The system of claim 8, wherein the metadata is associated with source code
without the one or more updates, and wherein the new metadata is associated with the source

code with the one or more updates.

14. The system of claim 8, further comprising:

rebooting the updated instance.

15. A computer-program product tangibly embodied in a non-transitory machine-
readable storage medium, including instructions configured to cause a data processing
apparatus to perform operations including;

running an instance of an application environment, wherein the application
environment includes one or more dependencies on one or more components on which the
application environment depends;

detecting one or more updates configured to modify at least one component of the one
or more components;

in response to detecting the one or more updates, accessing an update server to
retrieve the one or more updates;

automatically generating a new instance of the application environment;

installing the one or more updates on the new instance of the application environment;

identifying metadata associated with the instance;

identifying new metadata associated with the new instance;

comparing the metadata associated with the instance with the new metadata
associated with the new instance;

determining, based on the comparison, one or more differences between the metadata
associated with the instance with the new metadata associated with the new instance;

generating update data that includes each of the one or more identified differences;
and

updating the instance using the update data by incorporating the one or more

1dentified differences into the instance.

43

10

15

20

25

30

WO 2019/060663 PCT/US2018/052131

16. The computer-program product of claim 15, wherein updating the instance
further comprises:

initiating a lock period during which all transactions associated with an application
running in the application environment are stopped.;

updating the instance with the update data during the lock period; and

releasing the lock period, the release of the lock period enabling transactions

associated with the application to continue.

17. The computer-program product of claim 15, wherein the metadata includes a
first set of bug numbers associated with the instance, wherein the new metadata includes a
second set of bug numbers associated with the new instance, wherein when first set of bug
numbers is different from the second set of bug numbers, a difference between the first set

and the second set corresponds to one or more bug fixes included in the one or more updates.

18. The computer-program product of claim 17, wherein the update data includes

an object associated with the one or more bug fixes included in the one or more updates.

19. The computer-program product of claim 15, wherein detecting the one or more
updates stored on a central server includes periodically polling the central server for updates

at a regular or irregular interval.
20. The computer-program product of claim 15, wherein the metadata is

associated with source code without the one or more updates, and wherein the new metadata

is associated with the source code with the one or more updates.

44

WO 2019/060663 15 PCT/US2018/052131

O
3

»
vs;
%

pRIPIVIIVIY)

P A
e

"
2
:
i
H
¥
H
H

s

A

g
y

thit

Pt mn s T

-
<

3
H
H
H
H

%

e
225,222

4

N
SR

4

e s e T

Y]
45

7

R
o A g]
58
1
7
Yap

Svssssssssssrssssssossrssessssorsst

f
;
;

Bilana SR

g . 3
Y s Clad

£

% K
ot B,

.\\\\\\\\\\\\\\\\i

e) Y

Fig. 1A

Rt P

E \\\\\\\\\\\\\\\\\\;\\8
N

T ORREEEEEER Rt

s

PCT/US2018/052131

WO 2019/060663

2/15

ra

5 o
ﬂW“ AR \\‘M
£ 4%

% w%

i 87 S
o %
% oL

i
-~
A

Fig. 18

WO 2019/060663 3/15 PCT/US2018/052131

\\\\\

ey

%
7

ool

*

Loy

PCT/US2018/052131

4/15

R R R R DN PP L PO R PPN B S B PP S S L e L e e e B
1 ‘
F R T R s TR N s e L 2 L A
7 @ p
; %
’ b S R AP 5 e A, R S i e e o e L 0k A G DAL P B0 000 B i
: B R SO P A P P B S P S i B A g 5
5 ¥ 2
s : 7
7 “ , z
Y i , %
v % Z
. 4 : 1
5 Y 1 P
“ z 4
3 Z ’
: : : :
<
> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\3 m 2
i 7 |3
H H 4 :
z H o 7t : M
: H b 2 1
Lor g O S P 5
Loy Z 2 7 ‘
i 7 % Z :
: z 4 b
‘ P Z % 4
; ? %, H
4 s SRS S 7 5
? 3 4
z “ H
z
< z
; 7
z z
pt Z
Y 7 Z
N \\\\ ’ *
e

L D A AL, DA LRI BB LI RS BV B

P %

S YL S P ety e 4

W 4 A, < 2

i B

e

R R e R M 0L e o el L G A L L Sl 0

2 A SURRERRRREE

w4

A

SHRL IR .ﬁ

ol BT

7

\\\\\

P G
oy L

i
A

P R
Wi \»\F\\\\\

WO 2019/060663

WO 2019/060663 5/15 PCT/US2018/052131

NN AN AN NI N S T MR M NN NN AV X

3 N
3 <
2 B
3 + £ 3
s . &
3 3 3 A AN A AR A AT AT A A sy T
3 s I
SN < ~
3
§
i B
LY F
3 oy F
5 O
3 I
R 3 B
R 3 s
3 S
S -
R PO
R N
LA
B 23 ”
< s -
3 < *
b Ty oa
T < 3 -
b Yol a
3 - b ..
¥ < ? i
& s N <
< [S
¥ o8 2
4 § 3 e N
i ¢ O
< R} L < »
& : A
3 3 3 s R
& v or %
N B LA
F) T
§ by 3
AN < > 3
$ oy
{ o8]
3 3 P
3 3 ¥
¥ 3 &0 .
3 3 A
3 X ¥t
] 3 3 Y
3 3 ¥ F
3 3 S
3 3 « 3
5y b3 L
3 53 LR
3 Fawsy N
¥ ¢ 3
3 ¥ FOE
3 3 3
N ¥ ;N
3 ¥ b
k3 X @
X 3 B
b ¥ W
k3 ¥ "
H 3 H
£ ¥
b 3 i
\ & ; N
R © 3
3‘ <
3 b .
1 FEN
R P
0y < b
R 3
3 P
X R :
R T8
3 PR
: 1 % 3
5 1 E B
) 3 3 S
] 3 ¥ ¢
£ B <
s H s
b M S
3 P
s ; <
s 5 B3
b ¥ I
£ ~ -~
by 5 bs
3 M
3 P
£ w <
X y IS
5 B X
. N)
3 Yoox @
< > iy <
: -
X R oo
$ s oE
B 5 T w
N 3T 3
3 R
3 A
X 3 L
b § 0%
N < ? .
3 ! ok
¢ s o
N N Y
3 Y PR
: 3 3 :
< 1 M
S 3 < 2 B
23 3 b S
oK b R 3 N
N 3 3 5
N & 1 yooR
XD s s 3 B
I SR
3 S
. s
< s .
¥ Tos
i SO
$ » S
3 AN >3 3
< * by
< T
X R
< N
&
SUCCRTTVVRTVVN,

§

& 3 & N

N 3 . Ny

3 3 X RN

N N H

by 3 N 3

. 3 I3 o%

N p .8 A

X ‘Q *\“w% 3-#(*\\\\\\“‘“ P
3 3 1%
‘ b X 3 .
B3 3 I 0s
W 3 3 s
g x 3 -
g x 3

N 3 o
b 3 3 B
x ¥ 3
3 ¥y
by F

................. A" - - o

WO 2019/060663 6/15 PCT/US2018/052131

e

st

N
X
%
$

i

s i F

i

%
3
3

o pns e

v

X
3
N

¥
¥
¥
+
5
¥
B
5
s

S B L B S R S P P SRR R B R P,
e,
i,
vy,
e,

vy,

i B VSR iy A i A i S

L o i iy A S B

&
N
X
¥
*
®
ey
b
%
¥
X
¥
¥

131

5

s

e
i,

B i B L A Wi R B i

2

Fig. 3¢

PCT/US2018/052131
7/15

WO 2019/060663

v Old

31vaddn

\ AYOLISOd3ad

06

l=ENYEN
IYH1N3IO

SIv
NOILVOIlddVY
HIOVNVIA

O
O
<t

oevy

asvavivd

oo/ D

oLy

WO 2019/060663 8/15 PCT/US2018/052131

/ 530
r-——=>—">"">">"™"77 |
' |
| 460 | / 480
I J—
| | CENTRAL
| [SERVER
[
[490
REPOSITORY |
! | S
[UPDATE UPDATE
|
| —1J
' |
' |
I ___________
I |
|
[500 510 |
[
| Current Instance 520 New Instance |
| d |
|
[490
| S |
I UPDATE '
I I
|
| Bug#s1and3 Bug#s1,3,and 6 |
[
I |
_____________________ J

FIG. 5

PCT/US2018/052131
9/15

WO 2019/060663

9 Old

o
o
O

i PEHBL W BLPRR SAT P A H

7 AR i WG

N

.
o

WO 2019/060663 PCT/US2018/052131

10/15

7%

A
5

%

e, prprys
e L H

14

o
I~

0
FIG. 7

Lt
N
8

Wk

7

N
B T % o ¥ Ea SN N e e
O 2 RS W

WO 2019/060663

% agwi

%

%

Bengy Dinty

Shakun

11/15

PCT/US2018/052131

AR

X

o
Q0

0
FIG. 8

WO 2019/060663 PCT/US2018/052131

12/15

910

Periodically access central server for updates

920

Is an update available?

930

Download update to repository
associated with application

¢ 940

Provision new instance of application
in cloud with the update installed

¢ 950

Compare target instance with new
instance to identify missing updates

‘ 960

Create an update data package with the update

¢ 970

Apply update to target instance of application

(o]
o
o

WO 2019/060663 PCT/US2018/052131

13/15

1 000}

Database
1016

Database
1014

Component Component
1018 1020
Component
1022

Server
1012

Network(s)

1010
1008

1006

FIG. 10

PCT/US2018/052131

WO 2019/060663

14/15

Ll Old

p

el
SOOIAISS Pa.ieys [Bulelu|

r '

oclt
S32IN0SaY |INjINSeU|

8cl1
juswabeuep Ausp|

ocll
Buuocyuop pue
Juswabeuep JopiQ

.3:\4

ecll vell
uchessydlQ Jepi0 Buiuoisiaold JapiO

ov:\»

1241]
801G

pepiaoid /

\

80IT
o1AeQ JUBID

|
M~ e
}sanbay sonueg

oriv
(shuomaN

442
ELIISETS

papiroid /

|

T

r447"

0ZIT SLLL
juswabeuep Japio SSeqeled fepio

aolAaQ sl

—
~ el
1sonbayy aoinleg

oLl

vrll
ELIIVETS
seLl 9€lL L papiroid
oLll vLLL il <+ |y , \
In pnop IN pnoin IN pnoin vELL 1senbay sopiag

caoll

waysAs aJnjonuseul pnojy

8o1A8Q LI

Moo:‘

PCT/US2018/052131

WO 2019/060663

15/15

¢l Old

glcl
weysAsqns abelols
ccel
T BIPAN
9lcl
abel0)1s a|gepeay
walsAs Bunessdo i3nduon
Y1l
eleq weiboid
ZIel occl
swelboid uoneonddy lapeay BIpaN
— obeJ0)s o|qepeoy
Olcl Jaindwon
Aowoy WoishAs

0ccl gccl [Cr44"
soepdn| | sweans spas
JuaAg ueng Bled
- el
- welsAsgng suolBdILNWWOD
c0cl
20¢1
woysAsgns o/l
00¢1
)

90C1
N
uoleILEMOY
Buissanoid

yun Buissanold

vl 454!
jun Hun
Buisseooud gng Buissesoud gng
T ayoen ayoeo ayoen
CEEIE 810D 210D 2100
4}

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/052131

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F8/656 GO6F8/658
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 8 782 632 B1 (CHIGURAPATI CHAKRAVARTHI 1,5-8,
S [US] ET AL) 15 July 2014 (2014-07-15) 12-15,
19,20
abstract
column 11, line 29 - column 15, Tine 8
figure 5
A US 2013/254755 Al (YOUSOUF SHENOL [BG] ET 1-20
AL) 26 September 2013 (2013-09-26)
abstract
paragraphs [0058], [0059]
A US 2010/281473 Al (ZHANG JUNBO [CN] ET AL) 1-20
4 November 2010 (2010-11-04)
abstract
paragraphs [0023] - [0027]

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

30 November 2018

Date of mailing of the international search report

07/12/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Renault, Sophie

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2018/052131
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 8782632 Bl 15-07-2014 US 8782632 Bl 15-07-2014
US 2014304698 Al 09-10-2014
US 2018052678 Al 22-02-2018
US 2013254755 Al 26-09-2013 NONE
US 2010281473 Al 04-11-2010 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - wo-search-report
	Page 63 - wo-search-report

