
International Application Number: PCT/EP2016/076550

International Filing Date: 3 November 2016 (03.11.2016)

Filing Language: English
Publication Language: English

Priority Data: 1551419-3 3 November 2015 (03.11.2015) SE

Applicant: LU LICENSE AB [SE/SE]; Box 117, 221 00 Lund (SE).

Inventors: FLYGARE, Johan; Murarevagen 15, 22730 Lund (DK). JOHANSSON, Lars; Molinvagen 1, 16850 Bromma (SE). LUNDBÄCK, Thomas; Kungsvagen 17, 14266 Transgund (SE).

Agent: H0IBERG P/S; Adelgade 12, 1304 Copenhagen K (DK).

Published:
— with international search report (Art. 21(3))
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

Title: COMPOUNDS FOR TREATMENT OF HYPOPROLIFERATIVE DISORDERS

Abstract: The present invention relates to the use of CDK8 and/or CDK19 inhibitors in the treatment of ribosomopathies as well as conditions characterized by reduced number of hematopoietic stem cells and/or progenitor cells; and bone anabolic disorders.
Compounds for treatment of hypoproliferative disorders

Field of invention

The present invention relates to the field of treatment of ribosomopathies, and conditions characterized by reduced number of hematopoietic stem cells and/or progenitor cells. The invention also relates to treatment of disorders that can be improved by increasing bone formation. The invention discloses that CDK8 and/or CDK19 inhibitors may be useful in treatment of such disorders.

Background of invention

Diamond-Blackfan Anemia (DBA) can be considered as a ribosomopathy model indication. It is caused by mono-allelic inactivating mutations in ribosomal protein genes causing disturbed ribosome biogenesis. DBA is a pure red blood cell aplasia, characterized by severely decreased numbers of erythropoietin-responsive red blood cell precursors. DBA Patients are currently treated with blood transfusions or corticosteroids, therapies that are associated with severe adverse effects and treatment-related death (Blood. 2010 Nov 11;116(19):3715-23). Shwachman-Diamond Syndrome (SDS) is an example of another ribosomopathy caused by bi-allelic hypomorphic mutations in the SBDS gene that leads to disturbed maturation of the large ribosomal subunit (Ann N Y Acad Sci. 2011 Dec. 1242:40-55). DBA and SDS are merely two out of several other "Ribosomopathies" caused by failed ribosome biogenesis. The mechanisms behind the symptoms such as bone marrow failure in these syndromes are poorly understood but are likely related to consequences of dysregulation of mRNA translation and/or failure in ribosome biogenesis which may induce activation of stress responses. Treatment options are limited for these diseases and new mechanism-based therapies are needed.

Summary of invention

The present inventors have discovered that the enzymes cyclin-dependent kinase 8 (CDK8) and cyclin-dependent kinase 19 (CDK19) play a key role in the etiology of ribosomopathies and disorders characterized by reduced number of hematopoietic stem cells and/or progenitor cells, as well as in bone anabolic disorders.
Thus in a main aspect the present invention concerns a compound for use in the treatment of an indication selected from the group consisting of ribosomopathy; a disease characterized by reduced number of hematopoietic stem cells and/or progenitor cells; and bone anabolic disorders wherein the compound is an inhibitor of cyclin-dependent kinase 8 (CDK8) and/or cyclin-dependent kinase 19 (CDK19).

Description of Drawings

Figure 1: DBA-1 confers a dose-dependent rescue of proliferation of RPS19-deficient murine erythroid progenitor cells. This figure demonstrates that DBA-1 confers a partial dose-dependent rescue of proliferation in RPS19-deficient murine erythroid progenitor cells. Cells were cultured and analysed as described in Example 1.

Figure 2: DBA-6 confers a dose-dependent rescue of proliferation of RPS19-deficient murine erythroid progenitor cells. This figure demonstrates that the DBA-1 analogue DBA-6 confers a partial dose-dependent rescue of proliferation in RPS19-deficient murine erythroid progenitor cells.

Figure 3: DBA-7 confers dose-dependent rescue of proliferation of RPS19-deficient murine erythroid progenitor cells. This figure demonstrates that the DBA-1 and DBA-6 analogue DBA-7 (15w in Saito et al. Bioorg. Med. Chem. 2013, 27, 1628-42) confers a partial dose-dependent rescue of proliferation in RPS19-deficient murine erythroid progenitor cells.

Figure 4: DBA-4 is a CDK19 inhibitor. DBA-4 was tested on 18 selected kinases by DiscoveRx LeadHunter™ Discovery Services.

Figure 5: Interaction Map from DiscoveRx KinomeScan testing the DBA-7 (0.5 uM) on 468 kinases. The figure shows an artistic representation (TREEspot™) of the human kinome phylogenetic tree. At 0.5 uM DBA-7 is a specific CDK8/CDK19 inhibitor. Arrows point at CDK8 and CDK19. The results are similar to 2 uM DBA-9 published in patent

Figure 6: The selective CDK8/CDK19 inhibitor DBA-8 shows a partial dose-dependent rescue of the proliferation defect in murine RPS19-deficient erythroid progenitor cells. This figure demonstrates that the DBA-9 analogue DBA-8 confers a partial dose-dependent rescue of proliferation in RPS19-deficient murine erythroid progenitor cells. DBA-8 has been described as Senexin A and SNX2-1-53 and is a known CDK8/CDK19 inhibitor described in Porter et al. (Nat. Acad. Sci. Proc. 2012, 109, 13799-13804) and US 2012/0071477.

Figure 7: The selective CDK8/CDK19 inhibitors DBA-7 and DBA-8 rescue cell survival defect in RPS19-deficient erythroid progenitors. The Y axis of these FACS plots shows the intensity of 7-AAD, a positive marker for cell apoptosis, which is increased upon induction of RPS19-deficiency.

Figure 8: The selective CDK8/CDK19 inhibitors DBA-7 and DBA-8 rescue the loss of c-kit+ progenitor cell observed in in vitro culture of RPS19-deficient erythroid progenitors. The Y axis of these FACS plots shows the intensity of c-kit, a positive marker for hematopoietic progenitor cells, a population that decreases in erythroid cultures after induction of RPS19-deficiency.

Figure 9: The selective CDK8/CDK19 inhibitor DBA-9 improves production of erythrocytes in vivo in a RPS19-deficient mouse model for DBA.

Figure 10 and Figure 11: The selective CDK8/CDK19 inhibitors DBA-7, DBA-9 and DBA-10 rescue proliferation of erythroid DBA patient cells in vitro. 5000 peripheral blood CD34+ cells from healthy donors or DBA patients were plated in serum free medium containing human stem cell factor and Epo to support expansion of erythroid progenitors and precursor cells. DMSO or 200 mM of DBA-7, DBA-9 or DBA-10 were added to the culture medium. The Y-axis shows cell counts at day 14 of culture. All three CDK8-inhibitors promote proliferation of DBA patient cells.

Figure 12 and Figure 13: The selective CDK8/CDK19 inhibitors DBA-7, DBA-9 and DBA-10 rescue erythroid maturation of DBA patient cells in vitro.
Cells were cultured in the same conditions as in Figure 9 and analysed by flow cytometry at day 8 of culture. CD71 is a positive marker for early erythroid progenitors while CD71 and CD235a positive cells are mature erythroid precursors. DBA-7, DBA-9 and DBA-10 increase erythroid maturation of DBA patient cells compared to DMSO.

Detailed description of the invention

Definitions

The term "CDK8" as used herein refers to cyclin dependent kinase 8. The sequence of human CDK8 is available under the accession number NP_001251.1.

The term "CDK19" as used herein refers to cyclin dependent kinase 19. The sequence of human CDK19 is available under the accession number NP_055891.1.

The term "CDK8 and/or CDK19 inhibitor" as used herein refers to a compound which is capable of inhibiting CDK8 and CDK19. In particular, a CDK8 and/or CDK19 inhibitor may be a compound capable of inhibiting the kinase activity of at least one of CDK8 and CDK19.

The term "ribosomopathies" as used herein refers to diseases caused by alterations in the structure or function of ribosomal component proteins and/or rRNA, or in the structure or functions of other genes whose products are involved in ribosome biogenesis. Thus, ribosomopathy may be a disease caused at least in part by failure in ribosome biogenesis.

Method for treatment of a clinical condition

The present invention provides CDK8 and/or CDK19 inhibitors for use in the treatment of clinical condition selected from the group consisting of ribosomopathies and diseases and disorders caused by increased apoptosis of hematopoietic stem cells and/or progenitor cells.
The CDK8 and/or CDK19 inhibitor of the invention may be any compound capable of inhibiting the activity of CDK8 and/or CDK19, such as any of the compounds described herein below in the section CDK8 and/or CDK19 inhibitor. In particular the CDK8 and/or CDK19 may be any of the compounds of formulas (I), (XIV), (XV), (XVII) or (XVIII) described herein below.

The clinical condition may be any of the clinical conditions described herein below in the section "Clinical condition".

Clinical condition

The present invention provides CDK8 and/or CDK19 inhibitors for treatment of clinical conditions associated with CDK8 and/or CDK19.

In one embodiment of the invention said clinical condition is a ribosomopathy or a disease caused by increased apoptosis of hematopoietic stem cells and/or progenitor cells.

In one embodiment of the invention the ribosomopathy is anemia, e.g. aplastic anemia. In particular, the ribosomopathy may be a constitutional aplastic anemia. Thus, the ribosomopathy may be a disease classified under D61.0 of WHO's ICD-10 classification.

In one embodiment of the invention the clinical condition to be treated with a CDK8 and/or CDK19 inhibitor according to the invention is Diamond-Blackfan anemia (DBA). DBA is an example of a ribosomopathy classified under D61.0.

In one embodiment the invention relates to CDK8 and/or CDK19 inhibitors for use in the treatment of Diamond-Blackfan anemia (DBA), wherein said CDK8 and/or CDK19 inhibitors at least partly rescue cellular hypoproliferation causing anemia in DBA. Preferably, said CDK8 and/or CDK19 inhibitors rescue cellular hypoproliferation causing anemia in DBA. It may for example be determined whether a CDK8 and/or CDK19 inhibitor rescues hypoproliferation by determining whether said CDK8 and/or CDK19 inhibitor upon administration to an individual suffering from DBA restore haemoglobin levels to a normal level, for example to a level of at least 100 g/L.
Another example of a ribosomopathy, which can be treated with a CDK8 and/or CDK19 inhibitor according to the invention is Shwachman-Diamond syndrome.

In another embodiment the clinical condition to be treated with a CDK8 and/or CDK19 inhibitor according to the invention is a clinical condition classified under D64.4 using WHO'S ICD-10 classification. Non-limiting examples of such conditions includes congenital dyserythropoietic anaemia, such as Dyshaematopoietic anaemia (congenital).

In another embodiment the clinical condition to be treated with a CDK8 and/or CDK19 inhibitor according to the invention is a clinical condition classified under Q75.4 using WHO'S ICD-10 classification. Non-limiting examples of such conditions includes Mandibulofacial dysostosis, for example Treacher-Collins syndrome.

In another embodiment the clinical condition to be treated with a CDK8 and/or CDK19 inhibitor according to the invention is a clinical condition classified under Q78.8 using WHO'S ICD-10 classification. Non-limiting examples of such conditions includes Cartilage-hair hypoplasia.

In another embodiment the clinical condition to be treated with a CDK8 and/or CDK19 inhibitor according to the invention is a clinical condition classified under Q82.8 using WHO'S ICD-10 classification. Non-limiting examples of such conditions includes congenital malformations of skin, for example Dyskeratosis congenital.

In another embodiment the clinical condition to be treated with a CDK8 and/or CDK19 inhibitor according to the invention is a clinical condition classified under Q96 using WHO'S ICD-10 classification. Non-limiting examples of such conditions includes Turner's syndrome.

In another embodiment of the invention the ribosomopathy is selected from the group consisting of 5q- myelodysplastic syndrome, North American Indian childhood cirrhosis, Isolated congenital asplenia, and Bowen-Conradi syndrome.
The clinical condition to be treated with a CDK8 and/or CDK19 inhibitor according to the invention may also be a disease characterized by reduced number of hematopoietic stem cells and/or progenitor cells. Such clinical conditions may for example be a disease caused by induced apoptosis in hematopoietic stem cells and/or progenitor cells. Such clinical conditions may for example also be a disease caused by hypoproliferation of hematopoietic stem cells and/or progenitor cells.

Thus, the clinical condition may also be an immunodeficiency growth retardation, a bone marrow failure diseases or immuno-deficiencies such as Schwachman-Diamond Syndrome, Dyskeratosis congenita, Cartilage-hair hypoplasia, Treacher-Collins syndrome or Turner's syndrome.

In one embodiment of the invention the ribosomopathy is selected from the group consisting of Diamond-Blackfan anemia, Dyskeratosis congenita, Shwachman-Diamond syndrome, 5q- myelodysplasia syndrome, Treacher Collins syndrome, Cartilage-hair hypoplasia, North American Indian childhood cirrhosis, Isolated congenital asplenia, Bowen-Conradi syndrome, Turners syndrome and Fanconi's anemia.

In certain embodiments of the invention, the invention provides particular CDK8 and/or CDK19 inhibitors for therapies aimed at promoting osteogenesis. In such embodiments of the invention, the CDK8 and/or CDK19 inhibitor may in particular be any of the compounds of formulas (I), (XIV), (XV), (XVII) or (XVIII) described herein below.

The bone anabolic disorder may for example be selected from the group consisting of osteopathy and osteoarthritis.

Said osteopathy may for example be selected from the group consisting of osteoporosis, osteopenia or bone destruction associated with rheumatoid arthritis, Paget's disease of bone, bone fracture or dysostosis due to dwarfism.

For example, CDK8 and/or CDK19 inhibitors may be used for treatment of any clinical condition classified under M80-M85 using WHO's ICD-10 classification. Thus, the CDK8 and/or CDK19 inhibitors may be used in the treatment of disorders of bone density and structure. Said disorders of bone density and structure may for example be selected from the group consisting of Osteoporosis with pathological fracture,
osteoporotic vertebral collapse and wedging, postmenopausal osteoporosis with pathological fracture, postoophorectomy osteoporosis with pathological fracture, osteoporosis of disuse with pathological fracture, postsurgical malabsorption osteoporosis with pathological fracture, drug-induced osteoporosis with pathological fracture, idiopathic osteoporosis with pathological fracture, unspecified osteoporosis with pathological fracture, osteoporosis without pathological fracture, postmenopausal osteoporosis, postoophorectomy osteoporosis, osteoporosis of disuse, postsurgical malabsorption osteoporosis, drug-induced osteoporosis, idiopathic osteoporosis, localized osteoporosis, senile osteoporosis, unspecified osteoporosis, osteoporosis in diseases classified elsewhere, osteoporosis in multiple myelomatisos, osteoporosis in endocrine disorders, adult osteomalacia, puerperal osteomalacia, senile osteomalacia, adult osteomalacia due to malabsorption, postsurgical malabsorption osteomalacia in adults, adult osteomalacia due to malnutrition, aluminium bone disease, other drug-induced osteomalacia in adults, unspecified adult osteomalacia, disorders of continuity of bone, malunion of fracture, nonunion of fracture, delayed union of fracture, stress fracture, pathological fracture, fibrous dysplasia, skeletal fluorosis, hyperostosis of skull, osteitis condensans, solitary bone cyst, aneurysmal bone cyst, other cyst of bone, hyperostosis of bones and osteosclerosis.

In one embodiment the CDK8 and/or CDK19 inhibitors may be for treatment of osteoporosis. Said osteoporosis may for example be postmenopausal osteoporosis, senile osteoporosis or secondary osteoporosis caused by the use of steroids or immunosuppressants.

CDK8 and/or CDK19 inhibitors can be used in the treatment of other bone-related clinical conditions including treatment of osteolysis, healing of bone fractures, postsurgical bone healing and prevention of prosthetic loosening.

CDK8 and/or CDK19 inhibitor

The invention relates to CDK8 and/or CDK19 inhibitors for use in treatment of the clinical conditions outlined in the section "Clinical condition".

The CDK8 and/or CDK19 inhibitor may be any compound capable of inhibiting CDK8 and/or CDK19. In particular, the CDK8 and/or CDK19 inhibitor may be any compound capable of inhibiting the kinase activity of CDK8 and/or CDK19.
Whether a compound is capable of inhibiting CDK8 and/or CDK19 may be determined using any suitable assay, for example an assay for kinase activity. An assay for kinase activity of CDK8 and/or CDK19 may for example comprise the steps of:

1. Incubating the following under conditions allowing for activity of CDK8 and/or CDK19
 a. a substrate for CDK8 and/or CDK19, which for example may be the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II;
 b. CDK8 and/or CDK19 typically together with cyclin C
 c. ATP, for example ATP comprising radioactively labelled phosphate
 d. a putative inhibitor

b) determining whether said substrate is phosphorylated, e.g. by determining whether radioactively labelled phosphate is transferred to the substrate wherein if phosphorylation of the substrate is inhibited, then said putative inhibitor is a CDK8 and/or CDK19 inhibitor.

An assay for kinase activity of CDK8 may for example comprise the steps of:

1. Incubating the following under conditions allowing for activity of CDK8
 a. a substrate for CDK8, which for example may be , which in the case of CDK8 for example may be the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II;
 b. CDK8 typically together with cyclin C
 c. ATP, for example ATP comprising radioactively labelled phosphate
 d. a putative CDK8 inhibitor

b) determining whether said substrate is phosphorylated, e.g. by determining whether radioactively labelled phosphate is transferred to the substrate wherein if phosphorylation of the substrate is inhibited, then said putative CDK8 inhibitor is a CDK8 inhibitor.

In one embodiment a compound is considered to be a CDK8 and/or CDK19 inhibitor if said compound can selectively bind to CDK8 and/or CDK19. In particular, a compound is considered to be a CDK8 and/or CDK19 inhibitor if said compound can bind to CDK8 and/or CDK19 with a K_D of at the most of 500 μM, such as at the most of 400 μM, such as at the most of 300 μM, , such as at the most of 200 μM, such as at the most of 100
µM, such as at the most of 50 µM, such as at the most of 10 µM, such as at the most of 1 µM, such as at the most of 500 nM, such as at the most of 400 nM, for example at the most of 300 nM, for example at the most 200 nM, such as at the most 100 nM. By “selective” is generally meant that the CDK8 and/or CDK9 inhibitor does not exhibit harmful off-target effects which may affect the clinical efficacy of the inhibitor, nor is the CDK8 and/or CDK9 inhibitor toxic in clinically effective concentrations.

One useful way of determining whether a compound is a CDK8 and/or CDK19 inhibitor is to use the KinomeScan assay, which is commercially available from DiscoverX, United States. In particular, a compound may be considered to be a CDK8 and/or CDK19 inhibitor if it can inhibit CDK8 and/or CDK19 at a concentration as defined herein above using the KinomeScan assay.

The CDK8 and/or CDK19 inhibitor according to the invention may for example be:

i) any of the compounds of formula (I) described herein below in the section "CDK8 and/or CDK19 inhibitors of formula (I),

ii) any of the compounds of formula (XIV) or (XV) described herein below in the section "CDK8 and/or CDK19 inhibitors of formula (XIV) or (XV),

iii) any of the compounds of formula (XVII) described herein below in the section "CDK8 and/or CDK19 inhibitors of formula (XVII)

In one embodiment of the invention the CDK8 and/or CDK19 inhibitors may be any of the CDK8 inhibitors described in WO2014/029726 which is hereby incorporated by reference. In particular the CDK8 and/or CDK19 inhibitor may any of the compounds of formula I of WO 201 4/029726 described therein, for example any of the compounds mentioned in Table 1 of WO 2014/029726.

In one embodiment of the invention the CDK8 and/or CDK19 inhibitors may be any of the CDK8 inhibitors described in WO 2014/090692 which is hereby incorporated by reference. In particular the CDK8 and/or CDK19 inhibitor may any of the compounds of formula I of WO 201 4/090692 described therein, for example any of the compounds mentioned in Table 1 of WO 2014/090692.

In one embodiment of the invention the CDK8 and/or CDK19 inhibitors may be any of the CDK8 inhibitors described in WO2014/106606 which is hereby incorporated by
reference. In particular the CDK8 and/or CDK19 inhibitor may any of the compounds of formula I of WO 2014/106606 described therein, for example any of the compounds mentioned in Table 1 of WO 2014/106606.

In one embodiment of the invention the CDK8 and/or CDK19 inhibitors may be any of the CDK8 inhibitors described in WO 2014/154723 which is hereby incorporated by reference. In particular the CDK8 and/or CDK19 inhibitor may any of the compounds of formula I of WO 2014/154723 described therein, for example any of the compounds mentioned in Table 1 of WO 2014/154723.

In one aspect, the present invention concerns a compound selected from the compounds of any one of the general formulas (XVII), (XIV), (XV), (XVIII) and (I), for use in the treatment of a ribosomopathy, and/or a disease characterized by reduced number of hematopoietic stem cells and/or progenitor cells as described herein.

In one aspect, the present invention concerns a compound selected from the compounds of any one of the general formulas (XVII), (XIV), (XV), and (XVIII), for use in the treatment of a bone anabolic disorder as described herein.

In one embodiment the compound of the invention is selected from the group consisting of the compounds mentioned in Table 1 below.
<table>
<thead>
<tr>
<th>Compound name</th>
<th>Structure</th>
<th>EC<sub>50</sub> (μM)</th>
<th>EC<sub>MAX</sub> (% rescue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBA-1</td>
<td></td>
<td>1.2</td>
<td>25</td>
</tr>
<tr>
<td>DBA-2</td>
<td></td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>DBA-3</td>
<td></td>
<td>11</td>
<td>38</td>
</tr>
<tr>
<td>DBA-4</td>
<td></td>
<td>2.8</td>
<td>28</td>
</tr>
<tr>
<td>DBA-5</td>
<td></td>
<td>1.7</td>
<td>21</td>
</tr>
<tr>
<td>DBA-6</td>
<td></td>
<td>0.18</td>
<td>30</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>DBA-7</td>
<td></td>
<td>0.025</td>
<td>82</td>
</tr>
<tr>
<td>DBA-8</td>
<td></td>
<td>0.5</td>
<td>80</td>
</tr>
<tr>
<td>DBA-9</td>
<td></td>
<td>0.05</td>
<td>60</td>
</tr>
<tr>
<td>DBA-10</td>
<td></td>
<td>0.02</td>
<td>60</td>
</tr>
</tbody>
</table>
CDK8 and/or CDK19 inhibitors of formula (I)

In one embodiment, the CDK8 and/or CDK19 inhibitor for use according to the present invention is a compound of the general formula (I), or a prodrug, tautomer or pharmacologically acceptable salt thereof:

Formula (I)

wherein:
R\(^1\) is selected from the group consisting of a hydrogen atom, Ci-C\(_6\) alkyl, -NH\(_2\), alkyl-amine,

R\(^2\) is selected from the group consisting of a hydrogen atom, -N(CH\(_3\))\(_2\), -NH\(_2\), methyl, trifluoromethyl, -CH\(_2\)OCH\(_3\), -PhOCH\(_3\), -PhCH\(_3\), -PhCl or a group of any one of the formulas (II), (III), (IV) and (V):

R\(^3\) is selected from the group consisting of a hydrogen atom, methyl, acetyl, phenyl, cyclopropyl, and a group of the formula (V):

R\(^4\) is selected from the group consisting of a hydrogen atom, methyl, ethyl, cyclopropyl, Ci-C\(_6\) alkyl, acetyl, phenyl, trifluoromethyl, -CH\(_2\)CH(CH\(_3\))\(_2\), -PhCl, -PhCH\(_3\) or a group of the formulas (III) or (VII):
or wherein \(R^4 \) is an oxygen atom double bonded to the carbon atom of the thienopyridine ring thus forming a structure of formula (VI):

or wherein \(R^2 \) and \(R^3 \) are joined to form a 6-membered cyclic structure of the formula (VIII):

or wherein \(R^3 \) and \(R^4 \) are joined to form a 5-, 6- or 7-membered cyclic structure of any one of the formulas (IX), (X), (XI) or (XII):
wherein R\textsubscript{5} and R\textsubscript{6} optionally and individually are -OCH\textsubscript{3}.

The CDK8 and/or CDK19 inhibitor may in one embodiment be a compound of the general formula (I), or a salt, prodrug, tautomer or pharmacologically acceptable salt thereof:

\[\text{Formula (IX)} \]

\[\text{Formula (X)} \]

\[\text{Formula (XI)} \]

\[\text{Formula (XII)} \]
Wherein:

R^1 is $-\text{NH}_2$;

R^2 represents $R^a S^-$, RO^-, $R^a NH^-$, $R^a (R^b) N^-$ or a group of formula (XIII):

Wherein R^a and R^b are the same or different and independently represent a C_1-C_6 alkyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a C_3-C_8 cycloalkyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a 5- to 7-membered heterocyclic group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C_6C_6 aryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; or a 5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms.

R^7 and R^8 are the same or different and independently represent a hydrogen atom; a group selected from Substituent Group a, Substituent Group β and Substituent Group γ; a CrC_6 alkyl group substituted with one or more groups selected from
Substituent Group γ; or a \(\text{Ci-C}_6 \) alkoxy group substituted with one or more groups selected from Substituent Group γ,

or when \(R^7 \) and \(R^8 \) are bonded to adjacent carbon atoms, \(R^7 \) and \(R^8 \) together with the carbon atoms to which they are bonded may form a \(\text{C}_3-\text{C}_8 \) cycloalkyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a \(\text{5- to 7-membered heterocyclyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ} \) which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(\text{C}_6-\text{Cl}_6 \) aryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; or a \(\text{5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ} \) and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms,

\(E \) represents a single bond; a double bond; an oxygen atom; a sulfur atom; sulfinyl; sulfonyl; or a group having the formula \(\text{R}_6 \text{N}^-; \)

\(\text{R}_6 \) represents a hydrogen atom; a \(\text{CrC}_6 \) alkyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a \(\text{C}_2-\text{C}_6 \) alkenyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a \(\text{C}_3-\text{C}_8 \) cycloalkyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a \(\text{5- to 7-membered heterocyclyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ} \) and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(\text{C}_6-\text{Cl}_6 \) aryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; or a \(\text{5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ} \) and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a formyl group; a \(\text{C}_2-\text{C}_2 \) alkylcarbonyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a \(\text{5- to 7-membered heterocyclylcarbonyl group which may be} \)
substituted with one or more groups selected from Substituent Group a, Substituent Group \(\beta \) and Substituent Group \(\gamma \) and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(\text{C}_7\text{-C}_n \) arylcarbonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group \(\beta \) and

Substituent Group \(\gamma \); a 5- to 7-membered heteroarylcarnbonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group \(\beta \) and Substituent Group \(\gamma \) and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(\text{CrC}_6 \)alkylsulfonyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group \(\gamma \); a \(\text{C}_1\text{-C}_0 \) arylsulfonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group \(\beta \) and Substituent Group \(\gamma \); a 5- to 7-membered heteroaryl sulfonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group \(\beta \) and Substituent Group \(\gamma \); a \(\text{C}_1\text{-C}_7 \) alkoxy carbonyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group \(\gamma \); a \(\text{C}_7\text{-C}_n \) aryloxy carbonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group \(\beta \) and Substituent Group \(\gamma \); or a group having the formula \(R^c(R^d)\text{N-CO-} \) (wherein \(R^c \) and \(R^d \) are the same or different and independently represent a hydrogen atom or a \(\text{CrC}_6 \)alkyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group \(\gamma \)).

\(n \) represents an integer of 1 to 4,

Substituent Group a represents the group consisting of a halogen atom; a nitro group; a cyano group; a hydroxy group; a group having the formula \(R^{10}\text{-CO-} \), the formula \(R^e(R^f)\text{N-} \), the formula \(R^e(R^f)\text{N-CO-} \) or the formula \(R^e(R^f)\text{N-SO}_2^{-} \) (wherein \(R^{10} \) represents a hydrogen atom, a \(\text{CrC}_6 \)alkyl group, a \(\text{CrC}_6 \)halogenated alkyl group, a \(\text{C}_3\text{-C}_9 \) cycloalkyl group, a hydroxy group, a \(\text{CrC}_6 \)alkoxy group, a \(\text{CrC}_6 \)aryl group or a \(\text{CrC}_6\text{-Cl}_0 \) alkoxy group and \(R^e \) and \(R^f \) are the same or different and independently represent a hydrogen atom; a \(\text{CrC}_6 \)alkyl group; a \(\text{CrC}_6 \)alkoxy group; a \(\text{CrC}_6\text{-Cl}_0 \) aryl group; a 5- to 7-membered heteroaryl group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a formyl group; a \(\text{CrC}_6 \)arylcarnbonyl group; a \(\text{CrC}_6\text{-Cl}_0 \) alkoxy carnyl group; a \(\text{CrC}_6\text{-Cl}_0 \) aryl group; a 5- to 7-membered heteroarylcarnbonyl group which contains 1 to 3 sulfur, oxygen and/or
nitrogen atoms; a Ci-C₆ alkylsulfonyl group; a C₆-Ci₀ arylsulfonyl group; or a 5- to 7-membered heteroarylsulfonyl group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms, or alternatively Rᵣ and Rᵪ together with the nitrogen atom to which they are bonded form a 4- to 7-membered heterocycl group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms (wherein the heterocycl group may have 1 or 2 substituent groups selected from a hydroxy group and a methyl group)); a hydroxyimino group; a Ci-C₆ alkoxyimino group; a Ci-C₆ alkoxy group; a C₃-C₈ cycloalkyloxy group; a Ci-C₆ halogenated alkoxy group; a Ci-C₆ alkylthio group; a Ci-C₆ alkylsulfinyl group; and a Ci-C₆ alkylsulfonyl group,

Substituent Group β represents the group consisting of a Ci-C₆ alkyl group which may be substituted with one or more groups selected from Substituent Group α; and a Ci-C₆ alkyl group substituted with a 5- to 7-membered heterocycl group which may be substituted with one or more groups selected from Substituent Group α, and a Ci-C₆ alkyl group and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms, and

Substituent Group γ represents the group consisting of a Ci-C₆ alkoxy group substituted with one or more groups selected from Substituent Group α; a Ci-C₆ alkylthio group substituted with one or more groups selected from Substituent Group α; a C₃-C₈ cycloalkyl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β; a 5- to 7-membered heterocycl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C₆-Ci₀ aryl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β; a 5-to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C₃-C₈ cycloalkyloxy group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β a 5- to 7-membered heterocycl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C₆-Ci₀ arloxy group which may be substituted with one or more groups selected from Substituent Group α and
Substituent Group β; a 5- to 7-membered heteroaryloxy group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; and a C_6Cl_6 aryl - Cl_6 alkoxy group in which the aryl moiety may be substituted with one or more groups selected from Substituent Group α and Substituent Group β or a pharmacologically acceptable salt thereof;

R^3 is a hydrogen atom; and

R^4 is selected from the group consisting of a hydrogen atom, a cyclopropyl group or a Ci-C_6 alkyl group.

In one embodiment R^4 is selected from the group consisting of a hydrogen atom, a cyclopropyl group or a Ci-C_4 alkyl group.

In one embodiment R^4 is selected from the group consisting of a hydrogen atom, methyl, ethyl, propyl or cyclopropyl.

In one embodiment R^4 is selected from the group consisting of a hydrogen atom or methyl.

In one embodiment R^2 is a group consisting of $R^2(R^3)N^-$, and R^a and R^b are the same or different and independently represent a Ci-C_6 alkyl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group γ.

In one embodiment R^a is a CrC_6 alkyl group which may be substituted with one group selected from Substituent Group α and Substituent Group γ, R^b is a Ci-C_6 alkyl group, and Substituent Group α is the group consisting of a Ci-C_6 alkoxy group, and Substituent Group γ is the group consisting of a Ci-C_6 alkoxy group substituted with one or more groups selected from Substituent Group α; a C_6Cl_6 aryloxy group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β; and a 5- to 7-membered heteroaryloxy group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms.

In one embodiment R^2 is a group of formula (XIII):
or more groups selected from Substituent Group a and Substituent Group γ.

In one embodiment, R₈ is a group of Formula (XIII):

\[
\text{Formula (XIII)}
\]

wherein E represents a single bond, an oxygen atom, a sulfur atom or a group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms. Y and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms.

and/or nitrogen atoms; a Cₖ₋₀ alkyl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group γ.

substituted with one or more groups selected from Substituent Group α, Substituent Group β and Substituent Group γ.

wherein R₈ represents a C₆₋₀ aryl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group γ.

or a group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a Cₖ₋₀ alkyl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group β; or a Cₖ₋₀ alkyl group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms.

Substituent Group α, Substituent Group β and Substituent Group γ.

Substituent Group α, Substituent Group β and Substituent Group γ.

Substituent Group α, Substituent Group β and Substituent Group γ.

Substituent Group α, Substituent Group β and Substituent Group γ.

Substituent Group a and Substituent Group γ.
Ci arylsulfonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a 5- to 7-membered heteroarylsulfonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C₂-C₇ alkoxy carbonyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; or a group having the formula R⁰(R⁵)N-CO-, and n is an integer of 1 to 3.

In one embodiment R⁷ is a CrC₆ alkoxy group; a Ci-C₆ alkyl group which may be substituted with one or more groups selected from Substituent Group a; a Ci-C₆ alkoxy group substituted with one or more groups selected from Substituent Group a; a C₆-Ci₀ aryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a Ci-C₆ alkyl group substituted with one or more groups selected from Substituent Group γ; or a Ci-C₆ alkoxy group substituted with one or more groups selected from Substituent Group γ, E is a single bond, and n is an integer 2.

In one embodiment R⁷ is a hydrogen atom, Z is a sulfur atom, and n is 1.

In one embodiment R⁷ is a hydrogen atom, E is a group having the formula R¹¹N<, wherein R¹¹ represents a C₆-Ci₀ aryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; or a 5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; and wherein n is an integer 2.

In a preferred embodiment of the invention the CDK8 and/or CDK19 inhibitor of formula (I) is selected from the group consisting of:
CDK8 and/or CDK19 inhibitors of formula (XIV) or (XV)

In one embodiment, the CDK8 and/or CDK19 inhibitor for use according to the present invention is a compound of the general formula (XIV) or (XV), or a prodrug, tautomer or pharmacologically acceptable salt thereof:
wherein B^1 is hydrogen when B^2 is a group of the formula (XVI); or wherein B^2 is hydrogen when B^1 is a group of the formula (XVI):

wherein D is selected from C, O, and N; and wherein D is optionally substituted with a group Q wherein Q is selected from hydrogen, $-\text{CrC}_6$-alkyl, $-\text{Ci-C}_6$-alkoxy-Ci-C_6-alkyl, $-\text{Ci-C}_6$-alkylamine; and

n is an integer 0, 1 or 2.

In one embodiment said alkyl is methyl.

In embodiment n is 0 or 1, in particular n may be 1.
In particular, the CDK8 and/or CDK19 inhibitor of formula (XIV) or formula (X) may be a compound selected from the group consisting of DBA-8 and DBA-9:

![DBA-8](image)

DBA-8

![DBA-9](image)

DBA-9

CDK8 and/or CDK19 inhibitors of formula (XVII)

In one embodiment, the CDK8 and/or CDK19 inhibitor for use according to the present invention is a compound of the general formula (XVII), or a prodrug, tautomer or pharmacologically acceptable salt thereof:
wherein X^1, X^2 and X^3 are each independently selected from the group consisting of H, F, Cl, Br, I, -OT, -N(T=T), -NHC(=O)T, nitro, cyano, cyclopropyl and -C$_1$-C$_3$ alkyl, with the proviso that at least two substituents selected from X^1, X^2 and X^3 are each independently selected from the group consisting of F, Cl, Br and I;

Z^1 and Z^2 are each independently selected from the group consisting of H, -Ci-C$_6$ alkyl, -OT and -N(T=T);

Z^3 and Z^4 are either taken together to form an oxo group at the carbon atom to which they are attached; or Z^3 and Z^4 are each independently selected from the group consisting of H, -C$_1$-C$_6$ alkyl, -OT and -N(T=T);

Z^5 and Z^6 are either taken together to form an oxo group at the carbon atom to which they are attached; or Z^5 and Z^6 are each independently selected from the group consisting of H, -C$_1$-C$_6$ alkyl, -OT and -N(T=T);

X^4 is either absent or selected from the group consisting of NR, -N(R)(CH$_2$)$_n$-C(=0)NH- and -C(=0)-; wherein R$_{12}$ is selected from H and -C$_1$-C$_6$ alkyl;

Y^1 is selected from the group consisting of H, -Ci-C$_6$ alkyl and a 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle, with the proviso that the point of attachment on said heterocycle is carbon if X^4 is -NR$_{12}$ or -C(=0)NH-, wherein said -Ci-C$_6$ alkyl is optionally substituted with one or more substituents independently selected from -OT, -ST, -N(T=T) and a 5- to 6-membered saturated heterocycle, and wherein said 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle is optionally substituted with one or
more substituents independently selected from F, Cl, Br, i, -C(=0)H, -OT1, -N(T2)(T3), -C(=0)N(T 2)(T3), -C(=0)OT 1 and - C1-C3 alkyl, wherein said - C1-C3 alkyl is optionally substituted with one or more substituents independently selected from -OT1 and -N(T2)(T3);

T1, T2 and T3 are each independently selected from H and -Cl-C6 alkyl optionally substituted with one or more substituents independently selected from -N(T5)(T6), -OT7, -ST7, nitro, cyano, -C(=0)OT 7, -C(=0)N(T 5)(T6), -OC(=0)N(T 5)(T6), -S(=0)2T7, -S(=0)2OT8 and -S(=0)2N(T5)(T6);

T4 is -Cl-C6 alkyl optionally substituted with one or more substituents independently selected from -N(T5)(T6), -OT7, -ST7, nitro, cyano, -C(=0)OT 7, -C(=0)N(T 5)(T6), -OC(=0)N(T 5)(T6), -S(=0)2T8, -S(=0)2OT7 and -S(=0)2N(T5)(T6);

T5, T6 and T7 are each independently selected from H and -Cl-C6 alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano; and

T8 is selected from -Cl-C6 alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano; or a pharmaceutically acceptable salt thereof.

In one embodiment X1 may be selected from the group consisting of H, F, Cl, Br, i, -OT1, -N(T5)(T3), -NH(=0)T 4, nitro, cyano, cyclopropyl and - C1-C3 alkyl; and X2 and X3 are independently selected from the group consisting of F, Cl, Br and i.

In one embodiment Y1 may be a 4- to 7-membered saturated or unsaturated carbocycle or heterocycle, with the proviso that the point of attachment on said heterocycle is carbon if X4 is -NR 12- or -C(=0)NH-, wherein said 4- to 7-membered saturated or unsaturated carbocycle or heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, i, -C(=0)H, -OT1, -N(T2)(T3), -C(=0)N(T 2)(T3), -ST1 and - C1-C3 alkyl, wherein said - C1-C3 alkyl is optionally substituted with one or more substituents independently selected from -OT1 and -N(T2)(T3).
In one embodiment X^4 is absent and Y^1 is a 4- to 7-membered saturated heterocycle, wherein said 4- to 7-membered saturated heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, i, $-C(=0)H$, $-OT^1$, $-N(T^2)(T^3)$, $-C(=0)N(T^2)(T^3)$, $-C(=0)OT^1$, $-ST^1$ and $-C_1-C_3$ alkyl, wherein said $-C_1-C_3$ alkyl is optionally substituted with one or more substituents independently selected from $-OT^1$ and $-N(T^2)(T^3)$.

In one embodiment X^4 is absent and Y^1 is piperazine, wherein said piperazine is optionally substituted with one or more substituents independently selected from F, Cl, Br, i, $-C(=0)H$, $-OT^1$, $-N(T^2)(T^3)$, $-ST^1$ and $-C_1-C_3$ alkyl, wherein said $-C_1-C_3$ alkyl is optionally substituted with one or more substituents independently selected from $-OT^1$ and $-N(T^2)(T^3)$.

In one embodiment Z^1, Z^2, Z^3, Z^4, Z^5 and Z^6 are each independently selected from the group consisting of H, $-C_1-C_6$ alkyl, $-OT^1$ and $-N(T^2)(T^3)$.

In one embodiment the CDK8 and/or CDK19 inhibitor of formula (XVII) is a compound of the formula:

![DBA-10](attachment://DBA-10.png)

In one embodiment of the invention the CDK8 and/or CDK19 inhibitor of formula (XVII) is 7,8-dibromo-9-methyl-2-(piperazin-1-yl)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinoline hydrochloride.
CDK8 and/or CDK19 inhibitors of formula (XVIII)

In one embodiment, the CDK8 and/or CDK19 inhibitor for use according to the present invention is a compound of the general formula (XVIII), or a prodrug, tautomer or pharmacologically acceptable salt thereof:

\[
\begin{align*}
&
M^1 \text{ is } H \text{ or } NH_2, \\
& M^2 \text{ is } LA, \text{ Hal, } CN, \\
& M^3 \text{ is } H, \text{ Hal, } NH_2, LA, \text{ HO(LA)-, NH(LA), } \\
& M^4 \text{ is } CN, \text{ CONH}_2, \text{ CONH(LA) } \\
& \text{or} \\
& M^3, M^4 \text{ together with the } C \text{ atom they are attached to, form a } 5\text{- or } 6\text{-membered non-aromatic heterocycle, having } 1\text{-3 heteroatoms, individually selected from the } \\
& \text{group consisting of } O, S \text{ and } N, \text{ which is substituted by } 1 \text{ or } 2 \text{ oxo groups, which } \\
& \text{heterocycle may further be monosubstituted by } LA \text{ or } OH, \text{ and which heterocycle } \\
& \text{may form a condensed ring system with a phenyl or pyridyl group, } \\
& M^5 \text{ is } CH \text{ or } N. \\
& M^6 \text{ is Cyc, } \text{CONH}_2, \text{COO(LA) or CONH(LA), } \\
& M^7 \text{ is } H, \\
& \text{or} \\
& M^6, M^7 \text{ together with the atoms they are attached to, form a } 5\text{- or } 6\text{-membered } \\
& \text{heterocycle, having } 1\text{-3 heteroatoms, individually selected from the group } \\
& \text{consisting of } O, S \text{ and } N, \text{ which is, optionally, independently mono- } \\
& \text{di- or trisubstituted by oxo, OH, LA, NH}_2, \text{NH(LA), } N(LA)_2, \text{NHCOO(LA) or HO(LA)-},
\end{align*}
\]
Cyc is a 5- or 6-membered monocyclic, aliphatic or aromatic homo- or heterocycle having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which may be mono- or di-substituted by oxo, LA, NH₂, NH(LA), N(LA)₂, HO(LA)-, or monosubstituted by CA.

LA is an unbranched or branched alkyl, having 1, 2, 3, 4 or 5 carbon atoms, which may be saturated or partially unsaturated, wherein 1, 2 or 3 H atoms may be replaced by Hal, and/or

1 CH₃ group may be replaced by CN, or

1 CH₂ group may be replaced by -O-, -NH- or -SO₂⁻, and/or

1 CH group may be replaced by N.

CA is a cycloalkyl having 3, 4, 5 or 6 carbon atoms, or cycloalkyl alkyl having 3, 4, 5 or 6 ring carbon atoms and 1 or 2 non-ring carbon atoms, in which cycloalkyl or cycloalkyl alkyl one ring atom may be replaced by O, and which cycloalkyl or cycloalkyl alkyl may be monosubstituted by OH.

Hal is F, Cl, Br or I.

In one embodiment, the CDK8 and/or CDK19 inhibitor for use according to the present invention is a compound of the general formula (XIX), or a prodrug, tautomer or pharmacologically acceptable salt thereof:

![Formula (XIX)](chart)

wherein:

A¹ is selected from the group consisting of a hydrogen atom and-NH₂,

A² is selected from the group consisting of -Cl, -F, -Br, -I and a hydrogen atom,
A^3 is selected from the group of formulas (XX) and (XXI);

Formula (XX)

Formula (XXI)

wherein:

A^4 is a hydrogen atom or a Ci-C_6 alkyl of which one or more atoms may individually be replaced with an atom selected from the group consisting of O, N, and S, and which may be substituted with one or more groups individually selected from the group consisting of Ci-C_6 alkyl, -OH, oxo, and -NA$_5$A$_6$, wherein A^5 and A^6 are individually selected from the group consisting of hydrogen and Ci-C_6 alkyl that may be joined to form a 3-, 4-, 5-, or 6-membered cyclic structure,

In one embodiment, A^2 is $-\text{Cl}$.

In one embodiment A^4 is $-\text{CH}_3$.

In particular, the **CDK8** and/or **CDK19** inhibitor of formula (XVIII) or formula (XIX) is a compound of the formula:

DBA-11
In particular, the CDK8 and/or CDK19 inhibitor of formula (XVIII) or formula (XIX) is 8-
[3-chloro-5-[4-(1-methyl-1H-pyrazol-4-yl)phenyl]-4-pyridinyl]-2,8-diazaspiro[4.5]decan-
1-one.

In particular, the CDK8 and/or CDK19 inhibitor of formula (XVIII) or formula (XIX) is a
compound of the formula:

![Chemical Structure](image)

DBA-12

In particular, the CDK8 and/or CDK19 inhibitor of formula (XVIII) or formula (XIX) is 8-
(2-Amino-3-chloro-5-(1'-methyl-1 H-indazol-5-yl)pyridin-4-yl)-2,8-diazaspiro[4.5]decan-1-
one.

Salts, prodrugs, solvates and tautomers

As mentioned herein above the CDK8 and/or CDK19 inhibitor may be any of the
compounds of formula (I), formula (XIV), formula (XV), formula (XVII) or formula (XVIII)
described herein above or prodrugs, tautomers or pharmacologically acceptable salts
thereof.

Said pharmacologically acceptable salt may be any salts, such as acid or base
additions salts of the CDK8 and/or CDK19 inhibitors of the present invention which are,
within the scope of sound medical judgment, suitable for use without undue toxicity,
irritation, allergic response, and the like, commensurate with a reasonable benefit/risk ratio, and effective for their intended use, as well as the zwitterionic forms, where possible, of the compounds of the invention.

Pharmacologically acceptable salts refers to the relatively non-toxic, inorganic and organic addition salts of CDK8 and/or CDK19 inhibitors of the present invention. These salts can be prepared in situ during the final isolation and purification of the compounds, or by subsequently reacting the purified compound in its free acid or base form with a suitable organic or inorganic compound and isolating the salt thus formed.

In so far as the CDK8 and/or CDK19 inhibitors of this invention are basic compounds, they are all capable of forming a wide variety of different salts with various inorganic and organic acids. Although such salts must be pharmacologically acceptable for administration to animals, it is often desirable in practice to initially isolate the compound from the reaction mixture as a pharmaceutically unacceptable salt and then simply convert to the free base compound by treatment with an alkaline reagent and thereafter convert the free base to a pharmaceutically acceptable acid addition salt.

The compounds of the present invention may exist in unsolvated forms as well as in solvated forms, including hydrated forms. In general, the solvated forms, including hydrated forms, are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention.

The term "prodrug" refers to compounds that are rapidly transformed in vivo to yield the parent CDK8 and/or CDK19 inhibitors of the above formulae, for example, by hydrolysis. A thorough discussion is provided in T. Higuchi and V Stella, "Pro-drugs as Novel Delivery Systems," Vol. 14 of the A.C.S. Symposium Series, and in Bioreversible Carriers in Drug Design, ed. Edward B. Roche, American Pharmaceutical Association and Pergamon Press, 1987, both of which are hereby incorporated by reference.

Examples of prodrugs include pharmaceutically acceptable, non-toxic esters of the compounds of the present invention, including CrC₆ alkyl esters wherein the alkyl group is a straight or branched chain. Acceptable esters also include C₅-C₇ cycloalkyl esters as well as arylalkyl esters such as, but not limited to benzyl. Cl-C₄ alkyl esters are preferred. Esters of the compounds of the present invention may be prepared

CDK8 and/or CDK19 inhibitors may contain chiral centers and therefore may exist in different enantiomeric and diastereomeric forms. This invention relates to all optical isomers and all stereoisomers of the CDK8 and/or CDK19 inhibitors of formulas (I), (XIV), (XV), (XVII) or (XVIII) unless otherwise specified.

Pharmaceutical formulations

Whilst it is possible for the CDK8 and/or CDK19 inhibitors or salts of the present invention to be administered as the raw chemical, it is preferred to present them in the form of a pharmaceutical formulation. Accordingly, the present invention further provides a pharmaceutical formulation, which comprises a CDK8 and/or CDK19 inhibitors of the present invention or a pharmacologically acceptable salt thereof, as herein defined, and a pharmaceutically acceptable carrier therefor. The pharmaceutical formulations may be prepared by conventional techniques, e.g. as described in Remington: The Science and Practice of Pharmacy 2005, Lippincott, Williams & Wilkins.

The pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more excipients which may also act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, wetting agents, tablet disintegrating agents, or an encapsulating material.

Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. These preparations may contain, in addition to the active component, colorants, flavors, stabilizers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like.

The CDK8 and/or CDK19 inhibitors of the present invention may be formulated for parenteral administration and may be presented in unit dose form in ampoules, pre-
filled syringes, small volume infusion or in multi-dose containers, optionally with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, for example solutions in aqueous polyethylene glycol. Examples of oily or non-aqueous carriers, diluents, solvents or vehicles include propylene glycol, polyethylene glycol, vegetable oils (e.g., olive oil), and injectable organic esters (e.g., ethyl oleate), and may contain agents such as preserving, wetting, emulsifying or suspending, stabilizing and/or dispersing agents. Alternatively, the active ingredient may be in powder form, obtained by aseptic isolation of sterile solid or by lyophilisation from solution for constitution before use with a suitable vehicle, e.g., sterile, pyrogen-free water.

The CDK8 and/or CDK19 inhibitors of the invention may also be formulated for topical delivery. The topical formulation may include a pharmaceutically acceptable carrier adapted for topical administration. Thus, the composition may take the form of a suspension, solution, ointment, lotion, sexual lubricant, cream, foam, aerosol, spray, suppository, implant, inhalant, tablet, capsule, dry powder, syrup, balm or lozenge, for example.

Preferably, the formulation will comprise about 0.5% to 75% by weight of the active ingredient(s) with the remainder consisting of suitable pharmaceutical excipients as described herein.
Examples

Example 1: Phenotypic assay for rescued cell proliferation of murine RPS19-deficient erythroid progenitor cells

A previously described screening assay was utilized for identifying Diamond Blackfan Anemia candidate drugs (55th ASH annual meeting, New Orleans, LA, Dec 7-10, 2013; Abstract # 2472 by Siva et al.). This robust assay for screening chemical libraries to identify small molecules that rescue the proliferation defect in RPS19-deficient erythroid cells was utilized. Cells used in the assay were primary c-Kit+ E14.5-15.5 fetal liver erythroid progenitor cells from a mouse model of DBA with doxycycline inducible expression of rps19-shRNA (Jaako et al. Blood. 2011 Dec 1;118(23):6087-96). Correction of reduced proliferative capacity of RPS19-deficient erythroid progenitors was used as readout in a phenotypic screen for novel drug candidates. The hits from the screen included a series of thienopyridines, some of which have previously been described as bone anabolic agents (Saito et al. Bioorg. Med. Chem. 2013, 21, 1628-42 and US 2007/0219234). Interestingly, it was found that the potency of the thienopyridines DBA-1, DBA-6 and DBA-7 in the phenotypic assay of rescued proliferation correlated with their potency as bone anabolic agents previously described by Saito et al. (2013).

In addition, our results indicate that these thienopyridines have a novel therapeutic target, i.e. CDK8/CDK19 for rescue of proliferation of erythroid progenitor cells.

Example 2: Thienopyridine compounds rescue proliferation of RPS19-deficient erythroid cells

Validation of our screening hits and further testing revealed that DBA-1 and several other thienopyridines including DBA-2, DBA-3, DBA-4, DBA-5, DBA-6 and DBA-7 (see Table 1 above for their structure) were potent in our proliferation rescue assay.

Figures 1-3 show that DBA-1, DBA-6 and DBA-7 dose-dependently rescue proliferation in our proliferation rescue assay. DBA-1 was found to have a higher EC$_{50}$ value than DBA-6 and DBA-6 was, in turn, found to have a higher EC$_{50}$ value than DBA-7. These results indicate that the therapeutic mechanism in our assay was related to the bone anabolic mechanism of this group of thienopyridines.
Example 3: Kinome scans of DBA-6 and DBA-7 show CDK8/CDK19 as common kinase targets.

After identifying the series of active thienopyridine compounds including DBA-1, DBA-2, DBA-3, DBA-4, DBA-5, DBA-6 and DBA-7, the mechanism by which these compounds rescue proliferation of RPS19-deficient erythroid progenitor cells was investigated.

We hypothesized that the therapeutic mechanism was through inhibition of a kinase and therefore performed KinomeScan at DiscoverEx testing activity on 468 kinases for DBA-6 and DBA-7. While DBA-6 inhibited CDK8 and CDK19 in addition to a limited set of other kinases at 10 µM (data not shown), DBA-7 very selectively inhibited these two kinases at 0.5 µM (Figure 5). The unusual selectivity of DBA-7 for CDK8 and CDK19 suggested that the therapeutic mechanism of DBA-7 in our proliferation rescue assay as well as in the bone anabolic assay (Saito et al. Bioorg. Med. Chem. 2013, 27, 1628-42) is due to inhibition of CDK8 and/or CDK19.

Example 4: The CDK8/CDK19 inhibitor DBA-8 rescues proliferation of RPS19-deficient erythroid progenitor cells.

The results presented in Example 3 and in particular the KinomeScan indicate that the activity of DBA-7 in our proliferation assay was due to inhibition of CDK8 and/or CDK19. Since DBA-4 also inhibited CDK19 (Figure 4), we hypothesized that CDK8 and/or CDK19 is the common target of the active compounds in the thienopyridine series.

To confirm CDK8 and/or CDK19 as therapeutic targets for rescuing proliferation of RPS19-deficient cells, the activity of structurally different molecules with the same kinase target profile in the proliferation rescue assay was tested. A group of selective CDK8/CDK19 inhibitors were previously described in a paper by Porter et al. (Nat. Acad. Sci. Proc. 2012, 709, 13799-13804). Compound DBA-9 (described as Senexin B in WO 2013/1 16786) has a very similar kinase inhibition profile as DBA-7. We therefore tested the structurally similar and commercially available CDK8/CDK19 inhibitor DBA-8 (described as Senexin A by Porter et al. 2012) in our proliferation rescue assay. As our hypothesis predicted, DBA-8 was capable of rescuing the proliferation defect of RPS19 erythroid progenitor cells in a partially dose-dependent manner (Figure 6).
In addition, the selective CDK8/CDK19 inhibitors DBA-7 and DBA-8 both rescued RPS19-deficient erythroid progenitor cells from apoptosis (Figure 7) and loss of kit+ progenitor cell maintenance in culture (Figure 8).

These results confirm that inhibition of CDK8/CDK19 is the mechanism of action for DBA-6, DBA-7 and DBA-8 and indicate that DBA-9 and other CDK8/CDK19 inhibitors such as DBA-10 (compound 1K described in WO 2014/072435), DBA-11 and DBA-12 can rescue proliferation of RPS19-deficient cells.

Example 5: DBA-9 and/or DBA-10 rescues anemia in RPS19-deficient mice.

To determine if CDK8/CDK19 inhibitors will rescue anemia in RPS19-deficient mice (Jaako et al. Blood. 2011 Dec 1;118(23):6087-96) we evaluated the effect of DBA-9 in vivo. 36 hours after Doxycycline induction of RPS19-deficiency mice were given oral doses of 10mg/kg DBA-9 every 12 hours. Treatment was stopped after 5 doses. 48 hours after last treatment peripheral blood was analysed for reticulocyte counts, which reflects the ongoing production of erythrocytes. Reticulocyte counts were severely reduced in untreated and vehicle treated Rps19-deficient mice, but rescued in RPS19-deficient mice treated with DBA-9 (Figure 9).

To determine the ability to rescue anemia in RPS19-deficient mice of DBA-10 and other selective CDK8/CDK19 inhibitors, additional in vivo experiments are performed according to the experimental set-up described above in this example RPS19-deficient mice are given oral doses of 10mg/kg DBA-1, DBA-2, DBA-3, DBA-4, DBA-5, DBA-6, DBA-7, DBA-8, DBA-10, DBA-11 or DBA-12 (see Table 1 for structures) every 12 hours. Treatment is stopped after 5 doses. 48 hours after last treatment peripheral blood is analysed for reticulocyte counts, which reflects the ongoing production of erythrocytes. Reticulocyte counts is rescued in RPS19-deficient mice treated with the selective CDK8/CDK19 inhibitors tested. In addition to rescue of reticulocyte and haemoglobin levels, other effects of the tested CDK8/CDK19 inhibitors are determined, in particular their ability to rescue bone marrow hypocellularity, to promote hemapopoietic stem and progenitor development, as well as cell cycle arrest and apoptosis.
Example 6: DBA-9 and DBA-10 rescue erythroid proliferation and maturation of primary DBA patient cells

To confirm that CDK8/CDK19 inhibitors rescue erythropoiesis also in human DBA patient cells, CD34+ cells were isolated from healthy donors and DBA patients. CD34+ cells were cultured in conditions supporting expansion of erythroid progenitors and precursors. Three CDK8/CDK19 inhibitors and vehicle control were added to the cultures. DBA patient cells expanded poorly compared to healthy donor cells, but gained ability to proliferate in presence of CDK8/CDK19 inhibitors DBA-9 and DBA10 (Figure 10 and Figure 11). Compared to healthy cells DBA patient cells failed to mature to CD71+ erythroid progenitor cells and CD71/CD235a double-positive erythroid precursors. DBA patient cells gained ability to mature to erythroid progenitor/precursors in presence of CDK8/CDK19 inhibitors DBA-9 and DBA10 (Figure 12 and Figure 13).

These results indicate that CDK8/CDK19 inhibitors rescue erythropoiesis also in human DBA patient cells.

Example 7: DBA-9 and/or DBA-10 are bone anabolic agents

DBA-1, DBA-6 and DBA-7 are known to have an effect as bone anabolic agents. The mechanism of action has however been unknown. The present inventors, for the first time, demonstrate that DBA-7 is a selective CDK8/CDK19 inhibitor, and propose that all selective CDK8/CDK19 inhibitors such as DBA-9 and DBA-10 also have bone anabolic properties. The inventors are evaluating the bone anabolic effects of DBA-9, DBA-10 and other CDK8/CDK19 inhibitors on bone formation as follows. The alkaline phosphatase activity of ST2 cells is utilized as an indicator of osteoblastic differentiation and it is expected that CDK8/CDK19 inhibitors enhance this activity similar to DBA-7 (Saito et al. Bioorg. Med. Chem. 2013, 21, 1628-42). To confirm activity on primary cells the effect of CDK8/CDK19 inhibitors on differentiation of primary osteoblasts and osteoclasts are determined. Next the effect of CDK8/CDK19 inhibitors on osteoblastic differentiation and bone remodelling in vivo are determined. Experiments include evaluating the effects on areal bone mineral density in rodent models for osteoporosis (Saito et al. Bioorg. Med. Chem. 2013, 21, 1628-42).
Example 8: Assay for testing CDK8/CDK19 inhibitory activity of candidate compounds

We demonstrate that cell proliferation of RPS19-deficient erythroid cells is improved by specific CDK8/CDK19 inhibitors. A cell-based phenotypic screening assay aiming to identify molecules with positive effect on proliferation of RPS19-deficient erythroid cells is a novel tool for identifying and evaluating novel CDK8/CDK19 inhibitors. One advantage with this screening assay compared to many other high throughput screening assays for identifying CDK8/CDK19 inhibitors is that generally toxic compounds are not identified as hits, thus eliminating many unspecific kinase inhibitors. Cell proliferation in high throughput screens is thus determined by measuring the number of viable RPS19-deficient cells in a well using high throughput imaging or ATP (Niles et al. *Curr Chem Genomics*, 2009, 3, 33-41).
Claims

1. A compound for use in the treatment of a ribosomopathy, and/or a disease characterized by reduced number of hematopoietic stem cells and/or progenitor cells, wherein the compound is an inhibitor of cyclin-dependent kinase 8 (CDK8) and/or cyclin-dependent kinase 19 (CDK19).

2. The compound for use according to claim 1, wherein the compound has the structure of formula (XVII):

\[
\text{Formula (XVII)}
\]

wherein \(X^1, X^2\) and \(X^3\) are each independently selected from the group consisting of \(H, F, Cl, Br\), \(-\text{OT}^1\), \(-\text{N}(\text{T}^2)(\text{T}^3)\), \(-\text{NHC}(=\text{O})\text{T}^4\), nitro, cyano, cyclopropyl and \(-\text{C}_1-\text{C}_3\) alkyl, with the proviso that at least two substituents selected from \(X^1, X^2\) and \(X^3\) are each independently selected from the group consisting of \(F, Cl, Br\) and \(i\):

\(Z^1\) and \(Z^2\) are each independently selected from the group consisting of \(H, -\text{C}_1-\text{C}_6\) alkyl, \(-\text{OT}^1\) and \(-\text{N}(\text{T}^2)(\text{T}^3)\);

\(Z^3\) and \(Z^4\) are either taken together to form an oxo group at the carbon atom to which they are attached; or \(Z^3\) and \(Z^4\) are each independently selected from the group consisting of \(H, -\text{C}_1-\text{C}_6\) alkyl, \(-\text{OT}^1\) and \(-\text{N}(\text{T}^2)(\text{T}^3)\);

\(Z^5\) and \(Z^6\) are either taken together to form an oxo group at the carbon atom to which they are attached; or \(Z^5\) and \(Z^6\) are each independently selected from the group consisting of \(H, -\text{C}_1-\text{C}_6\) alkyl, \(-\text{OT}^1\) and \(-\text{N}(\text{T}^2)(\text{T}^3)\);
X^4 is either absent or selected from the group consisting of-NR_{12}^-, -N(R_{12}^2)(CH_2)-, -C(=0)NH- and -C(=0)-; wherein R_{12}^2 is selected from H and -C_1-C_6 alkyl;

Y^1 is selected from the group consisting of H, -C_i-C_6 alkyl and a 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle, with the proviso that the point of attachment on said heterocycle is carbon if X^4 is -NR_{12}^2 or -C(=0)NH-, wherein said -C_i-C_6 alkyl is optionally substituted with one or more substituents independently selected from -OT^1, -ST^1, -N(T^2)(T^3) and a 5- to 6-membered saturated heterocycle, and wherein said 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, I, -C(=0)H, -OT^1, -N(T^2)(T^3), -C(=0)N(T^2)(T^3), -C(=0)OT^1, -ST^1 and -C_1-C_3 alkyl, wherein said -C_1-C_3 alkyl is optionally substituted with one or more substituents independently selected from -OT^1 and -N(T^2)(T^3);

T^1, T^2 and T^3 are each independently selected from H and -C_i-C_6 alkyl optionally substituted with one or more substituents independently selected from -N(T^3)(T^6), -OT^7, -ST^7, nitro, cyano, -C(=0)OT^7, -C(=0)N(T^5)(T^6), -OC(=0)N(T^5)(T^6), -S(=0)_2T^7, -S(=0)_2OT^8 and -S(=0)_2N(T^9)(T^8);

T^4 is -C_i-C_6 alkyl optionally substituted with one or more substituents independently selected from -N(T^5)(T^6), -OT^7, -ST^7, nitro, cyano, -C(=0)OT^7, -C(=0)N(T^5)(T^6), -OC(=0)N(T^5)(T^6), -S(=0)_2T^8, -S(=0)_2OT^7 and -S(=0)_2N(T^9)(T^8);

T^5, T^6 and T^7 are each independently selected from H and -C_i-C_6 alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano; and

T^8 is selected from -CrC_6 alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano;

or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.
3. The compound for use according to any one of the preceding claims, wherein X₁ is selected from the group consisting of H, F, Cl, Br, i, -OT₁, -N(T²)(T³), -NHC(=0)T ⁴, nitro, cyan, cyclopropyl and -Ci-C ₃ alkyl; and X² and X³ are independently selected from the group consisting of F, Cl, Br and i.

4. The compound for use according to any one of the preceding claims, wherein Y₁ is a 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle, with the proviso that the point of attachment on said heterocycle is carbon if X₄ is -NR₁₂- or -C(=0)NH-, wherein said 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, i, -C(=0)H, -OT₁, -N(T²)(T³), -C(=0)N(T ²)(T³), -ST¹ and - C₃-C₃ alkyl, wherein said - C₃-C₃ alkyl is optionally substituted with one or more substituents independently selected from -OT₁ and - N(T²)(T³).

5. The compound for use according to any one of the preceding claims, wherein X₄ is absent and Y₁ is a 4- to 7-membered saturated heterocycle, wherein said 4- to 7-membered saturated heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, i, -C(=0)H, -OT₁, -N(T²)(T³), -C(=0)N(T ²)(T³), -C(=0)OT ¹, -ST¹ and - C₃-C₃ alkyl, wherein said - C₃-C₃ alkyl is optionally substituted with one or more substituents independently selected from -OT₁ and - N(T²)(T³).

6. The compound for use according to any one of the preceding claims, wherein X₄ is absent and Y₁ is piperazine, wherein said piperazine is optionally substituted with one or more substituents independently selected from F, Cl, Br, i, -C(=0)H, -OT₁, -N(T²)(T³), -ST¹ and - C₃-C₃ alkyl, wherein said - C₃-C₃ alkyl is optionally substituted with one or more substituents independently selected from -OT₁ and - N(T²)(T³).

7. The compound for use according to any one of the preceding claims, wherein Z₁, Z², Z³, Z⁴, Z⁵ and Z⁶ are each independently selected from the group consisting of H, -Ci-C₆ alkyl, -OT₁ and - N(T²)(T³).

8. The compound for use according to any one of the preceding claims, wherein the compound is of the formula:
9. The compound for use according to any one of the preceding claims, wherein the compound is 7,8-dibromo-9-methyl-2-(piperazin-1-yl)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinoline hydrochloride or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

10. The compound for use according to claim 1, wherein the compound has the structure of formula (XIV) or (XV):
wherein B^1 is hydrogen when B^2 is a group of the formula (XVI); or wherein B^2 is hydrogen when B^1 is a group of the formula (XVI):

\[\text{Formula (XVI)} \]

wherein D is selected from C, O, and N; and wherein D is optionally substituted with a group Q wherein Q is selected from hydrogen, $-\text{CrC}_6\text{-alkyl}$, $-\text{Ci-C}_6\text{-alkoxy-Ci-C}_6\text{-alkyl}$, $-\text{Ci-C}_6\text{-alkylamine}$; and n is an integer 0, 1 or 2;

or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

11. The compound for use according to claim 10, wherein the alkyl is methyl.

12. The compound for use according to claim 10, wherein n is 0 or 1.

13. The compound for use according to claim 10, wherein n is 1.

14. The compound for use according to any one of claims 10-13, wherein the compound is DBA-8 or DBA-9:

\[\text{DBA-8} \]
15. The compound for use according to claim 1, wherein the compound has the structure of formula (XVIII):

$$\text{Formula (XVIII)}$$

wherein:

- M^1 is H or NH$_2$,
- M^2 is LA, Hal, CN,
- M^3 is H, Hal, NH$_2$, LA, HO(LA)$^-$, NH(LA),
- M^4 is CN, CONH$_2$, CONH(LA)

or

M^3, M^4 together with the C atom they are attached to, form a 5- or 6-membered non-aromatic heterocycle, having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which is substituted by 1 or 2 oxo groups, which heterocycle may further be monosubstituted by LA or OH, and which heterocycle may form a condensed ring system with a phenyl or pyridyl group.
M⁵ is CH or N,
M⁶ is Cyc, CONH₂, COO(LA) or CONH(LA),
M⁷ is H,
or
M⁶, M⁷ together with the atoms they are attached to, form a 5- or 6-membered heterocycle, having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which is, optionally, independently mono- di- or trisubstituted by oxo, OH, LA, NH₂, NH(LA), N(LA)₂, NHOOC(LA) or HO(LA)-,
Cyc is a 5- or 6-membered monocyclic, aliphatic or aromatic homo- or heterocycle having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which may be mono- or di-substituted by oxo, LA, NH₂, NH(LA), N(LA)₂, HO(LA)-, or monosubstituted by CA,
LA is an unbranched or branched alkyl, having 1, 2, 3, 4 or 5 carbon atoms, which may be saturated or partially unsaturated, wherein 1, 2 or 3 H atoms may be replaced by Hal, and/or
1 CH₃ group may be replaced by CN, or
1 CH₂ group may be replaced by -O-, -NH- or -SO₂-, and/or
1 CH group may be replaced by N,
CA is a cycloalkyi having 3, 4, 5 or 6 carbon atoms, or cycloalkyi alkyl having 3, 4, 5 or 6 ring carbon atoms and 1 or 2 non-ring carbon atoms, in which cycloalkyi or cycloalkyi alkyl one ring atom may be replaced by O, and which cycloalkyi or cycloalkyi alkyl may be monosubstituted by OH,
Hal is F, Cl, Br or I;
or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

16. The compound for use according to claim 15, wherein the compound has the structure of formula (XIX):
wherein:

A1 is selected from the group consisting of a hydrogen atom and -NH_2,
A2 is selected from the group consisting of -Cl, -F, -Br, -I and a hydrogen atom,
A3 is selected from the group of formulas (XX) and (XXI);

wherein:

A4 is a hydrogen atom or a C$_6$H$_{12}$ alkyl of which one or more atoms may individually be replaced with an atom selected from the group consisting of O, N, and S, and which may be substituted with one or more groups individually selected from the group consisting of CrC$_6$ alkyl, $\text{-OH, oxo, and -NA}^5\text{A}^6$, wherein A^5 and A^6 are individually selected from the group consisting of hydrogen and C$_6$H$_{12}$ alkyl that may be joined to form a 3-, 4-, 5-, or 6-membered cyclic structure,

or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.
17. The compound for use according to claim 16, wherein A² is -Cl.

18. The compound for use according to claims 16 to 17, wherein A⁴ is -CH₃.

19. The compound for use according to claims 15 to 18, wherein the compound is of the formula:

![Chemical Structure]

DBA-11

20. The compound for use according to claims 15 to 18, wherein the compound is 8-[3-chloro-5-[4-(1-methyl-1H-pyrazol-4-yl)phenyl]-4-pyridinyl]-2,8-diazaspiro[4.5]decan-1-one.

21. The compound for use according to claim 15 to 18, wherein the compound is of the formula:
22. The compound for use according to claim 15 to 18, wherein the compound is 8-(2-Amino-3-chloro-5-(1-methyl-1H-indazol-5-yl)pyridin-4-yl)-2,8-diazaspiro[4.5]decan-1-one.

23. The compound for use according to claim 1, wherein the compound has the formula (I):

\[
\text{Formula (I)}
\]

wherein:

- \(R^1 \) is selected from the group consisting of a hydrogen atom, \(\text{C}_1-\text{C}_alkyl, -\text{NH}_2, \) and alkyl-amine,

- \(R^2 \) is selected from the group consisting of a hydrogen atom, \(-\text{N(CH}_3)_2, -\text{NH}_2, \) methyl, trifluoromethyl, \(-\text{CH}_2\text{OCH}_3, -\text{PhOCH}_3, -\text{PhCH}_3, -\text{PhCl} \), and a group of any one of the formulas (II), (III), (IV) and (V):
R³ is selected from the group consisting of a hydrogen atom, methyl, acetyl, phenyl, cyclopropyl, and a group of the formula (V):

R⁴ is selected from the group consisting of a hydrogen atom, methyl, ethyl, cyclopropyl, Cl-C₆ alkyl, acetyl, phenyl, trifluoromethyl, -CH₂CH(CH₃)₂, -PhCl, -PhCH₃, and a group of the formulas (III) or (VII):

or wherein R⁴ is an oxygen atom double bonded to the carbon atom of the thienopyridine ring thus forming a structure of formula (VI):
or wherein \(R^2 \) and \(R^3 \) are joined to form a 6-membered cyclic structure of the formula (VIII):

or wherein \(R^3 \) and \(R^4 \) are joined to form a 5-, 6- or 7-membered cyclic structure of any one of the formulas (IX), (X), (XI) or (XII):
wherein \(R^5 \) and \(R^6 \) optionally and individually are -OCH\(_3\);

or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

24. The compound for use according to claim 1, wherein the compound has the structure of formula (I):

wherein:

\(R^1 \) is -NH\(_2\);

\(R^2 \) represents \(R^aS\), RO-, \(R^aNH\), \(R^a(R^b)N\) or a group of formula (XIII):
wherein R^a and R^b are the same or different and independently represent a Cl-C_6 alkyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a C_3C_8 cycloalkyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a 5- to 7-membered heterocyclyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C_6Cl_6 aryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; or a 5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms,

R^7 and R^8 are the same or different and independently represent a hydrogen atom; a group selected from Substituent Group a, Substituent Group β and Substituent Group γ; a CrC_6 alkyl group substituted with one or more groups selected from Substituent Group γ; or a Cl-C_6 alkoxy group substituted with one or more groups selected from Substituent Group γ,

or when R^7 and R^8 are bonded to adjacent carbon atoms, R^7 and R^8 together with the carbon atoms to which they are bonded may form a C_3C_8 cycloalkyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a 5- to 7-membered heterocyclyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C_6Cl_6 aryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; or a 5- to 7-membered heteroaryl group which may be
substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms,

5 E represents a single bond; a double bond; an oxygen atom; a sulfur atom; sulfinyl; sulfonyl; or a group having the formula \(R_9 \mathrm{N}^- \);

\(R_9 \) represents a hydrogen atom; a \(\text{CrC}_6 \) alkyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a \(\text{C}_2-\text{C}_6 \) alkenyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a \(\text{C}_3-\text{C}_8 \) cycloalkyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a 5- to 7-membered heterocyclyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(\text{C}_6-\text{Cl}_6 \) ary1 group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a 5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a formyl group; a \(\text{C}_2-\text{C}_7 \) alkylcarbonyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a 5- to 7-membered heterocyclylcarbonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(\text{C}_7-\text{Cn} \) arylcarbonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a 5- to 7-membered heteroarylcarbonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(\text{Cl}-\text{C}_6 \) alkylsulfonyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ; a \(\text{C}_6-\text{Cl}_0 \) arylsulfonyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group β and Substituent Group γ; a 5- to 7-membered heteroaryl sulfonyl group which may be substituted with one or more
groups selected from Substituent Group \(a\), Substituent Group \(\beta\) and Substituent Group \(Y\) and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(C_2\) to \(C_7\) alkoxy carbonyl group which may be substituted with one or more groups selected from Substituent Group \(a\) and Substituent Group \(\gamma\); a \(C_7\) to \(Cn\) aryloxycarbonyl group which may be substituted with one or more groups selected from Substituent Group \(a\), Substituent Group \(\beta\) and Substituent Group \(\gamma\); or a group having the formula \(R^e(R^f)N-CO-\) (wherein \(R^e\) and \(R^f\) are the same or different and independently represent a hydrogen atom or a \(C_1\) to \(C_6\) alkyl group which may be substituted with one or more groups selected from Substituent Group \(a\) and Substituent Group \(\gamma\)).

\(n\) represents an integer of 1 to 4,

Substituent Group \(a\) represents the group consisting of a halogen atom; a nitro group; a cyano group; a hydroxy group; a group having the formula \(R^{10}-CO-\), the formula \(R^e(R^f)N-\), the formula \(R^e(R^f)N-CO-\) or the formula \(R^e(R^f)N-S0_2-\) (wherein \(R^{10}\) represents a hydrogen atom, a \(C_1\) to \(C_6\) alkyl group, a \(C_1\) to \(C_6\) halogenated alkyl group, a \(C_3\) to \(C_8\) cycloalkyl group, a hydroxy group, a \(C_1\) to \(C_6\) alkoxy group, a \(C_6\) to \(C_10\) aryl group or a \(C_6\) to \(C_10\) aryloxy group and \(R^e\) and \(R^f\) are the same or different and independently represent a hydrogen atom; a \(C_1\) to \(C_6\) alkyl group; a \(C_1\) to \(C_6\) alkoxy group; a \(C_6\) to \(C_10\) aryl group; a \(C_6\) to \(C_10\) aryloxy group; a 5- to 7-membered heteroaryl group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a formyl group; a \(C_2\) to \(C_7\) alky carbonyl group; a \(C_2\) to \(C_7\) alkoxy carbonyl group; a \(C_7\) to \(Cn\) arylcarbonyl group; a 5- to 7-membered heteroarylcarbonyl group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a \(C_1\) to \(C_6\) alky lsulfonyl group; a \(C_6\) to \(C_10\) aryl sulfonyl group; or a 5- to 7-membered heteroaryl sulfonyl group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms, or alternatively \(R^e\) and \(R^f\) together with the nitrogen atom to which they are bonded form a 4- to 7-membered heterocycl y group which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms (wherein the heterocyclic group may have 1 or 2 substituent groups selected from a hydroxy group and a methyl group); a hydroxyimino group; a \(C_1\) to \(C_6\) alkoxyimino group; a \(C_1\) to \(C_6\) alkoxy group; a \(C_3\) to \(C_8\) cycloalkyloxy group; a \(C_1\) to \(C_6\) halogenated alkoxy group; a \(C_1\) to \(C_6\) alky lthio group; a \(C_1\) to \(C_6\) alky lsulfonyl group; and a \(C_1\) to \(C_6\) alkyl sulfonyl group,

Substituent Group \(\beta\) represents the group consisting of a \(C_1\) to \(C_6\) alkyl group which may be substituted with one or more groups selected from Substituent Group \(a\);
and a C$_{6}$-alkyl group substituted with a 5- to 7-membered heterocyclyl group which may be substituted with one or more groups selected from Substituent Group a, and a C$_{6}$-alkyl group and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms, and

Substituent Group γ represents the group consisting of a C$_{6}$-alkoxy group substituted with one or more groups selected from Substituent Group a; a C$_{6}$-alkythio group substituted with one or more groups selected from Substituent Group a; a C$_{3}$-C$_{6}$-cycloalkyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β; a 5- to 7-membered heterocyclyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C$_{6}$-C$_{10}$-aryl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β; a 5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C$_{6}$-C$_{10}$-aryloxy group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β; a 5- to 7-membered heteroaryloxy group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C$_{6}$-C$_{10}$-aryl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β; a 5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a C$_{6}$-C$_{10}$-aryloxyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β; a 5- to 7-membered heteroaryloxyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; and a C$_{6}$-C$_{10}$-aryl - C$_{6}$-alkoxy group in which the aryl moiety may be substituted with one or more groups selected from Substituent Group a and Substituent Group β or a pharmacologically acceptable salt thereof;

R3 is a hydrogen atom; and

R4 is selected from the group consisting of a hydrogen atom, a cyclopropyl group or a C$_{6}$-alkyl group;
or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

25. The compound for use according to any one of claims 23 to 24, wherein R^4 is selected from the group consisting of a hydrogen atom, a cyclopropyl group or a C1-C4 alkyl group.

26. The compound for use according to any one of claims 23 to 24, wherein R^4 is selected from the group consisting of a hydrogen atom, methyl, ethyl, propyl or cyclopropyl.

27. The compound for use according to claim 26, wherein R^4 is selected from the group consisting of a hydrogen atom or methyl.

28. The compound for use according to any one of claims 23 to 27, wherein R^2 is a group consisting $R^a(R^b)N\cdot$, and R^a and R^b are the same or different and independently represent a C1-C6 alkyl group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group γ.

29. The compound for use according to claim 27 wherein R^a is a C6 alkyl group which may be substituted with one group selected from Substituent Group a and Substituent Group γ, R^b is a C6 alkyl group, and Substituent Group a is the group consisting of a C6 alkoxy group, and Substituent Group γ is the group consisting of a C6 alkoxy group substituted with one or more groups selected from Substituent Group a; a C6-C10 aryloxy group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β; and a 5- to 7-membered heteroaryloxy group which may be substituted with one or more groups selected from Substituent Group a and Substituent Group β and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms.

30. The compound for use according to any one of claims 23 to 29, wherein R^2 is a group of formula (XIII):
The compound for use according to any one of claims 23 to 30, wherein \(R^2 \) is a group of formula (XIII):

\[
\text{Formula (XI II)}
\]

\[
\text{(CH}_2\text{)}_n \text{N}^\text{E} \text{R}^7 \text{R}^8
\]

wherein \(E \) represents a single bond, an oxygen atom, a sulfur atom or a group having the formula \(\text{R}^{11}\text{N}< \), wherein \(\text{R}^{11} \) represents a \(\text{C}_6\text{Cl}_0 \) aryl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group \(\beta \) and Substituent Group \(\gamma \); a 5- to 7-membered heterocyclyl group which may be substituted with one or more groups selected from Substituent Group a, Substituent Group \(\beta \) and Substituent Group \(\gamma \) and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; a formyl group; a \(\text{C}_2\text{-C}_7 \) alkylcarbonyl group which may be substituted with one or more groups selected from Substituent Group a and...
Substituent Group γ; a Cl-C₆ alkylsulfonyl group which may be substituted with one or more groups selected from Substituent Group α and Substituent Group γ; a C₆-C₁₀ arylsulfonyl group which may be substituted with one or more groups selected from Substituent Group α, Substituent Group β and Substituent Group γ; a 5- to 7-membered heteroarylsulfonyl group which may be substituted with one or more groups selected from Substituent Group α, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; and wherein n is an integer 2.

32. The compound for use according to any one of claims 23 to 31, wherein R⁷ is a Cl-C₆ alkoxy group; a Cl-C₆ alkyl group which may be substituted with one or more groups selected from Substituent Group α; a Cl-C₆ alkoxy group substituted with one or more groups selected from Substituent Group α; a C₆Cl₂ arloxy group which may be substituted with one or more groups selected from Substituent Group α, Substituent Group β and Substituent Group γ; a Cl-C₆ alkyl group substituted with one or more groups selected from Substituent Group γ; or a Cl-C₆ alkoxy group substituted with one or more groups selected from Substituent Group γ, E is a single bond, and n is an integer 2.

33. The compound for use according to anyone of claims 23 to 32, wherein R⁷ is a hydrogen atom, Z is a sulfur atom, and n is 1.

34. The compound for use according to any one of claims 23 to 33, wherein R⁷ is a hydrogen atom, E is a group having the formula R¹¹N<, wherein R¹¹ represents a C₆-C₁₀ aryl group which may be substituted with one or more groups selected from Substituent Group α, Substituent Group β and Substituent Group γ; or a 5- to 7-membered heteroaryl group which may be substituted with one or more groups selected from Substituent Group α, Substituent Group β and Substituent Group γ and which contains 1 to 3 sulfur, oxygen and/or nitrogen atoms; and wherein n is an integer 2.
35. The compound for use according to any one of claims 23 to 34, wherein said compound is selected from the group consisting of:

DBA-1

\[
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{NH}_2 \\
\text{NH}_2 \\
\text{NH}_2 \\
\end{array}
\]

DBA-2

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{NH}_2 \\
\text{NH}_2 \\
\text{NH}_2 \\
\end{array}
\]

DBA-3

\[
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{NH}_2 \\
\text{NH}_2 \\
\end{array}
\]
36. The compound for use according to any one of the preceding claims, wherein the ribosomopathy and/or a disease characterized by reduced number of hematopoietic stem cells and/or progenitor cells is selected from the group consisting of Diamond-Blackfan anemia, Dyskeratosis congenita, Shwachman-Diamond syndrome, 5q- myelodysplasia syndrome, Treacher Collins syndrome, Cartilage-hair hypoplasia, North American Indian childhood cirrhosis, Isolated congenital asplenia, Bowen-Conradi syndrome, Turners syndrome and Fanconi’s anemia.

37. The compound for use according to any one of the preceding claims, wherein the ribosomopathy is an anemia, such as aplastic anemia.

38. The compound for use according to any one of the preceding claims, wherein the ribosomopathy is an immunodeficiency growth retardation.

39. The compound for use for use according to any one of the preceding claims, wherein the ribosomopathy is Diamond Blackfan anemia.

40. A compound for use in the treatment of bone anabolic disorders, wherein the compound is an inhibitor of cyclin-dependent kinase 8 (CDK8) and/or cyclin-dependent kinase 19 (CDK19), with the proviso that the inhibitor of CDK8 and/or the inhibitor of CDK 19 is not a thienopyridine compound.

41. The compound for use according to claim 40, wherein the compound has the structure of formula (XVII):

![Formula (XVII)]
wherein \(X^1, X^2\) and \(X^3\) are each independently selected from the group consisting of H, F, Cl, Br, I, -OT, -N(T^2)(T^3), -NHC(=0)T, nitro, cyano, cyclopropyl and -C\(_1\)-C\(_3\) alkyl, with the proviso that at least two substituents selected from \(X^1, X^2\) and \(X^3\) are each independently selected from the group consisting of F, Cl, Br and I;

\[Z^1\] and \(Z^2\) are each independently selected from the group consisting of H, -Ci-C\(_6\) alkyl, -OT and -N(T^2)(T^3);

\(Z^3\) and \(Z^4\) are either taken together to form an oxo group at the carbon atom to which they are attached; or \(Z^3\) and \(Z^4\) are each independently selected from the group consisting of H, -C\(_1\)-C\(_6\) alkyl, -OT and -N(T^2)(T^3);

\(Z^5\) and \(Z^6\) are either taken together to form an oxo group at the carbon atom to which they are attached; or \(Z^5\) and \(Z^6\) are each independently selected from the group consisting of H, -C\(_1\)-C\(_6\) alkyl, -OT and -N(T^2)(T^3);

\(X^4\) is either absent or selected from the group consisting of NR, -N(R^12)(CH\(_2\))\(_n\), -C(=0)NH- and -C(=0)-; wherein R^12 is selected from H and -C\(_1\)-C\(_6\) alkyl;

\(Y^1\) is selected from the group consisting of H, -Ci-C\(_6\) alkyl and a 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle, with the proviso that the point of attachment on said heterocycle is carbon if \(X^4\) is NR, -C(=0)NH-, wherein said -Ci-C\(_6\) alkyl is optionally substituted with one or more substituents independently selected from -OT, -ST, -N(T^2)(T^3) and a 5- to 6-membered saturated heterocycle, and wherein said 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, I, -C(=0)H, -OT, -N(T^2)(T^3), -C(=0)N(T^2)(T^3), -C(=0)OT, -ST and -C\(_1\)-C\(_3\) alkyl, wherein said -C\(_1\)-C\(_3\) alkyl is optionally substituted with one or more substituents independently selected from -OT and -N(T^2)(T^3);

\(T^1, T^2\) and \(T^3\) are each independently selected from H and -Ci-C\(_6\) alkyl optionally substituted with one or more substituents independently selected from -N(T^3)(T^6), -OT, -ST, nitro, cyano, -C(=0)OT, -C(=0)N(T^5)(T^6), -OC(=0)N(T^5)(T^6), -S(=0)T, -S(=0)\(_2\)OT and -S(=0)\(_2\)N(T^3)(T^6);
T₄ is -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from -N(T⁵)(T⁶), -OT⁷, -ST⁷, nitro, cyano, -C(=0)OT⁷, -C(=0)N(T⁵)(T⁶), -OC(=0)N(T⁵)(T⁶), -S(=0)₂OT⁷ and -S(=0)₂N(T⁵)(T⁶);

T₅, T₆ and T₇ are each independently selected from H and -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano; and

T₈ is selected from -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano; or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

42. The compound for use according to any one of claims 40 to 41, wherein X₁ is selected from the group consisting of H, F, Cl, Br, i. -OT¹, -N(T²)(T³), -NHC(=0)T⁴, nitro, cyano, cyclopropyl and -Ci-C₃ alkyl; and X² and X³ are independently selected from the group consisting of F, Cl, Br and i.

43. The compound for use according to any one of claims 40 to 42, wherein Y¹ is a 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle, with the proviso that the point of attachment on said heterocycle is carbon if X₄ is -NR₁² or -C(=0)NH-, wherein said 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, i. -C(=0)H, -OT¹, -N(T²)(T³), -C(=0)N(T³)(T⁵), -ST¹ and -CrC₃ alkyl, wherein said -CrC₃ alkyl is optionally substituted with one or more substituents independently selected from -OT¹ and -N(T²)(T³).

44. The compound for use according to any one of claims 40 to 43, wherein X₁ is absent and Y¹ is a 4- to 7-membered saturated heterocycle, wherein said 4- to 7-membered saturated heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, i. -C(=0)H, -OT¹, -N(T²)(T³), -C(=0)N(T²)(T³), -C(=0)OT¹, -ST¹ and -CrC₃ alkyl, wherein said -CrC₃ alkyl is optionally substituted with one or more substituents independently selected from -OT¹ and -N(T²)(T³).
45. The compound for use according to any one of claims 40 to 44, wherein X^4 is absent and Y^1 is piperazine, wherein said piperazine is optionally substituted with one or more substituents independently selected from F, Cl, Br, i. -C(=0)H, -OT^1, -N(T^2)(T^3), -ST^1 and -CrC_3 alkyl, wherein said -CrC_3 alkyl is optionally substituted with one or more substituents independently selected from -OT^1 and -N(T^2)(T^3).

46. The compound for use according to any one of claims 40 to 45, wherein Z^1, Z^2, Z^3, Z^4, Z^5 and Z^6 are each independently selected from the group consisting of H, -C_1-C_6 alkyl, -OT^1 and -N(T^2)(T^3).

47. The compound for use according to any one of claims 40 to 46, wherein the compound is of the formula:

![DBA-10](image)

48. The compound for use according to any one of claims 40 to 47, wherein the compound is 7,8-dibromo-9-methyl-2-(piperazin-1-yl)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinoline hydrochloride or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

49. The compound for use according to claim 40, wherein the compound has the structure of formula (XIV) or (XV):
wherein \(B^1 \) is hydrogen when \(B^2 \) is a group of the formula (XVI); or wherein \(B^2 \) is hydrogen when \(B^1 \) is a group of the formula (XVI):

wherein \(D \) is selected from \(C, O, \) and \(N \); and wherein \(D \) is optionally substituted with a group \(Q \) wherein \(Q \) is selected from hydrogen, \(-C\text{R}_6\text{-alkyl}, -C\text{R}_6\text{-alkoxy-C\text{R}_6}\text{-alkyl, -C\text{R}_6\text{-alkylamine; and}}\) and

\(n \) is an integer \(0, 1 \) or \(2 \);

or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

50. The compound for use according to claim 49, wherein the alkyl is methyl.
51. The compound for use according to claim 49, wherein n is 0 or 1.

52. The compound for use according to claim 49, wherein n is 1.

53. The compound for use according to any one of claims 49 to 52, wherein the compound is DBA-8 or DBA-9:

![DBA-8](image1)

![DBA-9](image2)

54. The compound for use according to claim 40, wherein the compound has the structure of formula (XVIII):

![Formula (XVIII)](image3)
wherein:

- M^1 is H or NH$_2$,
- M^2 is LA, Hal, CN,
- M^3 is H, Hal, NH$_2$, LA, HO(LA)-, NH(LA),
- M^4 is CN, CONH$_2$, CONH(LA)

or

- M^3, M^4 together with the C atom they are attached to, form a 5- or 6-membered non-aromatic heterocycle, having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which is substituted by 1 or 2 oxo groups, which heterocycle may further be monosubstituted by LA or OH, and which heterocycle may form a condensed ring system with a phenyl or pyridyl group,
- M^5 is CH or N,
- M^6 is Cyc, CONH$_2$, COO(LA) or CONH(LA),
- M^7 is H,

or

- M^5, M^7 together with the atoms they are attached to, form a 5- or 6-membered heterocycle, having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which is, optionally, independently mono- di- or trisubstituted by oxo, OH, LA, NH$_2$, NH(LA), N(LA)$_2$, NHCOO(LA) or HO(LA)-,
- Cyc is a 5- or 6-membered monocyclic, aliphatic or aromatic homo- or heterocycle having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which may be mono- or di-substituted by oxo, LA, NH$_2$, NH(LA), N(LA)$_2$, HO(LA)-, or monosubstituted by CA,
- LA is an unbranched or branched alkyl, having 1, 2, 3, 4 or 5 carbon atoms, which may be saturated or partially unsaturated, wherein 1, 2 or 3 H atoms may be replaced by Hal, and/or
- 1 CH$_3$ group may be replaced by CN, or
- 1 CH$_2$ group may be replaced by -O-, -NH- or -SO$_2$-, and/or
- 1 CH group may be replaced by N,
- CA is a cycloalkyi having 3, 4, 5 or 6 carbon atoms, or cycloalkyi alkyl having 3, 4, 5 or 6 ring carbon atoms and 1 or 2 non-ring carbon atoms, in which cycloalkyi or cycloalkyi alkyl one ring atom may be replaced by O, and which cycloalkyi or cycloalkyi alkyl may be monosubstituted by OH,
Hal is F, Cl, Br or I:

or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

55. The compound for use according to claim 54, wherein the compound has the structure of formula (XIX):

![Formula (XIX)](image)

wherein:

- A^1 is selected from the group consisting of a hydrogen atom and $-\text{NH}_2$,
- A^2 is selected from the group of formulas (XX) and (XXI);

![Formula (XX)](image) ![Formula (XXI)](image)

or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

56. The compound for use according to claim 55, wherein A^2 is -Cl.
57. The compound for use according to claims 55 to 56, wherein A^4 is -CH_3.

58. The compound for use according to claims 54 to 57, wherein the compound is of the formula:

![Chemical Structure](image)

DBA-11

59. The compound for use according to claims 54 to 57, wherein the compound is 8-[3-chloro-5-[4-(1-methyl-1H-pyrazol-4-yl)phenyl]-4-pyridinyl]-2,8-diazaspiro[4.5]decan-1-one.

60. The compound for use according to claims 54 to 57, wherein the compound is of the formula:

![Chemical Structure](image)

DBA-12
61. The compound for use according to claims 54 to 57, wherein the compound is
8-(2-Amino-3-chloro-5-(1-methyl-1H-indazol-5-yl)pyridin-4-yl)-2,8-diazaspiro[4.5]decan-
1-one.

62. The compound for use according to any one of claims 40 to 61, wherein said bone
anabolic disorder is osteopathy or osteoarthritis.

63. The compound for use according to claim 62, wherein said osteopathy is selected
from the group consisting of osteoporosis, osteopenia or bone destruction
associated with rheumatoid arthritis, Paget's disease of bone, bone fracture or
dysostosis due to dwarfism, osteolysis, healing of bone fractures, post-surgical
bone healing and prevention of prosthetic loosening.

64. The compound for use according to claim 63, wherein said osteoporosis is
postmenopausal osteoporosis, senile osteoporosis or secondary osteoporosis
caused by the use of steroids or immunosuppressants.

65. The compound for use according to any one of claims 40 to 61, wherein the bone
anabolic disorder is bone marrow failure.

66. The compound for use according to claim 65, wherein the bone marrow failure is
bone marrow failure caused by increased apoptosis of hematopoietic stem and
progenitor cells.

67. A method of treatment of a clinical condition in an individual in need thereof,
wherein the clinical condition is selected from the group consisting of a
ribosomopathy and a disease characterized by reduced number of hematopoietic
stem cells and/or progenitor cells, wherein the method comprises administering a
therapeutically effective amount of a CDK8 and/or CDK19 inhibitor to said
individual.

68. The method according to claim 67, wherein the CDK8 and/or CDK19 inhibitor is as
defined in any one of claims 2 to 35, and the ribosomopathy or the disease
characterized by reduced number of hematopoietic stem cells and/or progenitor
cells is as defined in any one of claims 36 to 39.
69. A method of treatment of a bone anabolic disorder in an individual in need thereof, the method comprising administering a therapeutically effective amount of a CDK8 and/or CDK19 inhibitor to said individual, wherein the CDK8 and/or CDK19 is as defined in any one of claims 2 to 22.

70. The method according to claim 69, wherein the bone anabolic disorder is as defined in any one of claims 62 to 66.

71. Use of a CDK8 and/or a CDK19 inhibitor for the preparation of a medicament for the treatment of the clinical condition selected from the group consisting of a ribosomopathy and a disease characterized by reduced number of hematopoietic stem cells and/or progenitor cells.

72. The use according to claim 71, wherein the CDK8 and/or CDK19 inhibitor is as defined in any one of claims 2 to 35, and the ribosomopathy or the disease characterized by reduced number of hematopoietic stem cells and/or progenitor cells is as defined in any one of claims 36 to 39.

73. Use of a CDK8 and/or a CDK19 inhibitor for the preparation of a medicament for the treatment of a bone anabolic disorder, wherein the CDK8 and/or CDK19 is as defined in any one of claims 2 to 22.

74. The use according to claim 73, wherein the bone anabolic disorder is as defined in any one of claims 62 to 66.

75. A compound for use in the treatment of a ribosomopathy, and/or a disease characterized by reduced number of hematopoietic stem cells and/or progenitor cells, wherein the compound is selected from the group consisting of:

a) a compound having the structure of formula (XVII):
wherein \(X^1, X^2\) and \(X^3\) are each independently selected from the group consisting of H, F, Cl, Br, I, -OT, -N(T)^2(T), -NH(=O)T, nitro, cyano, cyclopropyl and -C\(_1\)-C\(_3\) alkyl, with the proviso that at least two substituents selected from \(X^1, X^2\) and \(X^3\) are each independently selected from the group consisting of F, Cl, Br and I;

\(Z^1\) and \(Z^2\) are each independently selected from the group consisting of H, -CI-C\(_6\) alkyl, -OT and -N(T)^2(T);

\(Z^3\) and \(Z^4\) are either taken together to form an oxo group at the carbon atom to which they are attached; or \(Z^3\) and \(Z^4\) are each independently selected from the group consisting of H, -C\(_1\)-C\(_6\) alkyl, -OT and -N(T)^2(T);

\(Z^5\) and \(Z^6\) are either taken together to form an oxo group at the carbon atom to which they are attached; or \(Z^5\) and \(Z^6\) are each independently selected from the group consisting of H, -C\(_1\)-C\(_6\) alkyl, -OT and -N(T)^2(T);

\(X^4\) is either absent or selected from the group consisting of NR, -N(R)^2(CH\(_2\))\(^2\), -C(=0)NH- and -C(=0)-; wherein \(R^2\) is selected from H and -C\(_1\)-C\(_6\) alkyl;

\(Y^1\) is selected from the group consisting of H, -CI-C\(_6\) alkyl and a 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle, with the proviso that the point of attachment on said heterocycle is carbon if \(X^4\) is -NR or -C(=0)NH-, wherein said -CI-C\(_6\) alkyl is optionally substituted with one or more substituents independently selected from -OT, -ST, -N(T)^2(T) and a 5- to 6-membered saturated heterocycle, and wherein said 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle is optionally substituted with one or
more substituents independently selected from F, Cl, Br, i, -C(=0)H, -OT₁, -N(T²)(T³), -C(=0)N(T²)(T³), -C(=0)OT₁ and -C₁-C₃ alkyl, wherein said -C₁-C₃ alkyl is optionally substituted with one or more substituents independently selected from -OT₁ and -N(T²)(T³);

T¹, T² and T³ are each independently selected from H and -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from -N(T⁵)(T⁶), -OT⁷, -ST⁷, nitro, cyano, -C(=0)OT⁷, -C(=0)N(T⁵)(T⁶), -OC(=0)N(T⁵)(T⁶), -S(=0)₂T⁷, -S(=0)₂OT⁸ and -S(=0)₂N(T⁵)(T⁶);

T⁴ is -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from -N(T⁵)(T⁶), -OT⁷, -ST⁷, nitro, cyano, -C(=0)OT⁷, -C(=0)N(T⁵)(T⁶), -OC(=0)N(T⁵)(T⁶), -S(=0)₂T⁸, -S(=0)₂OT⁷ and -S(=0)₂N(T⁵)(T⁶);

T⁵, T⁶ and T⁷ are each independently selected from H and -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano; and

T⁸ is selected from -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano;

b) a compound having the structure of formula (XIV) or (XV):

Formula (XIV)
wherein B^1 is hydrogen when B^2 is a group of the formula (XVI); or
wherein B^2 is hydrogen when B^1 is a group of the formula (XVI):

wherein D is selected from C, O, and N; and wherein D is optionally substituted with a group Q wherein Q is selected from hydrogen, $-\text{CrC}_6\text{-alkyl}$, $-\text{Ci-C}_6\text{-alkoxy-C}_6\text{-alkyl}$, $-\text{Ci-C}_6\text{-alkylamine}$; and

n is an integer 0, 1 or 2;

c) a compound having the structure of formula (XVIII):
wherein:

- M^1 is H or NH$_2$,
- M^2 is LA, Hal, CN,
- M^3 is H, Hal, NH$_2$, LA, HO(LA)-, NH(LA),
- M^4 is CN, CONH$_2$, CONH(LA)

or

- M^3, M^4 together with the C atom they are attached to, form a 5- or 6-membered non-aromatic heterocycle, having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which is substituted by 1 or 2 oxo groups, which heterocycle may further be monosubstituted by LA or OH, and which heterocycle may form a condensed ring system with a phenyl or pyridyl group,

- M^5 is CH or N,

- M^6 is Cyc, CONH$_2$, COO(LA) or CONH(LA),

- M^7 is H,

or

- M^5, M^7 together with the atoms they are attached to, form a 5- or 6-membered heterocycle, having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which is, optionally, independently mono- di- or trisubstituted by oxo, OH, LA, NH$_2$, NH(LA), N(LA)$_2$, NHCOO(LA) or HO(LA)-,

- Cyc is a 5- or 6-membered monocyclic, aliphatic or aromatic homo- or heterocycle having 1-3 heteroatoms, individually selected from the group consisting of O, S and N, which may be mono- or di-substituted by oxo, LA, NH$_2$, NH(LA), N(LA)$_2$, HO(LA)-, or monosubstituted by CA,

- LA is an unbranched or branched alkyl, having 1, 2, 3, 4 or 5 carbon atoms, which may be saturated or partially unsaturated, wherein 1, 2 or 3 H atoms may be replaced by Hal, and/or

- 1 CH$_3$ group may be replaced by CN, or

- 1 CH$_2$ group may be replaced by -O-, -NH- or -SO$_2$-, and/or

- 1 CH group may be replaced by N,

- CA is a cycloalkyi having 3, 4, 5 or 6 carbon atoms, or cycloalkyi alkyl having 3, 4, 5 or 6 ring carbon atoms and 1 or 2 non-ring carbon atoms, in which cycloalkyi or cycloalkyi alkyl one ring atom may be replaced by O, and which cycloalkyi or cycloalkyi alkyl may be monosubstituted by OH,
Hal is F, Cl, Br or I;

and

d) a compound having the formula (I):

![Formula (I)](image)

wherein:

R¹ is selected from the group consisting of a hydrogen atom, Ci-C₆ alkyl, -NH₂, and alkyl-amine,

R² is selected from the group consisting of a hydrogen atom, -N(CH₃)₂, -NH₂, methyl, trifluoromethyl, -CH₂OCH₃, -PhOCH₃, -PhCH₃, -PhCl, and a group of any one of the formulas (II), (III), (IV) and (V):
Formula (V)

R³ is selected from the group consisting of a hydrogen atom, methyl, acetyl, phenyl, cyclopropyl, and a group of the formula (V):

Formula (V)

R⁴ is selected from the group consisting of a hydrogen atom, methyl, ethyl, cyclopropyl, C₁-C₆ alkyl, acetyl, phenyl, trifluoromethyl, -CH₂CH(CH₃)₂, -PhCl, -PhCH₃, and a group of the formulas (III) or (VII):

Formula (III)

or wherein R⁴ is an oxygen atom double bonded to the carbon atom of the thienopyridine ring thus forming a structure of formula (VI):
wherein R_2 and R_3 are joined to form a 6-membered cyclic structure of the formula (VIII):

![Formula (VIII)](image)

or wherein R_3 and R_4 are joined to form a 5-, 6- or 7-membered cyclic structure of any one of the formulas (IX), (X), (XI) or (XII):

![Formula (IX)](image)

![Formula (X)](image)
wherein \(R^5 \) and \(R^6 \) optionally and individually are \(-\text{OCH}_3\);

or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

76. The compound for use according to claim 75, wherein the ribosomopathy is selected from the group consisting of Diamond-Blackfan anemia, Dyskeratosis congenita, Shwachman-Diamond syndrome, 5q- myelodysplastic syndrome, Treacher Collins syndrome, Cartilage-hair hypoplasia, North American Indian childhood cirrhosis, Isolated congenital asplenia, Bowen-Conradi syndrome, Turner’s syndrome and Fanconi’s anemia.

77. The compound for use according to any one of claims 75 to 76, wherein the ribosomopathy is an anemia, such as aplastic anemia.

78. The compound for use according to any one of claims 75 to 76, wherein the ribosomopathy is an immunodeficiency growth retardation.

79. The compound for use for use according to any one of claims 75 to 76, wherein the ribosomopathy is Diamond Blackfan anemia.
80. A compound for use in the treatment of bone anabolic disorders, wherein the compound is selected from the group consisting of:

a) a compound having the structure of formula (XVII):

![Chemical Structure](image)

Formula (XVII)

wherein X^1, X^2 and X^3 are each independently selected from the group consisting of H, F, Cl, Br, i, -OT, -N(T$_2$)(T$_3$), -NHC(=0)T, nitro, cyano, cyclopropyl and -C$_3$C alkyl, with the proviso that at least two substituents selected from X^1, X^2 and X^3 are each independently selected from the group consisting of F, Cl, Br and i;

Z^1 and Z^2 are each independently selected from the group consisting of H, -Ci-C$_6$ alkyl, -OT and -N(T$_2$)(T$_3$);

Z^3 and Z^4 are either taken together to form an oxo group at the carbon atom to which they are attached; or Z^3 and Z^4 are each independently selected from the group consisting of H, -C$_r$C$_6$ alkyl, -OT and -N(T$_2$)(T$_3$);

Z^5 and Z^6 are either taken together to form an oxo group at the carbon atom to which they are attached; or Z^5 and Z^6 are each independently selected from the group consisting of H, -C$_r$C$_6$ alkyl, -OT and -N(T$_2$)(T$_3$);

X^4 is either absent or selected from the group consisting of NR, -N(R$_{12}$)(CH$_2$)$_r$, -C(=0)NH- and -C(=0)-; wherein R$_{12}$ is selected from H and -C$_r$C$_6$ alkyl;

Y is selected from the group consisting of H, -Ci-C$_6$ alkyl and a 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle, with the proviso that the point of attachment on said heterocycle is carbon if X^4 is -NR$_{12}$- or -C(=0)NH-,
wherein said -Ci-C₆ alkyl is optionally substituted with one or more substituents independently selected from -OT¹, -ST¹, -N(T²)(T³) and a 5- to 6-membered saturated heterocycle, and wherein said 4- to 7-membered saturated or unsaturated aromatic carbocycle or heterocycle is optionally substituted with one or more substituents independently selected from F, Cl, Br, I, -C(=0)H, -OT¹, -N(T²)(T³), -C(=0)OT¹, -ST¹ and -C₁-C₃ alkyl, wherein said -C₁-C₃ alkyl is optionally substituted with one or more substituents independently selected from -OT¹ and -N(T²)(T³):

T¹, T² and T³ are each independently selected from H and -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from -N(T⁵)(T⁶), -OT⁷, -ST⁷, nitro, cyano, -C(=0)OT⁷, -C(=0)N(T⁶)(T⁷), -OC(=0)N(T⁵)(T⁶), -S(=0)₂T⁷, -S(=0)₂OT⁸ and -S(=0)₂N(T⁵)(T⁶):

T⁴ is -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from -N(T⁵)(T⁶), -OT⁷, -ST⁷, nitro, cyano, -C(=0)OT⁷, -C(=0)N(T⁶)(T⁷), -OC(=0)N(T⁵)(T⁶), -S(=0)₂T⁸, -S(=0)₂OT⁷ and -S(=0)₂N(T⁵)(T⁶):

T⁵, T⁶ and T⁷ are each independently selected from H and -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano; and

T⁸ is selected from -Ci-C₆ alkyl optionally substituted with one or more substituents independently selected from amino, hydroxyl, thiol, nitro and cyano;

b) compound having the structure of formula (XIV) or (XV):
wherein B^1 is hydrogen when B^2 is a group of the formula (XVI); or

wherein B^2 is hydrogen when B^1 is a group of the formula (XVI):

wherein D is selected from C, O, and N; and wherein D is optionally substituted with a group Q wherein Q is selected from hydrogen, $-\text{CrC}_6-\text{alkyl}$, $-\text{Ci-C}_6-\text{alkoxy-Ci-C}_6-\text{alkyl}$, $-\text{Ci-C}_6-\text{alkylamine}$; and

n is an integer 0, 1 or 2;

c) a compound having the structure of formula (XVIII):
Formula (XVIII)

wherein:

5 \(M^1 \) is \(H \) or \(\text{NH}_2 \),
\(M^2 \) is \(\text{LA}, \text{Hal}, \text{CN} \),
\(M^3 \) is \(H, \text{Hal}, \text{NH}_2, \text{LA}, \text{HO(LA)}-, \text{NH(LA)} \),
\(M^4 \) is \(\text{CN}, \text{CONH}_2, \text{CONH(LA)} \)
or
10 \(M^3, M^4 \) together with the C atom they are attached to, form a 5- or 6-membered non-aromatic heterocycle, having 1-3 heteroatoms, individually selected from the group consisting of \(O, S \) and \(N \), which is substituted by 1 or 2 oxo groups, which heterocycle may further be monosubstituted by \(\text{LA} \) or \(\text{OH} \), and which heterocycle may form a condensed ring system with a phenyl or pyridyl group,

15 \(M^5 \) is \(\text{CH} \) or \(\text{N} \),
\(M^6 \) is \(\text{Cyc}, \text{CONH}_2, \text{COO(LA)} \) or \(\text{CONH(LA)} \),
\(M^7 \) is \(H \),
or
20 \(M^6, M^7 \) together with the atoms they are attached to, form a 5- or 6-membered heterocycle, having 1-3 heteroatoms, individually selected from the group consisting of \(O, S \) and \(N \), which is, optionally, independently mono- di- or trisubstituted by oxo, \(\text{OH, LA, NH}_2, \text{NH(LA)}, \text{N(LA)}_2, \text{NHCOO(LA)} \) or \(\text{HO(LA)}- \),
\(\text{Cyc} \) is a 5- or 6-membered monocyclic, aliphatic or aromatic homо- or heterocycle having 1-3 heteroatoms, individually selected from the group consisting of \(O, S \) and \(N \), which may be mono- or di-substituted by oxo, \(\text{LA, NH}_2, \text{NH(LA)}, \text{N(LA)}_2, \text{HO(LA)}- \), or monosubstituted by \(\text{CA} \),
\(\text{LA} \) is an unbranched or branched alkyl, having 1, 2, 3, 4 or 5 carbon atoms, which may be saturated or partially unsaturated, wherein 1, 2 or 3 \(H \) atoms may be replaced by \(\text{Hal} \), and/or

30 1 \(\text{CH}_3 \) group may be replaced by \(\text{CN} \), or
1 \(\text{CH}_2 \) group may be replaced by \(-0-, -\text{NH}- \) or \(-\text{SO}_2- \), and/or
1 \(\text{CH} \) group may be replaced by \(\text{N} \),
\(\text{CA} \) is a cycloalkyl having 3, 4, 5 or 6 carbon atoms, or cycloalkyl alkyl having 3, 4, 5 or 6 ring carbon atoms and 1 or 2 non-ring carbon atoms, in which cycloalkyl or
cycloalkyl alkyl one ring atom may be replaced by O, and which cycloalkyl or
cycloalkyl alkyl may be monosubstituted by OH,

\textbf{Hal} is F, Cl, Br or I;

5 or a pharmaceutically acceptable salt, solvate, polymorph, or tautomer thereof.

81. The compound for use according to claim 80, wherein said bone anabolic disorder
is osteopathy or osteoarthritis.

82. The compound for use according to claim 81, wherein said osteopathy is selected
from the group consisting of osteoporosis, osteopenia or bone destruction
associated with rheumatoid arthritis, Paget's disease of bone, bone fracture or
dysostosis due to dwarfism, osteolysis, healing of bone fractures, post-surgical
bone healing and prevention of prosthetic loosening.

83. The compound for use according to claim 82, wherein said osteoporosis is
postmenopausal osteoporosis, senile osteoporosis or secondary osteoporosis
caused by the use of steroids or immunosuppressants.

84. The compound for use according to any one of claims 80 to 83, wherein the bone
anabolic disorder is bone marrow failure.

85. The compound for use according to claim 84, wherein the bone marrow failure is
bone marrow failure caused by increased apoptosis of hematopoietic stem and
progenitor cells.
<table>
<thead>
<tr>
<th>DiscoverX Kinome Scan</th>
<th>DBA-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound name --></td>
<td>%cntrl @ 10000 nM</td>
</tr>
<tr>
<td>DiscoveRx Gene Symbol</td>
<td>CDK11 (CDK19)</td>
</tr>
<tr>
<td>CSNK1A1</td>
<td>11</td>
</tr>
<tr>
<td>CSNK1A1L</td>
<td>25</td>
</tr>
<tr>
<td>CSNK1D</td>
<td>10</td>
</tr>
<tr>
<td>CSNK1E</td>
<td>14</td>
</tr>
<tr>
<td>CSNK1G1</td>
<td>84</td>
</tr>
<tr>
<td>CSNK1G2</td>
<td>73</td>
</tr>
<tr>
<td>CSNK1G3</td>
<td>67</td>
</tr>
<tr>
<td>DAPK1</td>
<td>84</td>
</tr>
<tr>
<td>DYRK1A</td>
<td>50</td>
</tr>
<tr>
<td>DYRK1B</td>
<td>41</td>
</tr>
<tr>
<td>DYRK2</td>
<td>46</td>
</tr>
<tr>
<td>GCN2(Kin.Dom.2,S808G)</td>
<td>94</td>
</tr>
<tr>
<td>HIPK1</td>
<td>61</td>
</tr>
<tr>
<td>p38-alpha</td>
<td>88</td>
</tr>
<tr>
<td>PIM1</td>
<td>87</td>
</tr>
<tr>
<td>RSK4(Kin.Dom.2-C-terminal)</td>
<td>72</td>
</tr>
<tr>
<td>TGFRB1</td>
<td>95</td>
</tr>
</tbody>
</table>

Fig. 4
Fig. 7 cont.

RPS19-deficient
0.03 uM DBA-7

70% live cells

RPS19-deficient
5 uM DBA-8

77% Live cells

TAAD

SUBSTITUTE SHEET (RULE 26)
RPS19-deficient
no drug

Healthy

38% c-kit+
progenitor cells

52% c-kit+
progenitor cells

Fig. 8
RPS19-deficient

0.03 uM DBA-7

FSC-A

63% c-kit+
progenitor cells

RPS19-deficient

5 uM DBA-8

FSC-A

65% c-kit+
progenitor cells

C-KIT

Fig. 8 cont.
Fig. 10
Fig. 12
DBA-9

Fig. 12 cont.
Fig. 12 cont.
Fig. 12 cont.
DMSO
(vehicle control)

DBA patient
(RPS26 mutation)

DBA patient
(RPS19 mutation)

Glycophorin A (CD235a)

Fig. 13
DBA-9

Fig. 13 cont.
Fig. 13 cont.
Fig. 13 cont.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD.</td>
<td>A61P7/06</td>
<td>A61P19/10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) and/or both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols): A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic database consulted during the international search (name of database and, where practicable, search terms used):

- EPO-Internal
- BIOSIS
- CHEM ABS Data
- EMBASE
- WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance.
- "E" earlier application or patent but published on or after the international filing date.
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
- "O" document referring to an oral disclosure, use, exhibition or other means.
- "P" document published prior to the international filing date but later than the priority date claimed.
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "J" document member of the same patent family.

Date of the actual completion of the international search: 23 January 2017

Date of mailing of the international search report: 23/03/2017

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer: Steendijk, Martin

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>S WEI ET AL: "Lenalidomide promotes p53 degradati on by inhibiti on of MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q del eti on". ONCOGENE, vol. 32, no. 9, 23 April 2012 (2012-04-23), pages 1110-1120, XP055337156, ISSN: 0950-9232, DOI: 10.1038/onc.2012.139.</td>
<td>1-39, 67, 68, 71, 72, 75-79</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (continuation of second sheet) (April 2008)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
INTERNATIONAL SEARCH REPORT

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☐ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☑ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

 1-39, 67, 68, 71, 72, 75-79

Remark on Protest

☐ The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
Thi s Internati onal Searchi ng Authori ty found mult i ple (groups of) in venti ons in thi s internati onal appl i cati on, as fol lows:

1. clai ms: 1-39, 67, 68, 71, 72, 75-79

CDK8 and/or CDK19 inhi bi tor for use in treatment of a ribosomopathy and/or disease characteri zed by reduced number of hematopoietic stem / progeni tor cel ls

2. clai ms: 40-66, 69, 70, 73, 74, 80-85

CDK8 and/or CDK19 inhi bi tor for use in treatment of bone anabolic di sorders
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2890643 Al</td>
<td>15-05-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104903321 A</td>
<td>09-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2917217 Al</td>
<td>16-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2016503408 A</td>
<td>04-02-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150091074 A</td>
<td>07-08-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015274726 Al</td>
<td>01-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2014072435 Al</td>
<td>15-05-2014</td>
</tr>
<tr>
<td>wo 2013040153 A1</td>
<td>21-03-2013</td>
<td>EA 20140614 Al</td>
<td>30-06-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2797598 Al</td>
<td>05-11-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 11201401343Y A</td>
<td>28-08-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 112197 C2</td>
<td>10-08-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014309224 Al</td>
<td>16-10-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2013040153 Al</td>
<td>21-03-2013</td>
</tr>
<tr>
<td>wo 2015144290 A1</td>
<td>01-10-2015</td>
<td>AU 2015236855 Al</td>
<td>10-11-2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2943659 Al</td>
<td>01-10-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 106458992 A</td>
<td>22-02-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 3122739 Al</td>
<td>01-02-2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2015144290 Al</td>
<td>01-10-2015</td>
</tr>
<tr>
<td>wo 03103661 A1</td>
<td>18-12-2003</td>
<td>AR 040250 Al</td>
<td>23-03-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 415966 T</td>
<td>15-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003237330 Al</td>
<td>22-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0311605 A</td>
<td>22-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2483890 Al</td>
<td>18-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1649581 A</td>
<td>03-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1513516 T3</td>
<td>19-10-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1513516 Al</td>
<td>16-03-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2008654 Al</td>
<td>31-12-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2318141 T3</td>
<td>01-05-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1080737 Al</td>
<td>15-08-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HR P20041154 A2</td>
<td>30-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005530816 A</td>
<td>13-10-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009102447 A</td>
<td>14-05-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20050005548 A</td>
<td>13-01-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ME P53508 A</td>
<td>10-05-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA04011246 A</td>
<td>03-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 537394 A</td>
<td>22-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PE 05392004 Al</td>
<td>21-10-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RS 105204 A</td>
<td>15-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1296927 B</td>
<td>21-05-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004053957 Al</td>
<td>18-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005288285 Al</td>
<td>29-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UY 27834 Al</td>
<td>31-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 03103661 Al</td>
<td>18-12-2003</td>
</tr>
<tr>
<td>wo 2014194201 A2</td>
<td>04-12-2014</td>
<td>Wo 2014194201 A2</td>
<td>04-12-2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2014194245 A2</td>
<td>04-12-2014</td>
</tr>
<tr>
<td>wo 2013138101 A2</td>
<td>19-09-2013</td>
<td>Ep 2825173 A2</td>
<td>21-01-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015265627 Al</td>
<td>24-09-2015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2013138101 A2</td>
<td>19-09-2013</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)