wo 2014/031416 A2 |11 N0FV0 OO O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2014/031416 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Filing Date:
14 August 2013 (14.08.2013)

Filing Language: English
Publication Language: English
Priority Data:

13/590,057 20 August 2012 (20.08.2012) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, Mail Stop 50OP7,
Redwood Shores, California 94065 (US).

Inventors: AMBERG, Philip; 30 E.Julian St., #116, San
Jose, California 95112 (US). SCHAUER, Justin; 1320
Stevenson St., #C308, San Francisco, California 94103
(US). HOPKINS II, Robert David; 815 Sea Spray Lane,
Unit 314, Foster City, California 94404 (US).

Agents: BRANDT, Michael C. et al; 1 Almaden
Boulevard, Floor 12, San Jose, California 95113 (US).

27 February 2014 (27.02.2014) WIPO | PCT
International Patent Classification: (81)
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2013/055020

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: HARDWARE IMPLEMENTATION OF THE AGGREGATION/GROUP BY OPERATION: HASH-TABLE METHOD

(57) Abstract: Techniques are described for performing grouping and ag-

FIG. 1A

gregation operations. In one embodiment, a request is received to aggregate

data grouped by a first column. In response to receiving the request, a group

SYSTEM
100

RAM
102

RAM CONTROLLER
104

CACHE
10

r
I L =
REQUEST QUEUE
120

GROUP VALUE HASH AGGREGATION

COLUMN COLUMN TABLE STATE

ACCESS ACCESS ACCESS ACCESS
130 140 150 160

value in a row of a first column is mapped to an address. A pointer is stored
for a first group at a first location identified by the address. The pointer iden-
tifies a second location of a set of aggregation data for the first group. An ag-
gregate value included in the set of aggregation data is updated based on a
value in the row of a second column.

WO 2014/031416 PCT/US2013/055020

HARDWARE IMPLEMENTATION OF THE AGGREGATION/GROUP BY OPERATION: HASH-
TABLE METHOD

FIELD OF THE INVENTION
[0001] The present disclosure relates generally to techniques for performing database
operations and more specifically to techniques for performing grouping and aggregation

operations.

BACKGROUND

[0002] The approaches described in this section are approaches that could be pursued, but
not necessarily approaches that have been previously conceived or pursued. Therefore,
unless otherwise indicated, it should not be assumed that any of the approaches described in
this section qualify as prior art merely by virtue of their inclusion in this section.

[0003] A database comprises data and metadata that are stored on one or more storage
devices, such as a set of hard disks. The data within a database may be logically organized
according to a variety of data models, depending on the implementation. For example,
relational database systems typically store data in a set of tables, where each table is
organized into a set of rows and columns. In most cases, each row represents a distinct
object, and each column represents a distinct attribute. However, other data models may also
be used to organize the data.

[0004] In order access and manipulate data in a database, a database management system
(DBMYS) is generally configured to receive and process a variety of database commands,
often referred to as queries. In many implementations, the DBMS supports queries that
conform to a Data Manipulation Language (DML) such as structured query language (SQL).
When the DBMS receives a query, the DBMS performs one or more database operations
specified by the query and may output a query result. Example database operations include

aggregation and grouping operations, which are described below.

AGGREGATION AND GROUPING OPERATIONS

[0005] Aggregation and grouping operations are database operations that provide
summary statistics about data in specific columns. In SQL, grouping operations use the
GROUP BY syntax to group results of aggregate functions by one or more columns. Table 1

below illustrates example aggregate functions that may be used in database queries.

WO 2014/031416 PCT/US2013/055020

FUNCTION NAME DESCRIPTION

AVG Returns the average value of a column
COUNT Returns the number of rows in the column
FIRST Returns the first value in the column

LAST Returns the last value in the column

MAX Returns the largest value in the column
MIN Returns the smallest value in the column
SUM Returns the sum of all values in the column

Table 1: Example aggregate functions

[0006] Example aggregation and grouping queries are shown below in Table 2.

Query 1:

SELECT sum(AMOUNT)

FROM sales

Query 2:

SELECT SALESMAN, sum (AMOUNT)
FROM sales

GROUP BY SALESMAN

Query 3:
SELECT SALESMAN, CUSTOMER, sum(AMOUNT)
FROM sales

GROUP BY SALESMAN, CUSTOMER

Table 2: Example aggregation queries
[0007] Each of the above queries, when executed by the DBMS, aggregates data from
values within the AMOUNT column of a sales table. For instance, Table 3 below illustrates

an example sales table.

SALE_ID | SALESMAN CUSTOMER AMOUNT
1 Pedro Gainsley Corp. 400
2 Pedro Lexau’s Lexan 200
3 Alex Lexau’s Lexan 150
4 Michael Lexau’s Lexan 350
5 Alex Gainsley Corp. 600
6 Alex Lexau’s Lexan 650
7 Pedro Gainsley Corp. 470

Table 3: Example sales table

WO 2014/031416 PCT/US2013/055020

[0008]
Query 1 is executed, the DBMS performs aggregation but no grouping. The DBMS

Query 1 requests the total dollar amount of sales the company has made. When

unconditionally sums all amounts in the sales table to return a final result. Given the example
sales table of Table 3, Table 4 below illustrates the expected output of executing Query 1.
sum(AMOUNT)
2820

Table 4: Result table for Query 1

Query 2 requests the total dollar amount of sales grouped by the salesman who

[0009]
made the sale. When Query 2 is executed, the DBMS performs both grouping and
aggregation. Specifically, the DBMS generates one aggregated result for each unique
salesman in the sales table where the result is the total sales by the particular salesman.
Given the example sales table of Table 3, Table 5 below illustrates the expected output of

executing Query 2.

SALESMAN | sum(AMOUNT)
Pedro 1070

Alex 1400

Michael 350

Table 5: Result table for Query 2
[0010]

customer associated with the sale. When Query 3 is executed, the DBMS performs multi-

Query 3 requests the total dollar amount of sales grouped by the salesman and the

column grouping and aggregation. In this case there will be one aggregated result for each
unique salesman-customer pair, and the aggregated results are the total sales for that
particular salesman-customer pair. Given the example sales table of Table 3, Table 6 below

illustrates the expected output of executing Query 3.

SALESMAN | CUSTOMER | sum(AMOUNT)
Pedro Gainsley Corp. | 870
Pedro Lexau’s Lexan | 200
Alex Gainsley Corp. | 600
Alex Lexau’s Lexan | 800
Michael Lexau’s Lexan | 350

Table 6: Result table for Query 3

WO 2014/031416 PCT/US2013/055020

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The present disclosure is illustrated by way of example, and not by way of
limitation, in the figures of the accompanying drawings and in which like reference numerals
refer to similar elements and in which:

[0012] FIGS. 1A and 1B are block diagrams illustrating an example system architecture
for performing grouping and aggregation operations, according to an embodiment;

[0013] FIG. 2 is a block diagram illustrating an example architecture of a group column
access block, according to an embodiment;

[0014] FIG. 3 is a block diagram illustrating an example architecture of a hash-table
access block, according to an embodiment;

[0015] FIG. 4 is a block diagram illustrating an example architecture of a aggregation
state access block, according to an embodiment;

[0016] FIG. 5 is a block diagram illustrating an example architecture of a value column
access block, according to an embodiment;

[0017] FIG. 6 is a flowchart illustrating an example process for performing grouping and
aggregation operations, according to an embodiment;

[0018] FIG. 7 is a block diagram illustrating a layout of a sales table in memory,
according to an embodiment;

[0019] FIG. 8 is a block diagram of an accumulator data structure, according to an
embodiment;

[0020] FIGS. 9A-9C are block diagrams of the state of accumulator data structures during
grouping and aggregation operations, according to an embodiment;

[0021] FIG. 10 is a block diagram illustrating the state of a memory after grouping and
aggregation operations have been performed, according to an embodiment;

[0022] FIG. 11 is a block diagram illustrating an example hash-table structure, according
to an embodiment;

[0023] FIG. 12 is a block diagram of a computer system upon which embodiments may

be implemented.

DETAILED DESCRIPTION

[0024] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block diagram

form in order to avoid unnecessarily obscuring the present invention.

-

WO 2014/031416 PCT/US2013/055020

GENERAL OVERVIEW

[0025] Techniques are described herein for performing grouping and aggregation
database operations. In an embodiment, specialized hardware is configured to efficiently and
effectively perform grouping and aggregation database operations. The specialized hardware
may support an arbitrary number of groups when performing grouping operations.

[0026] Furthermore, the grouping and aggregation may be performed without a global
sort of table data. Avoiding a global sort alleviates random memory access issues that occur
while sorting a large list. For example, while sorting a list, one item may go in a group
located in one block of memory, while the next item might belong to a group located in a
different block of memory. Writing the sorted table in this case would typically require
repeatedly closing and opening new memory pages. According to techniques described
herein, groupings and aggregations may be performed on small chunks of memory, which
allows random accesses to occur in fast, low power caches.

[0027] In an embodiment, a system receives a query that requests an aggregation
operation grouped by a first column. Because the grouped by operation is performed on the
first column, the distinct values in the first column are referred to herein as “group values”.
[0028] In response to receiving the query, the system maps the group values of the first
column to one or more addresses. For example, the system may apply a hash function to
each group value to determine an address to which a particular group value maps. Group
values that are identical map to the same address, and group values that are different map to
different addresses unless a collision occurs.

[0029] In an embodiment, each address to which a group value is mapped identifies an
entry within a table or content-addressable memory (CAM). The entry may store a pointer
that identifies a memory location of a set of aggregation data for the group associated with
the group value that hashes to that memory location. For example, if the first column has a
value X that hashes to memory location Y, then memory location Y identifies an entry that
stores a pointer to aggregation data for rows that have X in the first column.

[0030] When a group value of a row maps to the entry, the system may update an
aggregate value included in the set of aggregation data for the group. The system may
perform the steps of mapping group values and updating the aggregate value for each row of
the first column.

[0031] In an embodiment, the system may perform collision detection to ensure that two
or more different groups do not update the same aggregate value. For example, the set of

aggregation data may include the group value in addition to the aggregate value. If a second

-5-

WO 2014/031416 PCT/US2013/055020

group value maps to the same address as a first group value, the second group value is
checked against the group value stored in the set of aggregate data. If they match, then no
collision has occurred and the aggregate value may be updated. However, if the group values
do not match, then a collision is detected.

[0032] To handle collisions, the set of aggregate data may include a pointer indicating a
memory location of aggregate data for a next group. This pointer may initially be set to a
null value. When a collision occurs, the pointer may be updated to point to a set of
aggregation data for the next group. If subsequent collisions occur after the pointer has been
set, then the set of aggregation data for the next group may be retrieved, and the collision

detection and handling process may be repeated for the next group.

EXAMPLE ARCHITECTURE FOR PROCESSING GROUPING AND AGGREGATION
OPERATIONS

[0033] FIGS. 1A and 1B are block diagrams illustrating an example system architecture
for performing grouping and aggregation operations, according to an embodiment. System
100 generally comprises Random Access Memory (RAM) 102, RAM controller 104, cache
110, request queue 120, group column access unit 130, value column access unit 140, hash
table access unit 150, and aggregation state access unit 160.

[0034] RAM 102 may be implemented using any form of data storage that allows random
access to the data that it stores. Examples of RAM 102 include without limitation dynamic
RAM (DRAM) and static RAM (SRAM). According to an embodiment, RAM 102 stores at
least a portion of a database that is queried by a grouping/aggregation database query. The
organization of the data stored within RAM 102 may vary from implementation to
implementation. In one embodiment, RAM 102 stores the database in a hybrid-columnar
format. According to this format, RAM 102 stores N blocks of data, where N may be any
positive integer. Within each block, a fixed number of rows for one or more columns are
stored in a column-oriented fashion. For example, a first block may store the first 50 rows
for one or more columns of a database table, the second block the next 50 rows, and a third
block the next 30 rows. Within each block, column values of each column are stored
contiguously.

[0035] RAM controller 104 is a memory controller that manages the flow of data going to
and from RAM 102. Accordingly, RAM controller 104 may process requests from cache 110
or request queue 120 to read and write data to RAM 102. RAM controller 104 may be

implemented using any suitable memory controller, including without limitation a double

WO 2014/031416 PCT/US2013/055020

data rate DDR memory controller, a dual-channel memory controller, or a fully buffered
memory controller.

[0036] Cache 110 stores data that are used by the access blocks during processing of the
grouping/aggregation query. Cache memories may allow random access to stored data similar
to RAM; however, cache memories are typically smaller in size and have a smaller latency to
access data than RAM. Accordingly, caching the data may reduce data bottlenecks and
improve performance of system 100, by reducing the number of I/0 operations to RAM 102
when processing data for the grouping/aggregation query.

[0037] Request queue 120 buffers requests to and from access blocks, including group
column access unit 130, value column access unit 140, hash table access unit 150, and
aggregation state access unit 160. For example, when a grouping/aggregation query is
received, the access blocks may request a particular row or row value from RAM 102 or
cache 110. Request queue 120 may buffer a plurality of these requests from the access
blocks, which allows memory fetches to be pipelined, sustaining high-bandwidth in case the
requested reads result in long-latency RAM accesses.

[0038] The access blocks in system 100, including group column access unit 130, value
column access unit 140, hash-table access unit 150, and aggregation state access unit 160, are
responsible for fetching, updating group accumulators, and writing results back to memory

according to techniques described in further detail below.

MEMORY ORGANIZATION

[0039] The memory system of system 100 may be divided into distinct sections to
optimize data access during query processing. FIG. 1B is a block diagram illustrating an
example memory hierarchy for system 100. As illustrated, the memory system is divided into
two sections: buffer 112 and multilevel cache 114.

[0040] Buffer 112 may be implemented as an on-chip buffer and may operate in a non-
managed fashion. For instance, buffer 112 may receive a starting memory address and, in
response, read data sequentially from RAM 102. In an embodiment, group column access
unit 130 and value column access unit 140 access RAM 102 through buffer 112. According
to the techniques described below, these blocks read data sequentially and do not perform any
modifications on this data. Therefore, data may be efficiently preloaded into buffer 112 since
the access pattern is known and sequential.

[0041] Multilevel cache 114 is a managed cache that may operate in a similar fashion to a
central processing unit (CPU) cache hierarchy, such as a hierarchy that includes a level 1

(L1), level 2 (L2), and level 3 (L3) cache. Accordingly, multilevel cache 114 may comprise

WO 2014/031416 PCT/US2013/055020

smaller, faster, lower-level caches such as a Level 1 (L1) cache that are backed up by larger,
slower, higher-level caches.

[0042] In an embodiment, hash-table access unit 150 and aggregation state access unit
160 access RAM 102 through multilevel cache 114. When accessing the data that resides in
RAM 102 or on disk, these units may search lower-level caches of multi-level cache 114
first, followed by higher-level caches of multi-level cache 114. For instance, the units may
first look for the relevant data in the L1 cache, followed by the L2 cache, and then the L3
cache. If the data is not found in any of the cache levels, then the data may be requested from
RAM 102. As described in further detail below, hash-table access unit 150 and aggregation
state access unit 160 read and modify data randomly, and there may be some degree of spatial
and temporal locality to these data accesses. Therefore, a multilevel cache is well-suited to
support these units.

[0043] Request queue 120 buffers memory access requests received from the access
units. In an embodiment, request queue 120 may process requests in the same order that it
receives them. For example, request queue 120 may dispatch a request to access memory and
wait until the transaction has completed before processing the next request. Alternatively, the
request queues that support hash-table access unit 150 and aggregation state access unit 160
may be configured to support out-of-order dispatching. For example, a low-latency access to
multilevel cache 114 may be returned before a long-latency access to RAM 102, even if the
request to RAM 102 was sent first. Thus, the available hardware resources may be better

utilized in the case of slow memory accesses.

GROUP COLUMN ACCESS UNIT

[0044] FIG. 2 is a block diagram illustrating an example architecture of group column
access unit 130. Group column access unit 130 generally comprises address generator 204,
tag assignor 206, and local memory 208. Group column access unit 130 is responsible for
fetching the values of the column being grouped on. For the purpose of explanation, it shall
be assumed that query 2 is being executed. In query 2, the column being grouped on is
SALESMAN. Therefore, in the present example, group column access unit 130 is
responsible for fetching values from the SALESMAN column.

[0045] Address generator 204 generates memory addresses for the columns being
grouped on and sends the addresses to memory request queue 202. In an embodiment,

address generator 204 begins at the starting address of the group by column. Thus, in the

WO 2014/031416 PCT/US2013/055020

present example, address generator 204 would send the starting address of the SALESMAN
column to request queue 202.

[0046] In FIG. 2, the requests issued by address generator 204 are shown as being sent
“to memory”. As was explained with reference to FIG. 1, sending the requests to memory
may actually involve looking for data in one or more levels of the multi-level cache 114, and
retrieving the data from RAM 102 if it does not reside in the multi-level cache 114.
However, for the purposes of explanation, it shall be said that the requests are simply sent to
“the memory system”, and the requested data is received by the group column access unit 130
from “the memory system”.

[0047] Thus, in response to the addresses generated by address generator 204, the
memory system returns the group names sequentially row by row from the group by column
(e.g. SALESMAN). Request queue 202 stores those group names in local memory 208. In
addition, tag assignor 206 assigns each of the incoming group names a unique tag, which is
stored alongside the corresponding name in local memory 208. For instance, in the present
example, address generator 204 may submit the address of the start of the SALESMAN
COLUMN. In response, “Pedro” is received and stored in local memory 208 along with the
tag TAGI. Then address generator 204 submits the address of the next value of the
SALESMAN COLUMN. In response “Pedro” is received and stored in local memory 208
along with the tag TAG2. This process may repeat for the remaining rows of the
SALESAMN COLUMN.

[0048] In an embodiment, the tag that is assigned by tag assignor 206 acts as a row
identifier, which may be used to track the corresponding row and associate it with other
pieces of data, such as a value, that may arrive later in the aggregation process. Tag assignor
206 may generate the tags in any suitable fashion to uniquely identify the incoming rows.
For example, tag assignor may be implemented as a counter that assigns sequential numbers
to each incoming group name. Accordingly, the tag may provide a unique identifier to each
row, acting as a proxy for a ROWID attribute without the need to issue memory requests to
RAM 102 to access the ROWID column. The tag also enables out-of-order processing of
data entries and may be used to identify a particular transaction across multiple access blocks.
[0049] According to one embodiment, group column access unit 130 sends the incoming
group names directly to hash-table access unit 150 for hashing. In addition, the content of the
small local memory 208, including the tag and associated group name, is sent to aggregation

state access unit 160 where the group names are used in collision checking.

WO 2014/031416 PCT/US2013/055020

HASH-TABLE ACCESS UNIT

[0050] FIG. 3 is a block diagram illustrating an example architecture of hash-table access
unit 150, according to an embodiment. Hash-table access unit 150 generally comprises hash
generator 304 and local memory 306. Hash-table access unit 150 is responsible for applying
a hash-function to a group name and fetching a corresponding pointer.

[0051] Hash generator 304 receives group names, row by row, from group column access
unit 130 and applies a hash function to each of the incoming group names. The hash function
may be implemented using any suitable function that maps the group name to an address of a
hash-table entry. After the hash function has been applied, hash generator 304 sends a
memory request to request queue 302 to fetch a pointer from the hash-table entry at the
address that corresponds to the hash value generated by the hash function. Request queue
302 fetches the pointer from the local cache (e.g., multilevel cache 114) or RAM 102 and
returns the pointer to local memory 306.

[0052] The group value that is fed to the hash generator 304 is referred to herein as the
“incoming group value”. In an embodiment, the hash-table entry stores a NULL pointer if
the incoming group value has not been previously encountered. For example, when “Alex” is
fed to hash generator 304 for the first time, a hash-table entry with a NULL pointer will be
returned.

[0053] On the other hand, if the incoming group value has been previously encountered
or a hash collision occurs, then the hash-table entry obtained based on the hash value will
store a pointer to an “accumulator” data structure. If no collision has occurred, the
accumulator data structure is for the incoming group value. In the case of a collision, the
accumulator data structure may be for another group that has a group name that hashes to the
same hash value as the incoming group value.

[0054] The accumulator data structure stores various data for a group and is described in
further detail below. Once the memory system returns the pointer, it is stored in local
memory 306 along with the tag corresponding to the particular row being processed. The
corresponding tag may be received from group column access unit 130. The output of local
memory 306, including the tag and corresponding pointer, is sent to aggregation state access

unit 160, which fetches payload data at the address indicated by the pointer.

AGGREGATION STATE ACCESS UNIT
[0055] FIG. 4 is a block diagram illustrating an example architecture of aggregation state
access unit 160, according to an embodiment. Aggregation state access unit 160 generally

comprises multiplexer (mux) 404, collision check block 406, memory allocator 408, and local

-10-

WO 2014/031416 PCT/US2013/055020

memory 410. Aggregation state access unit 160 is responsible for fetching payload data at
the address indicated by a hash-table pointer and performing collision checks on this payload
data.

[0056] Mux 404 receives a hash-table pointer from hash-table access unit 150. The
incoming pointer from hash-table access unit 150 is first checked to determine whether it is a
NULL pointer. A NULL pointer indicates that the corresponding group has not yet been
encountered and that memory should be allocated to store an accumulator for the group. If
the pointer is NULL, then memory allocator 408 allocates memory for this group, initializes
fields in a corresponding group accumulator to an initial state, and writes data to local
memory 410. The initial aggregate value in local memory 410 for the newly encountered
group may remain empty or may be set to zero.

[0057] If the pointer is not NULL, mux 404 sends the memory address identified by the
pointer to request queue 402 to fetch the payload data. Request queue 402 fetches the
payload data through the local cache (e.g., multilevel cache 114) and returns the data to
collision check 406. When the local cache delivers this payload, collision check 406
compares the returned group name in the payload data against the group name sent by group
column access unit 130. If the group names match, there is no collision and the payload data,
including an aggregate value for the group, is written to local memory 410 along with the tag
identifying the corresponding row for which collision check transaction took place.

[0058] If the group names do not match, then a collision is detected and a pointer to the
next payload is extracted from the payload data and is sent back to the NULL check at mux
404 where the same process occurs as before with the new pointer. This process repeats until
the pointer to the next payload is NULL, or the returned group name matches the group name
sent by group column access unit 130.

[0059] The output of local memory cache 410 is sent to value column access unit 140,

which updates the accumulator data structure.

VALUE COLUMN ACCESS UNIT

[0060] FIG. 5 is a block diagram illustrating an example architecture of value column
access unit 140, according to an embodiment. Value column access unit 140 generally
comprises address generator 504, tag assignor 506, aggregation operation unit 508, and local
memory 510. Value column access unit 140 is responsible for fetching the values of the
column being aggregated (e.g., the AMOUNT column in the case of query 2).

[0061] Similar to group column access unit 130, address generator 504 begins at the

starting address of the column and sends the desired addresses to request queue 502. The

-11-

WO 2014/031416 PCT/US2013/055020

memory system returns these values row by row. Tag assignor 506 assigns a tag to each row,
corresponding to a row identifier, and the result is written to local memory 510. In an
embodiment, the tag assigned by tag assignor 506 for a given row matches the tag assigned to
the group name read from that given row, so the two pieces of data can be associated with
one another when value column access unit 140 aggregates the group data, as described
below.

[0062] The value from local memory 510, The current accumulator state and
corresponding tag from aggregation state access unit 160 are sent to aggregation operation
unit 508. The aggregation operation unit 508 uses the tag to retrieve the value with a
matching tag from local memory 510. Aggregation operation unit 508 then updates the
aggregate value for the group based on the aggregation function specified in the query and
the value provided by local memory 510. Aggregation operation unit 508 may perform,
without limitation, any of the functions illustrated in Table 1. In the case of query 2, for
example, the accumulator data structure for the Pedro group would have a value of 400 after
processing the first row. When processing the second row, local memory 510 would provide
the value of 200 to aggregation operation unit 508, which would sum this value with 400 to
generate a value of 600. The accumulator data structure for the Pedro group would then be
updated with this value. After the operation is complete, the updated accumulator is written

back to local memory 410 in aggregation state access unit 160, or to the local cache.

ACCUMULATOR DATA STRUCTURE

[0063] In one embodiment, system 100 generates and maintains an accumulator data
structure for each group that it processes. The accumulator data structure for each group
stores a set of aggregation data for the group. The set of data stored in the accumulator data
structure may vary, depending on the implementation and the type of aggregation operation
being performed.

[0064] FIG. 8 is a block diagram of an accumulator data structure, according to an
example embodiment. Accumulator data structure 800 includes value field 802, aggregate
result field 804, and pointer field 806. In alternative embodiments, accumulator data
structure 800 may include more fields or omit one or more of the illustrated fields.

[0065] Value field 802 may store any suitable group identifier, such as a group name or
any other alphanumeric value. This value may be stored when memory allocator 408
initializes this field to its initial state using the group value from the incoming row.

[0066] Aggregate results field 804 stores an aggregate value for the group. Memory

allocator 408 may initialize this field to an empty of zero value. This field may then be

-12-

WO 2014/031416 PCT/US2013/055020

updated by aggregate operation unit 508 according to the techniques described above. In an
embodiment, multiple aggregations can be stored together in this field. For example, for the
following query:

SELECT sum(amount), count(*)

FROM sales

GROUP BY salesman

both sum(amount) and count(*) aggregate results can be stored in this single data structure.
[0067] Pointer field 806 stores a NULL pointer or a pointer to the accumulator data
structure of another group whose group value collided with the group value of the current
group. Memory allocator 408 may initialize this field to a NULL value. If a hash collision
occurs between the group associated with data structure 800 and a newly encountered group,
then an accumulator data structure is created for the newly encountered group, and the
pointer field is updated with a pointer to the new accumulator data structure. For example,
the pointer may correspond to the memory address of the value field for the newly

encountered group.

OUT-OF-ORDER PROCESSING

[0068] The tags may be used to enable out-of-order processing of rows during grouping
and aggregation. This may be useful when the request queues that support hash-table access
unit 150 and aggregation state access unit 160 are configured to support out-of-order
dispatching.

[0069] For example, when processing the fourth row of the SALESMAN COLUMN,
aggregation state access unit 160 may submit a request to fetch payload data for the Michael
group. The aggregation state access unit 160 may submit this request to a request queue with
a corresponding tag, such as TAG4. The request queue may first try to fetch this data from
multilevel cache 114 and, if not found in multilevel cache 114, RAM 102. For purposes of
illustration it is assumed that fetching the payload data for Michael results in a long latency
RAM access.

[0070] While waiting for the payload data for the Michael group to be returned,
aggregation state access unit 160 may process the fifth row of the SALESAMN COLUMN.
Accordingly, aggregation state access unit 160 submits a request to fetch payload data for the
Alex group with the corresponding tag, TAGS to a request queue. The request queue may
then fetch the payload data for this group from multilevel cache 114 and return the payload

data and associated tag to aggregation state access unit 160 before the payload data for

-13-

WO 2014/031416 PCT/US2013/055020

Michael is returned. This payload data and corresponding tag (TAG 5) are then submitted to
value access column unit 140.

[0071] In response to receiving this data from aggregation state access unit 160, value
column access unit 140 matches TAGS received from aggregation state access unit 160 with
TAGS stored in local memory 510 to identify the value data that should be used in the
aggregation operation. The associated value data is sent to aggregation operation unit 508 to
update the aggregate value within the payload data for the Alex group. Thus, the processing

of the fifth row may be completed before the processing of the fourth row.

EXAMPLE PROCESS AND IMPLEMENTATION

[0072] FIG. 6 illustrates an example process for performing grouping and aggregation
operations according to an embodiment. This process may be implemented on any suitable
system including, without limitation, system 100.

[0073] When a grouping/aggregation query is received, in step 602 a row is read from a
table identified by the query. In step 604, the group name and value data are retrieved from
the relevant columns of the row. In step 606, the group name is hashed to identify a location
within a hash-table or other form of content-addressable memory. In step 608, a pointer is
read from the location indicated by the hash. In step 610, it is determined whether the pointer
is NULL. If so, then the group has not been encountered yet and at step 612, memory is
allocated for a new group, and the hash-table is updated with a pointer identifying the
location of the allocated memory. This hash-pointer will be returned for all subsequent rows
whose hash produces the same memory address. Thus, if at step 610, it is determined that the
pointer is not NULL, then the process continues to step 614.

[0074] In step 614, the group name of the incoming row is compared to the group name
of the payload data stored at the location identified by the current pointer. In step 616, it is
determined whether there is a collision. If the group name of the incoming row matches the
group name stored in the payload data identified by the pointer, then there is no collision, and
the process continues with step 626. If the group names do not match, then the process
continues with step 618. At step 618, the pointer to the next group that has the same hash
value is retrieved from the payload data. In step 620, it is determined whether this pointer is
NULL. Ifit is NULL, then the group associated with the current group name has not
previously been encountered, and the process continues with step 624. At step 624, memory
is allocated for the new group and the payload data retrieved at step 614 is updated to include
a pointer identifying the location of the newly allocated memory. If it is determined at step

620 that the pointer is not NULL, then payload data at the location identified by the pointer is

-14-

WO 2014/031416 PCT/US2013/055020

retrieved and the process returns to step 614 to repeat the collision check process on this next
payload data.

[0075] Once a new group is encountered or no collision is detected, then at step 626 the
aggregate value in the payload data for the corresponding group is updated according to the
aggregation operation and the value data retrieved at step 604.

[0076] FIGS. 7,9, and 10 illustrate an example implementation of the process illustrated
in FIG. 6. In particular, these figures show various states of system 100 during the
processing of query 2 shown in Table 2.

[0077] FIG. 7 is a block diagram illustrating a layout of sales table 702 in memory,
according to an example implementation. Referring to FIG. 7, SALE_ID column 704,
SALESMAN column 706, CUSTOMER column 708, and AMOUNT column 710 are stored
in a column-oriented format such that all the rows from a particular column are stored
contiguously in memory. In the case of query 2, steps 602 and 604 may comprise group
column access unit 130 reading the first entry of SALESMAN column 706 to retrieve the
group name “Pedro,” and value column access unit 140 reading the first element of
AMOUNT column 710 to retrieve value data “400.”

[0078] The group name “Pedro” is then hashed to produce a memory address where a
pointer to the accumulator data structure for this group will be stored. Since two or more
unique input values can hash to the same value in some cases, the group name “Pedro” and
the corresponding pointer are sent to hash table access unit 150 to check for collisions.
Because “Pedro” is the first group processed, aggregation state access unit 160 determines
that the pointer is NULL and allocates memory for the Pedro group. In an embodiment,
aggregation state access unit 160 generates an accumulator data structure, such as shown in
FIG. 8, and initializes each of the fields to a starting state.

[0079] FIGS. 9A is a block diagram of the state of Pedro accumulator data structure after
initialization, according to an embodiment. The value field is initialized to Pedro,
corresponding to the group name, and the value of the aggregate result field is initialized to
“0”. Since there have been no collisions to this address yet, the pointer to the next value is
set to NULL.

[0080] Once the Pedro accumulator data structure has been initialized, the value of the
aggregate results field is read and stored by aggregation state access unit 160. Aggregation
state access unit 160 provides the “400” value to aggregation operation unit 508, which adds
the value data extracted from the row to the aggregate result value provided by the
aggregation state access unit 160. After it has been updated, the aggregate result value is

written back to memory. FIG 9B is a block diagram of the state of the Pedro accumulator

-15-

WO 2014/031416 PCT/US2013/055020

data structure after the first row has been processed. Referring to FIG. 9B, the aggregate
result field stores the value “400” corresponding to the result of the aggregation operation
after processing the first row.

[0081] After the accumulator data structure has been updated, the process is repeated for
each of the remaining rows in the table. For the second row, the group name is also “Pedro”,
which hashes to the same address as the first row. Accordingly, aggregation state access unit
160 determines that the Pedro group already exists at this location. The collision check block
406 then compares the group name of the second element, “Pedro” with the group name
stored in the accumulator data structure shown in FIG. 9B, which is also “Pedro.” The group
names are the same; therefore, aggregation state access unit 160 determines that there is no
collision. The value of the aggregate results field for the Pedro accumulator data structure is
then read into value column access unit 140, which updates the field with the new value
(400+200=600) and writes the updated field back to memory.

[0082] For purpose of illustration, it is assumed that the hash of “Pedro” and the hash of
“Michael” cause a collision in the present example. Thus, the hash function applied by hash-
table access unit 150 generates the same memory address for each of these group names. In
such a scenario, collision check 406 finds the value stored at this location (“Pedro”) is not
equal to the incoming row value (“Michael”). Collision check 406 then tries to follow the
next value pointer stored at the location to perform the collision check on the next element.
In this case, the next value pointer is NULL, meaning no other values exist at this hash
location and that this is the first collision at this location. Memory allocator then creates a
new data structure for the Michael group and updates the next value in the Pedro group to
point to Michael.

[0083] FIG. 9C illustrates the state of the accumulator data structures after memory
allocator has initialized the values for Michael. As illustrated, the pointer stored in the Pedro
accumulator data structure points to Michael. The group name Alex did not cause a collision
and is therefore stored separately.

[0084] After the Michael accumulator data structure is generated, its aggregate value field
is updated according to the process above. This process repeats for the remaining rows in the
table to obtain a final aggregate result for each of the groups.

[0085] FIG. 10 is a block diagram illustrating the state of a memory at the end of the
aggregation process, Hash-table 1002 is a four-entry hash-table. However, the number of
entries may vary from implementation to implementation. Hash-table 1002 stores two
pointers: one to the Pedro accumulator 1004 and another to the Alex accumulator 1006.

Pedro accumulator 1004 stores the aggregate results for Pedro and a pointer to the Michael

-16-

WO 2014/031416 PCT/US2013/055020

accumulator 1008. Alex accumulator 1006 stores aggregate results for Alex and Michael
accumulator 1008 stores the aggregate results for Michael. The pointers in both these
accumulators are NULL indicating that no collision occurred for these groups. The group
name and corresponding aggregate result for each of the accumulators may be returned as a

result of query 2.

SELECTING THE SIZE OF THE HASH TABLE

[0086] The size of the hash table may vary from implementation to implementation. A
smaller hash table is more likely to result in more collisions, which may reduce system
performance. Conversely, a large hash table is more likely to waste memory capacity within
the system.

[0087] For example, FIG. 11 is a block diagram illustrating an example hash-table
structure, according to an embodiment. Hash function 1102 is applied to an incoming N-bit
value to generate a 3-bit address for hash-table 1106, which is stored in memory 1104.
Accordingly, there are eight different available hash-table entries within hash-table 1106. As
illustrated, hash-table is storing three pointers for three different values. In this case, a
smaller 2-bit addressable hash-table would have provided sufficient storage for the three
pointers. However, the smaller hash-table would increase the likelihood of collision,
especially as more values are received. A larger table such as a 4-bit addressable hash-table
would waste storage resources, especially if no new values are received.

[0088] In one embodiment, the size of the hash table for a particular query is determined
and set based on an estimate of the cardinality of the grouping operation. The more groups
that are likely to be in the grouping operation, the more memory is allocated for the hash-
table. For example, the value N in an N-bit addressable hash-table may be proportional to the
cardinality of the grouping operation. Accordingly, the size of the hash-table may be selected

to achieve a satisfactory balance between storage consumption and collision probability.

HASH-TABLE COLLISION HANDLING

[0089] The techniques for addressing hash-table collisions may vary from
implementation to implementation. As an alternative to the collision-handling techniques
described above, system 100 may precompute all group names that will map to the same
location in the hash-table. The precomputation may be performed when the database is
loaded into system 100. The colliding groups may then be placed in a second table dedicated

to these collisions. The entry in the original hash-table may then be replaced with a special

-17-

WO 2014/031416 PCT/US2013/055020

key that indicates a collision occurred at that address and that the aggregate data is in the
second table.

[0090] There are multiple ways to search the second table when a collision is detected. If
the number of entries in the second table is small, a linear-search may be effective. The
collision-handling algorithm may iterate through each entry in the second table, comparing
the desired group name against the group names in the second table. When a match is found,
the aggregate value field for this element is returned and updated.

[0091] In another embodiment, the search may also be implemented with a second hash-
table using a different hash-function. The payload data for this second hash-table may use
the full accumulator data structure, as collisions may still occur.

[0092] In yet another embodiment, the collision table can be organized in a binary-tree
structure. Each node in the binary-tree may store a group name and aggregate value. When
the correct node is found, the aggregate value is returned and updated. If the tree is well
balanced, the table can be searched in O(log(N)) time.

[0093] One advantage to the precomputation approach is that it reduces the size of
accumulator data structure 800 since field 802 and field 806 are no longer needed to handle
collisions. Therefore, this approach may save storage space over a real-time approach when
there are few collisions. However, precomputing the groups may involve more processing
overhead than the other approaches described above, especially in the case where there are
frequent database updates that produce new groups. In this scenario, many precomputations

may need to be performed as the new groups are loaded.

HARDWARE OVERVIEW

[0094] According to one embodiment, the techniques described herein are implemented
by one or more special-purpose computing devices. The special-purpose computing devices
may be hard-wired to perform the techniques, or may include digital electronic devices such
as one or more application-specific integrated circuits (ASICs) or field programmable gate
arrays (FPGAs) that are persistently programmed to perform the techniques, or may include
one or more general purpose hardware processors programmed to perform the techniques
pursuant to program instructions in firmware, memory, other storage, or a combination. Such
special-purpose computing devices may also combine custom hard-wired logic, ASICs, or
FPGAs with custom programming to accomplish the techniques. The special-purpose
computing devices may be desktop computer systems, portable computer systems, handheld
devices, networking devices or any other device that incorporates hard-wired and/or program

logic to implement the techniques.

18-

WO 2014/031416 PCT/US2013/055020

[0095] For example, FIG. 12 is a block diagram that illustrates a computer system 1200
upon which an embodiment of the invention may be implemented. Computer system 1200
includes a bus 1202 or other communication mechanism for communicating information, and
a hardware processor 1204 coupled with bus 1202 for processing information. Hardware
processor 1204 may be, for example, a general purpose microprocessor.

[0096] Computer system 1200 also includes a main memory 1206, such as a random
access memory (RAM) or other dynamic storage device, coupled to bus 1202 for storing
information and instructions to be executed by processor 1204. For example, RAM 102 may
be implemented in main memory 1206. Main memory 1206 also may be used for storing
temporary variables or other intermediate information during execution of instructions to be
executed by processor 1204. Such instructions, when stored in non-transitory storage media
accessible to processor 1204, render computer system 1200 into a special-purpose machine
that is customized to perform the operations specified in the instructions.

[0097] Computer system 1200 further includes a read only memory (ROM) 1208 or other
static storage device coupled to bus 1202 for storing static information and instructions for
processor 1204. A storage device 1210, such as a magnetic disk or optical disk, is provided
and coupled to bus 1202 for storing information and instructions.

[0098] Computer system 1200 may be coupled via bus 1202 to a display 1212, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
1214, including alphanumeric and other keys, is coupled to bus 1202 for communicating
information and command selections to processor 1204. Another type of user input device is
cursor control 1216, such as a mouse, a trackball, or cursor direction keys for communicating
direction information and command selections to processor 1204 and for controlling cursor
movement on display 1212. This input device typically has two degrees of freedom in two
axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify
positions in a plane.

[0099] Computer system 1200 may also include query processing logic 1232 for
performing filter, project, grouping, and/or aggregation operations. Query processing logic
1232 may be configured to executed the process illustrated in FIG. 6 and may be
implemented using any suitable hardware, such as the access units of system 100. Query
processing logic 1232 is coupled to memory 1234, which caches data used and generated
during the query processing operations. For example cache 110 may be implemented in
memory 1234,

[00100] Computer system 1200 may implement the techniques described herein using

customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic

-19-

WO 2014/031416 PCT/US2013/055020

which in combination with the computer system causes or programs computer system 1200 to
be a special-purpose machine. According to one embodiment, the techniques herein are
performed by computer system 1200 in response to processor 1204 executing one or more
sequences of one or more instructions contained in main memory 1206. Such instructions
may be read into main memory 1206 from another storage medium, such as storage device
1210. Execution of the sequences of instructions contained in main memory 1206 causes
processor 1204 to perform the process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combination with software instructions.
[00101] The term “storage media” as used herein refers to any non-transitory media that
store data and/or instructions that cause a machine to operate in a specific fashion. Such
storage media may comprise non-volatile media and/or volatile media. Non-volatile media
includes, for example, optical or magnetic disks, such as storage device 1210. Volatile media
includes dynamic memory, such as main memory 1206. Common forms of storage media
include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape,
or any other magnetic data storage medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or cartridge.

[00102] Storage media is distinct from but may be used in conjunction with transmission
media. Transmission media participates in transferring information between storage media.
For example, transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 1202. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[00103] Various forms of media may be involved in carrying one or more sequences of
one or more instructions to processor 1204 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid state drive of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 1200 can receive the data
on the telephone line and use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 1202. Bus 1202 carries the data to main
memory 1206, from which processor 1204 retrieves and executes the instructions. The
instructions received by main memory 1206 may optionally be stored on storage device 1210

either before or after execution by processor 1204.

-20-

WO 2014/031416 PCT/US2013/055020

[00104] Computer system 1200 also includes a communication interface 1218 coupled to
bus 1202. Communication interface 1218 provides a two-way data communication coupling
to a network link 1220 that is connected to a local network 1222. For example,
communication interface 1218 may be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data communication connection to a
corresponding type of telephone line. As another example, communication interface 1218
may be a local area network (LAN) card to provide a data communication connection to a
compatible LAN. Wireless links may also be implemented. In any such implementation,
communication interface 1218 sends and receives electrical, electromagnetic or optical
signals that carry digital data streams representing various types of information.

[00105] Network link 1220 typically provides data communication through one or more
networks to other data devices. For example, network link 1220 may provide a connection
through local network 1222 to a host computer 1224 or to data equipment operated by an
Internet Service Provider (ISP) 1226. ISP 1226 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 1228. Local network 1222 and Internet 1228 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 1220 and through communication interface
1218, which carry the digital data to and from computer system 1200, are example forms of
transmission media.

[00106] Computer system 1200 can send messages and receive data, including program
code, through the network(s), network link 1220 and communication interface 1218. In the
Internet example, a server 1230 might transmit a requested code for an application program
through Internet 1228, ISP 1226, local network 1222 and communication interface 1218.
[00107] The received code may be executed by processor 1204 as it is received, and/or

stored in storage device 1210, or other non-volatile storage for later execution.

EXTENSIONS AND ALTERNATIVES

[00108] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. The specification and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the scope of the invention, is the literal
and equivalent scope of the set of claims that issue from this application, in the specific form

in which such claims issue, including any subsequent correction.

21-

WO 2014/031416 PCT/US2013/055020

CLAIMS

What is claimed is:

1. A method comprising:
receiving a request to aggregate data grouped by a first column;
in response to receiving the request, performing the following steps for each row of a
plurality of rows:
mapping a group value in the row to an address;
using the address to locate a set of aggregation data for a group associated
with the group value; and
updating an aggregate value included in the set of aggregation data based on a
value in a second column of the row;

wherein the method is performed by one or more computing devices.

2. The method of Claim 1, further comprising:

for a particular row of the plurality of rows, determining that aggregation data for the group
value associated with the particular row has not yet been generated;

in response to determining that the aggregation data for the group value associated with the
particular row has not yet been generated, allocating memory to store aggregation

data for the group value associated with the particular row.

3. The method of Claim 1, wherein for at least two rows of the plurality of rows,
different group values map to a same address, the method further comprising:

for a particular group value, from a particular row of the plurality of rows, that maps to the
same address:

using the same address to locate a particular set of aggregation data that includes a stored
group value;

comparing the stored group value to the particular group value;

in response to determining that the stored group value and the particular group value match,
updating an aggregate value included in the set of aggregation data based on a second

value from the particular row of the second column.
4. The method of Claim 3, further comprising:

in response to determining that the stored group value and the first group value do not match:

allocating memory to store aggregation data for a new group;

22-

WO 2014/031416 PCT/US2013/055020

generating a pointer that identifies an address of the allocated memory;

storing the second pointer in the particular set of aggregation data.

5. The method of Claim 1 wherein mapping the group value to an address comprises

applying a hash function to the group value.

6. The method of Claim 1, wherein the set of aggregation data for the group includes a
group value, the aggregate value, and a pointer to a second set of aggregation data for a

colliding group.

7. The method of Claim 1, wherein the address is stored in a hash-table; wherein the size
of the hash-table is selected based on an estimate of a number of groups associated with the

request to aggregate data.

8. The method of Claim 1, wherein collisions are detected by precomputing all group

names in the first column that map to a same address before the request is received.

0. One or more non-transitory computer-readable media storing instructions, which,
when executed by one or more processors, cause one or more computing devices to perform:
receiving a request to aggregate data grouped by a first column;
in response to receiving the request, performing the following steps for each row of a
plurality of rows:
mapping a group value in the row to an address;
using the address to locate a set of aggregation data for a group associated
with the group value; and
updating an aggregate value included in the set of aggregation data based on a

value in a second column of the row.

10. The non-transitory computer-readable media of Claim 9, further storing instructions

causing the one or more computing devices to perform:

for a particular row of the plurality of rows, determining that aggregation data for the group
value associated with the particular row has not yet been generated;

in response to determining that the aggregation data for the group value associated with the
particular row has not yet been generated, allocating memory to store aggregation

data for the group value associated with the particular row.

23

WO 2014/031416 PCT/US2013/055020

11. The non-transitory computer-readable media of Claim 9, wherein for at least two rows

of the plurality of rows, different group values map to a same address, the non-transitory

computer-readable media further storing instructions causing the one or more computing

devices to perform:

for a particular group value, from a particular row of the plurality of rows, that maps to the
same address:

using the same address to locate a particular set of aggregation data that includes a stored
group value;

comparing the stored group value to the particular group value;

in response to determining that the stored group value and the particular group value match,
updating an aggregate value included in the set of aggregation data based on a second

value from the particular row of the second column.

12. The non-transitory computer-readable media of Claim 11, further storing instructions
causing the one or more computing devices to perform, for a second row of the first column:
allocating memory to store aggregation data for a new group;
generating a pointer that identifies an address of the allocated memory;

storing the second pointer in the particular set of aggregation data.

13. The non-transitory computer-readable media of Claim 9, wherein instructions for
mapping the group value to an address comprise instructions for applying a hash function to

the group value.

14. The non-transitory computer-readable media of Claim 9, wherein the set of
aggregation data for the group includes a group value, the aggregate value, and a pointer to a

second set of aggregation data for a colliding group.

15. The non-transitory computer-readable media of Claim 9, wherein the address is stored
in a hash-table; wherein the size of the hash-table is selected based on an estimate of a

number of groups associated with the request to aggregate data.
16. The non-transitory computer-readable media of Claim 9, wherein collisions are

detected by precomputing all group names in the first column that map to a same address

before the request is received.

24-

WO 2014/031416 PCT/US2013/055020

17. A system for performing grouping and aggregation operations comprising:
a group column access unit configured to retrieve a group value for a first group from
a row of a first column;
a hash table access unit configured to map the group value to an address;
an aggregation state access unit configured to retrieve aggregation data identified by a
pointer stored at the address for the first group;
a value column access unit configured to update an aggregate value included in the set

of aggregation data based on a value in the row of a second column.

18. The system of Claim 17, wherein the aggregation state access unit is further

configured to:

determine that the pointer for the first group has not yet been generated;

in response to determining that the pointer for the first group has not yet been generated,
allocate memory to store the aggregation data for the first group;

generate the pointer for the first group;

wherein the pointer for the first group identifies an address of the allocated memory.

19. The system of Claim 17, wherein:

the hash table access unit is further configured to map a second group value stored in a
second row to a second address;

the aggregation state access unit is further configured to retrieve aggregation data identified
by a second pointer stored at the second address for a second group;

the value column access unit is further configured to update an aggregate value in the
aggregation data identified by the second pointer based on a value in the second row

of the second column.

20. The system of Claim 17, wherein:

the hash table access unit is further configured to map a second group value in a second row
of the first column to the address;

the aggregation state access unit is further configured compare the group value to the second
group value and in response to determining that the group value and the second group
value match, updating the aggregate value in the aggregation data based on a second

value in the second row of the second column.

25.-

WO 2014/031416 PCT/US2013/055020

21. The system of Claim 20, wherein in response to determining that the group value and

the second group value do not match: the aggregation state access unit is further configured

to:
allocate memory to store aggregation data for a second group;
generate a second pointer that identifies an address of the allocated memorys;
store the second pointer in the aggregation data for the first group.
22. The system of Claim 17 wherein the hash-table access unit is configured to apply a

hash function to the group value to map the group value to the address.

26-

1/13

WO 2014/031416 PCT/US2013/055020
SYSTEM
100
RAM
102
RAM CONTROLLER
104
CACHE
110
| : I I
REQUEST QUEUE
120
| | | |
GROUP VALUE HASH AGGREGATION
COLUMN COLUMN TABLE STATE
ACCESS ACCESS ACCESS ACCESS
130 140 150 160

2/13

WO 2014/031416 PCT/US2013/055020
SYSTEM
100
RAM
102
RAM CONTROLLER
104
ON-CHIP BUFFER MULTI-LEVEL CACHE
12 114
| : I I
REQUEST QUEUE
120
| | | |
GROUP VALUE HASH AGGREGATION
COLUMN COLUMN TABLE STATE
ACCESS ACCESS ACCESS ACCESS
130 140 150 160

3/13

WO 2014/031416 PCT/US2013/055020

FIG. 2

T TO/FROM MEMORY l

REQUEST QUEUE
202
""" T GROUP GOLUNN AGCESS]
10
ADDRESS
GENERATOR TAG ASSIGNOR
204 206
NAME Twe | 0
;> HASH TABLE
v J : ACCESS
LOCAL MEMORY '
208
TAG NAME
210 —{ | .
TAG NAME
v i

HASH TABLE AGGREGATION STATE
ACCESS ACCESS

4/13

WO 2014/031416 PCT/US2013/055020

FIG. 3

TO/FROM MULTILEVEL CACHE

T '

REQUEST QUEUE
302
T ADDRESS -"""""""""""""""ml-l-l-A;S-I:I"TA-I-B-I_-Ié-A-éEI-E;S-é-E
i 150;
LOCAL MEMORY :
HASH GENERATOR 300 TAG FROM
304 s08 JLTAC | PTR «—"—-— GROUP COLUMN
. ACCESS
TAG PTR
y
NAME PTR
v
FROM TO
GROUP COLUMN AGGREGATION STATE

ACCESS ACCESS

5/13

WO 2014/031416 PCT/US2013/055020
TO/FROM LOCAL CACHE
REQUEST QUEUE
402
S S SO FROM
; ADDRESS +—— GROUP COLUMN
UX PTR § ACCESS
i T ags NEXT | COLLISION CHECK
‘NULL 406
' PTR
AGG
FROM
HASH TABLE
v ACCESS v
MEMORY LOCAL MEMORY
ALLOCATOR |— | 410
408
TAG AGG
;AGGREGATION STATE TAG 'AGG
/ACCESS160 e/ t _____________________
TO/FROM
VALUE COLUMN

ACCESS

6/13

WO 2014/031416 PCT/US2013/055020
T TO/FROM MEMORY l
REQUEST QUEUE
502
"""" ADDRESS | | VALUE COLUMN ACCESS!
140;
ADDRESS
GENERATOR TAG ASSIGNOR
504 506
VALUE TAG
\4
LOCAL MEMORY
AGGREGATION 510
OPERATION
TAG VALUE
=08 VALUE |

TAG VALUE

"""" RGG Y T
TO/FROM
AGGREGATION STATE

ACCESS

PCT/US2013/055020

29
Jgjuiod ayj Aq payjuspl uoneso| ||
woJy ejep peojAed jxau ansley
ON
ON
L
SOA
SOA
SOA B89
$SMOY 319
Buluie way ejep peojfed sy woy ssjuiod rsliay
o 309
ysey Aq pajealpul

uope20| 8L Wol Jguiod peay

7/13

929

919
Luoisijod

i

gep

909
9|qej-ysey e ulpm Luogeao|
e Ajquapl g aweu dnoub ay yseH

anjea ay} pue uopelado uopebaibbe
ue g Buipjosoe dnoub sy Jo BlEp
peojAed ul anen gebaibbe slepdn

i f

) uoneao| paunuapl
18 paJais ejep peojfed jo sweu dnoub |« 709
MOJ B JO SUWIN|OY JUBASID) WO

0} moJ Jo aweu dnoub sy auedwo
b 4 0 glep aneA pue aweu dnoib ansiiay

§74)
Alowaw pajeoo|e 719 a
8} Jo uoyeao| Buijuspl Jsjuiod e tm | flowaw 700
dnouB snoinea.d Jo gep peojfed ajepdn pajeso||e sy Jo uojesol Bulfiguspr | 9|qe} WOy MOJ peay
pue dnoub mau e i} Alowsw 81e3o|y Jauiod e ym sjgel-ysey oy aepdn |

WO 2014/031416

pue dnolb mau e Jo} Alowa W 81eao|y @ .G_m

8/13

WO 2014/031416 PCT/US2013/055020
FIG.7 SALES TABLE
702
SALE_ID COLUMN

104

1

2

3

4

5

6

7

SALESMAN COLUMN
106

Pedro
Pedro
Alex
Michael
Alex
Alex
Pedro

CUSTOMER COLUMN
108

Gainsley Corp.

Lexau's Lexan

Lexau's Lexan

Lexau's Lexan

Gainsley Corp.

Lexau's Lexan

Gainsley Corp.

AMOUNT COLUMN
10

400
200
150
350
600
650
470

9/13

WO 2014/031416

FIG. 8

ACCUMULATOR DATA STRUCTURE
800

Fields

value
802

aggregate
results
804

ptr to next value
806

PCT/US2013/055020

Size of field

sizeof(value)

Y sizeof(agg result)

sizeof(ptr)

WO 2014/031416

FIG. 9A

FIG. 9B

FIG. 9C

10/13

PCT/US2013/055020
Pedro
0
NULL
Pedro
400
NULL
Pedro Michael
600 _’//////' 0
&Michael NULL

Alex
150

NULL

WO 2014/031416

FIG. 10

11/13

SALES TABLE
102

SALE_ID COLUMN
04

1

2
3
4
5
6

7

SALESMAN COLUMN
106

Pedro

Pedro

Alex

Michael

Alex

Alex

Pedro

CUSTOMER COLUMN
108

Gainsley Corp.

Lexau's Lexan

Lexau's Lexan

Lexau's Lexan

Gainsley Corp.

Lexau's Lexan

Gainsley Corp.

AMOUNT COLUMN
10

400

200

150

350

600

650

.........................

..........

PCT/US2013/055020

HASH TABLE
1002

NULL

&GBE_Pedro

NULL

&GBE_Alex

GBE_Pedro
1004

Pedro

1070

&GBE_Michael

GBE_Alex
1006

Alex

1400

NULL

GBE_Michael
1008

Michael

350

NULL

WO 2014/031416

FIG. 11

3-bits

12/13

PCT/US2013/055020

Hash

N-bits
value

Memory
1104

NULL

NULL

&value?

NULL

NULL

&valuet

&valuel

NULL

Hash Table
1106

value0

value1

value2

A

13/13

PCT/US2013/055020

WO 2014/031416

9¢clh

vz

444}
HHOMLAN
V201

1443

L13INY3LNI

[543 |
NEINER |

14"
TOHLINOD
d0SdNd

vich
3A3IA3A LNdNI

44
AHOWIN
_
< = 21901 rocy
JOVAILNI NOSSIT0Md
NOILYDINNWINOD ONISSIO0Hd AHAND 088390
cocl
snd
¥4} 0cl 0cl
30IA3d AHOW3INW
JOVHOLS WOY NIVIN

14"
AV1dSId

¢l "ol

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings

