SUOMI-FINLAND

Patentti- ja rekisterihallitus
Patent- och registerstyrelsen

(B) (11) KUULUTUSJULKAISSU
UTLAGGNINGSSKRIFT

C (45) Patentti myönnetty
Patent meldelat 11 08 1997

(51) Kv.k 6. - Int.cl.6

C 01F 7/74, 7/56, C 02F 1/52

(21) Patenttihakemus - Patentansökning

(22) Hakemispäivä - Ansökningsdag
27.01.89

(24) Alkupäivä - Löpädag
27.01.89

(41) Tullut julkinen - Blivit offentlig
30.07.89

(44) Nähtävänä paimenon ja kuul. julkaisun pvm.
- Ansökan utlagd och utl. skriften publicerad
30.04.97

(32) (33) (31) Etuoikeus - Prioritet
29.01.88 FR 8801056 P

(71) Hakija - Sökande

1. Atoschem, 4 & 8, Cours Michelet, La Défense 10, 92800 Puteaux, France, (FR)

(72) Kekinjä - Uppfinnare

1. Cuer, Jean-Pierre, 29 rue de Bochu, 69340 Francheville le Haut, France, (FR)
2. Aubineau, Claude, 24 Chemin de la Courtille, 69110 Sainte-Foy les Lyon, France, (FR)
3. Bonnel, Claudine, 5 rue Emmanuel Bourneuf, 95220 Herblay, France, (FR)

(74) Asiamies - Ombud: Berggren Oy Ab

(54) Keksinen omistus - Uppfinningens ägare

Emäksinen alumiinikloorisulfattti ja sen valmistusmenetelmä
Basiskt aluminiumkloridsulfat och förfarande för framställning därav

(56) Viitejulkaisut - Anförda publikationer

FI B 76311 (C 01F 7/00), FI C 64122 (C 02F 1/52), FI C 53963 (C 01F 7/76),
FR B 2317227 (C 01F 7/68)

(57) Tiivistelmä - Sammandrag


Uppfinningen avser alkalisk aluminium- kloridsulfat vars alkalihet är mellan 45-70% och vars SO_{4}^{2-} -joner till över 80% är kompleksa. Detta medel framställs genom att omsetta kalkiumkarbonat med en salt- eller svavelur lagring av aluminium, detta medel kan användas till att kosigera och bilda flocker i vatten av uesperadare ämnen, speciellt för framställning av drickbart vatten.

Fördelen med medlet enligt uppfinnningen är att mycket litet restaluminium var- står i det behandlade vattnet.
1

Emäksinen alumiinikloorisulfuaatti ja sen valmistusmenetelmä


FR-patentit 2 036 685, 2 226 361, 2 534 897 tekevät selkoa tällaisista tuotteista ja niiden käyttösovellutuksista. EP-patenttihakemus 218 487 selostaa tuotetta, jonka on määrä vähentää veteen jäävän alumiinin määrää käsittelyyn jälkeen.

Nyt on keksitty hyvin tehokas ja hyvin helposti käytettävä kloorisulfuaatti.

Keksinnön mukainen kloorisulfuaatti on emäksinen alumiinikloorisulfuaatti, joka on vesiliuoksen muodossa ja tunneta siitä, että se käsittää
- aineen, jonka kaava on:

$$\text{Al}_n\text{Cl}_m(\text{OH})_{3n+2k-m-2p}\text{(SO}_4)_p\text{X}_k$$

jossa:
- n, m, p ja k esittävät liuoksessa olevien aineosien moolikonsentraatioita (moolia/l)
- X esittää maa-alkalia, mieluimmin kalsiumia, ja
- alle 20 % ioneista $\text{SO}_4^{2-}$ voidaan saostaa bariumkloridin kanssa tapahtuvan reaktion avulla ympäristön lämpötilassa, ja jonka emäksisyyys $\frac{3n+2k-m-2p}{3n}$ on välillä 45-70 %.
Edullisesti valitaan edellä olevan bruttokaavan mukaiset aineet, joissa ekvivalenttisuude Alumiini/kloori, eli 3n/m on pienempi kuin 2,8 ja mieluummin pienempi kuin 2,75.

Vaikka emäksisyys voi vaihdella laajoissa rajoissa, käytytään tavallisesti aineita, joiden emäksisyys on välillä 50-70 %. Aineen käyttötavoista riippuen voidaan antaa etusi- ja erilaisille emäksisyysarvoille. Erikoisesti juomaveden valmistuksessa on havaittu, että jäännösalumiinin arvot ovat sitä heikompia, mitä korkeampi on emäksisyys.

Kun suurin osa aineen SO₄²⁻-ioneista ei saostu bariumsuolojen avulla, merkitsee se sitä, että tämä sulfaatti on kompleksinen. Aineen sisältämän sulfaatin kokonaispitoisuuden A määrääminen suoritetaan tavallisella tavalla saostamalla bariumsulfaatti bariumkloridin ja kloorivetyhapon liuoksen avulla, joka lisätään kiehuvaan näytteeseen. Kun bariumkloridi lisätään ympäristön lämpötilassa (eli välillä 15-25°C) näytteeseen, jota ei ole tehty happamaksi, stökiometrisessä määrässä laskettuna aineessa oleviin SO₄²⁻-ionihin nähden, on 1 h kuluttua muodostuneen kuivan sakan paino suhteessa ns. "ei-kompleksisten" SO₄²⁻-ionien pitoisuuteen B. Erota A-B sanotaan "kompleksi-ioni SO₄²⁻ pitoisuudeksi".

Keksinnön mukainen aine, joka on vesiliuoksen muodossa ja sisältää 5-15 paino-% ilmoitetun Al₂O₃:n, sekoitetaan vesiliuoksessa olevaan bariumkloridiin (esimerkiksi 5-20 g/l).

Homogenoidaan ja annetaan sakan muodostua noin 1 h kullessa, sitten suodatetaan suodatinupokkaan päältä, jonka huokoisuus on no 4. Kaikki nämä toimenpiteet kloorisulfaatin sekoittamisesta alkaen BaCl₂:n kanssa suodattamiseen asti tapahtuvat ympäristön lämpötilassa, so. välillä 15-25°C. Suodos sisältää vielä keksinnön mukaisen aineen SO₄²⁻-ioneja, jotka eivät ole saostuneet BaSO₄:n muodossa, ja jotka sisä ovat kompleksisia. Tämän kompleksisen SO₄²⁻-määrän selville saamiseksi aine hajotetaan lisäämällä kloorivetyhappoa suodokseen ja
nostetaan se kiehumapisteeseen. Sitten saostetaan $SO_4^{2-}$-ionit 5-15 painoprosenttisena $BaCl_2$-vesiliuoksen avulla. Kun mitataan sakan $BaSO_4$-massassa, saadaan vertaamalla aineen koko $SO_4^{2-}$-ionien määrän kanssa bariumkloridin kanssa tapahtuvan reaktion avulla ympäristön lämpötilassa saostuvien $SO_4^{2-}$-ioni-en prosentuaalinen määrä.

Aineet sisältävät edullisesti alle 10 % tavanmukaisissa olosuhteissa olosuhteissa $SO_4^{2-}$-ioneja ja mieluummin alle 5 %, eli yli 95 % $SO_4^{2-}$-ioneista on kompleksisia.

Esillä oleva keksintö koskee myös näiden aineiden valmistusmenetelmää. Menetelmä on tunnettu siitä, että:

a) alumiinioksidin, kloorivetyhappo ja rikkihappo saatetaan kosketukseen toistensa kanssa vesiliuoksessa seuraavissa moolisuhteissa:

$$1,89 < \frac{HCl}{\text{alumiini}} < 2,44$$
$$1,37 < \frac{H_2SO_4}{\text{alumiini}} < 1,73$$

joissa Al on laskettu $Al_2O_3$:na,

b) tämä liuos saatetaan kosketukseen maa-alkaliyhdisteen kanssa moolisuhteen maa-alkaliyhdisteen ja $Al_2O_3$:na lasketun alumiinin ollessa välillä 1,63-1,70, ja

c) maa-alkalisulfaatti poistetaan.

Alumiinioksidilla tarkoitetaan kaiken tyyppisiä alumiinioksida tai alumiinihydroksideja. Pidetään parhaana käyttää Bayer-menetelmästä peräisin olevaa alumiinioksidia tai alumiinihydroksideja, jotka ovat sivutuotteita alumiinin pinnan käsittelyistä.

Alumiinioksidia liuotetaan edullisesti konsentroidun kloori-
vetyhapon ja konsentroidun rikkihapon seoksella lämpötilavälinä 70-115°C. Nämä lämpötilarajat eivät ole olennaisen tärkeitä, ne vastaavat ainoastaan reaktion kestoa 1 h tai 2 h, mikä sopii menetelmän teolliseen soveltamiseen. Alumiinioksidin voidaan panna happojen seokseen tai antaa alumiinioksidin reagoida toisen ja sitten toisen hapon kanssa, tai lisättähapot useina erinä. Pidetään parhaana liuottaa alumiinioksidia kloorivetyhapon ja rikkihapon seoksella, sen jälkeen kun osa alumiinioksidista on liuennut, lisättään konsentroidun rikkihapon loppuosa.

Käytetään edullisesti kloorivetyhappoa yli 20-painoprosenttisena liuoksena ja mieluimmin 33-painoprosenttista liuosta. On myös edullista käyttää ainakin 60-painoprosenttista rikkihappoa. Kloorivetyhapon määrä on tavallisesti mooleissa ilmoitettuna välillä 1,89-2,44 kertaa alumiinioksidin määrä ilmoitettuna Al₂O₃-mooleina ja mieluimmin välillä 1,95-2,40.

Rikkihapon määrä ilmoitettuna mooleina (käytettynä yhdellä tai useammalla kertaa) on tavallisesti välillä 1,37-1,73 kertaa alumiinioksidin määrä ilmoitettuna Al₂O₃-mooleina, ja mieluimmin välillä 1,42-1,68.


Tämä kontaktiin saattaminen tapahtuu tavallisesti 10-30 min sisällä, mikä vastaa tavanmukaisia teknologisia olosuhteita,
mutta keksinnön piiristä ei poistuttaisi vaikka työskennel- 
lään joistakin minuuteista useisiin tunteihin.

Maa-alkaliyhdisteen määrä ilmoitettuna mooleina on tavalli-
sesti välillä 1,63-1,70 kertaa vaiheessa a) lisätyn alumi-
nioksidin määrä, joka on ilmoitettu Al₂O₃-mooleina, ja mie-
luimin välillä 1,65-1,68. Kun koko maa-alkaliyhdisteen mää-
rä on sekoitettu alumiinin kloorivety- ja rikihappoisen 
liuoksen kanssa, voidaan seos jättää sekoitukseen. Lämpötila 
voi olla mikä tahansa, tavallisesti lämpötila sijoittuu väl-
lille 30-60°C.

Tämä vaiheen b) loppu kestää edullisesti 15 min - 2 h. Sen 
jälkeen riittää, että erotetaan maa-alkalisulfaatti. Voidaan 
käyttää tavallisia keinoja, kuten suodattamista ja sentrifuu-
goimista. Tämä erotus tapahtuu mieluimin ympäristön lämpö-
tilaa korkeammassa lämpötilassa, esimerkiksi välillä 
30-60°C.

Suodos sisältää keksinnön mukaisen emäksisen kloorisulfaatin 
vesiliuoksessa. Konsentraatiota voidaan muunnella lisäämällä 
vettä.

Keksinnön mukainen aine esiintyy tämän liuoksen muodossa, 
joka sisältää 5-15 paino-% alumiinia ilmoitettuna Al₂O₃:n 
muodossa. Tämän muodon etuna on stabilisuus (kiinteä faasi 
ei tule esiin) useiden kuukausien ajan ympäristön lämpöti-
llassa.

Keksinnön mukaisesti aikaansaadut alumiinikloorisulfaatit 
soveltuvat koaguloiviksi ja höytäleitä muodostaviksi aineik-
si vesien käsitteelyyn, erikoisesti vesien puhdistamiseen 
juomakelpoisen veden valmistamiseksi.
Keksinnön mukaisilla emäkeisillä alumiinikloorisulfataateilla, joilla on simultaanisesti

- emäkeisyys yli 60%
- painosuhde $\text{Cl}^-/(\text{kokonais} \ SO_4^{2-})$ välillä 4,5–8 on silloin
kun niitä käytetään vesipitoisten väliaineiden käsittelemä-
telmien piirissä, käsitteleyaineen pitoisuus optimalisessa
höytälöittämisessä on alempi lähes samoilla ominaisuuksilla,
mitä tulee liuokseen jäväänä alumiiniin (jäännösalumiini).

Seuraavat esimerkit valaisevat keksintöä sitä rajoittamatta.

Esimerkki 1
Keksinnön mukaisen aineen valmistaminen

Vaihe a): Lasireaktoriin, joka sisältää 3 moolia HCl:a 331,9
g:n muodossa 33–prosenttista liuosta ja 1,45 moolia H$_2$SO$_4$-a,
joka on 78–prosenttista, kaadetaan 3,09 moolia 99–prosenttista
Al(OH)$_3$-jauhetta. Kuumennetaan 70 C:een, sen jälkeen lämpötila
vakiin tuu 102 C:een. Laimennetaan 374 g:n kannaa vettä, sen
jälkeen lisätään 1 mooli 78–prosenttista rikkipappoa. Lämpö-
tila noussee 112 C:een 20 min sisällä. Tämän vaiheen kesto on
noin 2 h.

Vaihe b): Annetaan jäähtyä 93 C:een, sitten lisätään 30 min
kuluessa 2,60 moolia CaCO$_3$:a eli 481,5 g 54–prosenttista
CaCO$_3$:n suspensiota, reaktorin annetaan olla sekoitettuna 1 h
30 min ajan, lämpötila on 61 C.

Vaihe c): Annetaan jäähtyä 40 C:een, sitten suodattetaan vakuu-
misuodatinlaitteessa. Suodospaakku pestään 100 g:n kannaa
vetä. Kuiva paakku painaa 362 g ja sisältää 7,73 paino-%
alumiinia ilmoitetuna Al$_2$O$_3$:na, 53,4% SO$_4$- , 1,35% Cl-, ja
loput on kalsiumia. Suodosta otetaan talteen 1111 g, jonka
tiheys on 1,224, ja joka laimennetaan 109 g:n kannaa vetä.
Saadaan ainetta, joka on liuokseen muodossa.
Liuos painaa 1220 g, sen tiheys on 1,201 ja se sisältää 10,09 paino-% Al ilmoitettuna Al₂O₃:n muodossa, 8,11 paino-% Cl⁻, 1,83 paino-% SO₄²⁻, 1,78 paino-% kompleksista SO₄²⁻ ja 1,08 paino-% Ca²⁺ eli suhde (Al ekvivalentti)/Cl on 2,6, ja 97,3 paino-% SO₄²⁻-ioneista on kompleksia.

Emäksieyyys on 64,18% ja painosuhde Cl⁻/(koko SO₄²⁻) on 4,43.

Esimerkki 2
Keksinnön mukaisen toisen aineen valmistaminen

Työskennellään kuten esimerkissä 1, mutta käyttäen reagoivien aineiden toisia paino-osoikkaia. Lähdetään aina 3,09 moolista Al(OH)₃:a, vaiheen a) kestää 2 h. Vaihe b) kestää 2 h ja aloitetaan lämpötilassa 90 C.

Vaihe a)

Lämpötila lopussa: 113,4 °C
HCl: 3 moolia
H₂SO₄: 2,6 moolia

Vaihe b)

Lämpötila lopussa: 63 °C
CaCO₃: 2,6 mol 54-prosenttisen suspension muodossa.

Sen jälkeen kun kalsiumsulfatti on erotettu (vaihe c)) ja on laimennettu vedellä, saadaan seuraavaa aineeta; prosenttiluvut ovat painoprosentteja liuoksesta.
Painoprosenteissa liuoksesta

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$</td>
<td>10,59%</td>
</tr>
<tr>
<td>Cl</td>
<td>8,35%</td>
</tr>
<tr>
<td>Koko SO$_4$-</td>
<td>2,13%</td>
</tr>
<tr>
<td>Kompleksinen SO$_4$-</td>
<td>2,13%</td>
</tr>
<tr>
<td>Jäännös-Ca</td>
<td>0,77%</td>
</tr>
<tr>
<td>Ekvivalentti Al/Cl</td>
<td>2,65</td>
</tr>
<tr>
<td>Emaksisyys</td>
<td>61,29</td>
</tr>
<tr>
<td>Kompleksiset SO$_4$- -ionit</td>
<td>100%</td>
</tr>
<tr>
<td>Cl/(koko SO$_4$-)</td>
<td>3,92</td>
</tr>
</tbody>
</table>

Esimerkki 3
Keksinnön mukaisen toisen aineen valmistaminen

Työskennellään kuten esimerkissä 1, mutta käyttäen reagoivien aineiden toisia määräosuuksia. Lähdetään 3,09 mooista Al(OH)$_3$:a, vaiheen a) kesto on 2 h. Vaihe b) kestää 2 h ja aloitetaan lämpötilassa 90 °C.

Vaihe a)

Lämpötila lopussa: 112 °C
HCl: 2,81 moolia
H$_2$SO$_4$: 2,25 moolia

Vaihe b)

Lämpötila lopussa: 62 °C
CaCO$_3$: 2,38 moolia 54-prosenttisen suspension muodossa.

Kun kaleiumsulfaatti on erotettu (vaihe c) ja laimennettu vedellä, saadaan seuraavaa ainetta, luvut ovat painoprosentteina liuoksesta.
### Painoprosenteissa liuoksesta

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Al}_2\text{O}_3$</td>
<td>9,96%</td>
</tr>
<tr>
<td>$\text{Cl}^{-}$</td>
<td>7,72%</td>
</tr>
<tr>
<td>Koko $\text{SO}_4^{2-}$</td>
<td>1,50%</td>
</tr>
<tr>
<td>Kompleksinen $\text{SO}_4^{2-}$</td>
<td>1,50%</td>
</tr>
<tr>
<td>Jäänmő-Ca</td>
<td>0,66%</td>
</tr>
<tr>
<td>Ekvivalentti Al/Cl</td>
<td>2,69</td>
</tr>
<tr>
<td>Emäksisyys $\text{Cl}^{-}$</td>
<td>63,2</td>
</tr>
<tr>
<td>Kompleksiset $\text{SO}_4^{2-}$-ionit</td>
<td>100%</td>
</tr>
<tr>
<td>$\text{Cl}/(\text{koko } \text{SO}_4^{2-})$</td>
<td>5,15</td>
</tr>
</tbody>
</table>

### Esimerkki 4

Aineet, jotka eivät ole keksinnön mukaisia

Niiden bruttokaava ilmoitetaan samassa muodossa kuin keksinnön mukaisten aineiden.

4a) Emäksinen alumiiniklorisulfaatti valmistetaan aikaisemman tekniikan mukaisesti ja se on liuoksen muodossa, joka sisältää painoprosenteissa:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Al}$</td>
<td>10,3 (ilmoitettuna $\text{Al}_2\text{O}_3$:na)</td>
</tr>
<tr>
<td>$\text{Cl}^{-}$</td>
<td>9,09</td>
</tr>
<tr>
<td>Koko $\text{SO}_4$</td>
<td>2,49</td>
</tr>
<tr>
<td>Emäksisyys</td>
<td>51,32, emäksisyys määritään kuten keksinnön mukaiselle aineelle.</td>
</tr>
</tbody>
</table>

Kompleksisten $\text{SO}_4^{2-}$-ionien konsentraatio on 1,64, joten siis 1,64 eli 65,9% sulfaatista on kompleksista. Suhde (ek-valentti Al)/Cl on 2,37 ja Cl/(koko $\text{SO}_4^{2-}$) on 3,65. Aine valmistetaan antamalla alumiinioksidin reagoida HCl:n ja $\text{H}_2\text{SO}_4$:n kanssa kuten PR-patentissä 2 036 685.

4b) Valmistetaan toinen emäksinen alumiiniklorisulfaatti, joka on liuoksen muodossa, joka sisältää painoprosenteissa:
Al & 8,3 (ilmoitettuna Al₂O₃:na) \\
Cl & 5,21 \\
Koko SO₄²⁻ & 5,02 \\
Emäksisyys & 49,8%.

Kompleksisten SO₄²⁻-ionien konsentraatio on 1,5, joten siis 1,5 eli 29,9% sulfaatista on kompleksin muodossa. Suhde 5,02 (ekvalentti Al)/Cl on 3,32 ja Cl/(koko SO₄²⁻) on 1,04.

Tätä ainetta valmistetaan menetelmän mukaan, joka sisältää kalsiumkloridia ja kalsiumkarbonaattia sisältävän suspensio valmistusvaiheen (kloorikarbonaattisuspensio), ja vaiheen, jossa kloorikarboonahattisuspensio saatetaan kontaktiin alumiinin sulfaatin kanssa, sitten vaiheen, jossa näin saatu reaktio- seos erotetaan, niin että kalsiumsulfaattipakka ja emäksisen alumiinikloorisulfaatin sisältävä suodos erotetaan. Tämä menetelmä on selostettu EP-patentitihakemukseessa 218487.

Tästä aineesta on mitattu valon lähes kimmoisen diffuusion avulla näennäinen hydrodynaaminen läpimita φZ, joka on 700 Å.

4c) Valmistetaan samanlainen aine kuin kohdassa 4b. Konsentraatiot ovat:

Al & 8,55 (Al₂O₃:na) \\
Cl & 6,82 \\
Koko SO₄²⁻ & 2,74 \\
Kompleksinen SO₄²⁻ & 1,93 \\
Emäksisyys on 57%.

Kompleksisen SO₄²⁻ prosentuaalinen määrä on siis 1,93 = 70,4% ja suhteet (ekvalentti Al)/Cl = 2,62 ja 2,74 Cl/(koko SO₄²⁻) = 2,49.
Esimerkki 5

Tämä esimerkki valaisee keksinnön mukaisen aineen sovellutus-
ta.

Verrataan keksinnön mukaiesta ainetta esimerkin 4 aineiden
kanssa. Kokeet suoritetaan seuraavan menetelmän mukaisina
jar-testeinä:

- 1 litran astia,
- lämpötila 15 °C
- jokivettä,
- HYDROCURE jar -testi tyyppiä SLH6,
- nopea sekoitus 1 min 30 s ajan höytäloitä muodostavan ai-
neen lisäämisen jälkeen, sitten hidas sekoitusta, eli riit-
tävän kauan, niin että tapahtuu yhteensulautumista, mutta väl-
tetään hiutaleiden dekantoituminen.

Sen jälkeen annetaan dekantoitua 3, 10 tai 20 min ajan tau-
lukkojen 1-7 mukaiseesti.

- mitataan vedessä jäljellä oleva alumiini kolorimetrisen me-
netelman avulla kromatsurolin kanssa sen jälkeen kun 20 min
dekantoitunut vesi on suodatettu 0,45 /um suodattimen päältä.

Seuraavat taulukot ilmoittavat käsiteltävän veden tyyppin, sen
pH:n, sameuden, joka ilmoitetaan NTU:na ja organiset aineet
mg:na happea per litra vettä.

Käytetty aine merkitään esimerkin numerolla. Veden sameus
pinnalta ilmoitetaan x min kestäneen dekantoimisen jälkeen,
loppullinen pH, organiset aineet ja veteen jäljelle jäänyt
alumiini (jäännös Al) ppb:nä (/ug/litra).
**Taulukko 1**

**Vesityyppi: Seinen vettä**

<table>
<thead>
<tr>
<th>Aine esi-merkistä</th>
<th>Määrä g/m</th>
<th>Pääällä kellu-</th>
<th>Lopul- Orgaa- Jään-</th>
<th>No (Al₂O₃: meus na)</th>
<th>pH</th>
<th>aineet Al</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>van osan sa-</td>
<td>linen niset nös-</td>
<td>3 min 10 min 20 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>4</td>
<td>2,1</td>
<td>1,45</td>
<td>1,3</td>
<td>7,7</td>
<td>2,76</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1,6</td>
<td>1,35</td>
<td>1,2</td>
<td>7,84</td>
<td>2,72</td>
</tr>
</tbody>
</table>

**Taulukko 2**

**Vesityyppi: Marnen vettä**

<table>
<thead>
<tr>
<th>Aine esi-merkistä</th>
<th>Määrä g/m</th>
<th>Pääällä kellu-</th>
<th>Lopul- Orgaa- Jään-</th>
<th>No (Al₂O₃: meus na)</th>
<th>pH</th>
<th>aineet Al</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>van osan sa-</td>
<td>linen niset nös-</td>
<td>3 min 10 min 20 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>3</td>
<td>1,7</td>
<td>1,6</td>
<td>1,5</td>
<td>7,78</td>
<td>2,94</td>
</tr>
<tr>
<td>4c</td>
<td>3</td>
<td>1,7</td>
<td>1,55</td>
<td>1,45</td>
<td>7,80</td>
<td>2,78</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1,8</td>
<td>1,6</td>
<td>1,4</td>
<td>7,80</td>
<td>2,66</td>
</tr>
</tbody>
</table>
**Taulukko 3**

Vesityyppi: Marnen vettä  
PH 8,26 (sitä on muunneltu lisäämällä natrium-karbonaattia)  
Sameus 55 NTU  
Orgaaniset aineet (M.O.) 5,94 mg O₂/l

| Aine esi-merkistä | Määrä g/m | Päälä kellu- | Lopul- Orgaan- | Jään- | Al
|-------------------|-----------|--------------|---------------|-------|---
| No (Al₂O₃: meus)  | 3 min 10 min 20 min |

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>3</th>
<th>1</th>
<th>1,55</th>
<th>1,55</th>
<th>1,35</th>
<th>7,90</th>
<th>2,12</th>
<th>216</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1,6</td>
<td>1,55</td>
<td>1,3</td>
<td>7,92</td>
<td>2,14</td>
<td>212</td>
</tr>
<tr>
<td>4c</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1,7</td>
<td>1,55</td>
<td>1,45</td>
<td>7,97</td>
<td>2,08</td>
<td>165</td>
</tr>
</tbody>
</table>

**Taulukko 4**

Vesityyppi: Oisen vettä  
PH 7,99  
Sameus 9,9 NTU  
Orgaaniset aineet (M.O.) 5,84 mg O₂/l

| Aine esi-merkistä | Määrä g/m | Päälä kellu- | Lopul- Orgaan- | Jään- | Al
|-------------------|-----------|--------------|---------------|-------|---
| No (Al₂O₃: meus)  | 3 min 10 min 20 min |

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>3</th>
<th>1</th>
<th>0,88</th>
<th>0,88</th>
<th>0,80</th>
<th>7,88</th>
<th>2,94</th>
<th>89</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0,98</td>
<td>0,93</td>
<td>0,91</td>
<td>7,84</td>
<td>3,10</td>
<td>123</td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>3</td>
<td>3</td>
<td>1,2</td>
<td>1,02</td>
<td>0,95</td>
<td>7,82</td>
<td>3,08</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>
### Taulukko 5

**Vesityyppi:** Oisen vettä  
**pH** 8,24 (sen jälkeen kun on lisätty natrium-karbonaattia)  
**Sameus** 21 NTU  
**Orgaaniset aineet (M.O.)** 6,92 mg O₂/l

<table>
<thead>
<tr>
<th>Aine esi-merkistä</th>
<th>Määrä g/m³</th>
<th>Päällä kellu-</th>
</tr>
</thead>
<tbody>
<tr>
<td>No (Al₂O₃: meusa na)</td>
<td>3 min 10 min 20 min</td>
<td>Lopul- Orgaa- Jään- linen niset nös-</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0,94</td>
<td>0,83</td>
<td>0,72</td>
<td>8,08</td>
<td>2,86</td>
</tr>
<tr>
<td>4a</td>
<td>3</td>
<td>1,05</td>
<td>1</td>
<td>0,99</td>
<td>8,03</td>
<td>2,86</td>
</tr>
<tr>
<td>4b</td>
<td>3</td>
<td>1,25</td>
<td>0,99</td>
<td>0,93</td>
<td>8,02</td>
<td>2,88</td>
</tr>
</tbody>
</table>

Voidaan havaita, että jopa hyvin emäkiseen veden kanssa voidaan keksinnön mukaisen aineen avulla olla alle hyväksytyn maksimikonsentraation 200 μg/l, joka on ilmoitettu Euroopan neuvoston toimintakohdeessa 15. heinäkuuta 1980.

### Taulukko 6

**Vesityyppi:** Seinen vettä  
**pH** 7,97  
**Sameus** 42 NTU  
**Orgaaniset aineet (M.O.)** 6,96 mg O₂/l
### Taulukko 6 (jatkoa)

<table>
<thead>
<tr>
<th>Aine esi-merkistä</th>
<th>Määrä $\frac{g}{m^3}$</th>
<th>Päällä kellu- van osan sa-</th>
<th>Lopul- Orgaa- Jään- linen niset nös-</th>
<th>pH aineet Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ($Al_2O_3$: na)</td>
<td>3 min 10 min 20 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>4</td>
<td>2,1</td>
<td>1,45</td>
<td>1,3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2,2</td>
<td>1,2</td>
<td>1,3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1,4</td>
<td>1,3</td>
</tr>
</tbody>
</table>

### Taulukko 7

**Vesityyppi:** Marnen vettä  
**pH** 8,02  
**Sameus** 60 NTU  
**Orgaaniset aineet (M.O.)** 6,68 mg $O_2/l$

<table>
<thead>
<tr>
<th>Aine esi-merkistä</th>
<th>Määrä $\frac{g}{m^3}$</th>
<th>Päällä kellu- van osan sa-</th>
<th>Lopul- Orgaa- Jään- linen niset nös-</th>
<th>pH aineet Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ($Al_2O_3$: na)</td>
<td>3 min 10 min 20 min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>3</td>
<td>1,7</td>
<td>1,6</td>
<td>1,5</td>
</tr>
<tr>
<td>4c</td>
<td>3</td>
<td>1,7</td>
<td>1,55</td>
<td>1,45</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1,8</td>
<td>1,6</td>
<td>1,5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1,8</td>
<td>1,6</td>
<td>1,4</td>
</tr>
</tbody>
</table>

### Esimerkki 6

Tässä esimerkissä verrataan keksinnön mukaisten aineiden sameus- ja jäänösalumiinituloksia esimerkistä 1 ja 3 silloin kun niitä käytetään käsittelyissä $\frac{3}{3}$ joissa $Al_2O_3$:n pitoisuudet ovat heikkoja: 1, 1,5, 2 ja 3 g/m³.
Suoritetaan kokeita esimerkissä 5 selostetun jar-testimenetelystä mukaan Seinen veden tyyppeestä vedestä.

Taulukko 8 ilmoittaa Seinen veden pH-, sameus- ja organisten aineiden arvot, jotka on mitattu ennen käsittelyä esimerkin 1 ja 3 mukaisten aineiden avulla (kokeet A–P).

Taulukko 8

<table>
<thead>
<tr>
<th>Testi No</th>
<th>Veden pH</th>
<th>Sameus (NTU)</th>
<th>Orgaaniset aineset (mg\textsubscript{O}_2/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>5,88</td>
</tr>
<tr>
<td>B–C</td>
<td></td>
<td></td>
<td>6,08</td>
</tr>
<tr>
<td>D–E</td>
<td>8,02</td>
<td>8,2</td>
<td></td>
</tr>
<tr>
<td>F–G</td>
<td>8,05</td>
<td>7,4</td>
<td></td>
</tr>
<tr>
<td>H–I</td>
<td>10</td>
<td></td>
<td>5,88</td>
</tr>
<tr>
<td>J–K</td>
<td>10</td>
<td></td>
<td>5,48</td>
</tr>
<tr>
<td>L</td>
<td>8,1</td>
<td>12</td>
<td>4,68</td>
</tr>
<tr>
<td>M–N</td>
<td>8</td>
<td>8,3</td>
<td></td>
</tr>
<tr>
<td>O–P</td>
<td>7,91</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Taulukko 9 toistaa keskiarvot tuloksiesta, jotka on saatu ototamalla vertailuksi esimerkki 3:n aine. Esiintyvät prosentti-luvut on saatu seuraavalla tavalla:

parametri $x$:n ero (%) = $\frac{x$:n arvo esimerkissä $i$ - X 100}{x$:n arvo esimerkissä 3}$ \times 100$

jossa $i$ = 1 tai 3.

Huomatus: Erotukset eivät ole todella merkittäviä kuin silloin, kun niiden absoluuttimen arvo on yli tai yhtä suuri kuin 5%.
### Taulukko 9

<table>
<thead>
<tr>
<th>No</th>
<th>Aine esimerkistä (Al₂O₃:na)</th>
<th>Maara g/m³</th>
<th>Päällä kelluvan osan sameus (%)</th>
<th>Erotus</th>
<th>Organiset aineet (%)</th>
<th>Jäännos-Al (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 min 10 min 20 min</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>14</td>
<td>9,3</td>
<td>8,9</td>
<td>-0,7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>18</td>
<td>9,2</td>
<td>6</td>
<td>1,8</td>
<td>-10</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>20</td>
<td>9,9</td>
<td>3,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>5,25</td>
<td>0,34</td>
<td>-2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Patenttivaatimukset

1. Emäksinen alumiinikloorisulfaatti, joka on vesiliuoksen muodossa, *tunnettu* siitä, että se käsitteää
   - aineen, jonka kaava on:

   \[
   \text{Al}_n\text{Cl}_m(\text{OH})_{3n+2m-2p}(\text{SO}_4)_pX_k
   \]

   jossa:
   - \(n, m, p\) ja \(k\) esittävät liuoksessa olevien aineosien moolikonsentraatioita (moolia/1),
   - \(X\) esittää maa-alkalia, mieluimmin kalsiumia, ja
   - alle 20 % ioneista \(\text{SO}_4^{2-}\) voidaan saostaa bariumkloridin kanssa
tapahtuvan reaktion avulla ympäristön lämpötilassa, ja jonka
emäksisyys \(\frac{3n+2k-m-2p}{3n}\) on välillä 45-70 %.

2. Patenttivaatimuksen 1 mukainen aine, *tunnettu* siitä, että suhde (ekvivalentti Al)/Cl, \(3n/m\), on alle 2,8.

3. Patenttivaatimuksen 1 tai 2 mukainen aine, *tunnettu* siitä, että emäksisyys on välillä 50-65 %.


5. Jonkin patenttivaatimuksen 1-4 mukainen aine, *tunnettu* siitä, että alle 5% \(\text{SO}_4^{2-}\)-ioneista saostuu bariumkloridin kanssa
tapahtuvan reaktion avulla ympäristön lämpötilassa.

6. Jonkin patenttivaatimuksen 1-5 mukainen aine, *tunnettu* siitä, että
   - sen emäksisyys on suurempi tai yhtä suuri kuin 60 %,
   - painosuhde Cl/\(\text{SO}_4\) on välillä 4,5-8.

7. Menetelmä patenttivaatimuksen 1 mukaisen emäksisen alumiinikloorisulfaatin valmistamiseksi, *tunnettu* siitä, että:
a) alumiinioksidi, kloorivetyhappo ja rikkihappo saatetaan kosketukseen toistensa kanssa vesiliuoksessa seuraavissa moolisuhteissa:

\[
\begin{align*}
1,89 &< \frac{\text{HCl}}{\text{alumiini}} < 2,44 \\
1,37 &< \frac{\text{H}_2\text{SO}_4}{\text{alumiini}} < 1,73
\end{align*}
\]

joissa Al on laskettu Al\(_2\text{O}_3\)-na,
b) tämä liuos saatetaan kosketukseen maa-alkaliyhdisteen kanssa moolisuhteen maa-alkaliyhdisteen ja Al\(_2\text{O}_3\)-na lasketun alumiinin ollessa välillä 1,63-1,70, ja
c) maa-alkalisulfaatti poistetaan

8. Patenttivaatimuksen 7 mukainen menetelmä, tunnettu siitä, että maa-alkaliyhdisteeksi valitaan kalsiumkarbonaatti, -hydroksidi, -oksidi tai -bikarbonaatti.

**Patentkrav**

1. Basiskt aluminiumklor sulfat i form av en vattenlösning, **kännetecknat** av att det innehåller
   - ett ämne med formeln:

\[
\text{Al}_n\text{Cl}_m(\text{OH})_{3n+2k-m-2p}(\text{SO}_4)_pX_k
\]

i vilken
- n, m, p och k representerar molkoncentrationerna (mol/l) av beståndsdelarna i lösningen,
- X representerar jordalkali, företrädesvis kalcium, och
- under 20 % av jonerna SO\(_4^2\) kan utfallsas med en reaktion tillsammans med bariumklorid vid omgivande temperatur, och vars basiskhet \(3n+2k-m-2p\) är i intervallen 45-70 %.

2. Ämne enligt patentkrav 1, **kännetecknat** av att förhållandet (ekvivalent Al)/Cl, 3n/m, är under 2,8.
3. Ämne enligt patentkrav 1 eller 2, *kännetecknat* av att basiskheten är i intervallen 50-65 %.

4. Ämne enligt något av patentkrav 1-3, *kännetecknat* av att förhållandet ekvivalent Al/Cl är under 2,75.

5. Ämne enligt något av patentkrav 1-4, *kännetecknat* av att under 5 % av SO₄²⁻-jonerna utfälls med en reaktion tillsammans med bariumklorid vid omgivande temperatur.

6. Ämne enligt något av patentkrav 1-5, *kännetecknat* av att dess basiskhet är över eller lika med 60 %,
   - viktförhållandet Cl/SO₄ är i intervallen 4,5-8.

7. Förfarande för att framställa ett basiskt aluminiumklor-sulfat enligt patentkrav 1, *kännetecknat* av att:
   a) aluminiumoxid, klorvåtesyra och svavelsyra sätts i beröring med varandra i en vattenlösning med följande molförhållanden:

   $1,89 < \frac{\text{HCl}}{\text{aluminium}} < 2,44$

   $1,37 < \frac{\text{H₂SO₄}}{\text{aluminium}} < 1,73$

   i vilken Al beräknats som Al₂O₃,

   b) denna lösning sätts i beröring med en jordalkaliförening, varvid molförhållandet mellan jordalkaliföreningen och det som Al₂O₃, beräknade aluminium är i intervallen 1,63-1,70, och

   c) jordalkalisulfatet avlägsnas.