
US 2001.0003843A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2001/0003843 A1

SCEPANOVIC et al. (43) Pub. Date: Jun. 14, 2001

(54) ADVANCED MODULAR CELL PLACEMENT Related U.S. Application Data
SYSTEM

(63) Continuation of application No. 08/798.598, filed on
Feb. 11, 1997, now Pat. No. 6,067,409.

(76) Inventors: RANKO SCEPANOVIC, SAN JOSE,
CA (US); IVAN PAVISIC, Publication Classification

CUPERTINO, CA (US); JAMESS (51) Int. Cl. ... G06F 17/50
KOFORD, SAN JOSE, CA (US); (52) U.S. Cl. 71.6/7; 716/10; 716/8
ALEXANDERE ANDREEV,
MOSKOVSKAGA OBLAST (RU); (57) ABSTRACT
EDWIN JONES, LOA ALTOS HILLS, A System for determining an affinity associated with relo
CA (US) cating a cell located on a Surface of a Semiconductor chip to

a different location on the Surface is disclosed herein. Each
cell may be part of a cell net containing multiple cells. The

Correspondence Address: System initially defines a bounding box containing all cells
LSI LOGIC CORPORATION in the net which contains the cell. The system then estab
1551 MCCARTHY BOULEVARD lishes a penalty vector based on the bounding box and
MILPITAS, CA 95035 borders of a region containing the cell, computes a normal

ized Sum of penalties for all nets having the cell as a
member, and calculates the affinity based on the normalized

(*) Notice: This is a publication of a continued pros- Sum of penalties. Also included in the disclosed System are
ecution application (CPA) filed under 37 methods and apparatus for capacity and utilization planning
CFR 1.53(d). of the use of the floor, or the Surface area, and the methods

and apparatus for parallelizing the process of affinity based
(21) Appl. No.: 09/444,975 placements using multiple processors. Finally, method and

apparatus for connecting the cells based on a Steiner Tree
(22) Filed: Nov. 22, 1999 method is disclosed.

NETLST

w celis: Construct each cell's neighborhood,
using: a The new inetics or the hypergraph netlist:

riterative -d optimization.

- - - - - - - - - - - - - - - - w - - - - - - - i

Perform Density-driven 1-d-f -z
Chaotic Preplacement

s s

: Lavalization -?
by Bisection

- &
4

was a:
sense

& | E. &s fibes

ecietal
Eee-eat.
--

Levstizatian Celldensity with
dispersion-driven Spring Systern

res Perform Unconstrained - is tes
titles Sinusoidal optimization -

Bulldozer

is with control of cell column pensities sease ce
Renove Owerlap with

Mirial Noise
rr

verical optimationi 4
i

- -- 2-4 Adust cer spacing'
--- i. Art Eisen.

Place calls of the closest
Horizontal Gridline

Perfora Neighborhood-based
optimization

Iterate Hypergraph-based -- t? '?
optimizatio

riskATE W.

Patent Application Publication Jun. 14, 2001 Sheet 1 of 43 US 2001/0003843 A1

FIGURE 1A

V cells: Construct each cell's neighborhood,
using: - The new metrics on the hypergraph (netlist);

- literative 1-d optimization.

Perform Density-driven 1-d -2
Chaotic Preplacement

- ze levelization
by Bisection

Tsaata
tero res.

dive sy
Desays
tee
es
SEfe toads

Pesteal
hieftaat-eal
esser -

Patent Application Publication Jun. 14, 2001 Sheet 2 of 43 US 2001/0003843 A1

FIGURE 1 B

Levelization Cell Density with
Dispersion-driven Spring System

rebate Perfor - Co
ter-tnes Sinuso -

m Unconstrained
idal Optimization

Bulldozer" Bulldozer

R. R. R. R. R. R. R.
23 1 lira Perform Sinusoidal Optimization

with Control of Cell Column Densities

Vertical Optimization l4

Adjust Cell Spacing T N was

Tatars Permute Cells -- to Permute Cells
Place Cells on the closest

Horizontal Grid Line

Perform Neighborhood-based
Optimization

Voyal seWe
reaTE ceyeatened liter-Tes---

Patent Application Publication Jun. 14, 2001 Sheet 3 of 43 US 2001/0003843 A1

EEEEEEEEEEEggs
d to sts SS

Patent Application Publication Jun. 14, 2001 Sheet 4 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 5 of 43 US 2001/0003843 A1

Sheet 6 of 43 US 2001/0003843 A1 Jun. 14, 2001 Patent Application Publication

g-border, ((a))
as a a tra -

has up poore is a on poses b as an a pop chape popposipopo

t

V

for each g a border,0)

fannese w

ge border(I)
forary

O

-border(range ():

sa--soa-sauce

1

Patent Application Publication Jun. 14, 2001 Sheet 7 of 43 US 2001/0003843 A1

16.7

Patent Application Publication Jun. 14, 2001 Sheet 8 of 43 US 2001/0003843 A1

fvu YY MW ce
C- or einae

Patent Application Publication Jun. 14, 2001 Sheet 9 of 43 US 2001/0003843 A1

Sheet 10 of 43 US 2001/0003843 A1 Jun. 14, 2001 Patent Application Publication

Patent Application Publication Jun. 14, 2001 Sheet 11 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 12 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 13 of 43 US 2001/0003843 A1

Sheet 14 of 43 US 2001/0003843 A1 Jun. 14, 2001 Patent Application Publication

Patent Application Publication Jun. 14, 2001 Sheet 15 of 43 US 2001/0003843 A1

-

s
A.

Patent Application Publication Jun. 14, 2001 Sheet 16 of 43 US 2001/0003843 A1

N
s
Vy

Sheet 17 of 43 US 2001/0003843 A1 Jun. 14, 2001 Patent Application Publication

Sheet 18 of 43 US 2001/0003843 A1 Jun. 14, 2001 Patent Application Publication

Patent Application Publication Jun. 14, 2001 Sheet 19 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 20 of 43 US 2001/0003843 A1

N

i

Jun. 14, 2001 Sheet 21 of 43 US 2001/0003843 A1 Patent Application Publication

Jun. 14, 2001 Sheet 22 of 43 US 2001/0003843 A1 Patent Application Publication

--? w:===== • ***

Patent Application Publication Jun. 14, 2001 Sheet 23 of 43 US 2001/0003843 A1

impose a mesh on the chip

assign integer coordinates to nodes of the mesh

classify nodes as movable or fixed

calculate densities of square mesh regions

transform Squares into
arbitrary equilaterals

iteratively recalculate movable node
Coordinates to minimize cost function

density dispersion

Adjust coordinates to minimize local cost function

46, 32.

Patent Application Publication Jun. 14, 2001 Sheet 24 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 25 of 43 US 2001/0003843 A1

% 2H
H:
%

Patent Application Publication Jun. 14, 2001 Sheet 26 of 43 US 2001/0003843 A1

1 targarett -
A. 2a2 (eE 2az () -

4 12

aaz (i) OE 2a2 (i) A

620

Patent Application Publication Jun. 14, 2001 Sheet 27 of 43 US 2001/0003843 A1

OVo FLY LZ1. LILE
1; --
(lit. - / A || 3 -

O O32 0.82 a.

O38a.
038

03d

O%2d 1082c

Patent Application Publication Jun. 14, 2001 Sheet 28 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 29 of 43 US 2001/0003843 A1

outputfe list of regions

FC,

Patent Application Publication Jun. 14, 2001 Sheet 30 of 43 US 2001/0003843 A1

Old
loa 2

Ol

VO (

080 \8

FG, 2.

Patent Application Publication Jun. 14, 2001 Sheet 31 of 43 US 2001/0003843 A1

Preplace the cells

Assign cells to 2
processors

Calculate cell affinities V2(o
to processors

Reassign cells to
processors

placement algorithim

o

23

O

Place the cells on the
IC using a cell

placement algorithim
32

Patent Application Publication Jun. 14, 2001 Sheet 32 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 33 of 43 US 2001/0003843 A1

Y2O

Cls .

... - N (a) -C U on co -o s 2 ns
f

s|| || || ||
ce

s
260b

FG 5

Patent Application Publication Jun. 14, 2001 Sheet 34 of 43 US 2001/0003843 A1

220

- - 1
a. - NY US - A UM 6 - d. oO - 0 o 2 n)

||||||||||
le
of HH | | | | | | | | | ||

UE
=
s|| || || ||

FC 6

Patent Application Publication Jun. 14, 2001 Sheet 35 of 43 US 2001/0003843 A1

23O

9.

|| ||

FG 7

Patent Application Publication Jun. 14, 2001 Sheet 36 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 37 of 43 US 2001/0003843 A1

?old OO

sta 1 > - ,
y

to

Patent Application Publication Jun. 14, 2001 Sheet 38 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 39 of 43 US 2001/0003843 A1

Input:
a net (a set of pins), K

- O ul
Partition the set of pins
(as described above)

The number of Partition the set of old
new subsets >> K Yes Subsets

No u \

level
Up

Find the spanning tree
for that level 3

For each pair of subsets u2O
connected in the spanning tree

find the closest pins

Have we reached Yes Construct a tree for
the top level each subset

2.
22.

Fig. 5)

Patent Application Publication Jun. 14, 2001 Sheet 40 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 41 of 43 US 2001/0003843 A1

l to \\8-

Up

3e
u88

O
-7

2.
H3

82.
2 tle2

O

Patent Application Publication Jun. 14, 2001 Sheet 42 of 43 US 2001/0003843 A1

Patent Application Publication Jun. 14, 2001 Sheet 43 of 43 US 2001/0003843 A1

No
N
S
N M

/

U

lu

US 2001/0003843 A1

ADVANCED MODULAR CELL, PLACEMENT
SYSTEM

CROSS REFERENCE TO RELATED
APPLICATION

0001. This is a continuation-in-part of co-pending appli
cation Ser. No. 08/672,535, filed Jun. 28, 1996.

BACKGROUND OF THE INVENTION

0002) 1. Field of the Invention
0003. The present invention generally relates to the art of
microelectronic integrated circuit layout, and more specifi
cally to the art of placement and routing of cells on inte
grated circuit chips.
0004 2. Description of Related Art
0005)
0006 Microelectronic integrated circuits consist of a
large number of electronic components which are fabricated
by layering Several different materials on a Silicon base or
wafer. The design of an integrated circuit transforms a
circuit description into a geometric description which is
known as a layout. A layout consists of a Set of planar
geometric shapes in the various layers of the Silicon chip.

a. Introduction

0007. The process of converting the specifications of an
electrical circuit into a layout is called the physical design.
Physical design requires arranging elements, wires, and
predefined cells on a fixed area, and the proceSS can be
tedious, time consuming, and prone to many errors due to
tight tolerance requirements and the minuteness of the
individual components.
0008 Currently, the minimum geometric feature size of a
component is on the order of 0.5 microns. Feature size may
be reduced to 0.1 micron within several years. This small
feature size allows fabrication of as many as 10 million
transistors or approximately 1 million gates of logic on a 25
millimeter by 25 millimeter chip. This feature size decrease/
transistor increase trend is expected to continue, with even
Smaller feature geometries and more circuit elements on an
integrated circuit. Larger chip Sizes will allow far greater
numbers of circuit elements.

0009. Due to the large number of components and the
exacting details required by the fabrication process, physical
design is not practical without the aid of computers. AS a
result, most phases of physical design extensively use Com
puter Aided Design (CAD) tools, and many phases have
already been partially or fully automated. Automation of the
physical design proceSS has increased the level of integra
tion, reduced turn around time and enhanced chip perfor

CC.

0.010 The object of physical chip design is to determine
an optimal arrangement of devices in a plane and to find an
efficient interconnection or routing Scheme between the
devices to obtain the desired functionality. Since Space on
the chip Surface is at a premium, algorithms must use the
Space very efficiently to lower costs and improve yield. The
arrangement of individual cells in an integrated circuit chip
is known as a cell placement.
0.011 Each microelectronic circuit device or cell includes
a plurality of pins or terminals, each of which is connected

Jun. 14, 2001

to pins of other cells by a respective electrical interconnect
wire network or net. A goal of the optimization proceSS is to
determine a cell placement Such that all of the required
interconnects can be made, and the total wirelength and
interconnect congestion are minimized.

0012 Prior art methods for achieving this goal comprise
generating one or more initial placements, modifying the
placements using optimization methodologies including
genetic algorithms. Such as Simulated evolution, force
directed placement or Simulated annealing, described here
inbelow, and comparing the resulting placements using a
cost criteria.

0013 Depending on the input, placement algorithms are
classified into two major groups, constructive placement and
iterative improvement methods. The input to the construc
tive placement algorithms consists of a set of blockS along
with the netlist. The algorithm provides locations for the
blocks. Iterative improvement algorithms start with an initial
placement. These algorithms modify the initial placement in
Search of a better placement. The algorithms are applied in
a recursive or an iterative manner until no further improve
ment is possible, or the Solution is considered to be Satis
factory based on a predetermined criteria.

0014) Iterative algorithms can be divided into three gen
eral classifications: Simulated annealing, Simulated evolu
tion and force directed placement. The Simulated annealing
algorithm Simulates the annealing process that is used to
temper metals. Simulated evolution simulates the biological
process of evolution, while the force directed placement
Simulates a System of bodies attached by Springs.

0015 Assuming that a number N of cells are to be
optimally arranged and routed on an integrated circuit chip,
the number of different ways that the cells can be arranged
on the chip, or the number of permutations, is equal to N (N
factorial). In the following description, each arrangement of
cells will be referred to as a placement. In a practical
integrated circuit chip, the number of cells can be hundreds
of thousands or millions. Thus, the number of possible
placements is extremely large.

0016 Interactive algorithms function by generating large
numbers of possible placements and comparing them in
accordance with Some criteria which is generally referred to
as fitness. The fitness of a placement can be measured in a
number of different ways, for example, Overall chip size. A
Small size is associated with a high fitneSS and Vice versa.
Another measure of fitness is the total wire length of the
integrated circuit. A high total wire length indicates low
fitneSS and Vice versa.

0017. The relative desirability of various placement con
figurations can alternatively be expressed in terms of cost,
which can be considered as the inverse of fitness, with high
cost corresponding to low fitness and Vice versa.

0018 b. Simulated Annealing

0019 Basic simulated annealing perse is well known in
the art and has been Successfully used in many phases of
VLSI physical design Such as circuit partitioning. Simulated
annealing is used in placement as an iterative improvement
algorithm. Given a placement configuration, a change to that
configuration is made by moving a component or inter

US 2001/0003843 A1

changing locations of two components. Such interchange
can be alternatively expressed as transposition or Swapping.
0020. In the case of a simple pairwise interchange algo
rithm, it is possible that a configuration achieved has a cost
higher than that of the optimum, but no single interchange
can cause further cost reduction. In Such a Situation, the
algorithm is trapped at a local optimum and cannot proceed
further. This happens quite often when the algorithm is used
in practical applications. Simulated annealing helps to avoid
getting achieving and maintaining a local optima by occa
Sionally accepting moves that result in a cost increase.
0021. In simulated annealing, all moves that result in a
decrease in cost are accepted. Moves that result in an
increase in cost are accepted with a probability that
decreases over time as the iterations proceed. The analogy to
the actual annealing process is heightened with the use of a
parameter called temperature T. This parameter controls the
probability of accepting moves that result in increased cost.
0022. More of such moves are accepted at higher values
of temperature than at lower values. The algorithm Starts
with a very high value of temperature that gradually
decreases So that moves that increase cost have a progres
sively lower probability of being accepted. Finally, the
temperature reduces to a very low value which requires that
only moves that reduce costs are to be accepted. In this way,
the algorithm converges to an optimal or near optimal
configuration.

0023. In each stage, the placement is shuffled randomly to
get a new placement. This random Shuffling could be
achieved by transposing a cell to a random location, a
transposition of two cells, or any other move that can change
the wire length or other cost criteria. After the shuffle, the
change in cost is evaluated. If there is a decrease in cost, the
configuration is accepted. Otherwise, the new configuration
is accepted with a probability that depends on the tempera
ture.

0024. The temperature is then lowered using some func
tion which, for example, could be exponential in nature. The
proceSS is Stopped when the temperature is dropped to a
certain level. A number of variations and improvements on
the basic Simulated annealing algorithm have been devel
oped. An example is described in an article entitled "Tim
berwolf 3.2 A New Standard Cell Placement and Global
Routing Package” by Carl Sechen, et al., IEEE 23rd
Designed Automation Conference paper 26.1, pages 432 to
439.

0025 c. Simulated Evolution
0026. Simulated evolution, which is also known as the
genetic algorithm, is analogous to the natural process of
mutation of Species as they evolve to better adapt to their
environment. The algorithm starts with an initial Set of
placement configurations which is called the population.
The initial placement can be generated randomly. The indi
viduals in the population represent a feasible placement to
the optimization problem and are actually represented by a
String of Symbols.

0027. The symbols used in the solution string are called
genes. A Solution String made up of genes is called a
chromosome. A Schema is a set of genes that make up a
partial Solution. The Simulated evolution or genetic algo

Jun. 14, 2001

rithm is iterated, and each iteration is called a generation.
During each iteration, the individual placements of the
population are evaluated on the basis of fitneSS or cost. Two
individual placements among the population are Selected as
parents, with probabilities based on their fitness. A better
fitness for an individual placement increases the probability
that the placement will be chosen.
0028. The genetic operators are called crossover, muta
tion and inversion, which are analogous to their counterparts
in the evolution process, are applied to the parents to
combine genes from each parent to generate a new indi
vidual called the offspring or child. The offspring are evalu
ated, and a new generation is formed by including Some of
the parents and the offspring on the basis of their fitneSS in
a manner Such that the size of the population remains the
Same. AS the tendency is to Select high fitneSS individuals to
generate offspring, and the weak individuals are deleted, the
next generation tends to have individuals that have good
fitness.

0029. The fitness of the entire population improves with
Successive generations. Consequently, overall placement
quality improves overiterations. At the Same time, Some low
fitness individual cell placements are reproduced from pre
vious generations to maintain diversity even though the
probability of doing So is quite low. In this way, it is assured
that the algorithm does not lock into a local optimum.
0030 The first main operator of the genetic algorithm is
croSSover, which generates offspring by combining Sche
mata of two individuals at a time. Combining Schemata
entails choosing a random cut point and generating the
offspring by combining the left Segment of one parent with
the right Segment of the other. However, after doing So, Some
cells may be duplicated while other cells are deleted. This
problem will be described in detail below.
0031. The amount of crossover is controlled by the
crossover rate, which is defined as the ratio of the number of
offspring produced by crossing in each generation to the
population size. CroSSOver attempts to create offspring with
fitness higher than either parent by combining the best genes
from each.

0032 Mutation creates incremental random changes. The
most commonly used mutation is pairwise interchange or
transposition. This is the process by which new genes that
did not exist in the original generation, or have been lost, can
be generated.

0033. The mutation rate is defined as the ratio of the
number of offspring produced by mutation in each genera
tion to the population size. It must be carefully chosen
because while it can introduce more useful genes, most
mutations are harmful and reduce fitness. The primary
application of mutation is to pull the algorithm out of local
optima. Inversion is an operator that changes the represen
tation of a placement without actually changing the place
ment itself So that an offspring is more likely to inherit
certain Schema from one parent.
0034. After the offspring are generated, individual place
ments for the next generation are chosen based on Some
criteria. Numerous Selection criteria are available, Such as
total chip size and wire length as described above. In
competitive Selection, all the parents and offspring compete
with each other, and the fittest placements are Selected So

US 2001/0003843 A1

that the population remains constant. In random Selection,
the placements for the next generation are randomly Selected
So that the population remains constant.
0035. The latter criteria is often advantageous consider
ing the fact that by Selecting the fittest individuals, the
population converges to individuals that share the same
genes and the Search may not converge to an optimum.
However, if the individuals are chosen randomly there is no
way to gain improvement from an older generation to a new
generation. By combining both methods, Stochastic Selec
tion chooses probabilities based on the fitness of each
individual.

0036 d. Force Directed Placement
0037 Force directed placement exploits the similarity
between the placement problem and the classical mechanics
problem of a System of bodies attached to Springs. In this
method, the blocks connected to each other by nets are
Supposed to exert attractive forces on each other. The
magnitude of this force is directly proportional to the
distance between the blockS. Additional proportionality is
achieved by connecting more “springs' between blocks that
“talk” to each other more (volume, frequency, etc.) and
fewer “springs' where leSS extensive communication occurs
between each block.

0.038 According to Hooke's Law, the force exerted due
to the Stretching of the Springs is proportional to the distance
between the bodies connected to the Spring. If the bodies are
allowed to move freely, they would move in the direction of
the force until the system achieved equilibrium. The same
idea is used for placing the cells. The final configuration of
the placement of cells is the one in which the System
achieves a Solution that is closest to actual equilibrium.
0039) e. Parallel Processing Technique 1
0040. Because of the large number of possible place
ments, computerized implementation of the placement algo
rithms discussed above can take many days. In addition, the
placement algorithm may need to be repeated with different
parameters or different initial arrangements to improve the
results.

0041) To reduce the time required to place optimally the
cells, multiple processors have been used to Speed up the
process. In Such implementations, multiple processors oper
ate simultaneously to place optimally the cells on the
integrated chip. However, Such prior efforts to reduce the
placement time by parallel processing of the placement
methods have been impeded by three obstacles.
0.042 First, multiple processors may conflict with each
other. This occurs where an area on the chip, which is being
processed by one processor, is affected by movements of one
or more cells into the area by another processor. When this
occurs, one of the two conflicting processors must wait for
the other to finish or postpone its own move for later. The
area-conflict problem not only lessens the advantage of
multiprocessing, but also increases the processing overhead
encountered. This is because, before moving a cell, each of
the processors must check for area-conflicts with all other
processors. AS the number of processors increases, the
area-conflicts increase rapidly to negate the advantage of
multiprocessing, Such that the time required to place the
cells is increased.

Jun. 14, 2001

0043. Second, the optimization process can become
trapped in a local optimum. To eliminate the area-conflict
problem, Some Systems have assigned particular core areas
to each of the processors with the restriction that each of the
processors only operate within its assigned area. After
processing cells of the assigned areas, the processors are
then assigned to different areas, and So on. Although this
method eliminates area-conflicts, it limits the movements of
the cells to the area assigned to the processor. The limitation
on the movement of the cells increases the likelihood of the
placement becoming Stuck at a local optimum. In the case of
a pairwise interchange algorithm, it is possible that a con
figuration achieved is at a local optimum Such that any
further exchange within the limited area will not result in a
further reduction in cost. In Such a situation, the algorithm
is trapped at the local optimum and does not proceed further.
This happens frequently when the algorithm is used in
practical applications, and the extent of the local optimum
problem increaseS as additional processors are added
because the increase in the number of processors operating
Simultaneously reduces the area assigned to each of the
processors. Decreases in the area assigned to each of the
processors lead to corresponding decreases of the distances
the cells of the areas may be moved to improve the optimi
Zation.

0044) Third, if multiple processors are used simulta
neously to place the cells of an integrated chip, it is possible
for the processors to deadlock. This occurs where each of the
processors has halted its operation while waiting for another
processor to complete its operations. In this situation, all
processing is Stopped and the System halts. An example of
deadlock is where processor P is waiting for processor P.
to complete its operation, P is waiting for processor P to
complete its operation, and P is waiting for P to complete
its operation. In that case, neither P, P., nor P will proceed.
0045. In short, because of the ever-increasing number of
cells on an integrated chips (currently at millions of cells on
a chip), and the resulting increase in the number of possible
placements of the cells on the chip, a computer is used to
find an optimal layout of the cells on the chip. Even with the
aid of computers, existing methods can take Several days to
place a large number of cells, and these methods may need
to be repeated with different parameters or different initial
arrangements. To decrease the time required to place the
chip, multiple processors have been used to perform the
placement of the cells. However, the use of multiple pro
ceSSorS has led to area-conflicts, local optimum problems,
and potential deadlock situations, negating the advantages of
using the multiple processors.
0046) f. Parallel Processing Technique 2
0047 Alternative to the Parallel Processing Technique 1
discussed above, another technique to implement parallel
processing of cell placement algorithms is described below.
0048. The problems associated with the prior art paral
lelization techniques of assigning regions to multiple pro
cessors is illustrated using FIG. 43. The figure illustrates a
grossly simplified integrated circuit chip (IC) with four nets
1107, 1109, 1111, and 1113 and four regions 1108a, 1108b,
1108c, and 1108d, each of which has been assigned to a
processor.

0049. The first problem is the crossover net problem. If
the regions are divided Such that croSSOver nets are created,

US 2001/0003843 A1

then the effectiveness of the parallel processing technique is
reduced. This is because none of the processors which share
the croSSover nets can accurately calculate the position of
the (which is always the basis for the decision about the cell
move) because the other processor may move its cell during
the calculation. Naturally, as the number of processors
increases, the number of croSSOver nets increases, aggravat
ing the problem. A large number of croSSOver nets can be
fatal for the convergence of cell placement algorithms. For
example, in FIG. 43, nets 1109, 1111 and 1113 are the
crossover nets. Some cells of net 1109 are processed by the
processor assigned to region 8a while others are processed
by the processor assigned to region 1108c. Likewise, the
cells of nets 1111 and 1113 are placed by processors assigned
to regions 1108a and 1108b, and 1108b and 1108d, respec
tively.

0050 Second, cell movements from one region (or pro
cessor) to another creates communications overhead which
may negate the advantages of multiple processor cell place
ment technique. Each time a cell is moved from one region
to another, the processor moving the cell from its assigned
region must communicate with the processor receiving the
cell to its assigned region. The communication requirement
complicates the implementation of cell placement algo
rithms and Slows down both of the communicating proces
Sors. AS the number of processors, the number of cells, or the
number of required cell moves increase, the communication
overhead increases. In particular, the performance of the
parallel processing technique is especially poor if the Spring
density levelization method is used as the cell placement
algorithm because the algorithm tends to make global cell
OVCS.

0051. Third, to minimize crossover nets and communi
cations overheads, the prior art parallelization techniques
typically require a "good' preplacement of the cells on the
chip. That is, in order to operate effectively, the prior art
methods require the nets to be within a Single region and the
cells of the nets to be “close' to each other. The best way to
achieve this is to increase the region size and decrease the
number of processors running in parallel. However, the
increase in the region size and the decrease in the number of
parallel processors defeat the purpose of parallelizing the
cell placement algorithm. Moreover, even with Such pre
placement of cells, there are generally still many croSSOver
netS.

0.052 In order to avoid the problems associated with
croSSOver nets, regions have to be made larger. Use of large
regions has the disadvantage in that it limits the number of
processors that can be used. In fact, if the entire integrated
chip is defined as one region, and only one processor is
assigned to place the cells of the chip, then there would be
no croSSOver net problems or communications overhead;
but, there also is no parallel processing, and the cell place
ment becomes a Sequential process. Finally, the prior art
technique of assigning regions of the IC to each of the
multiple processors lead to the problem of unbalanced work
load. Because each of the regions may contain varying
number of nets, cells, or cells requiring further movements,
it is difficult to assign regions to the processors So as to
assign equal amount of work to each of the processors.
Consequently, Some processors finish the placement of the

Jun. 14, 2001

cells of its assigned regions more quickly than other pro
ceSSors, reducing the effectiveness of parallelization of the
placement algorithm.
0053. In short, assigning multiple processors have been
used implement cell placement algorithms by assigning
regions of the IC to each of the processors. However, this
technique has lead to croSSover net conflicts, interprocessor
communication problems, cell preplacement requirements,
and uneven distribution of work problems, negating the
advantages of using the multiple processors.
0054 g. Floor Plan Optimization
0055. The cost or the desirability of various placement
configuration can be measured using other methods Such as
capacity distribution and utilization ratio. Capacity distribu
tion and utilization ratioS measure the placement of the cells
for each of the functional blocks for the integrated circuit.
An integrated circuit is designed with various functional
blocks, or functions, which, operating together, achieves the
desired operation.
0056. Each of the functions of the circuit is implemented
by a plurality of cells and is assigned a portion of the core
Space upon which the cells are placed. For example, an
integrated circuit design may require the use of a central
processor unit (CPU) function, memory function, and Some
type of input/output (I/O) function.
0057. In this Subsection, Subsection 1c-b, Section 3B
and in the corresponding claims of this document, the terms
and phrases “core,”“core space,”“core area,”“floor,”“floor
Space,” and “integrated circuit,” will be used interchange
ably to refer to the area of the integrated circuit upon which
cells are placed to implement various functions of the
integrated circuit.

0058. The capacity is the maximum amount of cells
which can be placed on the core Space or any portion of the
core Space and is usually measured in cell height units.
Provided that entire core Space has Sufficient capacity, it is
often desirable to place the cells on the core space with a
certain capacity distribution. For instance, it may be desir
able that the cells of the integrated circuit be distributed
evenly throughout the chip to avoid high concentration of
the cells in a Small location with a low concentration of the
cells for the rest of the core Space. On the other hand, it may
be desirable to implement certain functions of the chip on a
Small portion of the core Space with a high concentration of
the cells. In Sum, a predetermined capacity distribution of
the core Space or for any function assigned to a portion of the
core space may be one of the requirements of the cell
placement.

0059 A closely related concept is the utilization of the
Space. The utilization is the ratio of the amount of the actual
core Space use within a predefined portion of the core Space
to the capacity of the core Space for the predefined portion
of the core Space. For example, if a portion of the core Space
assigned to a function has a capacity of 100,000 cell height
units, and the cells to implement the function uses 50,000
cell height units, then the utilization of the portion of the
core Space is 50 percent.

0060. The capacity distribution or the utilization ratio for
each of the functions of the integrated circuit or for the entire
core Space may be predetermined as an engineering param

US 2001/0003843 A1

eter based on Such factors as heat dissipation, power man
agement, manufacturing constraints, etc.

0061 The current methods of optimally placing the cells
on the integrated circuit involve (1) assigning functions to be
implemented to portions of the integrated circuit; (2) placing
the cells of each of the functions onto the assigned portion
of the integrated circuit using a placement algorithm; (3)
calculating the capacity distribution of the integrated circuit
and the utilization rate of each portion of the integrated
circuit used to implement its function; and (4) iterating the
first three Steps to obtain a better placement in terms of
capacity distribution or utilization.
0062) The disadvantages of the current process involve
time and accuracy. Because the placement proceSS requires
manual iteration between floor planing tools (to calculate
and evaluate capacity and utilization) and placement tools
(to newly place the cells onto the core), the optimal place
ment process takes a long time. Also, is difficult to manually
optimize many different parameters simultaneously because,
at each iteration, the operator has to Simultaneously consider
many parameters - overall capacity, capacity distribution,
overall utilization, utilization of each functions, utilization
distribution, Overlap size among functions, aspect ratio of
functions, etc. Even with highly experience professionals,
the Simultaneous consideration of all of the parameters for
an optimal cell placement is an extremely difficult process.
Further, the complexity of the cell placement proceSS is
continually increasing as the number of functions and the
number of cells on integrated chips increase, rendering
manual analysis techniques to become nearly impossible to
perform.

0.063. In short, because of the ever-increasing complexity
of integrated circuit chips and the number of cells required
to implement the functions of the complex designs, the
manual placement optimization methods are fast becoming
obsolete. The manual floor planning and cell placement
optimization process requires an inordinate amount of time
because the process requires manual iteration between run
ning floor plan tools and placement tools. In additional, it is
extremely difficult, at best, for human beings to Simulta
neously optimize several parameters (function utilization,
overlap Size among functions, aspect ratioS of functions,
etc.).
0064 h. Net Routine
0065. Each microelectronic circuit device or cell includes
a plurality of pins or terminals, each of which is connected
to pins of other cells by a respective electrical interconnec
tion wire network, or net. A purpose of the optimization
proceSS used in the physical design Stage is to determine a
cell placement Such that all of the required interconnections
can be made, but total wirelength and interconnection con
gestion are minimized. The process of determining the
interconnections of already placed cells of an integrated
circuit is called routing.
0.066 Assuming that a number N of cells are to be
optimally arranged and routed on an integrated circuit chip,
the number of different ways that the cells can be arranged
on the chip, or the number of permutations, is equal to N (N
factorial). In addition, each of the cells may require multiple
connection points (or pins), each of which, in turn, may
require connections to multiple pins of multiple cells. The

Jun. 14, 2001

possible routing permutations are even larger than the pos
Sible cell placements by many orders of magnitude.
0067 Because of the large number of possible place
ments and routing permutations, even computerized imple
mentation of the placement algorithms discussed above can
take many days. In addition, the placement and routing
algorithms may need to be repeated with different param
eters or different initial arrangements to improve the results.
0068 To reduce the time required to optimally route the
nets, multiple processors have been used to Speed up the
process. In Such implementations, multiple processors are
assigned to different areas of the chip to Simultaneously
route the nets in its assigned areas. However, it has been
difficult to evenly distribute the amount of routing required
from each of the multiple processors. In fact, due to the
nonlinear algorithm complexity, the obvious, always
assumed parallelization which is to split the nets among the
processors does not work because routing of one highest
fanout net can take much longer than routing of all other nets
of the integrated circuit. Such unbalanced parallelization of
the routing function has been the norm in the art, leading to
ineffective use of parallel processing power.
0069. In short, because of the ever-increasing number of
cells on an integrated chips (currently at millions of cells on
a chip), and the resulting increase in the number of possible
routing of the cells and the nets on the chips, multiple
processors are used to Simultaneously route the nets of an
integrated chip. However, even with the aid of computers,
existing methods can take Several days, and the addition of
processors may not decrease the required time because of
the difficulties of balancing the amount of work between the
processors.

0070)
0071. The problem of cell placement is compounded by
external requirements specific to each individual integrated
circuit chip. In conventional chip design, the positions of
certain “unmovable' cells (external interconnect terminals
or pads, large "megacells' etc.) are fixed a priori by the
designer. Given those fixed positions, the rest of the cells are
then placed on the chip. Since the unmovable cells and pads
are located or placed before the placement for the rest of the
cells of chip has been decided on, it is unlikely that the
chosen positions will be optimal.
0072. In this manner, a number of regions, which may
have different sizes and Shapes, are defined on the chip for
placement of the rest of the cells.
0073. It is desirable to assign individual microelectronic
devices or cells to the regions, or “partition' the placement
Such that the total interconnect wirelength is minimized.

i. Other Considerations

0074. However, methodologies for accomplishing this
goal efficiently have not been proposed heretofore.
0075. The general partitioning methodology is to hierar
chically partition a large circuit into a group of Smaller
Sub-circuits until each Sub-circuit is Small enough to be
designed efficiently. Because the quality of the design may
Suffer due to the partitioning, the partitioning of a circuit
requires care and precision.

0076 One of the most common objectives of partitioning
is to minimize the cutsize which is defined as a number of

US 2001/0003843 A1

nets crossing a cut. Also the number of partitions often
appears as a constraint with upper and lower bounds. At chip
level, the number of partitions is determined, in part, by the
capability of the placement algorithm.
0077. The prior art accomplishes partitioning by means
of a Series of “bipartitioning problems, in which a decision
is made to assign a component to one of two regions. Each
component is hierarchically bipartitioned until the desired
number of components is achieved.
0078 Numerous alternate methodologies for cell place
ment and assignment are known in the art. These include
quadratic optimization as disclosed in an article entitled
“GORDIAN: VLSI Placement by Quadratic Programming
and Slicing Optimization”, by J. Kleinhans et al, IEEE
Trans. on CAD, 1991, pp. 356-365, and simulated annealing
as described in an article entitled “A Loosely Coupled
Parallel Algorithm for Standard Cell Placement”, by W. Sun
and C. Sechan, Proceedings of IEEE/ACM IC-CAD Con
ference, 1994, pp. 137-144.
0079 These prior art methods cannot simultaneously
Solve the partitioning problem and the problem of placing
partitions on the chip, and thus the applicability of Such
methods to physical design automation Systems for inte
grated circuit chip design is limited.
0080 More specifically, prior art methods do not provide
any metric for Specifying distances between cells based on
netlist connections. An initial placement must be performed
to establish physical locations for cells and thereby distances
therebetween.

0081. Also, prior art methods fix cells in clusters at the
beginning of optimization, and do not provide any means for
allowing cells to move between clusters as optimization
proceeds. This can create areas of high routing congestion,
which cannot be readily eliminated because cell movements
between clusters which could relieve the congestion are not
allowed.

0082 In summary, the problem inherent in these prior
cell placement methods is that repeated iterations generally
do not tend to converge to a Satisfactory relatively uniform
overall cell placement for large numbers of cells. The
aforementioned methods can take Several days to place a
large number of cells, and repeating these methods with
different parameters or different initial arrangements may
not necessarily provide improvements to cell placement.
Typical methods for using these designs involve using a
chosen method until a particular parameter, for example
wire length, achieves a certain criteria or the method fails to
achieve this criteria for a predetermined number of runs. The
results are inherently non-optimal for other placement fit
neSS measurements, having optimized the method based
only on a single parameter. Further, results of these place
ment techniques frequently cannot be wired properly, or
alternately, the design does not meet timing requirements.
For example, with respect to Simulated annealing, Setting the
temperature to different values may, under certain circum
stances, improve placement, but efficient and uniform place
ment of the cells is not guaranteed.

SUMMARY OF THE INVENTION

0.083. According to the present invention, there is pro
Vided a method and an apparatus for locating a plurality of

Jun. 14, 2001

elements on a Surface. The method comprises the of the Steps
of assigning the elements to portions of the Surface; pre
placing the elements onto the Surface; repositioning the
elements depending on relative affinities of the elements to
each other, and connecting the elements on the Surface.
Specifically, the present invention applies the above method
for placing cells on an integrated circuit chip.

0084. According to another embodiment of the present
invention, a computer-implemented method and apparatus
for locating a plurality of elements on a Surface is disclosed.
The method comprises the Steps of forming a neighborhood
defined as a set of the elements, ordering elements within
each neighborhood according to their relative distance from
Said target element; preplacing the elements within a two
dimensional abstraction of Said Surface; iteratively Subdi
Viding the Surface into a plurality of regions, assigning the
elements to the regions, calculating affinities of the elements
using a plurality of processors, moving the elements based
on affinities for relocating Said elements, levelizing element
density over the surface based on the affinities between
various elements, relocating any overlapping elements, and
performing a final cell adjustment for element positions.
0085. According to another aspect of the present inven
tion, there is provided a method and apparatus for maxi
mizing effectiveness of parallel processing to achieve an
optimal cell placement layout of a core area of an integrated
chip. The core area is defined as the area on the integrated
chip upon which the cells are to be placed. The method is
realized by dividing the core area into a plurality of regions,
assigning a set of non-adjacent regions to each of the
multiple processors, and allowing each of the multiple
processors to process the cells of the regions to which it has
been assigned.
0086. Because each of the multiple processors is operat
ing upon a non-adjacent region at any one time, most of the
cell movements of one processor are “far enough' from the
cell movements of the other processes So as to minimize
conflict between processors. Consequently, no limits need be
placed upon the areas within which a processor operates or
cell movements are made. Because the cell moves allowed
by the invention disclosed herein are not limited, acceptance
of undesirable local optimal Solutions is avoided.
0087. According to another aspect of the present inven
tion, there is provided a method and apparatus for placing
cells on an integrated circuit chip by assigning cells, rather
than regions of the chip, to a plurality of processors and
having each of the processors place its assigned cells on the
chip. The cells are assigned to the chips. So as to balance the
Workload among the processors.

0088 To reduce crossover nets and inter-processor com
munications overhead, the affinities of the individual cells to
each of the multiple processors are calculated, and the
affinity values are used to reassign the cells to other pro
ceSSors. However, the affinity values are also weighed
against the processor workload to maintain a balanced work
load among the processors. In addition, because the proces
Sors are assigned to cells instead of regions, the cell place
ment algorithms become inherently less dependent upon the
initial placement of the cells on the integrated circuit.
0089. The parallelization techniques of the present inven
tion can be modified for different placement algorithms

US 2001/0003843 A1

because the method describes a way to implement any
placement algorithm using multiple processors operating
Simultaneously.

0090. To overcome the difficulties of the current floor
planning techniques, the floor planning method and appa
ratus disclosed in this Specification provides for a method to
optimize a given floorplan automatically while meeting
required capacity distribution and utilization. The disclosed
new floor planning technique achieves almost uniform uti
lization of the chip by optimally using the overlap and
border regions of the functions while Satisfying the given
floorplan constraints.

0.091 According to another aspect of the present inven
tion, there is provided a method and apparatus for allocating
floor Space of an integrated circuits chips to functions of the
chip comprising the Steps of partitioning the IC into a grid
comprising a plurality of regions, defining pieces, where
each piece comprises at least one of the regions, and each
piece having a capacity; and allocating Said capacity of each
of Said pieces to a plurality of functions.

0092. In addition, after the allocation of the capacity of
the pieces to the functions, the Sufficiency of the allocated
capacities are analyzed for each of the functions. Then, the
capacities of the pieces are reallocated to shift exceSS
capacities from the functions with excess capacities to the
functions with a shortage of Space.

0093. According to another aspect of the present inven
tion, there is provided a method and apparatus for grouping
the pins of a cell placement layout of an integrated circuit to
achieve a balanced performance for parallel processing of
the cell routing. First, the pins of the net are partitioned into
neighborhoods and the best partitions are Selected. Then, the
pins are reassigned into better partitions and a minimal
Spanning method is used to create a graph Structure of the
partitions of the pins to create a minimally partitioned nets.
The minimal spanning tree (MST) of the pins, thus defining
the nets, can be used to assign groups of the pins to the
multiple CPUs. The multiple CPU's simultaneously, or in
parallel, connect the pins, thus routing the net.

0094. The method of the present invention can be applied
to the entire Set of pins of an integrated circuit, but is best
applied to each of the nets of the integrated circuit.

0.095 An apparatus for locating a plurality of elements on
a Surface includes one or more processors and memory
connected to the processors. The memory Stores the instruc
tions for performing above described tasks. The apparatus
may include other components Such as a monitor and a
harddrive to Store information regarding the elements and
the Surface, and to display the results of the operations as
well as System Status information.

0096. The present invention also includes a computer
Storage medium that Stores a plurality of executable instruc
tions for instructing a computer for organizing integrated
circuit pins for routing purposes, including instructions to
partition the pins into a plurality of Sets; to construct a
Spanning tree having vertices and edges, and to assign the
Sets in accordance with Said edges of Said Spanning tree.

0097. These and other aspects, features, and advantages
of the present invention will be apparent to those perSons

Jun. 14, 2001

having ordinary skilled in the art to which the present
invention relates from the foregoing description and the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0098 FIG. 1A is a flow chart illustrating the main steps
of the process according to the present invention;
0099 FIG. 1B is a flow chart illustrating the main steps
of the process according to the present invention;
0100 FIG. 2 is an illustration of an exemplary integrated
circuit chip;

0101 FIG. 3 is an illustration of a cell that has one pin
connected to each net;

0102 FIG. 4 illustrates seven nets, each of which inter
connect a plurality of cells,
0103 FIG. 5 is a flowchart illustrating the formation of
a cell cluster or “neighborhood” in accordance with the
present invention;
01.04]
0105 FIG. 7 shows that the cell v is assigned a coordi
nate between 0 and 1;

0106 FIG. 8 is a flowchart illustrating the iteration of the
recomputing of the net and cell coordinates,

FIG. 6 is an illustration of a center cell and nets;

0107 FIG. 9 illustrates a cell having several pins which
belong to the net;
0108 FIG. 10 is an illustration of a core divided into
Subregions,

0109 FIG. 11 is an illustration of a moveable cell within
the core region;

0110 FIG. 12 is a flowchart that demonstrates the pro
cedure for obtaining an initial one dimensional placement of
the movable cells;

0111 FIG. 13 is an illustration of the coordinates of the
nets along an imaginary line;

0112 FIG. 14 is an illustration of the coordinates of the
nets along an imaginary line;

0113 FIG. 15 is an illustration of the placement of nets
along the line in the direction partitioned along a dividing
line providing two Subregions containing the cell positions,
0114 FIG. 16 is an illustration of a region physically
divided in half by a dividing point;

0115 FIG. 17 is an illustration of one cell located in each
of the ten Subintervals;

0116 FIG. 18 is a flowchart relating finding a levelizing
cut point;

0117 FIG. 19 is an illustration of the calculation step
which determines the offset of the cut line from the dividing
line;

0118 FIG.20 is an illustration of the two regions that are
divided using two dividing lines,

0119 FIG. 21 is an illustration of adjacent cell location
Step which initially considerS moving a cell from its current

US 2001/0003843 A1

position to each of the adjacent regions, as well as consid
ering leaving the cell in the current region;

0120 FIG. 22 is an illustration of the (A,B) interval
which is Subdivided into equal Subintervals in Subdivision
step 450;

0121 FIG. 23 is an illustration of the cell region having
a certain number of columns, or possibly rows, located
therein;

0.122 FIG. 24 is an illustration of the penalty calculation
step 501;

0123)
0.124 FIG. 26 is an illustration of each dividing line
partitions regions, and each of these regions has a capacity
denoting the Volume of cells which can fit within the region;

FIG. 25 is an illustration of a three pin net;

0125 FIG. 27 represents a region having indices (TX,

0.126 FIG. 28 illustrates an ordering of cells within the
neighborhood;

0127 FIG. 29 is an illustration of the weight assignment
Step which assigns each cell a weight equal to the Size of the
neighborhood minus the index of the cell;

0128 FIG. 30 is an illustration of the weights of the
neighborhood attraction in a direction;

0129 FIG. 31 is an illustration of the system which
iterates a predetermined number of times, preferably once,
calculating affinities,

0130 FIG. 32 is a flowchart associated with the density
driven Spring System;

0131 FIG. 33 is an illustration of a portion of the chip
that has Seven columns which are partitioned into maximal
Segments without blockages,

0132 FIG. 34 is a preferred order for scanning the
regions,

0133 FIG. 35 is an illustration that denotes the top and
bottom of the column;

0134 FIG. 36 is a flowchart of a preferred process
adjusting cell Spacing in the column to remove overlap with
minimal noise,

0135 FIG. 37 illustrates a column containing cells of
Specified heights, and

0136 FIG.38 is an illustration of the cells that are set to
the grids by increasing the coordinate until the bottom of
each cell reaches the closest horizontal grid line;
0.137 FIG. 39 illustrates a possible partitioning of a core
region;

0138 FIG. 40 illustrates an embodiment of the core
region partition in accordance with the present invention;

0139 FIG. 41 is a flow-chart illustrating a method of
Sequencing core area regions in accordance with the present
invention;

0140 FIG. 42 illustrates an integrated circuit chip;

Jun. 14, 2001

0141 FIG. 43 is a flowchart illustrating the steps taken
by the parallel processing technique of the present invention
for Simultaneous cell placement;
0.142 FIG. 44 illustrates an example of a possible assign
ment of core Space area to various functions,
0.143 FIG. 45 illustrates a partitioning of core space
according to one embodiment of the present invention;
014.4 FIG. 46 illustrates the relationship between the
partitioning grid and a function-area assignment layout,
0145 FIG. 47 illustrates the definition of pieces of the
core Space according to one embodiment of the present
invention;
0146 FIG. 48 illustrates the pieces of the core space
according to one embodiment of the present invention;
0147 FIG. 49 illustrates a graph of the functions of the
core space of FIGS. 2-6 according to one embodiment of the
present invention;
0148 FIG. 50 illustrates a graph of the functions of the
core Space of FIGS. 2-6 showing capacity shifting in accor
dance with the present invention;
0149 FIG. 51 is a flow-chart illustrating a method of
organizing the pins of an integrated circuit in accordance
with a preferred embodiment of the present invention;
0150 FIG. 52 illustrates construction of neighborhoods
of pins in accordance with a preferred embodiment of the
present invention;
0151 FIG. 53 illustrates construction of partitions of
pins in accordance with a preferred embodiment of the
present invention;
0152 FIG. 54 illustrates modification of partitions of
pins in accordance with a preferred embodiment of the
present invention; AND
0153 FIG. 55 illustrates an apparatus according to a
preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT(S)

0154) An overall block diagram of the preferred imple
mentation of the current invention is presented in FIG.1. As
will become apparent from the following detailed descrip
tion, other embodiments can be implemented with highly
effective results while still within the scope of the invention.
O155 SECTION 1: SYSTEM OVERVIEW
0156 FIGS. 1A and 1B comprise a flow chart that
illustrates the main Steps of the process according to the
present invention. A brief description of the various Steps of
the process is presented with reference to FIGS. 1A and 1B.
To facilitate describing and understanding the invention, this
disclosure is divided into Sections. This first Section is a
general Overview of the process according to the present
invention. Subsequent Sections describe and explain the
algorithms and process steps shown in FIGS. 1A and 1B
with reference to other figures of the drawings as appropri
ate.

O157 The specific algorithms described herein, as well as
the basic steps which they represent (even if they are

US 2001/0003843 A1

replaced by different algorithms), are designed for imple
mentation in a general purpose computer. Furthermore, each
of the algorithms described herein, as well as the basic Step
it represents, can be encoded on computer Storage media
Such as CD Roms, floppy disks and computer harddrives,
whether alone or in combination with one or more of the
algorithms and StepS described herein.

0158 Given only the netlist, before the cells have been
placed on the chip, there is no way using prior art techniques
to compute the conventional geometric distance between
two cells (the “Euclidean distance') because no geometric
coordinates exist for any cell. A new mathematical form of
distance is defined in the algorithms according to the present
invention in which the distance between cells can be calcu
lated from the way in which connections in the netlist
interconnect its cells. This distance measure plays a critical
role in the analysis of the netlist for placement by the
algorithms.

0159. The cell placement system according to the present
invention performs placement as either a uniprocessor or
multi- or parallel-processor procedure. Unlike previous SyS
tems in which a constructive heuristic provided an initial
placement followed by a Statistical improvement technique,
the process according to the present invention constructs and
optimizes placements in a Series of highly integrated StepS.

0160 Subsection 1-1: Data Preparation
0.161 The use of placement techniques must, of course,
be preceded by the step 1 of preparation of the netlist. For
a large chip, preparation of the netlist is a major design effort
that includes System Specification, Synthesis, debugging,
preliminary timing, and final netlist construction. The Spe
cifics of these complex design Steps are not the Subject of the
present disclosure. The description of the present invention
begins by assuming that the System to be implemented on
the chip has been designed and that the resulting correct
netlist is available. The techniques for preparing a netlist are
well known in the art.

0162 Subsection 1-2: Neighborhood Construction

0163 As shown at the start of the flowchart of FIG. 1A,
the proceSS according to the present invention constructs a
neighborhood 2 for each cell in the netlist. A neighborhood
can be loosely defined as a fuzzy clusters of pins where the
pins are the connection points of the cells. Neighborhood
construction is discussed in more detail in S2 below. The
neighborhoods are preferably constructed according to the
neighborhood construction process described below.
0164. Subsection 1-3: Optimization of Cell Neighbor
hood System

0.165. After the neighborhood of a cell is constructed,
coordinates are assigned to each cell, and the neighborhood
System is optimized using the center cell. The optimization
technique is described in detail in S3 below.

0166 Subsection 1-3A: Parallel Cell Placement with
Minimal Conflicts

0167 Placement of the cells on an integrated circuit chip
can be performed in parallel, using multiple processors, by
assigning cells to the multiple processors. Section 3A below,
along with FIGS. 42 and 43, discusses the implementation

Jun. 14, 2001

technique of the parallel processing of the cell placement
methods by assigning cells to the multiple processors.

0168 Subsection 1-3B: Floor Plan Optimization
0169 Prior to the very first preplacement of the cells on
the IC surface, the functions of the IC (which the cells
implement) must be assigned to the various portions of the
IC surface. For instance, the CPU function (the cells imple
menting the CPU function) of the IC may be assigned to the
central portion of the Surface while the memory function
(the cells implementing the memory function) may be
assigned to the upper portions. Section 3B below describes
the method and apparatus to optimally assign the portions of
the IC surface to the functions to achieve an optimal floor
plan.

0170 Subsection 1-4: Iterative One Dimensional Pre
placement Optimization

0171 The cell coordinates are then iteratively optimized
under the iterative one-dimensional (ID) preplacement opti
mization procedure described in S4. The purpose of this
iterative ID preplacement optimization procedure is to get a
fast, good cell preplacement. In the iterative one-dimen
Sional preplacement optimization procedure of S4, the cells
are pre-placed on a two-dimensional abstraction of the chip
Surface. The iterative one-dimensional preplacement opti
mization procedure begins with the Step 3 of initializing the
coordinates of all cells at the center of the Surface, and then
performing the iterations described in S4 in the X- and
y-directions.

0172 Subsection 1-5: Fast Procedure for Finding a Lev
elizing Cut Point

0173 A density-driven one dimensional preplacement is
performed 4 to assign cells to regions in accordance with the
capacities of each region of the chip. A preferred proceSS for
assigning cells to regions in accordance with region capacity
is described in S5.

0.174. The surface abstraction is divided into subregions
by bisection in a Selected direction. A preferred levelization
by bisection process 5 is described in S5.

0.175 Subsection 1-6: Median Control and Increase in
Resolution

0176). A median control procedure 6 is then used to
modify coordinates to the cells. A preferred median control
process is described in S6.

0177. The 1D preplacement optimization procedure of
S4, the cut-point procedure of $5 and the median control
procedure of S6 are then iterated for a specified number of
times, and the average value of the cost function (e.g. wire
length) for the iterations is computed.
0.178 The 1D preplacement optimization procedure of
S4, the cut-point procedure of $5 and the median control
procedure of S6 are then again iterated for the Specified
number of times as a block 20 and the average cost function
is recomputed. If the average cost function is decreased by
less than a specified amount, usually 10, this step (block
20) is exited. Otherwise this step (block 20) is again iterated
with the average cost function again computed and com
pared to the previous average cost function value. At the end

US 2001/0003843 A1

of this Step the cells have been assigned to Subregions in
Such a way that the capacities of the Subregions are not
exceeded.

0179 Subsection 1-7: Universal Affinity Driven Discrete
Placement Optimization
0180. An affinity-driven placement optimization 7 is per
formed to improve cell placement and to minimize the cost
function. A preferred affinity-driven placement optimization
proceSS is described in S7.
0181 Subsection 1-8: Density Driven Capacity Penalty
System

0182 Anther method to calculate the cost of a cell
placement layout is the relative density of the partitions of
the Surface. A density driven System to calculate cell affinity
is discussed in by $8.
0183) Subsection 1-9: Wire Length Driven Affinity Sys
tem

0184 An alternative embodiment of the present inven
tion is to calculate cell affinities and placement costs accord
ing to the relative wire lengths of different designs. The wire
length driven affinity System is discussed in S9.

0185. Subsection 1-10: Minimizing Maximal Cut Driven
Affinity System

0186. Another parameter used to produce an affinity for
improving cell placement is minimizing the maximal num
ber of nets that interSect the unit Segment of the grid System
imposed of the surface abstraction of the chip. The net
interSect minimization affinity System is discussed in S10.
0187 subsection 1-11: Neighborhood System Driven
Optimization

0188 Each moveable cell v is located within a neighbor
hood Neigh (V) constructed in accordance with the optimi
Zation of cell neighborhood System procedure outlined
above. That procedure yields an ordering of cells according
to the cells distance from the center of the neighborhood,
after optimization. The neighborhood driven affinity system
is described in S11.

0189 Subsection 1-12: Functional Sieve Optimization
Technique

0190. The combination of affinities introduces an element
of randomization. A deterministic System for combining
affinities which converges at a relatively rapid rate is desired
to optimally utilize affinities. Such a System which itera
tively optimizes cell placement using a combination of
affinities is the functional Sieve approach. The functional
Sieve technique is described in S12.

0191) When the affinity-driven optimization is complete,
the level of the Subdivision of the chip surface is checked 8.
If the level of subdivision is not at the specified highest level
(i.e., the level of hierarchy with the smallest desired
regions), block 21 is repeated the chip is further subdivided
in the y-dimension; the preplacement iteration of SS 4 to 6
is reentered with that level of Subdivision for the y-coordi
nate. The preferred highest level is where the region is one
column wide. After processing for the y-coordinate is com
plete, the X-coordinate is processed, etc., as X and y alternate.

Jun. 14, 2001

0.192 The typical number of iterations of block 21 is
2log, N where N equals the number of columns in the chip.
If, for example, the chip has 8 columns, the number of
iterations is 2log 8, or 6.

0193 After a certain level of hierarchy is achieved, it
may be desirable to Stop the process at this point and not
continue with further cell placement. This is especially true
if one wants to obtain a fast estimate of cell placement.

0194 Subsection 1-13: Course Overflow Remover (Bull
dozer)
0195 Continuing with FIG. 1B, after global levelization
has been performed, there may still be Some density peaks
in the core area of the chip. A preferred procedure for density
peaks removal is described in S13. The procedure for density
peaks removal 11 is Sometimes referred to herein as the
“bulldozer.” The bulldozer is applied to remove the density
peaks.

0196) Subsection 1-14: Overlap Remover with Minimal
Noise

0197) The overlap removal procedure 13 of S14 is
applied again without controlling the maximum distance
between adjacent cells. The Step removes any overlap that
exists among cell outlines. This Step is used to produce a
physically feasible layout. Applying the Overlap removal
procedure at this part of the process removes cell overlap
with minimal increase in average wire length.

0198 Subsections 1-15. Sinusoidal Optimization, and
1-16, Dispersion Driven Levelizing System

0199 When the highest level of hierarchy is reached 8,
the proceSS enters a cell density levelization procedure as
shown at the beginning of FIG. 1B. It should be noted that
various combinations of the algorithmic StepS described
herein can be used. Algorithmic Steps can be deleted as
desired and as appropriate for the particular circumstances
presented. Once the cell placement is determined by the
methods in accordance with the present invention, the cells
can then be placed on a Silicon wafer in order to construct
the desired integrated circuit.

0200. The cell density levelization preferably begins with
a dispersion-driven step 9 as described in S16. As this step
is entered, the cells have been placed in positions on the
Surface that optimize given cost functions. However, the cell
layout may not be feasible because cells may overlap, and
the cells may have not been assigned to proper cell columns.
Furthermore, the cell density may be very uneven, with
resulting Serious consequences for routing the wires on the
chip. The sinusoidal optimization step 10 of S15, the dis
persion-driven levelizing system 9 of S16 are performed
globally to levelize the density of cells using global level
ization procedures. Steps 9 and 10 are iterated as a block 22.
Typically, about 5 iterations has proven effective.

0201 The sinusoidal optimization procedure 12 of S15 is
applied to the chip surface Subdivided into cell columns. The
densities of cells in the columns are controlled to prohibit
overflow and ensure that the cells are evenly assigned to the
columns required by the Structure of the final design. The
Sinusoidal optimization procedure is iterated as a block 23,
generally, for a specified number of times, Such as 5 times.

US 2001/0003843 A1

0202) Subsection 1-16A: Efficient Multiprocessing of
Cell Placement Algorithms

0203 The above-discussed placement optimization tech
niques can be implemented using multiple processors to
Simultaneously place the cells on the integrated chip (IC)
Surface. In particular, the IC Surface can be conceptually
divided into a plurality of regions and the multiple proces
Sors assigned to Several, non-adjacent regions to process the
cells of the assigned regions Simultaneously. Section 16A,
along with FIGS. 39 to 41, discusses the multiple processor
implementation of the placement methods.

0204 Subsection 1-17: Cell Placement Crystallization
0205 After applying the overlap removal procedure to
remove the Overlap, most of the cells are close to their final
positions. The crystallization Step places the cells in correct,
final positions. Proper vertical cell spacing are computed So
that horizontal wires can be routed over and between cells in
the vertical columns. Vertical and local-horizontal “swaps”
may be performed if doing So improves the cost functions.
Cells must be assigned proper geometric coordinates So that
their positions correspond to legal grid positions Specified by
the underlying chip architecture. All of these Steps 14, 15,
16, 17, 18 and 19 are performed by the crystallization
procedures described in S17. These procedure “freeze” the
cells into their final positions. Steps 14, 15 and 16 are
iterated as a block 24, generally a specified number of times,
such as 10 times. Steps 18 and 19 are also iterated as a block
a specified number of times. At this point, the placement
process is completed, and a data structure is prepared that
can be read by the routing System for chip routing and design
completion.

0206) Subsection 1-18: In General
0207. An exemplary integrated circuit chip is illustrated
in FIG. 2 and generally designated by the reference numeral
26. The circuit 26 includes a semiconductor Substrate 26A
on which are formed a number of functional circuit blocks
that can have different sizes and shapes. Some are relatively
large, Such as a central processing unit (CPU) 27, a read
only memory (ROM) 28, a clock/timing unit 29, one or more
random access memories (RAM) 30 and an input/output
(I/O) interface unit 31. These blocks, commonly known as
macroblocks, can be considered as modules for use in
various circuit designs, and are represented as Standard
designs in circuit libraries.
0208. The integrated circuit 26 further comprises a large
number, which can be tens of thousands, hundreds of
thousands or even millions or more of Small cells 32. Each
cell 32 represents a single logic element, Such as a gate, or
Several logic elements interconnected in a Standardized
manner to perform a specific function. Cells that consist of
two or more interconnected gates or logic elements are also
available as Standard modules in circuit libraries.

0209. The cells 32 and the other elements of the circuit 26
described above are interconnected or routed in accordance
with the logical design of the circuit to provide the desired
functionality. Although not visible in the drawing, the Vari
ous elements of the circuit 26 are interconnected by elec
trically conductive lines or traces that are routed, for
example, through vertical channels 33 and horizontal chan
nels 34 that run between the cells 32.

Jun. 14, 2001

0210 For a particular electrical circuit having predefined
input and output terminals and interconnected in a prede
termined way, the problem for the chip designer is in
constructing a layout indicating the positions of the modules
Such that the area on the chip Surface occupied by wires and
the overall layout area are minimized.
0211) The system shown in FIGS. 1A and 1B receives
inputs for a user-specified integrated circuit design which
includes a netlist. A connection between two or more inter
connected elements of the circuit is known as a wiring net,
or net. A netlist is a list of cells and nets.

0212) SECTION 2: NEIGHBORHOOD CONSTRUC
TION

0213 A hyperedge is a Series of pins which are intercon
nected, i.e., wired together with an electrically common
connection. For example, a hyperedge having pins A, B, and
C means that pins A, B, and C are all connected together
with a common metal wire. The “length” lcq) of a wiring net
or hyperedge is equal to the number of pins (vertices) that
are interconnected by the net minus one. This can be
represented mathematically as ICG)=q-1, where q is the net
and q is the number of pins that are interconnected by the
net q.

0214) A particular cell, especially a large cell, can have
two or more pins that are interconnected by one net q, and
for this reason q is the number of pins rather than the
number of cells interconnected by a net q. However, for
Simplicity of description and illustration, the following
examples will assume that each cell has only one pin
connected to each net.

0215. An example is illustrated in FIG. 3. A net q 40 is
shown as interconnecting 5 cells 34, 35, 36, 37 and 38, that
are collectively designated as W. The length of the net q is
(5-1)=4. The cells w are illustrated as being spaced from
each other and enclosed in an oblong shape which represents
the net q. This is for illustrative purposes only, as it will be
understood that the net q does not have any specific shape,
and merely specifies that individual pins (not shown) of the
cells w are to be interconnected. This arrangement is
referred to as a hyperedge.

0216 A distance p(V1,V2) between two given vertices V
and V is defined as the length of the shortest path between
the vertices, where the length of a path is the Sum of the
lengths of the nets (hyperedges) that constitute the path.
0217 FIG. 4 illustrates seven nets q to q, each of which
interconnect a plurality of cells W. The distance between two
given cells or vertices V and V2 is the length of the shortest
path through the nets q to q, that interconnects the cells.

0218. The cell v is common to the nets q and q.
However, there is no path from the cell V to the cell v.
through the net q1.

0219. There is a path from the cell V to the cell v.
through the nets q, q and q, and another path through the
nets q2, qa and qs. The lengths of the nets q2, qa, q and qs
are (3-1)=2, (4-1)=3, (2-1)=1, and (3-1)=2 respectively.
The length of the path through the nets q, q and q is
(2+3+1)=6, and the length of the path through the nets q, q
and qs is (2+3+2)=7. The path through the nets q, q and q.
has the shorter length, more Specifically 6. If there is no

US 2001/0003843 A1

other path (not shown) that is shorter, the distance between
the cells V and V is defined as the length of this path.
0220 FIG. 4 also illustrates how to measure a distance
p(V,q) between a cell V and a net q. This distance can be
expressed mathematically as p(V,q)=min, p(v,w), and is
the shortest path between the vertex v and any pin win the
net q.

0221) Measurement of the distance between the cell v.
and the net q, will be taken by way of example. There is a
path from the cell V to a cell V in the net q7. The length of
this path is the Sum of the lengths of the nets q and q, which
has a value of (6+2)=8. However, the path from the cell v.
to the vertex V through the nets q, q and q is the shorter
path between the cell V and any cell w in the net q.7, having
a value of 6 as described above. If there is no other path (not
shown) that is shorter, the distance between the vertex v and
the net q is therefore defined to be 6.
0222. In accordance with the present metric, a “range”
range (q) of a net q from a center cell V of a cluster or
neighborhood (to be described in detail below) can be
expressed mathematically as range (q)=p(V,q)+1(q). In
other words, the range is the distance from the center cell V
to the net q plus the length of the net. The range of the net
q, from the cell V, for example, is equal to the distance
p(V,q) from the cell V to the net q.7, plus the length of the net
q7, or (6+2)=8.
0223) One further definition is necessary for understand
ing the present invention. A “border” is a list of all nets that
have ranges equal to the index of the border. For example,
a border having an index of 7 (border) is a list of all nets
having ranges of 7. This can be expressed mathematically as
border (i)=all nets q Such that p(V,q)sr and range (q)=j,
where j is the index of the border and r is a predetermined
maximum distance from the center cell V (to be described in
detail below) to the net q.
0224. The borders can be considered as a series of
concentric shells or quantum levels, with each border having
an incrementally higher indeX and including nets having an
incrementally higher range than the border with the next
lower index.

0225 FIG. 5 is a flowchart illustrating the formation of
a cell cluster or “neighborhood” N(V.M) in accordance with
the present invention. The term “neighborhood” is illustra
tive of the fact that the clusters can be “fuzzy”, with one cell
being included in two or more clusters, and two or more
clusters being allowed to overlap.
0226 Initially, a target number M of cells are designated
to be included in a neighborhood. A number of cells between
15 and 30 tends to work best, with the optimal number being
about 20 cells in each neighborhood. The algorithm outlined
below is executed until C. * M cells are collected within
various neighborhoods. C is a predetermined parameter.
The preferred value of C is 2.
0227. The first step is to specify a particular cell V to
constitute the center of the cluster N, and a value for M as
indicated in a step 100.
0228. The flowchart of FIG. 5 includes a plurality of
nested loops indicated by broken lines. This notation indi
cates that all of the Steps included within each loop are to be
performed for all outer loops.

Jun. 14, 2001

0229. A step 102 which follows the first step 100 of
inputting values of v and M is to determine which nets
include the center cell V, and assigning all these nets to
corresponding borders.

0230. The next step, designated as 104, is to examine all
borders, starting with border, in increasing order of index.
0231. The next step 106 is to assign nets to borders in
indeX order. A step 108 includes assigning all cells which are
not in the neighborhood from the nets in the current border
to the neighborhood. A step 110 includes assigning all nets
which contain cells just included in the neighborhood, if
these nets have not been previously assigned to any border,
to corresponding borders. The cluster or neighborhood N(V,
m) is output in a step 112.

0232) The method of FIG. 5 will be described further
with reference being made to an example illustrated in FIG.
6. This example includes a center cell V and nets q to qs.

0233 Step 102 includes assigning all nets that include the
center cell V to borders. The nets q, q and q all include the
center cell V. Since the distances from the center cell V to
these nets is Zero, the ranges of these nets are equal to their
lengths.

0234. The net q has a length of (3-1)=2, and is assigned
to border. The nets q and q have lengths 3 and 4, and are
assigned to the borders border and border respectively.

0235. In steps 104 and 106, the borders are examined in
increasing order of index to determine if they include any
nets. Border does not include any nets. Border includes the
net q. Therefore, step 108 is performed, in which all cells
w in the net q are assigned to the cluster or neighborhood

0236. In step 110, it is determined if there are any other
nets connected to cells that were just assigned to the neigh
borhood. In this case, there are not, and the processing
returns to step 104 to examine the next border.

0237) The next border is border which contains the net
q. All of the cells w in the net q (except V) are assigned to
the neighborhood. The method then performs step 110 to
determine if any other nets
include any of the cells w (just included in the neighbor
hood) of the net q. In the illustrated example, the nets qs and
q include cells which are also included in the net q, and are
thereby connected to the net q. If these nets have not been
assigned to borders, then they are now assigned to the
borders having indices equal to their ranges respectively.
The ranges of both nets qs and q are 5, So these nets are
assigned to borders.

0238. The steps 104 and 106 are then performed for the
next border, more specifically border which includes the net
q. In Step 108, all cells of the net q are assigned to the
cluster or neighborhood. Then, step 110 is performed to
determine if any other nets
include cells which are also included in the net q. In this
case, the net q is connected to the net q. The net q has a
range of 5, and is assigned to borders.

0239). The next border is borders, which contains the nets
q1, qs and q. No other nets are connected to q and qs, but
all of the cells of the nets q and qs are assigned to the cluster.

US 2001/0003843 A1

All of the cells of the net q are also assigned to the cluster.
The net q is connected to the net qz, and q, is added to
borders.
0240 Examination of the next border, border, indicates

it contains the net q.7. All cells of the net q are assigned to
the cluster, if they were not assigned previously. Since the
net qs is connected to the net q7, the net qs may also be added
to the cluster. The net q has a range of 11, and may be
assigned to border.
0241. In this manner, clusters or neighborhoods are
grown one border at a time until a maximum size is reached.
In addition, the borders are grown by "hitting” nets having
corresponding ranges through net interconnections Starting
at the center cell V.

0242) SECTION3: OPTIMIZATION OF CELL NEIGH
BORHOOD SYSTEM

0243 In the foregoing process of constructing neighbor
hoods, a list of the nets processed is generated. That list of
nets includes all nets incident to cells included in the
neighborhood. Once the neighborhood is established, coor
dinates are assigned to each individual cell. For each cell V,
the neighborhood of the cell is constructed and optimized
using the cell as the center. A target number of cells C * M
for the neighborhood is also defined. For purposes of rela
tively large VLSI chips, testing and operation has shown that
about a twenty cell neighborhood yields effective conver
gence results. Larger or Smaller neighborhood sizes may
also be employed while still within the scope of the inven
tion. An alternative measure for the parameter M is the total
height of all cells in the neighborhood, with height defined
as the physical y-axis dimension of an individual cell. A
maximum total cell height may alternately be used to define
the neighborhood size.

0244. In accordance with the current invention, we assign
coordinates to each cell and to each net in the neighborhood.
We assign the center V of the neighborhood the coordinate
0.0. We also assign the coordinates 1.0 to all cells not
included in the neighborhood. Neighborhood cell assign
ment Step assigns a cell V from the neighborhood coordinate
values equal to p(V, V)/R, where p(V, V) equals the length
of the shortest path between the vertices V and V, and R is
the maximum radius value for the neighborhood. AS Seen in
FIG. 7, v is necessarily not less than 0 and not greater than
1. We term the assigned coordinates “Z(v)” for each v.
0245. As shown in FIG. 8, we then iterate recomputing
of net and cell coordinates by iterating two procedures, as
follow:

0246 Procedure 1: The new net coordinates are com
puted Such that for any net q within the Set of nets Q,

1

Zq = it. zil

0247 where q is the number of pins of the net q. This
equation Sums the total of the current coordinates of the cell
V and Sums this for all cells in an individual net, then divides
by the total number of pins on the net. The result of the
Summation and division is the coordinate of the net q.

Jun. 14, 2001

0248 Procedure 2: In new cell coordinate computation,
for each cell V, the weight fiv) is represented by:

= 1
- -
Xi

0249 where for a net q, v is an element of q.
0250) The new cell coordinate Zv is equal to:

By X za) |q|

0251 We apply the iteration procedure only on cells from
the neighborhood except the center and only on nets that
have at least one cell in the neighborhood. The iteration is
generally accomplished for a pre-determined number of
times, preferably 15 to 20 times.

0252) SECTION3A: PARALLEL CELL PLACEMENT
WITH MINIMAL CONFLICTS

0253) Referring now to FIG. 43, a flowchart 1120 illus
trates the Steps taken by the parallel processing technique of
the present invention for Simultaneous cell placement. AS
indicated by reference numeral 1122, the cells are preplaced
onto the IC. However, unlike the preplacement 1112 of FIG.
42, the technique of the present invention does not neces
sitate a "good' preplacement. AS discussed above, prior art
techniques require "good' preplacement of the cells to
minimize croSSOver nets and inter-processor communica
tions overheads. In contrast, the preplacement Step of the
present invention is merely a step to provide a starting point
for the cell placement algorithm being implemented.

0254 AS indicated by the reference numeral 1124, each
of the cells of the IC are assigned to one of the multiple
processors which will be used to place the cells onto the IC.
The details of the method for assigning the cells to the
processors are discussed in the ASSigning Cells to Processors
SubSection below. Because the cells, not the regions, of the
IC are assigned to the processors, and because the cells of
the same net will generally be assigned to the same proces
sor (as will be discussed below), the crossover net problems
are minimized. Also, each of the multiple processors can be
assigned to approximately the same number of cells or cells
requiring movements, thereby balancing the work load
among the processors. Starting from the initial assignment
1122, the number of conflicts are reduced by reassigning
1128 the cells to other processors while keeping the proces
Sors’ loads balanced.

0255. After the initial assignment of cells to the proces
Sors, the cells can be re-assigned between the processors
1126 to further reduce possible crossover net problems and
to increase the efficiency of parallelization of the cell place
ment algorithm. This is done by calculating the affinities of
the cells to each of the multiple processors, and reassigning
the cells to different processors to increase the overall
affinity of the System. The affinity of a cell to a processor can
be defined as the degree of tendency of the cell to belong
with the other cells of that processor. The details of the

US 2001/0003843 A1

affinity calculation and the reassignment of the cells are
discussed in the Affinity Calculation and Cell Reassignment
Subsection below.

0256 AS indicated by reference numeral 1128, the affin
ity calculation 1126 and the cell reassignments 1128 are
iterated for a predetermined number of times or until a
predetermined condition is met Such as no further improve
ment or no further increase in the overall cell affinity.
0257 To facilitate the discussion of the present invention,
the following terms are used in this specification:

NC the number of cells of the integrated circuit;
NN the number of nets;
NP the number of processors;
C1, ..., CNc the cells;
N1, ..., NNN the nets;
P, ..., PN the available processors; and

the runtime that the placement algorithm needs to make the
decision about moving the cell C.

time (Cp

0258 The value of time(C) for each of the cells can be
obtained experimentally or by estimate based on the Specific
placement algorithm being implemented. Time(C) usually
depends on the number of nets to which the cell belongs, or
the cell degrees. Then, the total time needed to perform all
cell moves, or the total load, can be expressed as

WC

total load = X. time (C)
i=1

0259 Assigning Cells to Processors
0260 AS discussed above, the work load can be evenly
distributed among the processors by assigning, to each of the
processors, the average load where the average load is

total load
NP

average load =

0261 Unlike the prior art techniques where the proces
Sors are assigned to regions of the IC, the present invention
assigns the cells of the IC to each of the processors. For the
initial assignment, the cells are divided into parts with the
equal total times. More precisely, the following method is
used. First, beginning with the first cell, C, we find a Set,
containing minimum number of cells, with a total time(C)
which is greater than or equal to the average load. This is
accomplished by finding the minimal i Such that

i

X. time (C) > average load
i=l

0262 and the found set of cells C, . . . , C, are
assigned to the first processor P. Then, the proceSS is
repeated beginning with the cell C. Then, we find the
next set of cells C1, . . . , C, where

Jun. 14, 2001

i2

X. time (C) > average load

0263 and assign the set to P, and so on until all the cells
are assigned to a processor. At the end of the process, an
even distribution of the work load is achieved because each
of the processors P to PNP are assigned to a set of cells
with total work load equal to or slightly more than the
average load. The last processor, PNP, is assigned to a set of
cells with total work load equal to or slightly less than the
average load.

0264 For each processor P, the work load of the pro
ceSSor can be defined as

time (C) load (P) = X.
C; is assigned to P.

0265 Affinity Calculation and Cell Reassignment

0266 The reduction of crossover nets and inter-processor
communications can be achieved by assigning the cells to
processors to obtain the highest affinity value for the entire
System. In this invention, the affinity of a cell to Switch from
the currently assigned processor to another processor con
sists of two parts. The first one is the reduction in number of
conflicts and the Second one controls the processors’ load
balance. ASSuming that cell C, is currently assigned to
processor P, its affinity to Switch to processor P, is deter
mined by:

affinity(C. P.)=netlist affinity(C P)+wload affini
ty(C. P.)

0267 and we define cell affinity (C) as the greatest of
these affinities, or the greatest affinity of the cell C, to Switch
from its currently assigned processor P to any of the other
processor P, i.e.,

cell affinity (C) = max affinity (C. P.)
sis

0268) The netlist affinity(CP) is the total reduction in
number of croSSover net conflicts if we reassign the cell C.
from the current processor P to the processor P. The
reduction in the conflicts can be calculated as the difference
between the number of conflicts the net, to which the cell
belongs to, produces before and after the movement of the
cell. Thus, the value of netlist affinity(C, P) depends upon
the method used to calculate the number of conflicts caused
by a net.

0269. The best way to calculate the number of conflicts
caused by net N, denoted as conflicts(N), is to maintain an
array (a1, ..., anp) for each net N where each a represents
the number of cells from net N currently assigned to
processor P. Then, the conflicts(N) for any N is

US 2001/0003843 A1

conflicts (N) = X. (ii
1<i><NP.iii

0270 Alternatively, conflicts(N) can be the number of
different processors having cells from the net N minus 1.
0271 Yet another method to determine conflicts(N) is to
assign 1 if cells from N are assigned to more than one
processor and 0 otherwise.
0272. The load affinity is the work load balancing factor
and is determined by

load(P)-load(P) load affinity (C, P) = average load

0273 A constant, 2., may be used as the weighing factor
to shift the relative importance between the netlist affinity
and the load affinity. A Small constant value would reduce
the relative effect of the load affinity factor in the overall
affinity calculation, thereby giving the netlist affinity factor
a relatively larger role in the determination of the affinity. In
this case, the cells of the integrated circuit are more likely to
be reassigned to processors based upon the reduction in the
number of conflicts the reassignment will effect. On the
other hand, a larger constant value would increase the
relative effect of the load affinity factor in the overall
affinity calculation, thereby giving the load affinity factor a
relatively larger role in the determination of the affinity.
Consequently, the cells of the integrated circuit are more
likely to be reassigned to processors based upon work load
balance among the processors.

0274. Once the cell affinities are calculated as discussed
above, the cells are reassigned 1128 among the processors to
increase the overall affinity of the system. To avoid local
minimum, we do not reassign all the cells with positive
affinity, but only certain percentage p of them (usually,
p=40). Then we find the number threshold such that p % of
positive affinities are greater than threshold.
0275. In all Subsequent iterations 1130, we calculate
affinities again and reassign cells with the affinity greater
than threshold by moving the cell from the current processor
to the one that cell has the maximal affinity to.

0276. The number of iterations 1130 can fixed, or
repeated until a predetermined condition is met Such as no
further improvements are possible.

Function:

Reference Number of the Assigned
Portion of the Core Space 30 as
illustrated in FIG. 2

0277 Referring now to FIG. 44, an apparatus 1140 for
parallelizing cell placement with minimal number of con

15
Jun. 14, 2001

flicts is illustrated. The apparatus 1140 comprises a plurality
of processors 1142 and memory 1146 for storing instructions
for the processors 1142 as described above. The processors
1142 may be of any commercially produced RISC or CISC
processors commonly made by a number of Vendors, or
custom made processors Such as LSI Logic's CoreWare
modules. The processors and the memory is connected 1152.
Also connected to the processors 1142 and memory 1146 are
an input device 1144 and an output device 1148 for retriev
ing the IC information, the cell list, and the preplacement
information 1154 to the apparatus 1140 and for outputting
the final cell placement information 1150.

0278. The specific algorithms described herein, as well as
the basic steps which they represent (even if they are
replaced by different algorithms), are designed for imple
mentation in a general purpose computer. Furthermore, each
of the algorithms described herein, as well as the basic Steps
it represents, can be encoded on computer Storage media
such as CD ROMS, floppy disks, computer harddrives, and
other magnetic, optical, other machine readable media,
whether alone or in combination with one or more of the
algorithms and StepS described herein.

0279 SECTION 3B: FLOOR PLAN OPTIMIZATION
0280 Step One: Assign Portions of the Core Space to the
Functions.

0281 Referring to FIG. 44, the first step of the cell
placement optimization method is to assign portions of core
space 1230 to the functions of the integrated circuit. For
illustration, this specification will use an example of an
integrated circuit design with eight (8) functions denoted as
f1, f2, f3, f4 f5, fo, f7, and fS.

0282. The assignment of the functions to the portions of
core Space 1230 is made in a manner designed to minimize
Some Specific cost function. The cost function may require
uniform Space utilization over the entire floor. For example,
a cost function may require that each function utilize 70% of
its assigned area. Another cost function may require that
each function meet a predetermined level of utilization of
the floor assigned to the function. For instance, a cost
function may require f1 to utilize 70% of its assigned area
and f2 to utilized 80% of its assigned area. This second
example cost function describes the general case for which
the first example cost function is a Special case. For the
purposes of our discussion, the Second, the more general
cost function, will be further discussed and considered.

0283. In our example, the eight functions are assigned to
the portions of the core space 1230 as shown by Table 3B(1)
below.

TABLE 3B(1)
f1 f2 f3 fA. f5 f6 f7 f8

1232 1234 1236 1238- 1239- 1242 1244-a- 1246
1239 1240 1244b

0284. Some portions border each other while other por
tions overlap. Core portion 1232, assigned to f1, borders

US 2001/0003843 A1

core portions 1234 and 1238 assigned to functions f2 and f4
respectively. Portion 1238-1239 (combination of portions
1238 and 1239) is assigned to fa and overlaps portion
1239-1240 (combination of portions 1239 and 1240)
assigned to fs.
0285) The border area and the overlap areas will be used
by the method of the present invention to optimally place
cells Such that the capacity distribution and utilization
requirements are met. AS described below, the bordering and
the overlapping areas are used to shift the capacities of the
functions assigned to the bordering and overlapping portions
of the core Space to create additional capacity for placing the
cells of the functions with a shortage of capacity. For
example, Suppose the capacity of the core portion 1238
1239 is 25,000 cell height units, but only 20,000 cell height
units are required to implement fa. The excess 5,000 cell
capacity of the portion 1238-1239 can be reassigned to f1,
whose assigned core portion 1232 borders the portion 1238
1239, or to fs, whose assigned core portion 1239-1240
overlaps the portion 1238-1239.
0286. When the excess capacity of portion 1238-1239
(assigned to function f4) is shifted, or reassigned, to portion
1232 (f1) is shifted to then the cells of function f1 can cross
the order 32r to be placed within portion 1238-1239.
0287 Likewise, fs (portion 1239-1240) can be imple
mented to use the excess 5,000 cell height unit capacity of
portion 1238-1239 (f4) by moving the cells of fa out from,
and moving the cells offs into, the overlap area 1239. The
technique of using the common overlapping area to shift
exceSS capacity from one portion assigned to a function to
anther portion can be used, in addition to the border
encroachment method discussed in the previous paragraph,
to control the capacity distribution and utilization.
0288 Moreover, the capacity-shifting technique using
the bordering and the overlapping regions, can be employed
to shift excess capacity from one portion (function) of the
integrated circuit to another portion of the integrated circuit
even when the two portions do not share a border or an
overlapping area. For example, if portion 1236 (assigned to
f3) has a shortage of capacity, then the access capacity of
portion 1238-1239 (fA) can be shifted to compensate for the
Shortage by first shifting the exceSS capacity of fak to f1
(portion 1232), thereby creating access capacity for f1.
Then, the access capacity of f1 can be shifted to f2 (portion
1234). Finally, the access capacity of f2 can be shifted to f3
(portion 1236) for the shortage.
0289. The details of the implementation of the shifting
technique will be discussed below.
0290 Step Two: Define Regions.
0291 Referring now to FIG. 45, once the functions of the
integrated circuit are assigned specific portions (1231, 1234,
1236, 1238-1239, 1239-1240, 1242, 1244a, 1244b, and
1246) of the core space 1230, the core space is partitioned
into a grid of elementary regions 1250. FIG. 45 shows the
core space 1230 being partitioned into a grid of twelve rows
by twelve columns containing 144 elementary regions 1250.
For simplicity, only three elementary regions 1250 are
referenced, and each of the elementary regions, or regions,
will be referred to as R; where i is the column and j is the
row on which the region R is located. For instance, region
1250a is referred to as Rs and region 1250b, Raz.

Jun. 14, 2001

0292 Each region is assigned to each of the portions
which takes space from the region. FIG. 46 shows the
relationship between the regions and the portions of the core
Space. AS the table illustrates, in contrast to the one-to-one
relationship between functions and portions, there is a
one-to-many relationship between portions and the regions.

0293 If a border between two or more portions lies
within a region, then the region is assigned to all of the
portions which have its border within the region. For
instance, as illustrated by FIGS. 44, 46, and 47, and by Table
3B(2) below, Rs is assigned to portions 32 (f1),34 (f2),38
(f4), and 42 (f6). Table 3B(2) below partially lists the
functions of the integrated circuit, the portions assigned to
the listed function, and the regions assigned to the listed
portions.

TABLE 3B(2)
Assigned

Function Portion Assigned Elementary Regions

f1 1232 R1.12, R212, Rs.12, R4.12, Rs.12,
R1.11: R2.11, R3.11, R411, Rs.11
R1.10: R2.10 Rs.10, R410 Rs.10
R19, R2.9, Rs.9, R49, Rs.9,
R1.8 R2.8, R38, R4.8, Rs.8,
R17, R2.7, R3.7, R47, Rs. 7,
R16 R26, R3.6R4.6 Rs.6

f2 1234 R1.6 R26, R3.6R4.6 Rs.6
R1s. R2s, R3s, R4s. Rs.s.,
R1.4; R2.4, R3.4; R44 Rs.4
R13, R23, R3.3, R43, Rs.3
R12, R22, R32, R42, Rs.2,
R11, R21, R3.1, R41, Rs.1,

f8 1246 R106, R11.6 R12.6
Ros, R10s. R11s, R125,

R92, R102, R11.2, R12.2,
Ro1, R101, R11.1, R12.1

0294 Step Three: Define the Pieces.
0295) Referring to FIGS. 47 and 48, after partitioning
the core region 1230 into a grid of elementary regions 1250,
the elementary regions 1250 are grouped into pieces, each
piece being defined as a set of regions 1250 assigned to the
Same function or the same Set of functions. Typically, a piece
of the IC comprises a set of adjacent regions as illustrated by
the figures of this specification; however, adjacency of the
regions is not required to define a piece.
0296 FIG. 47 illustrates the relationship between the
pieces and the regions of the core space, and Table 3B(3)
below partially lists the pieces of the core Space and the
regions comprising each of the listed pieces. FIG. 48 shows
all of the pieces of the integrated circuit 1230 for the
example illustrated by FIGS. 44-47. For clarity of discus
Sion, the pieces are referred to Pnnnn where nnnn is the
reference number of the piece as illustrated by FIG. 48.

TABLE 3B(3)
Piece reference according to
FIGS. 47 and 48 Elementary Regions comprising the Piece

P1262 R1.12, R2.12, Rs.12, R412,
R1.11, R2.11, R3.11, R411,

US 2001/0003843 A1

TABLE 3B(3)-continued
Piece reference according to
FIGS. 47 and 48 Elementary Regions comprising the Piece

R1.10: R2.10 Rs.10, R410
R1.9, R2.9, R3.9, R49,
R18, R2s, R38, R4s,
R17, R27, Rs. 7, R4.7,

P1264 R16 R26, R3.6R4.6

P1296 Rg1, R101. R11.1 R12.1

0297 For convenience, the following expressions are
used:

0298) & set of all pieces of the core;
0299 S(f) set of all pieces from which the portion of the
core assigned to function f may take Some space.
0300 Referring to FIG. 48, in our example, Š={P1262,
P1264, P1266, P1268, P1270, P1272, P1274, P1276, P1277,
P1278, P1280, P1282, P1284, P1286, P1288, P1290, P1292,
P1294, P1296. Table 3B(4) below lists the S(f) for some of
the functions of the example integrated circuit.

TABLE 3B(4)
Set Members of the Set (FIG. 48 reference numbers to the pieces)

S(f1) P1262, P1264, P1270, P1272
S(f2) P1264, P1266, P1268, P1272, P1274

S(f8) P1286, P1290, P1294, P1296

0301 As shown by FIGS. 47 and 48 and by Tables 3B(3)
and 3B(4), piece 12P62 comprises all elementary regions
belonging to f1 only. Piece 1264 comprises elementary
regions each of which belongs to both f1 and f2. Note that
a piece can comprise only a single elementary region. For
instance, piece P1272 comprises only one elementary region
Rs, which belong to functions f1, f2, f4, and fö.
0302) Each of the pieces has a capacity, or a maximum
number of cells which can be placed in the core Space
defined by the piece. If a piece is assigned to a single portion
(assigned to a function) of the core space, then entire
capacity of the piece is available to the portion (i.e., to
accommodate the cells of the function assigned to that
portion); however, a piece, Such as P1270, can be assigned
to two or more portions, each portion representing a func
tion. In Such a case, the capacity of the piece is divided and
allocated to the functions to which the piece belongs.
Therefore, the following notation is used to express the
capacity of a piece assigned to a portion, which, in turn, is
assigned to a function:

Xp=the capacity assigned to function f in piece P
0303 For example, if piece P1264 has capacity for 4,000
cell height units, then Xipe may be 1,000 cell height units
while Xtra may be 3,000 cell height units.
0304) Step Four:
Requirements

Define Capacity and Utilization

0305. A cell placement is acceptable when the placement
results in a predetermined level of utilization for each of the
portions assigned to the functions of the circuit.

Jun. 14, 2001

0306 To place the cells with a built in factor to achieve
the predetermined level of utilization, the cells are given
fictive heights prior to being placed on the core Space. The
fictive height of a cell is the height of the cell used to
calculate the Space, or the number of cell height units,
required to place the cell on the core space.
0307 The actual height of a cell is usually measured in
millimicrons. Because all of the Standard cells have the same
width, the cell height is usually used as the measure of
capacity as well has the height of the cell.
0308 For example, if a function's target utilization rate is
fifty percent, then the cells of the function should be placed
on the core Space Such that the cells actually use fifty percent
of the Space provided for the cells on the core Space. That is,
when the cells of the function are placed on the core Space,
the ratio between the actual amount of the capacity used by
the cells divided by the amount of the capacity taken up by
or reserved for the cells must be fifty percent. Alternatively
expressed, the utilization ratio determines the density of the
Space taken up to place the cells of the function.
0309 Therefore, if a functions target utilization rate is
50%, and the function is implemented by using two cells C1
and C2 with cell heights of four (4) and six (6) units,
respectively, then the fictive heights of each of the cells is Set
to eight (8) and twelve (12), respectively. The result is that
when the cells C1 and C2 are placed, they take up twenty
(20) cell height units while actually using ten (10) cell height
units, or the fifty percent of the Space taken up. At this point,
the following definition becomes useful:

hh(f)=the sum of all fictive heights of all cells of the
function f.

0310 For each piece of the core space, the following may
be defined:

cap(P)=the capacity of the piece P.

0311. Then, to meet the predetermined capacity distribu
tion and utilization requirements, the following two expres
Sions must be Satisfied:

Expression (A): cap(P) = sum of all Xip where P is a member of S(f), for
all P's of the circuit;

Expression (B): hh (f) s sum of all Xip where P is a member of S(f), for
all functions of the circuit.

0312 Expression (A) states that, for each piece P, the
capacity of the piece, cap(P), must equal to the Sum of Xer
for all functions f to which P is a member. For example,
referring to FIGS. 47 and 47, the capacity of P1264(piece
1264), cap(1264), must equal the capacity of P1264 assigned
to f1 and f2. Alternatively expressed, cap(1264)=Xtre+
Xp2.P.1264.
0313) If cap(P) is less than the sum of all X for any of
the pieces, then the capacity of the P, cap(P), is over
allocated, and the placement of the core Space is not pos
Sible. To remedy the Situation, the capacities of the pieces
must be reallocated to the functions. On the other hand, if
cap(P) is greater than the Sum of all Xip for any of the
pieces, then the capacity of P, cap(P), is under-allocated,
meaning that Some core space of the piece is not allocated
to any of the functions.

US 2001/0003843 A1

0314) If the capacity allocations, Xer, for all of the pieces
of the core space meet Expression (A), then a feasible cell
placement, or a Solution, exists for a valid cell placement. If
the capacity allocations, Xer, does not meet Expression (A)
for any piece of the core Space, then a feasible cell placement
does not exist. In the latter case, a feasible Solution does not
exist because not meeting Expression (A) means that the
Sum of the capacities of the functions assigned to the piece
exceeds the actual capacity of the piece itself.

0315 Expression (B) states that, for each function, the
sum of the fictive heights of all the cells of the function must
be less than or equal to the Sum of the capacities the function
is assigned in each of the piece in which the function is
assigned capacities. For example, referring to FIGS. 46 and
48, the sum of the fictive heights of all of the cells of f1
(assigned to portion 1232, which comprises P1262, P1264,
P1270, and P1272) must be less than or equal to the sum of
the capacities of f1 in P1262, P1264, P1270, and P1272.
That is,

0316. If the sum of all fictive heights of all the cells of the
function is greater than the Sum of all the capacities of the
function in each of its pieces, then there is insufficient
amount of the core pace to place the cells of the function.
0317. In Summary, if Expression (A) is not satisfied, then
a Solution is not feasible. In Such a case, for a feasible
placement Solution, the functions must be reassigned to
different portions of the core Space, the pieces may be
redefined, or the capacities of the pieces may be reallocated
to the functions until Expression (A) is met. When Expres
Sion (A) is met, then a feasible cell placement exists, and
Expression (B) is analyzed. If Expression (B) is met for a
given cell placement, then the placement is a correct, and the
processing stops. If Expression (B) is not met, then the
following Steps, Step Five, Step Six, and Step Seven, are
followed to shift, or reallocate, the capacities of the pieces
to meet Expression (B).
0318 Step Five: Construct the Graph.
0319 Referring now to FIG. 49, a graph 1300 is con
Structed where each of the vertices of the graph corresponds
to a function, and each of the edges connecting the vertices
represents the pieces which contain borders or overlapping
areas of the functions (vertices) which it connects.
0320 In the instant example, the vertices (1302, 1304,
1306, 1308, 1310, 1312, 1314, and 1316) of the graph 1300
correspond to functions f1, f2, f3, f4 f5, fo, f7, and f3,
respectively. Vertices are connected (by an edge) if the
corresponding functions share at least one piece of the core.
Continuing to refer to FIG. 49, for simplicity, each of the
dashed lines of the figure indicates multiple edges connect
ing the vertices while each of the Solid lines indicates a
Single connection between the vertices.
0321 Continuing to refer to FIG. 49, dashed-line edges
1302a, 1302b, and 1302c indicate that f1 (represented by
vertex 1302) shares at least one piece with each of the
functions f2 (vertex 1304), f4 (vertex 1308), and f6 (vertex
1312), respectively. Likewise, the dashed-line edges 1314a
and 1314b indicate that f7 (represented by vertex 1314)
shares at least one piece of the core with functions fo (vertex
1312) and f8 (vertex 1316), respectively.

Jun. 14, 2001

0322 The solid-line edges 1304a and 1306a show that
functions f2 (vertex 1304) and f3 (vertex 1306) share piece
P1268 (see FIGS. 47 and 48) of the core. Two different
edges are used to indicate sharing of one piece of the core
between two functions (vertices). The first edge represents
the capacity of the shared piece assigned to the first vertex
(function), which is potentially available to the Second
vertex (function). The Second edge represents the capacity of
the shared piece assigned to the Second vertex (function),
which is potentially available to the first vertex (function).
0323) For example, edge 1304a, represents Xtres (the
capacity of P1268 assigned to f2). The same capacity,
Xtress, is also the maximum amount of capacity f2 may
given up within P1268 if f2 is found to have excess capacity.
The direction of the arrow of edge 1304a indicates the
direction in which the capacity may be reallocated, or
shifted.

0324 Edge 1304a is denoted as W(f3,f2.P1268), and has
the value Xtress. Likewise, the edge 1306a, denoted
W(f2.f3,P1268), has the value Xrses, and represents the
capacity of piece 1268 assigned to f3 (vertex 1306), which
is potentially available to f2 (vertex 1304).
0325 Referring primarily to FIG. 49 but also referring to
FIGS. 47 and 48, vertices 1308 and 1310 (representing fa.
and fS, respectively) have two pairs of edges (1308a, 1310a
and 1308b, 1310b) connecting them because fa and fS share
two different pieces, P1282 and P1284. In this case, the
value of the edges are:

0326 edge 1308a, denoted W(f5.f4.P1282), has the
value Xe4.P12s2;

0327 edge 1310a, denoted W(f4.f5.P1282), has the
value Xrs.P12s2;

0328) edge 1308b, denoted W(f5.f4.P1284), has the
Value Xelp12s, and

0329 edge 1310b, denoted W(f4.f5.P1284), has the
Value Xrs p1284.

0330 Step Six: Identify the Functions with Capacity
Shortages and the Functions with ExceSS Capacity.
0331. After building the graph 1300, each of the vertices
(functions) are analyzed and grouped into two sets of
vertices V1 and V2. All functions (vertices) with deficien
cies of capacity are assigned to group V1. All functions with
a shortage of the core Space Satisfy the expression:

0332 hh(f)>the sum of the capacities of all pieces
which contribute core space to the function (i.e.,the
sum of all Xer for all P belonging to S(f)).

0333. In other words, V1 contains all vertices (functions)
which do not have Sufficient core space to place all of their
cells.

0334) The functions (vertices) with excess core space are
assigned to V2. All functions with exceSS core Space Satisfy
the expression:

0335 hh(f)<sum of the capacities of all pieces
which contribute core space to the function (i.e., the
sum of all X for all P belonging to S(f)).

0336. In other words, V2 contains all vertices (functions)
which have more than the core space needed to place their
cells.

US 2001/0003843 A1

0337 Step Seven: Shifting Excess Capacities to Meet
Deficiencies.

0338 For each of the vertices of V1, the graph 1300 is
traversed until a vertex belonging to V2 is encountered. The
traversal is in the opposite direction of the arrows of the
FIGS. 49 and 50 because the direction of the arrow indi
cates the direction in which the exceSS capacities can be
shifted.

0339 During the traversal, a chain of the vertices and the
edges traversed is maintained. The chain begins with a first
vertex (function, f) in V1 and ends in a second vertex
(function, f) in V2.
0340. The maximum capacity that can be shifted from
f to f, C., is the Smallest of the following three values: second

0341) 1... the amount of the shortage of f, i.e.
hh(ft)-(sum of the capacities of all P where P is a
member of S(f));

0342. 2. the amount of excess capacity off i.e. second

(sum of capacities of all P where P is a member of
S(?econd))-hh(?econd);

0343 3. the smallest maximum-capacity of any of
the edges of the chain. The capacity of each of the
edges is expressed as W(f1, f2.P).

0344. After building the chain through which excess
capacity of a piece can be shifted, the capacities of the each
pieces of the chain, is updated as to shift the amount of
capacity, represented by C., from the Second Vertex (f)
to the first (f) vertex by updating the edge values of each
of the edges of the chain.
0345 The process can best be illustrated using an
example shown by FIG.50. Referring primarily to FIG.50,
but also to FIGS. 44-48, the following facts are assumed for
this illustration:

0346 A. The vertices have the following properties:

0347 1. vertex 1306 (representing f3 and belonging
to set V1) is deficient by 500 cell height units.
Alternatively expressed, hh(f3)>Xrspecs and
hh(f3)-Xsees=500 cell height units;

0348 2. vertex 1302 (f1, set V2) has 300 excess
capacity;

0349) 3. vertex 1310 (f5, V2) has 1200 excess
capacity;

0350 4. vertices 1304 (f2) and 108 (f4) have no
deficiencies or exceSS capacities.

0351 B. The edges have the following properties:

0352) 1. 1304a=W(f3,f2.P1268)=Xf2.P1268–800
cell height units,

0353 2. 1302b-W(f2.f1, P1264)=Xf1.P1264=400
cell height units,

0354) 3. 1308c=W(f2.f4.P1272)=Xf4.P1272-200
cell height units,

0355 4 1310a=W(f4 f5, P1282)=Xf5.P1282+300
cell height units.

Jun. 14, 2001

0356) Given the graph 1320 of FIG.50 with above-listed
facts, the 500 cell height unit deficiency of f3 can be
remedied by Shifting the capacities along the following two
chains of the graph 1320.
0357 Chain 1:
0358 Continuing to refer to FIG.50 but also referring to
FIGS. 44-48, the 300 excess capacity of f1 (vertex 1302) can
be shifted to f3 (vertex 1306) via piece 1264 (edge 1302b),
f2 (vertex 1304), and piece 1268 (edge 1304a).
0359 The chain can be denoted 1302->1302b->1304->
1304a->1306. The maximum capacity of the chain, C., is the
minimum of the following three numbers:

0360 (1) 500, the deficiency of f3;
0361 (2) 300, the amount of excess capacity of f1;
and

0362 (3) 400, the lowest maximum edge capacity of
all of the edges of the chain, which, in this case, is
from the edge 1302b.

0363 Therefore, the C. of Chain 1 is 300.
0364. The actual shifting of 300 cell height units from f1
(vertex 102) to f3 (vertex 1306) is accomplished as follows:

0365 (1) reallocating Xfl.P1264 to be 300 units less
than its previous value, thereby freeing Space for
cells of f2 in piece P1264;

0366 (2) reallocating Xf2.P1264 to be 300 units
more than its previous value, thereby taking the freed
Space, and creating an excess capacity of 300 units in
f2;

0367 (3) reallocating Xf2.P1268 to be 300 units less
than its previous value, thereby freeing Space for
cells of f3 in piece P1268; and

0368 (4) reallocating Xfl.P1268 to be 300 units
more than its previous value, thereby adding Space
for cells off3 in piece P1268, alleviating the shortage
by 300 cell height units.

0369. After the above-listed operations to shift 300 cell
height units from f1 to f3, the shortage of capacity for f3 is
reduced to 200 height units.
0370 Chain 2:
0371) The 200 units of 1200 excess capacity of function
f5 can be shifted to f3 in a similar operation using Chain 2
which can be denoted 1310-s 1310a-s1308-s1308C-s
1304->1304a->1306. The maximum capacity, C., of Chain 2
is 200, the lowest maximum edge capacity of all of the edges
of the chain, which, in this case, is from edge 1308c.
0372 The above described process is repeated for each of
the vertices (functions) of the set V1 until no vertices remain
in the set. Set V1 cannot be emptied if at least one vertex
(function) of the Set does not have Sufficient core space to
place all of its cells. In that case the placement is not possible
under the given parameters.

0373 Also, a vertex (function) cannot be reached to
claim its exceSS core Space when the total Space assigned to
the functions in the neighborhood is less than the minimal
required to place the cells of the respective functions. To

US 2001/0003843 A1

overcome this problem, the process disclosed by this docu
ment can be rerun after making one or more of the following
changes:

0374) 1... the utilization of some or all of the neigh
boring functions can be increased;

0375 2. the physical area assigned to the neighbor
ing functions can be increased; or

0376 3. elementary region grid can be modified to
create shared core Space pieces encompassing the
function and its neighboring functions.

0377 SECTION 4: ITERATIVE ONE DIMENSIONAL
PREPLACEMENT OPTIMIZATION

0378 A one dimensional iterative optimization initially
provides a fast, good cell coordinate placement. The one
dimensional iterative optimization is performed in both the
X and y directions. AS may be appreciated by one of ordinary
skill in the art, the iterative optimization may be performed
in the y direction initially, but the preferred method is to
perform it in the X direction. In the X direction, a netlist or
hypergraph H includes the set V of cells v and the set Q of
nets q. In addition, it should be noted that where “X” or “X”
is used below for calculation in the X-direction, when
calculating in the y-direction, “y” or “Y” would be used. As
used herein, “Z” and “Z” are universal notations representing
either “x” and “X”, on the one hand, or “y” and “Y” on the
other, depending on which direction is being considered.
0379 FIG. 9 illustrates a cell v. 102 having several pins
which belong to the net q 104. For purposes of pin offset
definition for cell shifting and exact positioning purposes,
the origin 106 of the cell defines the default “position” of the
cell. If a net q104 is being evaluated by the system, then the
pin 108 on the cell v. 102 which is on the net q 104 is
positionally defined relative to the origin 106. Any point
may be defined as the origin of the cell, including its center
of mass, but the preferred embodiment is to define the origin
at the physical lower left corner of the cell as shown in FIG.
9.

0380. As shown in FIG. 10, the core 201 is divided into
Subregions R. Initially, the preferred value of R is one,
indicating the core is not subdivided. The Subdivision of the
core is represented by an array Xi of X-coordinates of
vertical dividing lines 202(1) through 202(n) and an array
Y of y-coordinates of horizontal dividing lines. For each
interval Xi and Xi+1), a dividing point is calculated to
determine finer resolution. Each cell V belongs to Some of
these intervals, and the interval function IV is equal to i if
the cell v belongs to the interval Xi, Xi+1). The current
coordinates of the cell v are denoted as ZVI, while the
coordinates of the net q are denoted by Zd.
0381. In initial placement optimization initialization step
250, each movable cell coordinate is assigned a coordinate
of a dividing point of the interval the cell occupies. Thus
Zv=DXIV). DX is typically the midpoint of the interval,
but the dividing point may be at a different location in each
interval while still within the scope of the current invention.
As shown in FIG. 11, for each moveable cell within the core
region 201, the movable cell coordinate 203 is located at the
dividing point 204 of the interval, which is a point at a
percentage of the width or length of the core region 201. The
preferred implementation is locating the dividing point 204

20
Jun. 14, 2001

at the center point of the Surface abstraction of the core
region. Fixed cells are assigned their real coordinates.
0382. The flowchart of FIG. 12 demonstrates the proce
dure for obtaining an initial one dimensional placement of
the movable cells. The movable cells are assigned the
coordinate of the center of the region where they are located
in initialization Step 250. In net coordinate computation Step
251, new net coordinates are computed. These new net
coordinates are computed Such that for any net q within the
Set of nets Q,

1
Zq = it. ((Zvi + (v, o

0383 where q is the number of pins of the net q. This
equation Sums the total of the current coordinates of the cell
V and the Z-offset (X or y depending on the direction) of the
pin on the cell which belongs to the net q, and Sums this for
all cells in an individual net, then divides by the total number
of pins on the net. The result of the Summation and division
is the coordinate of the net q.
0384. In new cell coordinate computation step 252, for
each cell V, the weight BV is represented by:

= 1
- -
X,

0385)
0386 For each interval Xi, Xi+1 and each cell v from
that interval, the new cell coordinate ZVI is equal to:

where for a net q, V is an element of q.

1

ft) XZ (g, i.

0387 Z* (qi) is calculated by determining a temporary
value a, where a initially equals Zd. If a is greater than
Xi+1), or is outside the interval, then a is set to the greater
border condition, or equal to Xi+1). If a is less than Xi,
again outside the interval, then a is Set to the lesser border
condition Xi. Finally, Z (qi) is set equal to a.
0388. This set of steps places the coordinates of the nets
along an imaginary line as shown in FIG. 13, line 225. Cells
are placed along this line based on the results of the initial
Z(V) calculation described above, and these positions are
Subsequently iteratively moved to new positions in the
region. The positions of cells within the region are shown in
FIG. 14, which includes positions where some of the nets
are initially outside the region. These out of bounds nets are
then Set to the edge of the region.
0389. Once the new cell coordinates are computed, the
difference between the previous value of the cost function
and the new value of the cost function is determined in Step
253. The typical cost function used is wire length and the
cost function is computed as the average of the half

US 2001/0003843 A1

perimeters of boundary boxes for all nets. The typical cost
function used is wire length and the cost function is com
puted as the average of the half-perimeters of boundary
boxes for all nets. This difference is evaluated in step 254,
and if the difference is not below a predetermined threshold,
the cell positions are iterated by repeating net coordinate
computation Step 251 and new cell coordinate computation
step 252. This iteration procedure is repeated for a number
of times, Such as one hundred times, or until the difference
in cost function of two consecutive iterations is less than a
predetermined threshold, such as 0.001 microns. A unit may
be any measure, but the preferred distance threshold is 0.001
microns. The number of iterations and the threshold may
vary while still within the scope of the invention.
0390 SECTION 5: FAST PROCEDURE FOR FIND
ING ALEVELIZING CUT POINT

0391 The surface abstraction, or core region 201,
denotes a region Rij. The previous one dimensional fast
preplacement procedure provides a given dividing point
DXi, if the region is divided horizontally, or DY) if the
region is divided vertically. This dividing point may be
anywhere along the line containing the cells from the
previous procedure, but the preferred location is the mid
point of the line.
0392 The dividing point in the current example generates
two subregions in the region Rij). As shown in FIG. 15, the
placement of nets along the line in the X direction is
partitioned along a dividing line 300 providing two Subre
gions containing the cell positions. The capacity of each of
these regions is the area of the regions without all fixed cells
or blockages. The capacities of the two regions are cap0 and
cap1. A cut point, Zo, is desired which divides the cells Such
that a percentage of cells or cell heights is proportional to the
Size of the region. For example, if a 50% cut point is desired,
the required location for the cut point is where the two
regions, defined by the physical 50% border dividing the
Surface abstraction, would have equal numbers of cells or of
cell heights. As shown in FIG. 16, a region physically
divided in half by a dividing point 300 may not have a cut
point and cut line 301 coexistent with the region dividing
point. The Sum of all heights of all cells having coordinates
lower than Zo, or of the total quantity of cells having
coordinates lower than Zo must not be greater than

capo
capC+ capi

0393 and the sum of all heights of all cells having
coordinates greater than Zo, or of the total quantity of cells
having coordinates greater than Zo must not be greater than

cap
capC+ capi

0394. It is preferable to use the total of all cell heights, but
other parameters, Such as the number of cells, may be used
while still within the scope of the invention.
0395. Initially, if all cells within a given region Rij are
within an interval (A,B), the (A,B) interval is subdivided

Jun. 14, 2001

into N equal Subintervals in subdivision step 325 as shown
in FIG. 18. Initialization step 326 initializes an array Sk
having N elements, Stores the Sum of heights of all cells
having Subintervals with indices less than or equal to k, and
initializes all the elements of array Sk with the value Zero.
For each cell V within the region Rij, index calculation
step 327 computes an index n(v) of the Subinterval where the
cell V coordinate is located:

(Z(v) - A)

0396 As an example, assume (A,B) is an interval from 0
to 200 and 10 equal Subintervals are desired. In fact, a
number in the range of 1000 such intervals would normally
be desired, but 10 is used here for purposes of illustration.
Further, assume that one cell is located in each of the ten
Subintervals, as shown in FIG. 17, although it would be
probable that Subintervals would contain more than one cell.
ASSigning A has a value of Zero, and B a value of 200, n(v)
for a cell in this arrangement is equal to the minimum integer
value greater than Z(v)/10 for the cell. The designation “X”
denotes take the minimum integer greater than X, Such that
for X having a value of 1.3, the value of x is 2.
0397) This results in an integer value for a Subinterval
within the (A,B) region where the individual cell is located.
Height accumulation Step 328 accumulates the heights of the
cells in each Subinterval within the array Sk according to
the relationship:

Sn(v)=Sn(v)+h(v)
0398 where h(v) is the height of cell v. Value of array
elements step 329 calculates the values within Sk by
iterating for k equal to 2, k being less thin or equal to N,
incrementing k,

0399. Cut point index locator step 330 locates the mini
mal index ko Such that

capo
- - : SINTs. Sk capo + capi" Ns Sko

0400. The levelizing cut point, where cell height is
equivalent to the percentage of area within the Surface
abstraction is equal to

B
Zo = A + (ko - 0.5):

04.01 Clustering of cells within a single region, or at a
border of a region, may provide an inaccurate cut point. In
Such a case, where the levelizing cut point requires a higher
accuracy, the Subinterval where the levelizing cutpoint is
located may be again divided into N Subintervals in Subdi
Vision Step 332 and the procedure repeated, locating a
Second levelizing cutpoint.
0402. Once the levelizing cutpoint is located, all cells are
shifted according to the following procedure.

US 2001/0003843 A1

0403 SECTION 6: MEDIAN CONTROL AND
INCREASE IN RESOLUTION

04.04 For a given region Rij having a dividing point D,
the levelizing cut point Zo divides the cloud of cells pro
portionally to the capacities of the Subregions induced by the
dividing point D. From FIG. 19, offset calculation step 350
determines the offset of the cut line from the dividing line,
where A is the difference between the coordinates of divid
ing point D and the levelizing cut point Zo. Coordinates for
each cell in the region are modified Such that for any cell V
within the region Rij, the cloud of cells is shifted in
shifting step 351 such that the cut point is collocated with the
dividing point:

04.05 For cells outside the region, those cells are placed
at the border of the region. If a is greater than XIV+1 then
a is equal to XIV+1). If X is less than Xiv), then a is
equal to XIV). ZVI is then set equal to this value a.
0406. In the preferred embodiment, the system initially
places all cells at the center of the two-dimensional abstrac
tion of the chip Surface. The System then performs a prede
termined number of iterations of the One Dimensional
Preplacement Optimization in one direction, Such as the X
direction. The Surface abstraction is then Subdivided into
Sub-regions by dividing the Surface abstraction in the oppo
site direction. The system then uses the Levelizing Cut Point
procedure to partition the cells into groups proportional to
the capacities of the Subregions. The Median Control pro
cedure then modifies the coordinates of the cells. The
Levelizing Cut Point and Median Control procedures are
iterated a specified number of times (preferably 6) with the
Specified number of iterations comprising a Block. The
average cost function is computed after a Block is per
formed. After each Block, an overall cost function, described
below, is computed. After repeating this Block a predeter
mined number of times (typically 10), the System computes
the average cost of each cost calculated during these Block
iterations. The current average cost value is compared with
the previous average cost value, and if the difference
between the average value and the previous value is less than
a predetermined value (such as 10), the procedure for the
first level of hierarchy is complete. Cells are then assigned
to the respective Subregions depending on the calculated
coordinates.

04.07 If the average cost function has not decreased by a
Specified amount, further Blocks of computations are
required. At the end of this iterative procedure the cells are
assigned to Subregions in Such a way that the capacities of
the Subregions are not violated.
0408. After assignment of the cells to a respective sub
region, as is described in S1 above, the System may repeat
the aforementioned procedures based on a cut in the oppo
Site direction. If, for example, the initial iterative one
dimensional preplacement optimization divides the avail
able Space on the Surface abstraction by a vertical line, or
divides in the X direction, the System executes the finding of
a levelizing cut point procedure and the median control and
resolution increase procedure in this direction. Upon
completion of these procedures, the cells are assigned to one
of the two regions, and the procedure may be repeated in the
y-direction, based on the cells located in the two regions,

22
Jun. 14, 2001

after other optimization procedures discussed below are
completed. As shown in FIG. 20, the two regions are
divided using two dividing lines in the y direction and cells
are placed along these two lines. The System locates a
levelizing cut point for each region and partitions out the
cells to the four remaining cells. This division in the y
direction creates a Second level of hierarchy.
04.09 For purposes of this patent specification, hierarchy
levels are determined based on the number of divisions of
the surface abstraction. The level of hierarchy is the sum of
the number of times the Surface abstraction is divided into
Separate regions. For example, if the Surface abstraction has
been divided three times in the X direction and two times in
the y direction, the system has reached the fifth level of
hierarchy. The total number of regions is equal to 2'''"
Levely), with “Levelx” meaning the number of occasions that
the Surface abstraction has been divided in the X direction
and “Levely” means the number of occasions that the
Surface abstraction has been divided in they direction. Thus,
in the previous example, 32 regions exist at the fifth level of
hierarchy.

0410 SECTION 7: UNIVERSAL AFFINITY DRIVEN
DISCRETE PLACEMENT OPTIMIZATION

0411. After each surface abstraction division, the system
performs a discrete placement optimization. For purposes of
illustrating this procedure, it is assumed that the previous
routines have furnished two sets of cells partitioned into two
regions on the Surface abstraction. All cells are located in the
centers of each region.
0412. The system calculates affinities and cost functions
for the arrangement. An affinity is calculated based on
current cell placement and blockages in a chip. Affinities are
heuristically connected with a desired cost function, which
should be minimized. Affinities can be driven by cell density,
wire length, minimizing maximal cut, clustering, etc., or
Some combination of these parameters depending on the
goal Sought to be achieved. Affinities may be positive or
negative, and relate to the quality of an alternate placement
of a cell. For example, having a cell with a higher affinity at
a first location and a lower affinity at a Second location
indicates that the preferred placement of the cell is the first
location.

0413. The parameter of the discrete placement optimiza
tion is e, which represents the accuracy of the placement,
and is a small number, such as 10 to 10". From FIG.21,
adjacent cell location Step 400 initially considerS moving a
cell from its current position to each of the adjacent regions,
as well as considering leaving the cell in the current region.
For higher levels of hierarchy (i.e., a substantial number of
regions), nine total regions are evaluated for cells not located
on an edge of the Surface abstraction. Affinity calculation
Step 401 calculates, for each adjacent region, the maximum
affinity of the cell is moved to these adjacent regions. The
total number of cells having an affinity greater than a
predetermined value p is denoted N. For the initial place
ment received from the preceding procedural Steps, the
affinities for the cells are calculated and ordered according
to these affinities.

0414 Global threshold evaluation step 402 finds a thresh
old number, Globthresh, Such that the total number of cells,
North, having an affinity greater than the threshold

US 2001/0003843 A1

number, is less than e multiplied by the number of all cells
having positive affinities, or No. Practice has shown that
optimal results occur fore having a value of from 30 to 40
percent.

0415. The overall global threshold is determined using a
similar procedure to that described above with reference to
the procedure for finding the levelizing cut point. The
affinities are ordered Sequentially, and all cells are defined to
be within an interval (A,B), exclusive of negative affinities.
With reference to FIG. 22, the (A,B) interval is subdivided
into k equal Subintervals in Subdivision step 450. Initializa
tion step 451 defines an affinity array Ai having i elements.
The initial value of all elements of this array is 0. Aistores
the number of cells whose affinities are greater than or equal
to (k-i)*L, where L is the length of the Subinterval within
(A,B). For each cell V, calculation step 452 computes an
index i(v) of the Subinterval where the cell v affinity is
located:

0416 MaxAff(v) is the maximum affinity over all adja
cent regions for the cell V. This calculation yields an integer
value denoting a Subinterval within the (A,B) region where
the individual cell affinity is located. Now for each cell v we
increase the appropriate element of the array by 1. Such that
A(i(v))=A(i(v))+1. Cell affinity Summation array step 453
calculates the value of Ai by iterating for i equal to 2, i
being less than or equal to k, incrementing i,

0417 Global affinity evaluation step 454 determines the
global affinity threshold GlobThresh using the previous
equation such that GlobThresh is equal to i where i is the
minimum i Such that Noe is less than or equal to Ai).
0418. After calculating GlobThresh, the system evaluates
the list of all cells in a predetermined Sequential order.
Affinity comparison step 455 calculates the maximal affinity
for the present region and for each adjacent region. If the
affinity for an adjacent region is greater than the global
threshold GlobThresh, the cell is placed in the new region in
cell repositioning Step 456. The original cell position data
structure is updated in data structure update step 457. Then
steps 455, 456 and 457 are iterated as a block 458, generally
3 times.

0419. The result of this procedure is a global threshold
for all cells. Some cells have been moved to adjacent
regions, altering affinities of other cells. The procedure is
then repeated two more times, for a total of three iterations,
through the list of all movable cells using the same thresh
old.

0420. As an additional and optional procedure, a local
threshold can be calculated in addition to the global thresh
old. The local threshold is calculated in the same fashion as
the global threshold, but with respect to only the cells from
the region where the cell is located. If we use this additional,
optional procedure, we move the cell only if the maximal
affinity is greater than both the global threshold and the local
threshold.

0421. An average cost function, representing the average
of the three values of the cost function calculated after each
iteration, is computed. Now we compute a new threshold as
described above in step 454. This entire procedure, from

Jun. 14, 2001

threshold computation through cost function computation
(block 459), is repeated a predetermined number of times
(usually 10 times). Each time block 459 is repeated the
predetermined number of times, the average value of the
average cost function is calculated and compared with the
previous average value of the average cost function value. If

AvgCosti <(1+8) AvgCosti

0422 then the optimization process is halted. 8 is a small
number, typically 10 or 10'.
0423 SECTION 8: DENSITY DRIVEN CAPACITY
PENALTY SYSTEM

0424 The surface abstraction is partitioned alternately in
the Vertical and horizontal directions, where each division
denotes an additional level of hierarchy. The levels of
hierarchy, Lev, and Levy determine the number of hierarchy
levels. The number of grids, or channels of regions, in each
direction are given as Grid, equal to 2', and Gridy, equal
to 2''. Each region on each level of hierarchy is deter
mined by (Lev. Levy, i,j) where i and j are the indices of
corresponding Surface abstraction Segments. The capacity of
each region is a function of these four parameters. The
System then calculates the Sum of the heights in each region.
0425 The System then calculates a region capacity in
terms of the heights of cells which can be located within a
Single region. This capacity of cell heights accounts for rows
or columns of locations where cells may be located. AS
shown in FIG. 23, the cell region will have a certain number
of columns, or possibly rows, located therein. The cell
height capacity represents the Space available to individual
cells within the region and is based on the hierarchy of the
Surface abstraction. AS outlined below, the highest level of
hierarchy defines a Single column per region. AS may be
appreciated by one of ordinary skill in the art, rows may be
used rather than columns to define a total cell width capacity
rather than a height capacity.

0426 All cells are located at the center of a region during
Some phases of the placement procedure. The height of a
Single cell may extend into more than one region. A param
eter Colkey is assigned to this placement System process.
The center of each cell is assigned to the center of the region
it occupies. If ColKey has a value of 0, the entire height of
the cell is located within a single region. If Colkey is equal
to 1, the height of the cell is distributed to the regions the cell
overlaps. For example, if a cell has a height of 16 units while
the region has a height of ten units, three units are assigned
to the cell above and three to the cell below the current cell.
Cells located in an edge region are assigned to the region
away from the edge, and not to any region outside the edge.
Hence in the example previously presented, ten units of the
cell would be assigned to the edge region and three to the
region above the edge region.

0427 Movement of the cells from one region to another
requires updating the total of the heights in each region.

0428 Each cell v is located within regions with indices
IV and JV), in the X and y directions, respectively. Move
ment of a cell to an adjacent region is denoted by A; and A.
where A is a movement in the horizontal direction, with a
rightward movement being +1, and A representing vertical
movement, upward yielding a +1 value. A; and A; each are
set at either -1, 0 or +1. From FIG. 24, penalty calculation

US 2001/0003843 A1

step 501 computes a penalty, PenCapB(V.C.A., A), equal to
the following values:

SumHeight viv : 2 Cap Ivy

0429 for A, and A both equal to zero; and

SumHeight II (v) + All v+A) + a 3 h(v) 2k

0430 otherwise (i.e., either or both A; and A, have a value
other than 0 (-1 or +1)).
0431 C. represents the degree of counting, which affects
the movability of a cell V to a new region. C. Will typically
have a value between 0.1 and 1. Prior level calculation step
502 computes the penalty for the regions three levels before
the current level. For example, if the current hierarchy
divides the Surface abstraction into 64 by 64 total regions,
then three levels before has 8 by 8 regions. A total of 64 eight
by eight regions will fit into a 64 by 64 area. The total
penalty, PenCaps(V, A, A), is calculated in the same manner
as the PenCapB calculation in total penalty computation Step
503. The total capacity penalty is calculated in step 504
according to the following formula:

PenCap(; A. A.)=W* PenCapB(, Cl, A. A.)+Sw Wad * PenCaps(; A.A.)+ ColKey* * PencapCol(; f,
Ai, A)

0432 where 2 is the capacity penalty weight in the total
affinity, and SW is a Switch parameter Set to 0 or 1 depending
on whether use of the PenCap8 variable is desired. PenCap8
is used only when the area is divided into 16 by 16 regions
or more. 2 and 2 are the relative weights of correspond
ing penalties. The use of these various penalties allow the
user to drive the placement based on predetermined desired
characteristics. If capacity in individual columns is to be
penalized more than other capacity weights, then the value
of 2 is greater than the other a factors, i.e. 2 and ad,
where all 2 factors are between Zero and one. While design
and performance are generally a matter of choice, experi
ence has demonstrated that may initially be set to the
following value:

col

Corex
= 0:

Grid X: Grid Y

0433 where oranges between 0.5 and 1.5, and Corex is
the X dimension of the core. The values initially selected for
2 and had are 16 and 16.

0434) SECTION 9: WIRE LENGTH DRIVEN AFFIN
ITY SYSTEM

0435 An alternate embodiment of the current design is to
calculate affinities and penalties according to the relative
wire lengths of different designs. This procedure provides a
Set of affinities providing the minimal wire length over all
feasible placement Solutions.

24
Jun. 14, 2001

0436 For each cell v and net q, the minimum and
maximum values for the X component penalties are as
follows:

0437 where X(w) is the current coordinate of the cell
origin, X(V,q) is a pin offset from the origin where the pin
belongs to the net q. The y component penalties are similar:

0438. These equations define a bounding box 550 con
taining the net q 551, as shown for a three pin net in FIG.
25.

0439. The borders of the region where the cell v is located
are denoted by:

0440 X(v)=XIIv
0441 X.(v)=XIIv+1)
0442 Y(v)=YIIv)
0443) Y(v)=YIV+1)

0444 The penalty vector for cell v and net q in the
X-direction is:

04:45 (PenHP(v,q,-1), PenHP(v,q,0), PenHP(v,
q,1))

0446. These values correspond respectively to movement
of the cell to the left, nonmovement of the cell in the
horizontal direction, and movement of the cell to the right.
0447 The penalty vector for cell v and net q in the
y-direction is:

0448 (PenHP(v,q,-1), PenHP(v,q,0), PenHP(v,
q,1))

0449 These values correspond respectively to movement
of the cell upward, nonmovement of the cell in the vertical
direction, and movement of the cell downward.

0450. The penalty vector for the individual situation is as
follows. If), is less than X, then the vector representa
tion for the penalty in the X direction is (-1,0,1), indicating
Zero penalty for keeping the cell in its current location, a
penalty of one for moving the cell to the right, and a penalty
of-1 for moving the cell to the left. This indicates that a cell
in the net is outside the left boundary of the region, and
movement of the entire net to the right would be a penalty
for the wire length. Movement of the cell to the left would
be a negative penalty, or benefit, to the wire length. For X
greater than X, the penalty vector is (10,-1). For X
than X and X less than or equal to X, the penalty vector
is (0,0,1). For X, less than X and X greater than X, the
penalty vector is (0,0,0). For X greater than or equal to X
and X, less than or equal to X, the penalty vector is
(1,0,1). For Xin greater than or equal to X and Xia greater
than X, the penalty vector is (1,0,0). Similar vectors result
for positions of the cells in the y direction.

min

min less

0451. The total penalty for a cell v in the X direction is
a normalized Sum of the penalties in the X direction over all
nets incident to the cell v:

US 2001/0003843 A1

PenHPy (v., A) = (XI 1 - XIO) *X PenHPx (v, q, Ai)
gav

0452. In the Y direction,

PenHPy(v, A) = (XJ1) - XI (OI): X. PenHPy (v, q, A)
gav

0453 The total penalty is the sum of the X and y com
ponents:

PenHP(;AA)=PenHPx(x, A)+PenHP (VA)
0454. The affinity is the opposite of the penalty:

AffHP(;AA)=-PenHP(; A.A.)
04.55 and a first combined affinity is calculated based on
both capacity and wire length:

0456 QEF(v) represents a scaling factor having the fol
lowing parameters:

f Heightv) Y
log - - + A s Avg Height of All Cells)

0457 where Height(v) represents the height of the cell v.
Although any values may be used for A and B in this
equation, experience and testing has shown that the values
of 5 and 5 produce the most beneficial results.
0458 SECTION 10: MINIMIZING MAXIMAL CUT
DRIVEN AFFINITY SYSTEM

0459 Another parameter used to produce an affinity for
improving cell placement is minimizing the maximal num
ber of nets that interSect the unit Segment of the grid System
imposed of the surface abstraction of the chip. Net overlap
inherently yields inefficiency of wiring, and thus minimizing
the number of nets which cross other nets improves overall
System efficiency. For each level of chip core partitioning
hierarchy, the number and position of the Vertical and
horizontal lines which induced the level of partitioning
hierarchy are evaluated, including determining the number
of nets which intersect a line partitioning the cell into
regions. Initially, the System determines the number of nets
which intersect the lines and the relative affinities for these
line crossings. The System moves the cells and the nets
change position based on relative affinities, and then the
number of net crossings and affinities are recomputed.
0460. As shown in FIG. 26, each dividing line partitions
regions, and each of these regions has a capacity denoting
the volume of cells which can fit within the region. The
System performs the following procedure once after each
bisection. The System calculates the capacities as an average
capacity of regions adjacent to the dividing line. In FIG. 26,
the capacity of dividing line X(i) is defined as the average
capacity of all regions to the left of the line and all regions

25
Jun. 14, 2001

to the right of the line. The System calculates average
Vertical line capacity and average horizontal line capacity
for all lines, representing the amount of wiring which is
available over the entire Surface abstraction. The capacity
may also represent available Space for wiring available on
multiple layers of the chip. The capacity of each horizontal
and vertical line is then divided by the corresponding
horizontal or vertical average values. Hence, if the capacity
of the line represented by X(i) in FIG. 26 has a capacity of
1500 cells and the average capacity of all vertical lines on
the Surface abstraction is 1000 cells, the relative cut of the
line is 1.5. The ratio of the number of nets crossing a line and
the capacity of the line are defined as the relative cut.
0461 Before each optimization step in the affinity driven
discrete placement optimization procedure, and particularly
before calculation of global and/or local thresholds, the
System calculates a midcut for the Surface abstraction. The
midcut represents the average relative cut over all lines of
the Surface abstraction. FIG. 27 represents a region having
indices (TX, TY). The number of cuts represents, with the
current cell configuration, the number of times a net crosses
a boundary, while the capacity of the line represents the total
number of possible crossings of the particular boundary. The
System calculates four penalties which represent the cost of
a change for a half-perimeter move of cells within the region
one unit to the right, left, up, and down:

(Cut YTY + 1)
Capy TY + 1

/ (MidCap)
DYT = (YJ1)- YJO)-(- B+ 3: / MidCap)

0462. These equations, as illustrated in FIG. 27, repre
Sent the number of cuts over region dividing lines TX,
TX-1, TY, and TY+1 relative to the capacity of the dividing
lines. The XI and YJ factors represent the size of one region.
The factor B represents the relative penalty associated with
cuts, and testing has shown that a reasonable range for B
factors is 0.4 to 0.5. As shown in FIG. 27, for a region
twenty units in length on the X and y Sides, with ten cuts
along each dimension and a capacity for one hundred cuts,
with an average number of cuts equal to twenty cuts, and a
|B factor of 0.45, the values for DXL and DYB are 11.045
each. For 40 cuts on the right hand Side and upper Side of the
regions, the values are 11.18.
0463 Discrete affinities in the X and y direction represent
the numbers of nets whose half-perimeter decreases on
movement of cells across the boundary minus the number of
nets whose halfperimeter increases when a cell moves in a
given direction. AffXi, i=-1,0,1; AffY, j=-1,0,1
0464 Affinity for Zero movement represents the numbers
calculated above. Movement of a cell in a particular direc
tion, Such as crossing a boundary line, induces an affinity for
that cell. From FIG. 27, movement of the cell to the right
and up decreases the penalty, or increases the affinity for the
cell. Thus affinity in the X direction, AffX, for movement to

US 2001/0003843 A1
26

the right is -1, to the left is 1, and affinity for movement in
they direction, AffY for movement of the cell upward is -1,
and downward is 1. Affinity for keeping the cell in its current
position is 0.

0465. The discrete affinities for movement in each of the
four directions are multiplied by the corresponding factor:

0466 Total affinities for movement of the cell in the
Vertical and horizontal directions are the Summation of
affinities in the X and Y directions:

Affcutiji=AffcutXi+AffcutYi

0467. In alternative embodiment of this procedure is to
use the Square of the number of crossings as a component of
the cost of change for the halfperimeter move. For move
ment to the left, this would yield an equation of:

0468 Squaring the factors increases the emphasis on the
number of cuts, and balancing with new B' factors yields an
arrangement wherein the total number of cuts converge
rapidly to a relatively uniform quantity.

0469 SECTION 11: NEIGHBORHOOD SYSTEM
DRIVEN OPTIMIZATION

0470 Each moveable cell v is located within a neighbor
hood Neigh (V) constructed in accordance with the optimi
Zation of cell neighborhood System procedure outlined
above. That procedure yields an ordering of cells according
to the cells distance from the center of the neighborhood,
after optimization. FIG. 28 illustrates such an ordering of
cells within the neighborhood, Neigh(v)=(w(v,1), w(v.2), ..
... w(v.M)), where M is the size of the neighborhood, gener
ally in the range of 20 cells.
0471 From FIG. 29, weight assignment step 601 assigns
each cell a weight equal to the size of the neighborhood M
minus the index of the cell i. Thus, for a neighborhood of
size 20, the 20th cell has a weight of 0, while the first cell
has a weight of 19.

0472. An alternate preferred method of assigning weights
is to declare a number L, where L equals M plus Some
positive integer, Such as 2, and weights range from 21 down
to 2. The reason for this shift is that the weight accorded to
a factor of 1 is infinitely greater in terms of multiplications
than a factor of Zero. Thus relative weights may be mis
leading if low number factors, Such as Zero and one, are used
as weighing factors. Any monotonically decreasing function
may be employed in defining the weights accorded the cells
within the neighborhood.

0473. The system then calculates attraction weights in
Step 602. The total Sum of the weights attracting the neigh
borhood to the region are defined as follows:

Jun. 14, 2001

0474. These equations represent the weights of the neigh
borhood attraction in a direction. For example, assume a
neighborhood (v, V., . . . Vs), as shown in FIG. 30. The
weights assigned to the individual cells in the neighborhoods
represent the relative heights of the cells, but can be any
measure of load accorded to the individual cell. The relative
weights of the cells is (7, 6, 5, 4, 3). From the previous
equations, the Sum of weights to the left of the current region
minimum line in the X direction, Xi(V), is 7 plus 6 plus 4, or
17. The sum of weights to the right of the current region
maximum line, Xi(V), is 5. The Sum of weights within the
region bounded by the X (v) and X(v) lines is 3.
0475. In affinity definition step 603, the system then
defines the following neighborhood affinities for movement
of cells in each particular direction:

AffNeighborhood (; 0)=0
0476)

2: Gridy 1
AffWeighborhoody (v, -1) = Grid + Grid : M2 :

(Sum Weight, (v)-Sum Weight, (v) - Sum Weight, (v))

AffWeighborhood (v. 1) 2: Gridy 1 8: OOO V. - : - :
g X Gridy + Gridy M2

(Sum Weight, (v) - Sum Weight, (v) - Sum Weight, (v))

0477 These values represent the relative overall benefit
of moving the location of the neighborhood in a particular
direction or leaving the neighborhood in its current position.
Grid and Grid are identical to the values outlined above in
reference to the density driven capacity penalty System, and
represent the number of grids, or lines of regions, in the X
and Y directions. Grid is equal to 2''' and Gridy is equal
to 2'Y', where Lev and Levy define the number of hierar
chy levels. The number M represents the number of cells in
the neighborhood.
0478 Resuming with the example of FIG. 30, M is equal
to five and we are in the fourth level of hierarchy. Thus,
AffNeighborhood (v.0) equals 0, and AffNeighbor
hood (v,-1) equals (2 * 2/(2+2)) * /s * (17-5-3), or %s.
AfNeighborhood (v,1) equals (2 * 2/(2+2)) * /s' * (3-5-
17), or -1%5. Hence the X affinities for this example are (%5,
0, -1%5), for leftward, center, and rightward movement,
respectively. The Y affinities for this example are (-17/35, 0,
and -15/35). Selecting the highest affinities yields the result
that the neighborhood should be moved to the left and
remain in its current vertical position. Affinities for the X and
Y directions are therefore combined in step 604 to yield a
total neighborhood affinity for movement of the current
neighborhood to another region within the nine regions
adjacent a non-edge region.

US 2001/0003843 A1

0479. Affinities may be combined while still within the
Scope of the current invention. Combinations of capacity
affinities, wire length affinities, cut affinities, and neighbor
hood affinities present an enhanced System of determining
the preferred direction of movement of a cell or net. Such an
affinity combination may include combining the following
affinities:

AffCap(; A.A.)
0480. As outlined above, QEF(v) represents the capacity
penalty influence factor, which is a function of cell V relative
height. Such a combination of affinities takes into account
cell position as well as relative weight accorded to an
individual neighborhood.
0481 SECTION 12: FUNCTIONAL SIEVE OPTIMI
ZATION TECHNIOUE

0482. The combination of affinities introduces an element
of randomization. A deterministic System for combining
affinities which converges at a relatively rapid rate is desired
to optimally utilize affinities. Such a System which itera
tively optimizes cell placement using a combination of
affinities is the functional Sieve approach.
0483 The functional sieve performs several calculated
iterations of combining affinities and moving cells based on
relative affinities and then computing cost functions for the
new cell positions. The functional sieve utilizes the follow
ing basic formula:

Aff(; Ai-A)= AffNeighborhood (; Ai-A)+iu. Aff
HP(;AA)+QEF(v) AffCap(;AA)

0484 As illustrated in FIG. 31, the system in step 651
iterates a predetermined number of times, preferably once,
calculating the above affinities with u equal to one and u
equal to Zero. This iterative procedure produces affinities
and cells which are then repositioned based on the combined
neighborhood and capacity affinities. Subsequently, the SyS
tem in step 652 performs a predetermined number of opti
mization iterations with u equal to Zero and us equal to one,
moving the cells based on cut and capacity affinities. The
first iterative procedure involving neighborhood and capac
ity affinities combined with the second iterative procedure
entailing cut and capacity affinities define a major iteration.
After this major iteration, the system in step 653 calculates
the value of the cost function. The preferred cost function is
wire length.
0485. After computing the cost function, the system
performs a predetermined number of major iterations and
calculates the cost function after each major iteration. The
preferred number of major iterations and cost function
calculations is six. After this predetermined number of major
iterations and cost function value calculations, the System
computes the average cost value for all of the costs calcu
lated in the previous Steps. This procedure Steps through
different affinity evaluations and obtains a preferred overall
movement of cells on the Surface abstraction. The functional
Sieve optimization process is halted when two consecutive
cost average function values Satisfy a given accuracy, Such
as 10 or 10.

0486 During the discrete placement procedure described
above, the u parameter is utilized in a larger number of
iterations than the u parameter. Subsequently, the System
performs Several iterations with u equal to Zero. The entire

27
Jun. 14, 2001

block is iterated a predetermined number of times in this
discrete placement procedure, typically three to five times.
0487. During final placement, a crystallization procedure
produces fine placement of the cells after the aforemen
tioned functional Sieve procedure is completed. The System
uses a small non-zero value, Such as 10°, for u, for a
predetermined number of times, Such as once, in the major
iteration and the Zero value Several times. This procedure
produces a detailed placement of cells.
0488 An alternate embodiment of the current functional
Sieve alters the multiplying factors for the various affinities.
Such an embodiment is particularly useful in crowded net
Situations, and emphasizes croSS cuts while taking advantage
of open nets.
0489. The basic equation for the alternative embodiment

is:

B) Affif'(; A,A). BAiOut(AASECEF(i) Aff
Cap(v. A. A.)

0490 where B is a number between Zero and one,
depending on the emphasis desired placed on the number of
CutS.

0491. The affinity combinations disclosed within this
functional Sieve operation are not limited to those disclosed
here, and may include other combinations using other
weighing factors. Such an alternate weighing and affinity
Scheme would produce a desirable placement of cells and
Still within the Scope of the present invention.
0492) SECTION 13: COARSE OVERFLOW
REMOVER (BULLDOZER)
0493 A coarse overflow remover procedure is applied on
the highest level of the chip core region hierarchy when each
region contains a piece of only one column. The list of cells
is Scanned in the order of decreasing heights in order to find
a new region for each of them. A list of cells in order of
decreasing cell height is made. If the height of a cell is
Smaller than the available Space in the corresponding col
umn Segment, then the cell retains its location. Most of the
cells will keep their previous positions if the initial cell
density is acceptable.
0494 FIG. 33 represents a portion of the chip that has
seven columns 800-806. As shown in FIG. 33, the cell
columns 800-806 are partitioned into maximal segments
without blockages. A plurality of megacells 810 may be
located in the upper left corner. The megacells 810 are
shown to extend across the columns 800-802. A first block
age 830 extends across the second and third columns 801
and 802, and a second blockage 832 extends across the
column 806. Column 800 has two adjacent regions 812 and
814 that are assigned to a single column segment 815. Each
of the column Segments actually consists of a few regions,
and each region belongs to exactly one of the Segments. For
each Segment the total height of all cells assigned to the
Segment is retained. For example, The column 806 Segment
includes a region 816 that has a cell height of twenty-two
and an adjacent region 818 that has a cell height of Six.
Therefore, the column segment 806 includes a column
segment 820 that has a cell height of twenty-eight. This
process is applied only to cells that have been already
Scanned, i.e. in the beginning of the proceSS all those Sums
are equal to 0.

US 2001/0003843 A1

0495. The capacity of a column segment is its height. The
next cell from the list will get a new position according to
the following rule: look for the closest (using Manhattan
distance) region to the current cell So that the corresponding
column Segment will not have an overflow capacity if the
next cell is assigned to that region. A preferred order for
scanning the regions is shown in FIG. 34. First consider the
original region (marked with the numeral 0) and then
consider the regions having a distance of 1, then consider the
regions having a distance of 2, etc.

0496 This step considers only cells that already were
assigned new positions and the current one. Usually, a cell
is going to Stay on the old position. AS Soon as the region is
found that Satisfies this condition, the region Scanning is
Stopped, and assign the cell to that region. If the original
region Satisfies the condition, the cell is reassigned to the
original region.

0497 SECTION 14: OVERLAP REMOVER WITH
MINIMAL NOISE

0498. The purpose of this process is to smoothly remove
cell overlap with minimal increase of the wire length. FIG.
36 is a flow chart of an overlap remover according to the
invention. The Overlap remover proceSS is applied Separately
to each column of cells. It is assumed that each column is
continuously connected with no blockages between cells of
the same column. As shown in FIG. 35, denote the top and
bottom of the column with index j by TL and B, respec
tively. Similarly the top and bottom of column k are denoted
by Tk and Bk, respectively. The vertical grid step is used
as the unit of measure.

0499 First the cells in a column are sorted in the order of
increasing cell bottom y coordinates. Denote cells in that
order by

0500 v, v', . . . v

0501)

0502. The bottom coordinates of these cells are

0503) Ys Ys...Y

0504. As shown in FIG.35, the parameter Zaz is defined
as the distance between the top of one cell in a column and
the bottom of the next cell upward. There must be at least
one grid Space between adjacent cells to have a feasible
layout.

0505 FIG. 37 illustrates a numerical example. Suppose
a column 850 has a height Heol=60 and that the column 850
consists of five regions 852-856 that contain cells with
heights of 5, 7, 3, 9 and 6, respectively. The total cell height
S

Heu = X height(vi).
we collinn

28
Jun. 14, 2001

0506 The average extra space per cell is now calculated
S

Ho! - Hell 60-30=5
total no. of cells + 1 5+1

0507 The parameter minzaz satisfies the condition

< Ho! - Heel
milC3, # cells + 1

0508 Therefore, for the example given a possible value
for minzaz is 3.

0509. The following array is calculated:
zazO-Y-Bil. zazn=Ti-Y,
zazi=Y1-Y-NormHv, i=1, 2..., n-1,

0510 where Norms v is the cell height in grids.
0511. The parameter of the overlap remover process is
integer values of minZaZ, which can be positive or negative.
The process further includes the Step of modifying the array
Zaz Such that all its elements are not less than minZaZ. The
array elements are processed forward and backward alter
nately. The following procedure is executed:
0512 (a) At the beginning of the process the counter is
initialized to Zero. If the processing element is less than
minZaz, then the element is increased by 1 and the counter
is decreased by 1 and the next element is processed.
0513 (b) If the element is greater than minzaz and also
positive, but the counter is negative, then the counter is
increased by 1 and the element is decreased by 1. The Steps
(a) and (b) are repeated until the condition is satisfied. Then
We proceed with the next element.
0514 (c) If all elements became not less than minzaz
ZaZ(i)2 minzaz) and the counter has Zero value, the process
is stopped. The cells are moved in one grid interval incre
ments until the condition is Satisfied.

0515 FIG. 36 is a flowchart of a preferred process
adjusting cell Spacing in the column to remove overlap with
minimal noise. The process of adjusting cell spacing begins
with a step 900 where all movable cells from i=1 to i=n are
to be considered. For each cell i, the spacing Zaz(i) between
the top of cell i and the bottom of cell i+1 is compared to
minzaz in a process step 902. If Zaz(i) is less than minzaz,
then Zaz(i) is replaced with Zaz(i) plus one grid step (Zaz(i)
Zaz(i)+1) in a process step 904. A counter is then decre
mented by one in a proceSS Step 906. The foregoing Steps
900, 902, 904 and 906 are repeated until Zaz(i) is not less
than minzaZ.

0516) If Zaz(i) is not less than minzaz, then a process step
908 compares ZaZ(i) a parameter maxZaz, where maxZaz is
the largest value of Zaz(i) that will be permitted on the chip.
If Zaz(i) is less than maXZaz and the count is greater than 0,
then ZaZ(i) is replaced by Zaz(i) plus one grid step (Zaz(i)
Zaz(i)+1) in a process step 910. The counter is then decre
mented by one in a process Step 912, and the foregoing Steps
902,908,910 and 912 are repeated until the count becomes
ZCO.

US 2001/0003843 A1

0517. The remaining situation to be considered is when
Zaz(i) is not less than minzaz and the condition count >0 and
Zaz(i) <maXZaz is not satisfied. In a process Step 914 Zaz(i)
is compared to maxZaz. If Zaz(i) is greater than maxZaz, then
Zaz(i) is replaced by maxzaz in a step 916. The count then
is incremented by the quantity ZaZ(i)-maXZaz in a step
918. The steps 902,908,914,916 and 918 are repeated for
the Selected cell until the condition Zaz(i)>maXZaz of Step
914 is not satisfied.

0518. The process of adjusting cell spacing then proceeds
to a step 920 where a parameter A is defined such that
A=ZaZ(i)-minzaz. Then in a step 924 the parameter A is
compared to the negative of the count to determine whether
As-count. If A is not less than or equal to -count, then the
parameter A is Set equal to -count in a Step 926; and the
process proceeds to a step 928. If in the step 924, the
parameter A is less than or equal to -count, then the proceSS
proceeds to the step 928 where Zaz(i) is replaced with
Zaz(i)-A. The count is then incremented by parameter A in
a Step 930, and the process of adjusting cell spacing is
completed.
0519. The result of adjusting the cell spacing in accor
dance with this preferred process is that overlap between
cells is removed and spacing that were too large have been
reduced to acceptable values. Cells that previously over
lapped now have a spacing Zaz(i) of one grid space. Cells
that were too far apart now have spacings Zaz(i) Such that
minZaz is ZaZ(i)smaXZaZ.
0520. After finishing the procedure the cell coordinates
are modified:

0521) Y=BI+zazO);
0522 Y=Y-NormHv+Zazi-1,
0523 For i=2,3,..., n.

0524) SECTION 15: SINUSOIDAL OPTIMIZATION
0525) This procedure significantly levelizes the cell den
sity with almost no increase in wire length. The ColKey
parameter has been discussed above in the Section that
describes the density-driven capacity penalty System. For
the sinusoidal optimization procedure the Colkey parameter
should be set to 1. Setting the Colkey parameter to 1 means
that the height of a cell is distributed over all regions with
which the cell overlaps. Precisely, if the cell has been
assigned to the highest level hierarchy region with an indeX
j, it is assumed that the cell center is in the center of the
region. Depending on the real height of the cell, the occu
pancy is updated for all regions the cell with which the cell
overlaps.
0526. The region occupancy is updated after every cell
move. Because the number of cells higher than the Smallest
region height is relatively Small, updating the region occu
pancy is not going to affect the complexity of the optimi
Zation. In addition to the basic region capacity penalty,
which is calculated taking into account real cell dimensions
as described above, the Segment column capacity penalty is
also used now. It is necessary to consider the capacity
penalty to achieve more uniform distribution of big cells on
the chip.
0527 The main block of the sinusoidal optimization
procedure comprises a number of big iterations of the

29
Jun. 14, 2001

discrete placement optimization described previously herein
with reference to FIGS. 21 and 22. Denote that main block
by Optim (k), where k is the number of iterations. The main
parameter is the capacity penalty influence parameter 2,
which has been described previously with reference to
FIGS. 23 and 24. The value of the capacity penalty influ
ence parameter will be changed during the Sinusoidal
optimization process.
0528 Steps that preferably are included in the sinusoidal
optimization procedure are as follows:

0529) {
0530 Optim(m);
0531 = 1
0532. Optim(2-m);
0533) = 1
0534) Optim(m)
0535) =/1
0536) Optim(2-m);
0537) =/1
0538 }.
0539 where m and l are predetermined integer param
eters. Typically m is one of the numbers 6 to 10, and) is 2.
This sinusoidal optimization procedure typically is iterated
in combination with the other levelizing procedures
described herein, Specifically, the dispersion-driven leveling
system described in S16.
0540. There are two types of sinusoidal optimization.
One type is unconstrained and contains Standard discrete
placement optimization. The other type of Sinusoidal opti
mization controls cell column densities inside the discrete
placement optimization.

0541) SECTION 16: DISPERSION-DRIVEN LEVEL
IZING SYSTEM

0542. This procedure does smooth continuous cell den
sity levelization on the chip and is illustrated by FIG. 32.
First, a new coordinate System is introduced on the chip by
imposing a mesh on the chip and assigning integer coordi
nates to the nodes of the mesh. The nodes of the mesh are
classified as to whether they are movable or fixed. Nodes of
a Square that overlaps with a blockage or a megacell are
fixed. All other nodes are movable.

0543. The densities of the square regions are calculated
as a Sum of portions of the height of the cells that overlap the
region.

0544. After coordinates are assigned to the nodes of the
Square mesh, the node coordinates are transformed Such that
the Squares defined by the mesh are deformed into arbitrary
equilaterals. A constraint on the deformation of the mesh is
that regions that overlap with megacells are not deformed.

0545. The coordinates of the movable nodes are itera
tively recalculated to minimize the Special cost function
density dispersion. To speed up the convergence, the whole
optimization procedure is organized hierarchically. Starting
from the mesh Square regions the hierarchy is built up using
quadragrouping (reverse quadrasection).

US 2001/0003843 A1

0546) On the hierarchy level k denote by den (k, i, j) the
density of the region (k, i,j), and by S (k, i, j) the area of the
region. The total density DEN will be the sum of the
densities of the regions for all i and j.

DEN = 22 and, i,j)

0547. If the total available core area is a fixed number S,
then define

DEN
M = -

S

0548. The density dispersion D is then given by

- sk, i, j). (derik, i, j). D-XX. ----M.

0549 which is the cost function. The dispersion is mini
mized by doing coordinate node local moves. Suppose the
node is not on the core border and therefore has four
adjacent regions. Then for each node A with coordinate (X,
y) the local average density is computed as

0550 where den are the densities of the four adjacent
regions, and S(x,y) are the areas of the images after defor
mation of the original regions assuming A has coordinates
(x,y).

0551. The local cost function is defined as

2 X. Si(X, y). den; M(A)
S \s; (x, y) J

0552. The coordinates for A are chosen in order to
minimize the local cost function. An algorithm for minimiz
ing the local cost is to separately move each point A(x,y) a
distance 8 to the left or right (up or down for the y
coordinate). The value of 6 can change with each coordinate.
The value of the cost function is calculated for each move.
In each local region the Set of the coordinates that minimizes
the cost function is chosen for the cells.

0553. After all of the global levelization steps have been
performed, there may still be Some density “peaks” in the
core region of the chip. The bulldozer procedure described
above may be applied to remove these peakS. Finally, the

30
Jun. 14, 2001

Sinusoidal optimization procedure is applied again to the
chip surface, which is by now subdivided into cell columns.
Reapplying the Sinusoidal optimization proceSS ensures that
the cells will be evenly assigned to the columns as required
by the Structure of the final design.

0554 SECTION 16A: EFFICIENT MULTIPROCESS
ING OF CELL, PLACEMENTALGORITHMS

0555 An exemplary integrated circuit chip is illustrated
in FIG. 2 and generally designated by the reference numeral
26. For cell placement purposes, the entire integrated circuit
26, including all of its components may be processed under
one of the placement algorithms discussed above. It is also
possible to process a Subset or a Sub-area of the circuit 26.
For the purposes of this discussion, the phrase “core area’
will refer, in this Section of the Specification and its related
claims, to the area of the integrated circuit 26 which is being
processed for optimal cell placement.

0556 FIG. 39 illustrates one possible partitioning of a
core area 1030 into a plurality of regions. Although the
regions may be of any shape and configuration, FIG. 39
shows the core area 1030 being divided into a rectangular
grid of seven (7) columns and five (5) rows. The number of
columns, denoted as M, and the number of rows, denoted as
N, may be arbitrarily assigned. Typically, however, M is set
as one half of the number of cell columns in the core area,
and N is Set as the same number, resulting in a Square grid.
0557. To simplify the discussion, this specification will
refer to each of the regions of the grid as R; where i refers
to the column and j refers to the row on which the region R;
is located. Again, referring to FIG. 39, the region located at
the bottom, left corner of the core area 1030 is identified as
R1, the region adjacent to and to the right of R is
identified as R. Also in FIG.39, regions R1s and R.7s are
identified. For Simplicity, other regions are not specifically
identified. In addition, each of the regions contain a large
number of cells to be placed. Cells are not shown by FIG.
39, except that a representation of cells is shown in region
Rs.2.
0558 FIG. 39 also illustrates cell swaps between regions
of the core area 1030, which are required by the optimization
process to improve the fitness of the placement. The cell
Swaps are represented by double-pointed arrows 1032a,
1032b, 1032c, 1032d, 1034a, 1034b, 1034c, 1034d, 1036,
1038a, 1038b, 1038c, 1038d.

0559 For the purposes of our discussion, it is assumed
that three (3) processors-P, P2, and Pi—are used to
process Simultaneously the cell placement algorithm.

0560 If the regions are assigned to the processors
Sequentially, then the order in which the regions are pro
cessed and the processor assignments to the regions might
be as shown below in Table 16A(1).

TABLE 16A(1)
Column

Row i = 1 2 3 4 5 6 7

5 5 (P.) 10 (P.) 15 (P.) 20 (P.) 25 (P.) 30 (P.) 35 (P.)
4 4 (P) 9 (P.) 14 (P.) 19 (P.) 24 (P) 29 (P.) 34 (P)
3 3 (P.) 8 (P.) 13 (P.) 18 (P.) 23 (P.) 28 (P.) 33 (P.)

US 2001/0003843 A1

TABLE 16A(1)-continued
Column

Row i = 1 2 3 4 5 6 7

2 2 (P.) 7 (P.) 12 (P.) 17 (P.) 22 (P.) 27 (P.) 32 (P.)
j = 1 1 (P.) 6 (P.) 11 (P.) 16 (P.) 21 (P.) 26 (P.) 31 (P)

0561. The entire Table 16A(1) represents the core area
1030 of FIG. 39, and each of the rectangular areas of the
table represent the corresponding rectangular region of FIG.
39. In the table, each of the regions has a number. The
number corresponds to the region's rank in the order of
processing. The Specific processor which will process the
cells of the region is also identified. Table 14(B)2 below sets
forth the order in which the regions are processed by the
processors.

TABLE 16A(2)
Iteration Set of regions simultaneously processed by P, P., and Ps

1. R11, R12, and R13
2 R14, R1s. and R21
3 R22, R2.3, and R2.4

11
12

R71, R72, and R7s
R74 and R.7s

0562 Under the cell placement process described above,
the first set of regions R, R2, and Ris is processed by the
three processors simultaneously. Then, the Second Set of
regions is processed simultaneously, followed by the Simul
taneous processing of the third set of regions, and So on.
However, as is discussed in detail below, Simultaneous
processing of the third set of regions-R22, R2s, and
Re-generates the area-conflict, local optimum, and dead
lock problems described above.

0563) As illustrated by FIG. 39, regions R., R., and
R, require the indicated cell movements, or cell Swaps, to
increase the fitness of the placement. The required cell
movements are detailed in Table 16A(3) below.

TABLE 16A(3)
R2.2 Cell movements 1032a between R22 and R41;

Cell movements 1032b between R22 and Rs.2:
Cell movements 1032c between R. and R2;
Cell movements 1032d between R22 and R2s; and
Cell movements 1036 between R22 and R24.
Cell movements 1032d between R.2s and R22; and
Cell movements 1034d between Rs and R.
Cell movements 1034a between R. and Ras:
Cell movements 1034b between R. and Ras:
Cell movements 1034c between R. and R.:
Cell movements 1034d between R. and Rs; and
Cell movements 1036 between R24 and R22.

R2,3

R2,4

0564) In this scenario, three sets of area-conflict problems
arise. The first area-conflict is between P (processing R22)
and P (processing Rs). Both P, and P are attempting to
make cell movements 1032d into and out of the region being
processed by the other processor. Likewise, due to the cell
movements 1036, the second area-conflict is between P and
Ps (processing R2). The third area-conflict is between P

31
Jun. 14, 2001

and P. due to the cell movements 1034d. Because of these
conflicts, the parallel processing cannot be accomplished
Simultaneously. This is because at least one of the processors
must wait for another to complete the cell movements in the
conflicting regions before processing its own cells.

0565. By constraining cell movements to adjacent
regions only, the cell movement 1036 is eliminated from
consideration, and the area-conflict between P (processing
R2) and P (processing R2) is eliminated. However, the
restriction of the movement of cells only to adjacent regions
may eliminate cell movements which could result in a better
overall fitness (global optimum). This is because the restric
tion traps the optimization proceSS at an undesirable local
optimum solution. In FIG. 39, if the cell movements are
restricted to adjacent cells only, movements 1032a, 1034a,
1036, and 1038a are eliminated.

0566. The final problem arising out of the current sce
nario is a possibility of a deadlock between the processors.
If, for example, P is waiting for P to complete the cell
movement 1032d, P is waiting for P to complete the
movement 1034d, and P is waiting for P to complete the
movement 1036, a deadlock is created.

0567 All three problems discussed above can be mini
mized, or eliminated, if any two processors are, at any one
time, operating Sufficiently distant from each other to avoid
area-conflicts. Automated assignments of regions to multiple
processors for Simultaneous processing Such that the regions
are Sufficiently distant to avoid area conflicts is an important
aspect of the present invention. The assignment is accom
plished as follows: (1) dividing the core area into a plurality
of rectangular regions of M columns by N. rows; (2) deter
mining the “interval parameter” for both the columns and for
rows, and (3) determining a sequence in which the rectan
gular regions are to be processed Such that each Set of
Simultaneously processed regions contains regions which
are Sufficiently distant from each other to avoid conflicts.
0568 Consequently, when the multiple processors are
assigned to the regions, each of the processors will be
processing cells of a region far enough from the other
regions being processed at that time Such that area-conflict
and deadlock problems are greatly reduced. In addition, the
need to restrict the movements of cells, which creates local
optimum problem, is also eliminated.

0569. The number of columns M and the number of rows
N are predetermined and can be arbitrarily set. However, the
value of M is typically set as one half of the number of cell
columns in the core area, and the value of N is typically
equal to M. FIG. 40 shows the core area 1030' which has
been divided into 35 rectangular regions with M=7 and N
=5. The rectangular regions of the core area 1030' are still
referred to as R; where i indicates the column andjindicates
the row of the position which the region occupies.

0570. The column “interval parameter,” denoted KX,
may be any number greater than one and less than M. The
row “interval parameter,” denoted KY, may be any number
greater than one and less than N. The interval parameters are
used in Sequencing the rectangular regions as will be dis
cussed more fully below. Although KX and KY may be
assigned arbitrary values within the respective limits, it has
been found that good choices for KX and for KY are:

US 2001/0003843 A1

if the number of columns of cells in the
core area is less than 100; and
if the number of columns of cells in the
core area is greater than or equal to 100.

0571 Referring now to FIG. 41, a flowchart 1040 out
lines the Steps which may be used to create the desired
sequence. The flowchart 1040 of FIG. 41 includes a plural
ity of nested loops indicated by lines ending with arrow
points. This notation indicates that all of the Steps included
within each loop are to be performed for all outer loops.
0572 To create the sequence, the first operation, as
indicated by the reference number 1042 of FIG. 41, is to
traverse columns one (1) through the KX" column using a
first index, which will be denoted as p to facilitate this
discussion.

0573 For each of the columns traversed by p, a second
index, denoted as q for the purposes of this discussion, is
used to traverse the rows one (1) through the KY" row. This
is indicated by the operation referred to by the reference
number 1044.

0574 AS indicated by the operation 1046, for each of the
columns traversed by p, denoted C for the purposes of this
discussion, the column index i is used to traverse the column
C and all the columns of the core area 1030, which is a
multiple of KX columns away from C. Therefore, in
general, the column traversal, for each value of the indeX p,
will be:

Cp Cpkx, Cp2kx. . . Cpinkx where nKXSM and in
is an integer multiple.

0575 For the instant example, the column traversal will
be

0576 for p=1: C, C, and C7;

0577 for p=2: C, and Cs; and

0578 for p=3: C, and C.
0579. The index p will not reach 4 because KX=3.
0580 Operation 1048 shows that, for each row traversed
by q, denoted W for the purposes of this discussion, the row
index j is used to traverse the row W. and all the rows of the
core area 1030, which is a multiple of KY rows away from
W. Therefore, in general, the row traversal, for each value
of the index q, will be:

WWKy, W2Ky., ... Winky where nKYsN and
n is an integer multiple.

0581 For the instant example, the row traversal will be:

0582 for q=1: W, W, and Ws; and

0583 for q=2: W, and W.
0584) The index q will not reach 3 because KY=2.
0585. Using the indices i and j to traverse columns and
rows in the above described manner, the Sequence is created,
as indicated by operation 1050, by adding the region R; to
the Sequence during the traversal. Finally, the list of the
regions is finalized 1052 and output is created.

32
Jun. 14, 2001

0586 The above-described operations to produce a
sequence of regions R, can be expressed using pseudo
computer programming language as follows:

for p = 1 to KX do
for q = 1 to KY do

for i = p to M step KX do
for q =0 to N step KY do

assign R; to the list
endido

enddo
enddo

endido

0587 Alternatively, using a repeat-until construct, the
pseudo-program becomes:

p =
repeat

q = 1
repeat

1 = p
repeat

= q
repeat

assign R; to the list
i = j +KY

until j > N
i = i +KX
until i> M

q = q + 1
until q > KY

p = p + 1
until p > KX

0588 Utilizing the operations as described above, and
using the values discussed previously, the core area 1030' of
FIG. 40 will be processed in the sequence indicated by Table
16A(4) below.

TABLE 16A(4)
Column

Row i = 1 2 3 4 5 6 7

5 3 (P.) 18 28 6 21 31 9
4 11 23 33 13 25 35 15
3 2 (P.) 17 27 5 2O 3O 8
2 1O 22 32 12 24 34 14

i = 1 1 (P) 16 26 4 19 29 7

0589 The entire Table 16A(4) represents the core area
1030' of FIG. 40, and each of the cells of the table represents
the corresponding rectangular region of the core area 1030
of FIG. 40. In the table, each of the regions has a number
representing the region's rank in the processing order. The
Specific processor which will process the region is identified
for the first three regions only. This is because once the
Sequence is determined, the regions are assigned to the
processors as follows: (1) initially, each of the processors are
assigned to the first available, unassigned regions in accor
dance with the Sequence; (2) from then on, the next region
to be processed according to the Sequence is assigned to the

US 2001/0003843 A1

next available processor. A processor becomes available
when it finishes the processing of the cells of its currently
assigned area.
0590. In the instant example, the first three regions of the
Sequence, R1, R1a, and R1s are initially assigned to pro
ceSSors P, P, and Ps, respectively. Then, the next region of
the sequence, R., is assigned to the first processor which
becomes available. For example, if P finishes processing of
the cells of region Ra before P, and P. finish processing
their assigned regions, then P is assigned to R, the fourth
region of the Sequence. Likewise, the fifth region of the
Sequence, Ras, is assigned to the next available processor,
and So on.

0591. The above described assignment technique
increases the effectiveness of parallel processing because no
processor has to wait idlely for another processor to finish its
operation before processing another region. The effect of the
above discussed assignment technique on the overall per
formance of the placement algorithm is most evident when
the number of cells in each of the rectangular regions varies
or when processors are operating at different Speeds from
each other.

0592 Table 16A(5) below sets forth one possible order in
which the regions may be simultaneously processed by the
processors.

TABLE 16A(5)
Iteration Set of regions simultaneously processed by P, P., and Ps

1. R11, R13, and R1s
2 R41, R43, and R4.6

is R. R., and Rs.
12 R. and R.

0593. As Tables 16A(4) and 16A(5) illustrate, no two
adjacent regions are processed Simultaneously in this
example. In particular, note that regions R22, R2s, and R2,
which caused area-conflict, deadlock, and local optimum
concerns under the old technique, are not processed Simul
taneously.
0594 Under the new cell placement process described
above, the first Set of regions to be simultaneously processed
by the three processors are R., Ris, and Rs. Then, the
Second Set of regions are processed simultaneously, fol
lowed by the Simultaneous processing of the third Set of
regions, and So on. In addition, after each iteration of
Simultaneous processing, a database or a list of cells located
in each of the regions is updated to reflect the current
location of each of the cells of the core area 1030'.

0595. However, it is possible, even under the new cell
placement process, for Some conflicts to exist. The eighth
iteration of the new process, as detailed by Tables 16A(4)
and 16A(5) may be used to illustrate the advantages of the
new process even where Some conflicts occur.
0596) The eighth iteration of the cell placement process
involves the regions R-2, R2, and Rs processed simulta
neously by processors P, P, and Ps, respectively. AS FIG.
39 indicates, regions R-2, R2, and Rs require the cell
movements, or cell Sways, to increase the fitness of the
placement as detailed in Table 16A(6) below.

Jun. 14, 2001

TABLE 16A(6)
R2.2 Cell movements 1032a between R22 and R1;

Cell movements 1032b between R22 and Rs.2:
Cell movements 1032c between R22 and R12;
Cell movements 1032d between R22 and Rs; and
Cell movements 1036 between R22 and R24.

R2,4 Cell movements 1034a between R. and Rs:
Cell movements 1034b between R. and Ras:
Cell movements 1034c between R. and R.:
Cell movements 1034d between R. and R2s; and
Cell movements 1036 between R. and R22.

R5,2 Cell movements 1038a between Rs 2 and Ro:
Cell movements 1038b between Rs and R2:
Cell movements 1038c between Rs 2 and Roo; and
Cell movements 1038d between Rs 2 and R2.

0597. In this scenario, only one area-conflict problem
exists. The area-conflict is between P (processing Raa) and
P2 (processing R2). Both P and P are attempting to make
cell movements 1036 into and out of the region being
processed by the other processor. No deadlock is possible in
this situation because the area being processed by P. does
not interSect with any areas being processed by processors
P, and P. Finally, with a greatly decreased number of
area-conflicts and no possibility of deadlocks, restrictions on
the movements of cells are not necessary and are eliminated.

0598 SECTION 17; CELL PLACEMENT CRYSTAL
LIZATION

0599. The purpose of this procedure is to get final cell
placement. First, the height of each cell is increased by one
grid plus y percent of the remaining available Space. Then,
the dispersion driven levelizing System and the Sinusoidal
optimization procedures are iterated k times (e.g. 5 times).

0600 Now, the original height of each cell is increased by
one grid plus a certain percentage of the remaining available
space. For this purpose, 72% is preferable. Then the overlap
remover procedure is executed with maxZaZ Set equal to the
column height to ensure that there is no overflow in any of
the connected column Segments.

0601 Next the positions of the large cells are fixed and
then the Sinusoidal optimization is executed for kiterations
where k may be 10 for example.

0602. Now the detailed coordinates of each cell are
obtained. In the remaining part of the placement crystalli
Zation the following three procedures are iterated:

0603 1. The vertical optimization is performed for
k3 iterations. During one iteration, the list of cells is
Scanned. For each cell the change in the cost function
is calculated if the cell is moved down for a (param
eter). The change in cost function is calculated if the
cell is moved up. The move that improves the cost
function the most (if any) is performed.

0604 2. Overlap remover with minimal noise.
0605 3. Next kiterations of optimal permutations
are performed. In this process the cost function is
calculated if vertically adjacent cells are inter
changed. Any Such change that improves the cost
function is performed. Referring to FIG. 1, if two
cells C and C are interchanged, the Space between

US 2001/0003843 A1

them is maintained the same as before the inter
change. The area occupied by these two cells is kept
at a constant value.

0606 Finally, referring to FIG.38, the cells are set to the
grids by increasing the y-coordinate until the bottom of each
cell reaches the closest horizontal grid line.
0607 At this point, most of the cells are close to their
final positions. The crystallization Step places them in cor
rect, final positions. Proper vertical cell spacings are com
puted, So that horizontal wires can be routed over and
between cells in the vertical columns. Vertical and local
horizontal "Swaps” may be performed if doing So improves
the cost functions. Cells must be assigned proper geometric
coordinates So that their positions correspond to legal grid
positions Specified by the underlying chip architecture. All
of these Steps are performed by the crystallization proceSS
described above, and the cells are frozen into their final
positions. At this point, the placement process according to
the invention System has completed its work. A data Struc
ture is prepared that can be read by a routing System (not
shown) for chip routing and design completion.
0608 While the invention has been described in connec
tion with specific embodiments thereof, it will be understood
that the invention is capable of further modifications. This
application is intended to cover any variations, uses or
adaptations of the invention following, in general, the prin
ciples of the invention, and including Such departures from
the present disclosure as come within known and customary
practice within the art to which the invention pertains.
0609 SECTION 18: NET ROUTING AND PIN CON
NECTION

0610 Referring to FIG. 51, a flow chart 1409 of the
figure illustrates the method of organizing the pins of a net
in accordance with the present invention. AS indicated by the
reference numeral 1410, the net, or a set of pins, to route and
the coordinates of each of the pins are provided into the
System. Typically, the routing is performed after finalizing
the placement of the cells on the integrated chip. Another
given parameter is K which represents the Size of the
partitions into which the pins or Subnets will be grouped for
routing. K can be assigned any reasonable number which is
less than the total number of pins of the net. In experiments,
K of twenty (20) has shown to be preferable.
0611. The step referenced by reference number 1412
indicates that the pins are partitioned into Sets of pins, each
Set containing, at minimum, the number of pins indicated by
parameter K. The method of partitioning, or grouping, the
pins into Sets of pins will be discussed in detail in the
Partitioning Method subsection below. Partitioning pins of a
net into groups of K creates a number of pin-partitions
(pps). Because the pins of the net may number in the order
of thousands or more, partitioning of the pins into groups of
K (20 in this example) creates a large number of pps.
Specifically, in this instance, the number of pp's is only one
order of magnitude Smaller than the number of pins them
Selves.

0612 Therefore, the partition method is iterated with
pp's as the elements of the new partition. This operation is
identified by boxes 1413 and 1414 of FIG. 51. As indicated
by boxes 1413 and 1414, partitioning of the sets is iterated,
using the Sets of the previous iteration as the elements of the

34
Jun. 14, 2001

meta partition, until the number of the partitions is in the
Same order of magnitude as K. Because of the iterative
application of the partitioning of the pins, the Set, and the
meta Sets, the resultant partition hierarchy can be logically
represented as a partition tree.
0613 For example, if K is 20 and the integrated circuit
contains 4,000 pins to be routed, the first partitioning of the
pins into groups of about 20 pins each results in approxi
mately 200 pin partitions (pps). Because 200 is much larger
than 20, the pp's are partitioned into Sets of about 20 pp's
each, resulting in approximately ten (10) sets of pps. In this
example, the number of Sets of pp's, ten, is in the same order
of magnitude as K, therefore, no further iteration of the
partitioning Step is necessary.
0.614. After the partitioning of the pins, as indicated by
boxes 1416 and 1418, a Minimum Spanning Tree (MST) is
created for each level of the partition tree, commencing at
the lowest level of the tree. For each level of the sets and the
sets of the sets of the pins, a MST is created with the pp's
as the Vertices.

0615. After creating an MST for each set of the pps, the
partitions of each set pp's are redefined to “link' the
partitions of the sets connected by the edge of the MST. This
operation is indicated by box 20 of FIG. 1.
0616) The creation of the MSTs and the redefinition of the
partitions to link the members of the sets are iterated 1422
for each level of the partition tree. When the top level of the
partition tree is reached, 1422, then the top-level MST is
created 1424.

0.617 To create a minimal spanning tree, any of the well
known algorithms can be used. The inventors of the present
invention has used Steiner's tree with good results.
0618. The details of the method to create an MST for any
Set of Vertices is discussed in the Minimal Spanning Tree
Subsection below.

0619. The partition tree is distinguishable from the mini
mal Spanning tree. The partition tree represents the iterative
partitioning of the pins into pps, the pp's into Sets, and the
Sets into meta-sets, and So on until the highest level of meta
sets are formed. The MST represents the relationship, or
interconnection between the sets and all of the members of
any Set.

0620. For instance, at the lowest level, the pins are
partitioned into pp's having, on average, approximately K
pins belong to each pps. After assigning the pins to the pp's,
an MST is generated for each set whereby the pins of each
of the Sets are connected to the other pins of the Set to
minimize the traversal, or Spanning of the pins of the Set.
Then, each of the Sets of the pp's are thus connected, and So
O.

0621. The result of the above operations is a one large
MST at the top level of the partition tree where each of the
Vertices of the top level MST represents, on average,
approximately K number of Sets. That is, each node of the
top level MST represents, on average, approximately 20 (the
value of Kin the example) Subnodes, each of which, in turn,
represent, on average, about 20 Sub-Subnodes, and So on. At
the leaf level of the MST, each of the pp's represents, on
average, about 20 pins. In fact, all of the Sets belonging to
the same level of the partition tree represents roughly the

US 2001/0003843 A1

Same number of pins. Consequently, if the Same number of
nodes of the MST are assigned to each of the multiple
processors, then the processors will have approximately
Same number of pins to connect. This leads to balanced work
load among the processors and efficient implementation of
parallel processing technique.

0622 Furthermore, the routing process itself will be
efficient because, as will be explained below, the present
invention partitions the pins into clusters of pins near each
other.

0623 Partitioning Method
0624. The pins of the net are partitioned as discussed
below.

0625 First, from each pin of the net as a center pin, a
neighborhood is constructed. Each of the neighborhoods
contains at least K pins of the net. The neighborhood is
constructed for the center pin as follows:

0626 a... find the nearest pin from the center pin;
0627 b. determine the distance (rectilinear distance
is used in this example but Euclidean distance can be
used) to the nearest pin;

0628 c. define a bounding box to include the nearest
pin,

0629 d. if any other pins are included within the
bounding box, include the other pins in the neigh
borhood; and

0630 e. if the neighborhood contains less than K
pins, then find the next nearest pin (not yet a member
of the neighborhood) and repeat the steps b to e.

0631 Referring to FIG. 52, a sample net 1430 with
fourteen (14) pins are shown. For simplicity of discussion,
K is assumed to have a value of five (5). Also for simplicity,
only three neighborhoods 1431, 1433, and 1451 are illus
trated by the figure. Neighborhood 1431, with center pin
1432, was constructed by first including pin 1434, then, in
order, pins 1446, 1438, and 1440 for a total of five (5=K)
pins. Likewise, neighborhood 1451, with center pin 1450,
was constructed by including, in order, pins 1456, 1458,
1454, and 1452 for a total of five (5=K) pins.
0632. Neighborhood 1433, with center pin 1442, was
constructed by first including pin 1440, then pin 1438, then
pin 1446, then pins 1444 and 1448 at the same time,
resulting in a total of Six (6) pins which is greater than K
pins. Neighborhood 1433 contains six pins because the
inclusion of pins 1440, 1438, and 1446 resulted in only four
(4) pins in its neighborhood, and the inclusion of pin 1448
caused the bounding box to expand to include pin 1444.
0633 Second, the net is covered, or partitioned, with the
neighborhoods with highest ratio between the number of
pins in the neighborhood (not already used by another
neighborhood) divided by the geometric area of the neigh
borhood. This ratio indicates how “clustered” the pins are.
Because the number of pins in the neighborhood is approxi
mately K, the determining factor is the geometric area of the
neighborhood. A high ratio indicates that the pins of the
neighborhood are clustered together within a Small area. On
the other hand, a low ratio indicates that the pins of the
neighborhood are apart from each other.

Jun. 14, 2001

0634. The covering of the net is accomplished as follows:

0635 a. analyze each of the neighborhood to deter
mine its ratio;

0636 b. select the neighborhood, among the remain
ing neighborhoods, with the highest ratio;

0637)
and

c. the Selected neighborhood covers its pins,

0638 d. repeat steps a to c until all of the pins are
covered.

0639 Continuing to refer to FIG. 52, it seems that
neighborhood 1451 has the highest ratio. Also, neighbor
hood 1431 appears to take much less geometric Space than
neighborhood 1433, and is likely to be selected before
neighborhood 1433 to cover pins 1438 and 1440 as well as
pins 1432, 1434, and 1436. However, neighborhood 1433
will continue to be analyzed until all of the pins are
covered-either by neighborhood 1433 or by another neigh
borhood which includes pins 1442, 1444, 1446, and 1448
and has a greater ratio of pins to area. The neighborhoods
Selected to cover its pins are called the covering neighbor
hood. Each of the covering neighborhoods has a set of pins
(numbering at least Kpins including its center pin) which it
COWCS.

0640 Third, after all of the pins have been covered, the
center pins of the covering neighborhoods are used to
construct pin partitions. The pin partitions are created by
taking all of the center pins, and assigning all other pins of
the net to the closest centerpin. For the purposes of partition
construction, the neighborhood definitions are abandoned.
The neighborhood definitions were used only to determine
the center pins of the partitions.

0641. Therefore, in the example as illustrated by FIG. 52,
assuming that all three neighborhoods 1431, 1433, and 1451
were Selected as covering neighborhoods, pins 1444, 1446,
and 1448, as well as pins 1452, 1454, 1456, and 1458 will
be assigned to the partition having pin 1450 as its centerpin.
Pins 1434, 1436, and 1438 will be assigned to the partition
with pin 1432 as the center pin. Pin 1440 will be assigned
to the partition with center pin 1442. Then, the resultant pin
partitions will appear as illustrated by FIG. 53.

0642. The net as illustrated by FIGS. 52 and 53 resulted
in only three pin partitions (pp's) 1460, 1462, and 1464.
However, in practice, a net may result in many thousands of
pp's requiring another application of the Partitioning
Method with the pp's as the “elements” for the next level of
analysis. The iterative application of the Partitioning
Method can be repeated until the number of the resultant
partitions (or meta sets) is in the order of magnitude of the
value of K. Typically, the resultant partitions are considered
manageable when the number of partitions are in the same
order of magnitude as the parameter K.

0643 Minimal Spanning Tree and Partition Routing
0644. Following the construction of the partition tree.
The pp's and the meta Sets are organized into minimum
spanning trees (MST). To construct an MST for a set of pp's,
the center pins of each of the pp's are considered as the
Vertices and the distance between any two pp's is defined as
the distance between the closest pins of the two partitions.

US 2001/0003843 A1

0645 FIG.53 illustrates three pp's 1460, 1462, and 1464
having center pins 1432, 1442, and 1452. Each of the
remaining pins of the net 1430' is assigned to the nearest
centerpin from itself. Therefore, pin partition 1460 contains
pins 1432, 1434, 1436, and 1438, partition 1462 contains
pins 1440, 1442, and partition 1464 contains pins 1444,
1446, 1448, 1450, 1452, 1454, 1456, and 1458.
0646) Referring to FIG. 53, for the purposes of construct
ing the MST for the pp's 1430", the distance between
partition 1460 and partition 1462 is the distance between a
pins 1432 and 1440. The distance between partition 1460
and partition 1464 is the distance between pins 1438 and
1444. The distance between partition 1462 and partition
1464 is the distance between pins 1442 and 1446.
0647. Given the partitions and the distances between the
partitions, the process of constructing a MST from the given
information is well known in the art and will not be
discussed here. Professor James A. McHugh provides an
adequate overview of the MST construction method in
ALGORITHMIC GRAPH THEORY (1990, Prentice-Hall)
pp. 124-126.
0648. Once a MST is constructed, each of the connected
partitions (as represented by the connected vertices of the
MST) are connected as follows:

0649 a... the two pins which determined the distance
between the two partitions are identified;

0650 b. for each of the two pins, calculate the
minimal distance between the pin and any of the
other pins of its partition; and

0651 c. the pin whose just calculated distance is
greater is assigned to the partition of the other pin as
well as retaining its assignment to the original par
tition.

0652 Referring again to FIG. 53, assuming that the
Vertices representing partitions 1462 and 1464 are connected
in the MST, partitions 1462 and 1464 are connected follow
ing the steps defined above. In FIG. 52, the pin pair for
connecting partitions 1462 and 1464 are pins 1442 and 1446,
respectively. It appears that the distance between pins 1442
and 1440 in partition 1462 is greater than the distance
between pins 1446 and 1448 in partition 1464. Therefore,
pin 1442 is assigned to partition 1464 as well as retaining its
assignment to partition 1462.
0653. Likewise, assuming that the vertices representing
partitions 1460 and 1462 are connected in the MST, parti
tions 1460 and 1462 are connected following the steps
defined above. Continuing to refer to FIG. 52, the pin pair
for connecting partitions 1460 and 1462 are pins 1432 and
1440, respectively. It appears that the distance between pins
1432 and 1434 in partition 1460 is greater than the distance
between pins 1440 and 1442 in partition 1462. Therefore,
pin 1440 is assigned to partition 1460 as well as retaining its
assignment to partition 1462.
0654. After the additional assignments of pins 1440 and
1442 of partition 1462, the partition of the net may be
graphed as illustrated by FIG. 54. Because the partitions
now overlap, the routing of the cells of the partitions will not
be limited to the boundaries of the cells. In addition, the
routing of the net will not have closed loops or cycles
because the partitions are organized using a MST Structure.

36
Jun. 14, 2001

0655 Similar to the iterative application technique used
to partition the pins and the sets of pins, the MST and the
above-described partition routing technique can be applied
interactively to effect the same connections between Sets of
partitions and meta Sets of the Sets of partitions.
0656 IN GENERAL
0657 Referring now to FIG.55, an apparatus 1470 for
placing cells on an integrated circuit chip is illustrated. The
apparatus 1470 comprises processor 1472 and memory 1474
connected to the processors for Storing instructions for the
processors 1472. The apparatus 1470 may comprise multiple
processors 1472, 1472 to simultaneously process the cells of
the IC. The memory stores the instructions for the processors
to perform the above-discussed tasks. The harddrive 1476
contains the initial net and pin layout information and Stores
computer readable representation of the final placement. The
placement and other information Such as the System status
information may be displayed on the monitor 1478 which is
also attached to the processors.
0658) SUMMARY
0659 The specific algorithms described herein, as well as
the basic steps which they represent (even if they are
replaced by different algorithms), are designed for imple
mentation in a general purpose computer. Furthermore, each
of the algorithms described herein, as well as the basic Steps
it represents, can be encoded on computer Storage media
such as CD ROMS, floppy disks, computer hard drives, and
other magnetic, optical, other machine readable media,
whether alone or in combination with one or more of the
algorithms and StepS described herein.
0660 Although the present invention has been described
in detail with regarding the exemplary embodiments and
drawings thereof, it should be apparent to those skilled in the
art that various adaptations and modifications of the present
invention may be accomplished without departing from the
Spirit and the Scope of the invention. Thus, by way of
example and not of limitation, the present invention is
discussed as illustrated by the figures. Accordingly, the
invention is not limited to the precise embodiment shown in
the drawings and described in detail hereinabove.
0661. In the following claims, those elements which do
not include the words “means for are intended not to be
interpreted under 35 U.S.C. S112 T 6.
We claim:

1. A method for locating a plurality of elements on a
Surface, Said method comprising the Steps of:

assigning the elements to portions of the Surface;
preplacing the elements onto the Surface;
repositioning the elements depending on relative affinities

of the elements to each other, and
connecting the elements on the Surface.
2. A method according to claim 1, wherein the elements

are cells of an integrated circuit chip (IC), and the Surface is
Surface of Said IC.

3. A method according to claim 1, further comprising the
Step of planning the element layout on the Surface prior to
preplacing the elements onto the Surface.

4. A method according to claim 3, wherein Said step of
planning the element layout comprises Steps:

US 2001/0003843 A1

partitioning the Surface into a grid comprising a plurality
of regions,

defining pieces, each piece comprising at least one of Said
regions, and each piece having a capacity,

allocating Said capacity of each of Said pieces to pre
defined groups of the elements, and

reallocating Said capacity of Said pieces to Said groups of
the elements.

5. A method according to claim 1, wherein Said Step of
repositioning the elements is performed using a plurality of
processors.

6. A method according to claim 5, wherein plurality of
processorS operate Simultaneously.

7. A method according to claim 5, wherein Said Step of
repositioning the elements comprises the Steps:

dividing the Surface into a plurality of regions,
assigning non-adjacent regions to Said processors, each

processor determining affinities of the elements of its
assigned region; and

repositioning the elements.
8. A method according to claim 5, wherein Said Step of

repositioning the elements comprises the Steps:
assigning the elements to Said processors, each processor

determining affinities of its assigned elements, and
repositioning the elements.
9. A method according to claim 1, wherein Said Step of

connecting the elements comprises the Steps:
partitioning the elements into a plurality of Sets, each Set

having at least a predetermined number of elements,
constructing a minimal spanning tree having vertices and

edges, Said vertices of Said Spanning tree representing
the elements and Said Sets, and

connecting the elements per Said edges of Said minimal
Spanning tree.

10. A computer-implemented method for locating a plu
rality of elements on a Surface, Said method comprising the
Steps of:

forming a neighborhood defined as a set of the elements,
ordering the elements within each Said neighborhood

according to their relative distance from Said target
element;

preplacing the elements within a two-dimensional
abstraction of the Surface;

iteratively Subdividing the Surface into a plurality of
regions,

assigning the elements to Said plurality of regions,
calculating affinities of the elements using a plurality of

processors,

moving the elements based on affinities of the elements,
levelizing element density over the Surface based on

relationships between the elements,
relocating any overlapping elements, and

37
Jun. 14, 2001

performing a final cell adjustment for element positions.
11. A computer-implemented method according to claim

10, further comprising the Steps:
dividing the Surface into a plurality of regions, and
assigning non-adjacent regions to each of Said plurality of

processors to place the elements onto Said regions
Simultaneously.

12. A computer-implemented method according to claim
10, further comprising the Steps:

assigning the elements to each of Said plurality proces
Sors, and

determining the element placements by Simultaneously
operating Said plurality of processors.

13. A computer-implemented method according to claim
10, wherein the elements are grouped into functions and the
Surface can be partitioned into portions, each of Said portions
having a capacity, and further comprising the Step of assign
ing Said groups of the elements to Said portions of the
Surface to meet a predetermined utilization requirement of
Said capacity of each of Said portions of the Surface.

14. An apparatus for placing a plurality of elements on a
Surface, Said apparatus comprising:

a proceSSOr,

memory connected to Said processor,
Said memory having instructions for Said processor to

assign the elements to portions of the Surface; to
preplace the elements onto the Surface; to reposition the
elements depending on relative affinities of the ele
ments to each other; and to connect the elements on the
Surface.

15. An apparatus according to claim 8 further comprising
a plurality of processors.

16. An apparatus according to claim 9 wherein Said
plurality processors operate simultaneously.

17. An apparatus according to claim 8 further comprising
a harddrive and a monitor.

18. An apparatus according to claim 8 wherein Said
apparatus is a general purpose computer.

19. An apparatus according to claim 8 wherein Said
elements are cells of an integrated circuit chip (IC), and Said
Surface is the IC.

20. A machine-readable Storage medium containing
instructions for a processor, Said instructions comprising the
Steps for locating a plurality of elements on a Surface and
comprising the Steps of:

assigning the elements to portions of the Surface;
preplacing the elements onto the Surface;
repositioning the elements depending on relative affinities

of the elements to each other, and
connecting the elements on the Surface.
21. A Storage medium according to claim 5 wherein Said

Storage medium is Selected from a group consisting of
magnetic device, optical device, magneto-optical device,
floppy diskette, harddrive, CD-ROM, magnetic tape, com
puter memory, and memory card.

k k k k k

