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FIGURE 1A 
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FIGURE 1 B 
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ADVANCED MODULAR CELL, PLACEMENT 
SYSTEM 

CROSS REFERENCE TO RELATED 
APPLICATION 

0001. This is a continuation-in-part of co-pending appli 
cation Ser. No. 08/672,535, filed Jun. 28, 1996. 

BACKGROUND OF THE INVENTION 

0002) 1. Field of the Invention 
0003. The present invention generally relates to the art of 
microelectronic integrated circuit layout, and more specifi 
cally to the art of placement and routing of cells on inte 
grated circuit chips. 
0004 2. Description of Related Art 
0005) 
0006 Microelectronic integrated circuits consist of a 
large number of electronic components which are fabricated 
by layering Several different materials on a Silicon base or 
wafer. The design of an integrated circuit transforms a 
circuit description into a geometric description which is 
known as a layout. A layout consists of a Set of planar 
geometric shapes in the various layers of the Silicon chip. 

a. Introduction 

0007. The process of converting the specifications of an 
electrical circuit into a layout is called the physical design. 
Physical design requires arranging elements, wires, and 
predefined cells on a fixed area, and the proceSS can be 
tedious, time consuming, and prone to many errors due to 
tight tolerance requirements and the minuteness of the 
individual components. 
0008 Currently, the minimum geometric feature size of a 
component is on the order of 0.5 microns. Feature size may 
be reduced to 0.1 micron within several years. This small 
feature size allows fabrication of as many as 10 million 
transistors or approximately 1 million gates of logic on a 25 
millimeter by 25 millimeter chip. This feature size decrease/ 
transistor increase trend is expected to continue, with even 
Smaller feature geometries and more circuit elements on an 
integrated circuit. Larger chip Sizes will allow far greater 
numbers of circuit elements. 

0009. Due to the large number of components and the 
exacting details required by the fabrication process, physical 
design is not practical without the aid of computers. AS a 
result, most phases of physical design extensively use Com 
puter Aided Design (CAD) tools, and many phases have 
already been partially or fully automated. Automation of the 
physical design proceSS has increased the level of integra 
tion, reduced turn around time and enhanced chip perfor 

CC. 

0.010 The object of physical chip design is to determine 
an optimal arrangement of devices in a plane and to find an 
efficient interconnection or routing Scheme between the 
devices to obtain the desired functionality. Since Space on 
the chip Surface is at a premium, algorithms must use the 
Space very efficiently to lower costs and improve yield. The 
arrangement of individual cells in an integrated circuit chip 
is known as a cell placement. 
0.011 Each microelectronic circuit device or cell includes 
a plurality of pins or terminals, each of which is connected 
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to pins of other cells by a respective electrical interconnect 
wire network or net. A goal of the optimization proceSS is to 
determine a cell placement Such that all of the required 
interconnects can be made, and the total wirelength and 
interconnect congestion are minimized. 

0012 Prior art methods for achieving this goal comprise 
generating one or more initial placements, modifying the 
placements using optimization methodologies including 
genetic algorithms. Such as Simulated evolution, force 
directed placement or Simulated annealing, described here 
inbelow, and comparing the resulting placements using a 
cost criteria. 

0013 Depending on the input, placement algorithms are 
classified into two major groups, constructive placement and 
iterative improvement methods. The input to the construc 
tive placement algorithms consists of a set of blockS along 
with the netlist. The algorithm provides locations for the 
blocks. Iterative improvement algorithms start with an initial 
placement. These algorithms modify the initial placement in 
Search of a better placement. The algorithms are applied in 
a recursive or an iterative manner until no further improve 
ment is possible, or the Solution is considered to be Satis 
factory based on a predetermined criteria. 

0014) Iterative algorithms can be divided into three gen 
eral classifications: Simulated annealing, Simulated evolu 
tion and force directed placement. The Simulated annealing 
algorithm Simulates the annealing process that is used to 
temper metals. Simulated evolution simulates the biological 
process of evolution, while the force directed placement 
Simulates a System of bodies attached by Springs. 

0015 Assuming that a number N of cells are to be 
optimally arranged and routed on an integrated circuit chip, 
the number of different ways that the cells can be arranged 
on the chip, or the number of permutations, is equal to N (N 
factorial). In the following description, each arrangement of 
cells will be referred to as a placement. In a practical 
integrated circuit chip, the number of cells can be hundreds 
of thousands or millions. Thus, the number of possible 
placements is extremely large. 

0016 Interactive algorithms function by generating large 
numbers of possible placements and comparing them in 
accordance with Some criteria which is generally referred to 
as fitness. The fitness of a placement can be measured in a 
number of different ways, for example, Overall chip size. A 
Small size is associated with a high fitneSS and Vice versa. 
Another measure of fitness is the total wire length of the 
integrated circuit. A high total wire length indicates low 
fitneSS and Vice versa. 

0017. The relative desirability of various placement con 
figurations can alternatively be expressed in terms of cost, 
which can be considered as the inverse of fitness, with high 
cost corresponding to low fitness and Vice versa. 

0018 b. Simulated Annealing 

0019 Basic simulated annealing perse is well known in 
the art and has been Successfully used in many phases of 
VLSI physical design Such as circuit partitioning. Simulated 
annealing is used in placement as an iterative improvement 
algorithm. Given a placement configuration, a change to that 
configuration is made by moving a component or inter 
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changing locations of two components. Such interchange 
can be alternatively expressed as transposition or Swapping. 
0020. In the case of a simple pairwise interchange algo 
rithm, it is possible that a configuration achieved has a cost 
higher than that of the optimum, but no single interchange 
can cause further cost reduction. In Such a Situation, the 
algorithm is trapped at a local optimum and cannot proceed 
further. This happens quite often when the algorithm is used 
in practical applications. Simulated annealing helps to avoid 
getting achieving and maintaining a local optima by occa 
Sionally accepting moves that result in a cost increase. 
0021. In simulated annealing, all moves that result in a 
decrease in cost are accepted. Moves that result in an 
increase in cost are accepted with a probability that 
decreases over time as the iterations proceed. The analogy to 
the actual annealing process is heightened with the use of a 
parameter called temperature T. This parameter controls the 
probability of accepting moves that result in increased cost. 
0022. More of such moves are accepted at higher values 
of temperature than at lower values. The algorithm Starts 
with a very high value of temperature that gradually 
decreases So that moves that increase cost have a progres 
sively lower probability of being accepted. Finally, the 
temperature reduces to a very low value which requires that 
only moves that reduce costs are to be accepted. In this way, 
the algorithm converges to an optimal or near optimal 
configuration. 

0023. In each stage, the placement is shuffled randomly to 
get a new placement. This random Shuffling could be 
achieved by transposing a cell to a random location, a 
transposition of two cells, or any other move that can change 
the wire length or other cost criteria. After the shuffle, the 
change in cost is evaluated. If there is a decrease in cost, the 
configuration is accepted. Otherwise, the new configuration 
is accepted with a probability that depends on the tempera 
ture. 

0024. The temperature is then lowered using some func 
tion which, for example, could be exponential in nature. The 
proceSS is Stopped when the temperature is dropped to a 
certain level. A number of variations and improvements on 
the basic Simulated annealing algorithm have been devel 
oped. An example is described in an article entitled "Tim 
berwolf 3.2 A New Standard Cell Placement and Global 
Routing Package” by Carl Sechen, et al., IEEE 23rd 
Designed Automation Conference paper 26.1, pages 432 to 
439. 

0025 c. Simulated Evolution 
0026. Simulated evolution, which is also known as the 
genetic algorithm, is analogous to the natural process of 
mutation of Species as they evolve to better adapt to their 
environment. The algorithm starts with an initial Set of 
placement configurations which is called the population. 
The initial placement can be generated randomly. The indi 
viduals in the population represent a feasible placement to 
the optimization problem and are actually represented by a 
String of Symbols. 

0027. The symbols used in the solution string are called 
genes. A Solution String made up of genes is called a 
chromosome. A Schema is a set of genes that make up a 
partial Solution. The Simulated evolution or genetic algo 
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rithm is iterated, and each iteration is called a generation. 
During each iteration, the individual placements of the 
population are evaluated on the basis of fitneSS or cost. Two 
individual placements among the population are Selected as 
parents, with probabilities based on their fitness. A better 
fitness for an individual placement increases the probability 
that the placement will be chosen. 
0028. The genetic operators are called crossover, muta 
tion and inversion, which are analogous to their counterparts 
in the evolution process, are applied to the parents to 
combine genes from each parent to generate a new indi 
vidual called the offspring or child. The offspring are evalu 
ated, and a new generation is formed by including Some of 
the parents and the offspring on the basis of their fitneSS in 
a manner Such that the size of the population remains the 
Same. AS the tendency is to Select high fitneSS individuals to 
generate offspring, and the weak individuals are deleted, the 
next generation tends to have individuals that have good 
fitness. 

0029. The fitness of the entire population improves with 
Successive generations. Consequently, overall placement 
quality improves overiterations. At the Same time, Some low 
fitness individual cell placements are reproduced from pre 
vious generations to maintain diversity even though the 
probability of doing So is quite low. In this way, it is assured 
that the algorithm does not lock into a local optimum. 
0030 The first main operator of the genetic algorithm is 
croSSover, which generates offspring by combining Sche 
mata of two individuals at a time. Combining Schemata 
entails choosing a random cut point and generating the 
offspring by combining the left Segment of one parent with 
the right Segment of the other. However, after doing So, Some 
cells may be duplicated while other cells are deleted. This 
problem will be described in detail below. 
0031. The amount of crossover is controlled by the 
crossover rate, which is defined as the ratio of the number of 
offspring produced by crossing in each generation to the 
population size. CroSSOver attempts to create offspring with 
fitness higher than either parent by combining the best genes 
from each. 

0032 Mutation creates incremental random changes. The 
most commonly used mutation is pairwise interchange or 
transposition. This is the process by which new genes that 
did not exist in the original generation, or have been lost, can 
be generated. 

0033. The mutation rate is defined as the ratio of the 
number of offspring produced by mutation in each genera 
tion to the population size. It must be carefully chosen 
because while it can introduce more useful genes, most 
mutations are harmful and reduce fitness. The primary 
application of mutation is to pull the algorithm out of local 
optima. Inversion is an operator that changes the represen 
tation of a placement without actually changing the place 
ment itself So that an offspring is more likely to inherit 
certain Schema from one parent. 
0034. After the offspring are generated, individual place 
ments for the next generation are chosen based on Some 
criteria. Numerous Selection criteria are available, Such as 
total chip size and wire length as described above. In 
competitive Selection, all the parents and offspring compete 
with each other, and the fittest placements are Selected So 
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that the population remains constant. In random Selection, 
the placements for the next generation are randomly Selected 
So that the population remains constant. 
0035. The latter criteria is often advantageous consider 
ing the fact that by Selecting the fittest individuals, the 
population converges to individuals that share the same 
genes and the Search may not converge to an optimum. 
However, if the individuals are chosen randomly there is no 
way to gain improvement from an older generation to a new 
generation. By combining both methods, Stochastic Selec 
tion chooses probabilities based on the fitness of each 
individual. 

0036 d. Force Directed Placement 
0037 Force directed placement exploits the similarity 
between the placement problem and the classical mechanics 
problem of a System of bodies attached to Springs. In this 
method, the blocks connected to each other by nets are 
Supposed to exert attractive forces on each other. The 
magnitude of this force is directly proportional to the 
distance between the blockS. Additional proportionality is 
achieved by connecting more “springs' between blocks that 
“talk” to each other more (volume, frequency, etc.) and 
fewer “springs' where leSS extensive communication occurs 
between each block. 

0.038 According to Hooke's Law, the force exerted due 
to the Stretching of the Springs is proportional to the distance 
between the bodies connected to the Spring. If the bodies are 
allowed to move freely, they would move in the direction of 
the force until the system achieved equilibrium. The same 
idea is used for placing the cells. The final configuration of 
the placement of cells is the one in which the System 
achieves a Solution that is closest to actual equilibrium. 
0039) e. Parallel Processing Technique 1 
0040. Because of the large number of possible place 
ments, computerized implementation of the placement algo 
rithms discussed above can take many days. In addition, the 
placement algorithm may need to be repeated with different 
parameters or different initial arrangements to improve the 
results. 

0041) To reduce the time required to place optimally the 
cells, multiple processors have been used to Speed up the 
process. In Such implementations, multiple processors oper 
ate simultaneously to place optimally the cells on the 
integrated chip. However, Such prior efforts to reduce the 
placement time by parallel processing of the placement 
methods have been impeded by three obstacles. 
0.042 First, multiple processors may conflict with each 
other. This occurs where an area on the chip, which is being 
processed by one processor, is affected by movements of one 
or more cells into the area by another processor. When this 
occurs, one of the two conflicting processors must wait for 
the other to finish or postpone its own move for later. The 
area-conflict problem not only lessens the advantage of 
multiprocessing, but also increases the processing overhead 
encountered. This is because, before moving a cell, each of 
the processors must check for area-conflicts with all other 
processors. AS the number of processors increases, the 
area-conflicts increase rapidly to negate the advantage of 
multiprocessing, Such that the time required to place the 
cells is increased. 
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0043. Second, the optimization process can become 
trapped in a local optimum. To eliminate the area-conflict 
problem, Some Systems have assigned particular core areas 
to each of the processors with the restriction that each of the 
processors only operate within its assigned area. After 
processing cells of the assigned areas, the processors are 
then assigned to different areas, and So on. Although this 
method eliminates area-conflicts, it limits the movements of 
the cells to the area assigned to the processor. The limitation 
on the movement of the cells increases the likelihood of the 
placement becoming Stuck at a local optimum. In the case of 
a pairwise interchange algorithm, it is possible that a con 
figuration achieved is at a local optimum Such that any 
further exchange within the limited area will not result in a 
further reduction in cost. In Such a situation, the algorithm 
is trapped at the local optimum and does not proceed further. 
This happens frequently when the algorithm is used in 
practical applications, and the extent of the local optimum 
problem increaseS as additional processors are added 
because the increase in the number of processors operating 
Simultaneously reduces the area assigned to each of the 
processors. Decreases in the area assigned to each of the 
processors lead to corresponding decreases of the distances 
the cells of the areas may be moved to improve the optimi 
Zation. 

0044) Third, if multiple processors are used simulta 
neously to place the cells of an integrated chip, it is possible 
for the processors to deadlock. This occurs where each of the 
processors has halted its operation while waiting for another 
processor to complete its operations. In this situation, all 
processing is Stopped and the System halts. An example of 
deadlock is where processor P is waiting for processor P. 
to complete its operation, P is waiting for processor P to 
complete its operation, and P is waiting for P to complete 
its operation. In that case, neither P, P., nor P will proceed. 
0045. In short, because of the ever-increasing number of 
cells on an integrated chips (currently at millions of cells on 
a chip), and the resulting increase in the number of possible 
placements of the cells on the chip, a computer is used to 
find an optimal layout of the cells on the chip. Even with the 
aid of computers, existing methods can take Several days to 
place a large number of cells, and these methods may need 
to be repeated with different parameters or different initial 
arrangements. To decrease the time required to place the 
chip, multiple processors have been used to perform the 
placement of the cells. However, the use of multiple pro 
ceSSorS has led to area-conflicts, local optimum problems, 
and potential deadlock situations, negating the advantages of 
using the multiple processors. 
0046) f. Parallel Processing Technique 2 
0047 Alternative to the Parallel Processing Technique 1 
discussed above, another technique to implement parallel 
processing of cell placement algorithms is described below. 
0048. The problems associated with the prior art paral 
lelization techniques of assigning regions to multiple pro 
cessors is illustrated using FIG. 43. The figure illustrates a 
grossly simplified integrated circuit chip (IC) with four nets 
1107, 1109, 1111, and 1113 and four regions 1108a, 1108b, 
1108c, and 1108d, each of which has been assigned to a 
processor. 

0049. The first problem is the crossover net problem. If 
the regions are divided Such that croSSOver nets are created, 
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then the effectiveness of the parallel processing technique is 
reduced. This is because none of the processors which share 
the croSSover nets can accurately calculate the position of 
the (which is always the basis for the decision about the cell 
move) because the other processor may move its cell during 
the calculation. Naturally, as the number of processors 
increases, the number of croSSOver nets increases, aggravat 
ing the problem. A large number of croSSOver nets can be 
fatal for the convergence of cell placement algorithms. For 
example, in FIG. 43, nets 1109, 1111 and 1113 are the 
crossover nets. Some cells of net 1109 are processed by the 
processor assigned to region 8a while others are processed 
by the processor assigned to region 1108c. Likewise, the 
cells of nets 1111 and 1113 are placed by processors assigned 
to regions 1108a and 1108b, and 1108b and 1108d, respec 
tively. 

0050 Second, cell movements from one region (or pro 
cessor) to another creates communications overhead which 
may negate the advantages of multiple processor cell place 
ment technique. Each time a cell is moved from one region 
to another, the processor moving the cell from its assigned 
region must communicate with the processor receiving the 
cell to its assigned region. The communication requirement 
complicates the implementation of cell placement algo 
rithms and Slows down both of the communicating proces 
Sors. AS the number of processors, the number of cells, or the 
number of required cell moves increase, the communication 
overhead increases. In particular, the performance of the 
parallel processing technique is especially poor if the Spring 
density levelization method is used as the cell placement 
algorithm because the algorithm tends to make global cell 
OVCS. 

0051. Third, to minimize crossover nets and communi 
cations overheads, the prior art parallelization techniques 
typically require a "good' preplacement of the cells on the 
chip. That is, in order to operate effectively, the prior art 
methods require the nets to be within a Single region and the 
cells of the nets to be “close' to each other. The best way to 
achieve this is to increase the region size and decrease the 
number of processors running in parallel. However, the 
increase in the region size and the decrease in the number of 
parallel processors defeat the purpose of parallelizing the 
cell placement algorithm. Moreover, even with Such pre 
placement of cells, there are generally still many croSSOver 
netS. 

0.052 In order to avoid the problems associated with 
croSSOver nets, regions have to be made larger. Use of large 
regions has the disadvantage in that it limits the number of 
processors that can be used. In fact, if the entire integrated 
chip is defined as one region, and only one processor is 
assigned to place the cells of the chip, then there would be 
no croSSOver net problems or communications overhead; 
but, there also is no parallel processing, and the cell place 
ment becomes a Sequential process. Finally, the prior art 
technique of assigning regions of the IC to each of the 
multiple processors lead to the problem of unbalanced work 
load. Because each of the regions may contain varying 
number of nets, cells, or cells requiring further movements, 
it is difficult to assign regions to the processors So as to 
assign equal amount of work to each of the processors. 
Consequently, Some processors finish the placement of the 
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cells of its assigned regions more quickly than other pro 
ceSSors, reducing the effectiveness of parallelization of the 
placement algorithm. 
0053. In short, assigning multiple processors have been 
used implement cell placement algorithms by assigning 
regions of the IC to each of the processors. However, this 
technique has lead to croSSover net conflicts, interprocessor 
communication problems, cell preplacement requirements, 
and uneven distribution of work problems, negating the 
advantages of using the multiple processors. 
0054 g. Floor Plan Optimization 
0055. The cost or the desirability of various placement 
configuration can be measured using other methods Such as 
capacity distribution and utilization ratio. Capacity distribu 
tion and utilization ratioS measure the placement of the cells 
for each of the functional blocks for the integrated circuit. 
An integrated circuit is designed with various functional 
blocks, or functions, which, operating together, achieves the 
desired operation. 
0056. Each of the functions of the circuit is implemented 
by a plurality of cells and is assigned a portion of the core 
Space upon which the cells are placed. For example, an 
integrated circuit design may require the use of a central 
processor unit (CPU) function, memory function, and Some 
type of input/output (I/O) function. 
0057. In this Subsection, Subsection 1c-b, Section 3B 
and in the corresponding claims of this document, the terms 
and phrases “core,”“core space,”“core area,”“floor,”“floor 
Space,” and “integrated circuit,” will be used interchange 
ably to refer to the area of the integrated circuit upon which 
cells are placed to implement various functions of the 
integrated circuit. 

0058. The capacity is the maximum amount of cells 
which can be placed on the core Space or any portion of the 
core Space and is usually measured in cell height units. 
Provided that entire core Space has Sufficient capacity, it is 
often desirable to place the cells on the core space with a 
certain capacity distribution. For instance, it may be desir 
able that the cells of the integrated circuit be distributed 
evenly throughout the chip to avoid high concentration of 
the cells in a Small location with a low concentration of the 
cells for the rest of the core Space. On the other hand, it may 
be desirable to implement certain functions of the chip on a 
Small portion of the core Space with a high concentration of 
the cells. In Sum, a predetermined capacity distribution of 
the core Space or for any function assigned to a portion of the 
core space may be one of the requirements of the cell 
placement. 

0059 A closely related concept is the utilization of the 
Space. The utilization is the ratio of the amount of the actual 
core Space use within a predefined portion of the core Space 
to the capacity of the core Space for the predefined portion 
of the core Space. For example, if a portion of the core Space 
assigned to a function has a capacity of 100,000 cell height 
units, and the cells to implement the function uses 50,000 
cell height units, then the utilization of the portion of the 
core Space is 50 percent. 

0060. The capacity distribution or the utilization ratio for 
each of the functions of the integrated circuit or for the entire 
core Space may be predetermined as an engineering param 
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eter based on Such factors as heat dissipation, power man 
agement, manufacturing constraints, etc. 

0061 The current methods of optimally placing the cells 
on the integrated circuit involve (1) assigning functions to be 
implemented to portions of the integrated circuit; (2) placing 
the cells of each of the functions onto the assigned portion 
of the integrated circuit using a placement algorithm; (3) 
calculating the capacity distribution of the integrated circuit 
and the utilization rate of each portion of the integrated 
circuit used to implement its function; and (4) iterating the 
first three Steps to obtain a better placement in terms of 
capacity distribution or utilization. 
0062) The disadvantages of the current process involve 
time and accuracy. Because the placement proceSS requires 
manual iteration between floor planing tools (to calculate 
and evaluate capacity and utilization) and placement tools 
(to newly place the cells onto the core), the optimal place 
ment process takes a long time. Also, is difficult to manually 
optimize many different parameters simultaneously because, 
at each iteration, the operator has to Simultaneously consider 
many parameters - overall capacity, capacity distribution, 
overall utilization, utilization of each functions, utilization 
distribution, Overlap size among functions, aspect ratio of 
functions, etc. Even with highly experience professionals, 
the Simultaneous consideration of all of the parameters for 
an optimal cell placement is an extremely difficult process. 
Further, the complexity of the cell placement proceSS is 
continually increasing as the number of functions and the 
number of cells on integrated chips increase, rendering 
manual analysis techniques to become nearly impossible to 
perform. 

0.063. In short, because of the ever-increasing complexity 
of integrated circuit chips and the number of cells required 
to implement the functions of the complex designs, the 
manual placement optimization methods are fast becoming 
obsolete. The manual floor planning and cell placement 
optimization process requires an inordinate amount of time 
because the process requires manual iteration between run 
ning floor plan tools and placement tools. In additional, it is 
extremely difficult, at best, for human beings to Simulta 
neously optimize several parameters (function utilization, 
overlap Size among functions, aspect ratioS of functions, 
etc.). 
0064 h. Net Routine 
0065. Each microelectronic circuit device or cell includes 
a plurality of pins or terminals, each of which is connected 
to pins of other cells by a respective electrical interconnec 
tion wire network, or net. A purpose of the optimization 
proceSS used in the physical design Stage is to determine a 
cell placement Such that all of the required interconnections 
can be made, but total wirelength and interconnection con 
gestion are minimized. The process of determining the 
interconnections of already placed cells of an integrated 
circuit is called routing. 
0.066 Assuming that a number N of cells are to be 
optimally arranged and routed on an integrated circuit chip, 
the number of different ways that the cells can be arranged 
on the chip, or the number of permutations, is equal to N (N 
factorial). In addition, each of the cells may require multiple 
connection points (or pins), each of which, in turn, may 
require connections to multiple pins of multiple cells. The 
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possible routing permutations are even larger than the pos 
Sible cell placements by many orders of magnitude. 
0067 Because of the large number of possible place 
ments and routing permutations, even computerized imple 
mentation of the placement algorithms discussed above can 
take many days. In addition, the placement and routing 
algorithms may need to be repeated with different param 
eters or different initial arrangements to improve the results. 
0068 To reduce the time required to optimally route the 
nets, multiple processors have been used to Speed up the 
process. In Such implementations, multiple processors are 
assigned to different areas of the chip to Simultaneously 
route the nets in its assigned areas. However, it has been 
difficult to evenly distribute the amount of routing required 
from each of the multiple processors. In fact, due to the 
nonlinear algorithm complexity, the obvious, always 
assumed parallelization which is to split the nets among the 
processors does not work because routing of one highest 
fanout net can take much longer than routing of all other nets 
of the integrated circuit. Such unbalanced parallelization of 
the routing function has been the norm in the art, leading to 
ineffective use of parallel processing power. 
0069. In short, because of the ever-increasing number of 
cells on an integrated chips (currently at millions of cells on 
a chip), and the resulting increase in the number of possible 
routing of the cells and the nets on the chips, multiple 
processors are used to Simultaneously route the nets of an 
integrated chip. However, even with the aid of computers, 
existing methods can take Several days, and the addition of 
processors may not decrease the required time because of 
the difficulties of balancing the amount of work between the 
processors. 

0070) 
0071. The problem of cell placement is compounded by 
external requirements specific to each individual integrated 
circuit chip. In conventional chip design, the positions of 
certain “unmovable' cells (external interconnect terminals 
or pads, large "megacells' etc.) are fixed a priori by the 
designer. Given those fixed positions, the rest of the cells are 
then placed on the chip. Since the unmovable cells and pads 
are located or placed before the placement for the rest of the 
cells of chip has been decided on, it is unlikely that the 
chosen positions will be optimal. 
0072. In this manner, a number of regions, which may 
have different sizes and Shapes, are defined on the chip for 
placement of the rest of the cells. 
0073. It is desirable to assign individual microelectronic 
devices or cells to the regions, or “partition' the placement 
Such that the total interconnect wirelength is minimized. 

i. Other Considerations 

0074. However, methodologies for accomplishing this 
goal efficiently have not been proposed heretofore. 
0075. The general partitioning methodology is to hierar 
chically partition a large circuit into a group of Smaller 
Sub-circuits until each Sub-circuit is Small enough to be 
designed efficiently. Because the quality of the design may 
Suffer due to the partitioning, the partitioning of a circuit 
requires care and precision. 

0076 One of the most common objectives of partitioning 
is to minimize the cutsize which is defined as a number of 
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nets crossing a cut. Also the number of partitions often 
appears as a constraint with upper and lower bounds. At chip 
level, the number of partitions is determined, in part, by the 
capability of the placement algorithm. 
0077. The prior art accomplishes partitioning by means 
of a Series of “bipartitioning problems, in which a decision 
is made to assign a component to one of two regions. Each 
component is hierarchically bipartitioned until the desired 
number of components is achieved. 
0078 Numerous alternate methodologies for cell place 
ment and assignment are known in the art. These include 
quadratic optimization as disclosed in an article entitled 
“GORDIAN: VLSI Placement by Quadratic Programming 
and Slicing Optimization”, by J. Kleinhans et al, IEEE 
Trans. on CAD, 1991, pp. 356-365, and simulated annealing 
as described in an article entitled “A Loosely Coupled 
Parallel Algorithm for Standard Cell Placement”, by W. Sun 
and C. Sechan, Proceedings of IEEE/ACM IC-CAD Con 
ference, 1994, pp. 137-144. 
0079 These prior art methods cannot simultaneously 
Solve the partitioning problem and the problem of placing 
partitions on the chip, and thus the applicability of Such 
methods to physical design automation Systems for inte 
grated circuit chip design is limited. 
0080 More specifically, prior art methods do not provide 
any metric for Specifying distances between cells based on 
netlist connections. An initial placement must be performed 
to establish physical locations for cells and thereby distances 
therebetween. 

0081. Also, prior art methods fix cells in clusters at the 
beginning of optimization, and do not provide any means for 
allowing cells to move between clusters as optimization 
proceeds. This can create areas of high routing congestion, 
which cannot be readily eliminated because cell movements 
between clusters which could relieve the congestion are not 
allowed. 

0082 In summary, the problem inherent in these prior 
cell placement methods is that repeated iterations generally 
do not tend to converge to a Satisfactory relatively uniform 
overall cell placement for large numbers of cells. The 
aforementioned methods can take Several days to place a 
large number of cells, and repeating these methods with 
different parameters or different initial arrangements may 
not necessarily provide improvements to cell placement. 
Typical methods for using these designs involve using a 
chosen method until a particular parameter, for example 
wire length, achieves a certain criteria or the method fails to 
achieve this criteria for a predetermined number of runs. The 
results are inherently non-optimal for other placement fit 
neSS measurements, having optimized the method based 
only on a single parameter. Further, results of these place 
ment techniques frequently cannot be wired properly, or 
alternately, the design does not meet timing requirements. 
For example, with respect to Simulated annealing, Setting the 
temperature to different values may, under certain circum 
stances, improve placement, but efficient and uniform place 
ment of the cells is not guaranteed. 

SUMMARY OF THE INVENTION 

0.083. According to the present invention, there is pro 
Vided a method and an apparatus for locating a plurality of 
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elements on a Surface. The method comprises the of the Steps 
of assigning the elements to portions of the Surface; pre 
placing the elements onto the Surface; repositioning the 
elements depending on relative affinities of the elements to 
each other, and connecting the elements on the Surface. 
Specifically, the present invention applies the above method 
for placing cells on an integrated circuit chip. 

0084. According to another embodiment of the present 
invention, a computer-implemented method and apparatus 
for locating a plurality of elements on a Surface is disclosed. 
The method comprises the Steps of forming a neighborhood 
defined as a set of the elements, ordering elements within 
each neighborhood according to their relative distance from 
Said target element; preplacing the elements within a two 
dimensional abstraction of Said Surface; iteratively Subdi 
Viding the Surface into a plurality of regions, assigning the 
elements to the regions, calculating affinities of the elements 
using a plurality of processors, moving the elements based 
on affinities for relocating Said elements, levelizing element 
density over the surface based on the affinities between 
various elements, relocating any overlapping elements, and 
performing a final cell adjustment for element positions. 
0085. According to another aspect of the present inven 
tion, there is provided a method and apparatus for maxi 
mizing effectiveness of parallel processing to achieve an 
optimal cell placement layout of a core area of an integrated 
chip. The core area is defined as the area on the integrated 
chip upon which the cells are to be placed. The method is 
realized by dividing the core area into a plurality of regions, 
assigning a set of non-adjacent regions to each of the 
multiple processors, and allowing each of the multiple 
processors to process the cells of the regions to which it has 
been assigned. 
0086. Because each of the multiple processors is operat 
ing upon a non-adjacent region at any one time, most of the 
cell movements of one processor are “far enough' from the 
cell movements of the other processes So as to minimize 
conflict between processors. Consequently, no limits need be 
placed upon the areas within which a processor operates or 
cell movements are made. Because the cell moves allowed 
by the invention disclosed herein are not limited, acceptance 
of undesirable local optimal Solutions is avoided. 
0087. According to another aspect of the present inven 
tion, there is provided a method and apparatus for placing 
cells on an integrated circuit chip by assigning cells, rather 
than regions of the chip, to a plurality of processors and 
having each of the processors place its assigned cells on the 
chip. The cells are assigned to the chips. So as to balance the 
Workload among the processors. 

0088 To reduce crossover nets and inter-processor com 
munications overhead, the affinities of the individual cells to 
each of the multiple processors are calculated, and the 
affinity values are used to reassign the cells to other pro 
ceSSors. However, the affinity values are also weighed 
against the processor workload to maintain a balanced work 
load among the processors. In addition, because the proces 
Sors are assigned to cells instead of regions, the cell place 
ment algorithms become inherently less dependent upon the 
initial placement of the cells on the integrated circuit. 
0089. The parallelization techniques of the present inven 
tion can be modified for different placement algorithms 
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because the method describes a way to implement any 
placement algorithm using multiple processors operating 
Simultaneously. 

0090. To overcome the difficulties of the current floor 
planning techniques, the floor planning method and appa 
ratus disclosed in this Specification provides for a method to 
optimize a given floorplan automatically while meeting 
required capacity distribution and utilization. The disclosed 
new floor planning technique achieves almost uniform uti 
lization of the chip by optimally using the overlap and 
border regions of the functions while Satisfying the given 
floorplan constraints. 

0.091 According to another aspect of the present inven 
tion, there is provided a method and apparatus for allocating 
floor Space of an integrated circuits chips to functions of the 
chip comprising the Steps of partitioning the IC into a grid 
comprising a plurality of regions, defining pieces, where 
each piece comprises at least one of the regions, and each 
piece having a capacity; and allocating Said capacity of each 
of Said pieces to a plurality of functions. 

0092. In addition, after the allocation of the capacity of 
the pieces to the functions, the Sufficiency of the allocated 
capacities are analyzed for each of the functions. Then, the 
capacities of the pieces are reallocated to shift exceSS 
capacities from the functions with excess capacities to the 
functions with a shortage of Space. 

0093. According to another aspect of the present inven 
tion, there is provided a method and apparatus for grouping 
the pins of a cell placement layout of an integrated circuit to 
achieve a balanced performance for parallel processing of 
the cell routing. First, the pins of the net are partitioned into 
neighborhoods and the best partitions are Selected. Then, the 
pins are reassigned into better partitions and a minimal 
Spanning method is used to create a graph Structure of the 
partitions of the pins to create a minimally partitioned nets. 
The minimal spanning tree (MST) of the pins, thus defining 
the nets, can be used to assign groups of the pins to the 
multiple CPUs. The multiple CPU's simultaneously, or in 
parallel, connect the pins, thus routing the net. 

0094. The method of the present invention can be applied 
to the entire Set of pins of an integrated circuit, but is best 
applied to each of the nets of the integrated circuit. 

0.095 An apparatus for locating a plurality of elements on 
a Surface includes one or more processors and memory 
connected to the processors. The memory Stores the instruc 
tions for performing above described tasks. The apparatus 
may include other components Such as a monitor and a 
harddrive to Store information regarding the elements and 
the Surface, and to display the results of the operations as 
well as System Status information. 

0096. The present invention also includes a computer 
Storage medium that Stores a plurality of executable instruc 
tions for instructing a computer for organizing integrated 
circuit pins for routing purposes, including instructions to 
partition the pins into a plurality of Sets; to construct a 
Spanning tree having vertices and edges, and to assign the 
Sets in accordance with Said edges of Said Spanning tree. 

0097. These and other aspects, features, and advantages 
of the present invention will be apparent to those perSons 
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having ordinary skilled in the art to which the present 
invention relates from the foregoing description and the 
accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0098 FIG. 1A is a flow chart illustrating the main steps 
of the process according to the present invention; 
0099 FIG. 1B is a flow chart illustrating the main steps 
of the process according to the present invention; 
0100 FIG. 2 is an illustration of an exemplary integrated 
circuit chip; 

0101 FIG. 3 is an illustration of a cell that has one pin 
connected to each net; 

0102 FIG. 4 illustrates seven nets, each of which inter 
connect a plurality of cells, 
0103 FIG. 5 is a flowchart illustrating the formation of 
a cell cluster or “neighborhood” in accordance with the 
present invention; 
01.04] 
0105 FIG. 7 shows that the cell v is assigned a coordi 
nate between 0 and 1; 

0106 FIG. 8 is a flowchart illustrating the iteration of the 
recomputing of the net and cell coordinates, 

FIG. 6 is an illustration of a center cell and nets; 

0107 FIG. 9 illustrates a cell having several pins which 
belong to the net; 
0108 FIG. 10 is an illustration of a core divided into 
Subregions, 

0109 FIG. 11 is an illustration of a moveable cell within 
the core region; 

0110 FIG. 12 is a flowchart that demonstrates the pro 
cedure for obtaining an initial one dimensional placement of 
the movable cells; 

0111 FIG. 13 is an illustration of the coordinates of the 
nets along an imaginary line; 

0112 FIG. 14 is an illustration of the coordinates of the 
nets along an imaginary line; 

0113 FIG. 15 is an illustration of the placement of nets 
along the line in the direction partitioned along a dividing 
line providing two Subregions containing the cell positions, 
0114 FIG. 16 is an illustration of a region physically 
divided in half by a dividing point; 

0115 FIG. 17 is an illustration of one cell located in each 
of the ten Subintervals; 

0116 FIG. 18 is a flowchart relating finding a levelizing 
cut point; 

0117 FIG. 19 is an illustration of the calculation step 
which determines the offset of the cut line from the dividing 
line; 

0118 FIG.20 is an illustration of the two regions that are 
divided using two dividing lines, 

0119 FIG. 21 is an illustration of adjacent cell location 
Step which initially considerS moving a cell from its current 
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position to each of the adjacent regions, as well as consid 
ering leaving the cell in the current region; 

0120 FIG. 22 is an illustration of the (A,B) interval 
which is Subdivided into equal Subintervals in Subdivision 
step 450; 

0121 FIG. 23 is an illustration of the cell region having 
a certain number of columns, or possibly rows, located 
therein; 

0.122 FIG. 24 is an illustration of the penalty calculation 
step 501; 

0123) 
0.124 FIG. 26 is an illustration of each dividing line 
partitions regions, and each of these regions has a capacity 
denoting the Volume of cells which can fit within the region; 

FIG. 25 is an illustration of a three pin net; 

0125 FIG. 27 represents a region having indices (TX, 

0.126 FIG. 28 illustrates an ordering of cells within the 
neighborhood; 

0127 FIG. 29 is an illustration of the weight assignment 
Step which assigns each cell a weight equal to the Size of the 
neighborhood minus the index of the cell; 

0128 FIG. 30 is an illustration of the weights of the 
neighborhood attraction in a direction; 

0129 FIG. 31 is an illustration of the system which 
iterates a predetermined number of times, preferably once, 
calculating affinities, 

0130 FIG. 32 is a flowchart associated with the density 
driven Spring System; 

0131 FIG. 33 is an illustration of a portion of the chip 
that has Seven columns which are partitioned into maximal 
Segments without blockages, 

0132 FIG. 34 is a preferred order for scanning the 
regions, 

0133 FIG. 35 is an illustration that denotes the top and 
bottom of the column; 

0134 FIG. 36 is a flowchart of a preferred process 
adjusting cell Spacing in the column to remove overlap with 
minimal noise, 

0135 FIG. 37 illustrates a column containing cells of 
Specified heights, and 

0136 FIG.38 is an illustration of the cells that are set to 
the grids by increasing the coordinate until the bottom of 
each cell reaches the closest horizontal grid line; 
0.137 FIG. 39 illustrates a possible partitioning of a core 
region; 

0138 FIG. 40 illustrates an embodiment of the core 
region partition in accordance with the present invention; 

0139 FIG. 41 is a flow-chart illustrating a method of 
Sequencing core area regions in accordance with the present 
invention; 

0140 FIG. 42 illustrates an integrated circuit chip; 
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0141 FIG. 43 is a flowchart illustrating the steps taken 
by the parallel processing technique of the present invention 
for Simultaneous cell placement; 
0.142 FIG. 44 illustrates an example of a possible assign 
ment of core Space area to various functions, 
0.143 FIG. 45 illustrates a partitioning of core space 
according to one embodiment of the present invention; 
014.4 FIG. 46 illustrates the relationship between the 
partitioning grid and a function-area assignment layout, 
0145 FIG. 47 illustrates the definition of pieces of the 
core Space according to one embodiment of the present 
invention; 
0146 FIG. 48 illustrates the pieces of the core space 
according to one embodiment of the present invention; 
0147 FIG. 49 illustrates a graph of the functions of the 
core space of FIGS. 2-6 according to one embodiment of the 
present invention; 
0148 FIG. 50 illustrates a graph of the functions of the 
core Space of FIGS. 2-6 showing capacity shifting in accor 
dance with the present invention; 
0149 FIG. 51 is a flow-chart illustrating a method of 
organizing the pins of an integrated circuit in accordance 
with a preferred embodiment of the present invention; 
0150 FIG. 52 illustrates construction of neighborhoods 
of pins in accordance with a preferred embodiment of the 
present invention; 
0151 FIG. 53 illustrates construction of partitions of 
pins in accordance with a preferred embodiment of the 
present invention; 
0152 FIG. 54 illustrates modification of partitions of 
pins in accordance with a preferred embodiment of the 
present invention; AND 
0153 FIG. 55 illustrates an apparatus according to a 
preferred embodiment of the present invention. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT(S) 

0154) An overall block diagram of the preferred imple 
mentation of the current invention is presented in FIG.1. As 
will become apparent from the following detailed descrip 
tion, other embodiments can be implemented with highly 
effective results while still within the scope of the invention. 
O155 SECTION 1: SYSTEM OVERVIEW 
0156 FIGS. 1A and 1B comprise a flow chart that 
illustrates the main Steps of the process according to the 
present invention. A brief description of the various Steps of 
the process is presented with reference to FIGS. 1A and 1B. 
To facilitate describing and understanding the invention, this 
disclosure is divided into Sections. This first Section is a 
general Overview of the process according to the present 
invention. Subsequent Sections describe and explain the 
algorithms and process steps shown in FIGS. 1A and 1B 
with reference to other figures of the drawings as appropri 
ate. 

O157 The specific algorithms described herein, as well as 
the basic steps which they represent (even if they are 
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replaced by different algorithms), are designed for imple 
mentation in a general purpose computer. Furthermore, each 
of the algorithms described herein, as well as the basic Step 
it represents, can be encoded on computer Storage media 
Such as CD Roms, floppy disks and computer harddrives, 
whether alone or in combination with one or more of the 
algorithms and StepS described herein. 

0158 Given only the netlist, before the cells have been 
placed on the chip, there is no way using prior art techniques 
to compute the conventional geometric distance between 
two cells (the “Euclidean distance') because no geometric 
coordinates exist for any cell. A new mathematical form of 
distance is defined in the algorithms according to the present 
invention in which the distance between cells can be calcu 
lated from the way in which connections in the netlist 
interconnect its cells. This distance measure plays a critical 
role in the analysis of the netlist for placement by the 
algorithms. 

0159. The cell placement system according to the present 
invention performs placement as either a uniprocessor or 
multi- or parallel-processor procedure. Unlike previous SyS 
tems in which a constructive heuristic provided an initial 
placement followed by a Statistical improvement technique, 
the process according to the present invention constructs and 
optimizes placements in a Series of highly integrated StepS. 

0160 Subsection 1-1: Data Preparation 
0.161 The use of placement techniques must, of course, 
be preceded by the step 1 of preparation of the netlist. For 
a large chip, preparation of the netlist is a major design effort 
that includes System Specification, Synthesis, debugging, 
preliminary timing, and final netlist construction. The Spe 
cifics of these complex design Steps are not the Subject of the 
present disclosure. The description of the present invention 
begins by assuming that the System to be implemented on 
the chip has been designed and that the resulting correct 
netlist is available. The techniques for preparing a netlist are 
well known in the art. 

0162 Subsection 1-2: Neighborhood Construction 

0163 As shown at the start of the flowchart of FIG. 1A, 
the proceSS according to the present invention constructs a 
neighborhood 2 for each cell in the netlist. A neighborhood 
can be loosely defined as a fuzzy clusters of pins where the 
pins are the connection points of the cells. Neighborhood 
construction is discussed in more detail in S2 below. The 
neighborhoods are preferably constructed according to the 
neighborhood construction process described below. 
0164. Subsection 1-3: Optimization of Cell Neighbor 
hood System 

0.165. After the neighborhood of a cell is constructed, 
coordinates are assigned to each cell, and the neighborhood 
System is optimized using the center cell. The optimization 
technique is described in detail in S3 below. 

0166 Subsection 1-3A: Parallel Cell Placement with 
Minimal Conflicts 

0167 Placement of the cells on an integrated circuit chip 
can be performed in parallel, using multiple processors, by 
assigning cells to the multiple processors. Section 3A below, 
along with FIGS. 42 and 43, discusses the implementation 
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technique of the parallel processing of the cell placement 
methods by assigning cells to the multiple processors. 

0168 Subsection 1-3B: Floor Plan Optimization 
0169 Prior to the very first preplacement of the cells on 
the IC surface, the functions of the IC (which the cells 
implement) must be assigned to the various portions of the 
IC surface. For instance, the CPU function (the cells imple 
menting the CPU function) of the IC may be assigned to the 
central portion of the Surface while the memory function 
(the cells implementing the memory function) may be 
assigned to the upper portions. Section 3B below describes 
the method and apparatus to optimally assign the portions of 
the IC surface to the functions to achieve an optimal floor 
plan. 

0170 Subsection 1-4: Iterative One Dimensional Pre 
placement Optimization 

0171 The cell coordinates are then iteratively optimized 
under the iterative one-dimensional (ID) preplacement opti 
mization procedure described in S4. The purpose of this 
iterative ID preplacement optimization procedure is to get a 
fast, good cell preplacement. In the iterative one-dimen 
Sional preplacement optimization procedure of S4, the cells 
are pre-placed on a two-dimensional abstraction of the chip 
Surface. The iterative one-dimensional preplacement opti 
mization procedure begins with the Step 3 of initializing the 
coordinates of all cells at the center of the Surface, and then 
performing the iterations described in S4 in the X- and 
y-directions. 

0172 Subsection 1-5: Fast Procedure for Finding a Lev 
elizing Cut Point 

0173 A density-driven one dimensional preplacement is 
performed 4 to assign cells to regions in accordance with the 
capacities of each region of the chip. A preferred proceSS for 
assigning cells to regions in accordance with region capacity 
is described in S5. 

0.174. The surface abstraction is divided into subregions 
by bisection in a Selected direction. A preferred levelization 
by bisection process 5 is described in S5. 

0.175 Subsection 1-6: Median Control and Increase in 
Resolution 

0176). A median control procedure 6 is then used to 
modify coordinates to the cells. A preferred median control 
process is described in S6. 

0177. The 1D preplacement optimization procedure of 
S4, the cut-point procedure of $5 and the median control 
procedure of S6 are then iterated for a specified number of 
times, and the average value of the cost function (e.g. wire 
length) for the iterations is computed. 
0.178 The 1D preplacement optimization procedure of 
S4, the cut-point procedure of $5 and the median control 
procedure of S6 are then again iterated for the Specified 
number of times as a block 20 and the average cost function 
is recomputed. If the average cost function is decreased by 
less than a specified amount, usually 10, this step (block 
20) is exited. Otherwise this step (block 20) is again iterated 
with the average cost function again computed and com 
pared to the previous average cost function value. At the end 
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of this Step the cells have been assigned to Subregions in 
Such a way that the capacities of the Subregions are not 
exceeded. 

0179 Subsection 1-7: Universal Affinity Driven Discrete 
Placement Optimization 
0180. An affinity-driven placement optimization 7 is per 
formed to improve cell placement and to minimize the cost 
function. A preferred affinity-driven placement optimization 
proceSS is described in S7. 
0181 Subsection 1-8: Density Driven Capacity Penalty 
System 

0182 Anther method to calculate the cost of a cell 
placement layout is the relative density of the partitions of 
the Surface. A density driven System to calculate cell affinity 
is discussed in by $8. 
0183) Subsection 1-9: Wire Length Driven Affinity Sys 
tem 

0184 An alternative embodiment of the present inven 
tion is to calculate cell affinities and placement costs accord 
ing to the relative wire lengths of different designs. The wire 
length driven affinity System is discussed in S9. 

0185. Subsection 1-10: Minimizing Maximal Cut Driven 
Affinity System 

0186. Another parameter used to produce an affinity for 
improving cell placement is minimizing the maximal num 
ber of nets that interSect the unit Segment of the grid System 
imposed of the surface abstraction of the chip. The net 
interSect minimization affinity System is discussed in S10. 
0187 subsection 1-11: Neighborhood System Driven 
Optimization 

0188 Each moveable cell v is located within a neighbor 
hood Neigh (V) constructed in accordance with the optimi 
Zation of cell neighborhood System procedure outlined 
above. That procedure yields an ordering of cells according 
to the cells distance from the center of the neighborhood, 
after optimization. The neighborhood driven affinity system 
is described in S11. 

0189 Subsection 1-12: Functional Sieve Optimization 
Technique 

0190. The combination of affinities introduces an element 
of randomization. A deterministic System for combining 
affinities which converges at a relatively rapid rate is desired 
to optimally utilize affinities. Such a System which itera 
tively optimizes cell placement using a combination of 
affinities is the functional Sieve approach. The functional 
Sieve technique is described in S12. 

0191) When the affinity-driven optimization is complete, 
the level of the Subdivision of the chip surface is checked 8. 
If the level of subdivision is not at the specified highest level 
(i.e., the level of hierarchy with the smallest desired 
regions), block 21 is repeated the chip is further subdivided 
in the y-dimension; the preplacement iteration of SS 4 to 6 
is reentered with that level of Subdivision for the y-coordi 
nate. The preferred highest level is where the region is one 
column wide. After processing for the y-coordinate is com 
plete, the X-coordinate is processed, etc., as X and y alternate. 
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0.192 The typical number of iterations of block 21 is 
2log, N where N equals the number of columns in the chip. 
If, for example, the chip has 8 columns, the number of 
iterations is 2log 8, or 6. 

0193 After a certain level of hierarchy is achieved, it 
may be desirable to Stop the process at this point and not 
continue with further cell placement. This is especially true 
if one wants to obtain a fast estimate of cell placement. 

0194 Subsection 1-13: Course Overflow Remover (Bull 
dozer) 
0195 Continuing with FIG. 1B, after global levelization 
has been performed, there may still be Some density peaks 
in the core area of the chip. A preferred procedure for density 
peaks removal is described in S13. The procedure for density 
peaks removal 11 is Sometimes referred to herein as the 
“bulldozer.” The bulldozer is applied to remove the density 
peaks. 

0196) Subsection 1-14: Overlap Remover with Minimal 
Noise 

0197) The overlap removal procedure 13 of S14 is 
applied again without controlling the maximum distance 
between adjacent cells. The Step removes any overlap that 
exists among cell outlines. This Step is used to produce a 
physically feasible layout. Applying the Overlap removal 
procedure at this part of the process removes cell overlap 
with minimal increase in average wire length. 

0198 Subsections 1-15. Sinusoidal Optimization, and 
1-16, Dispersion Driven Levelizing System 

0199 When the highest level of hierarchy is reached 8, 
the proceSS enters a cell density levelization procedure as 
shown at the beginning of FIG. 1B. It should be noted that 
various combinations of the algorithmic StepS described 
herein can be used. Algorithmic Steps can be deleted as 
desired and as appropriate for the particular circumstances 
presented. Once the cell placement is determined by the 
methods in accordance with the present invention, the cells 
can then be placed on a Silicon wafer in order to construct 
the desired integrated circuit. 

0200. The cell density levelization preferably begins with 
a dispersion-driven step 9 as described in S16. As this step 
is entered, the cells have been placed in positions on the 
Surface that optimize given cost functions. However, the cell 
layout may not be feasible because cells may overlap, and 
the cells may have not been assigned to proper cell columns. 
Furthermore, the cell density may be very uneven, with 
resulting Serious consequences for routing the wires on the 
chip. The sinusoidal optimization step 10 of S15, the dis 
persion-driven levelizing system 9 of S16 are performed 
globally to levelize the density of cells using global level 
ization procedures. Steps 9 and 10 are iterated as a block 22. 
Typically, about 5 iterations has proven effective. 

0201 The sinusoidal optimization procedure 12 of S15 is 
applied to the chip surface Subdivided into cell columns. The 
densities of cells in the columns are controlled to prohibit 
overflow and ensure that the cells are evenly assigned to the 
columns required by the Structure of the final design. The 
Sinusoidal optimization procedure is iterated as a block 23, 
generally, for a specified number of times, Such as 5 times. 
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0202) Subsection 1-16A: Efficient Multiprocessing of 
Cell Placement Algorithms 

0203 The above-discussed placement optimization tech 
niques can be implemented using multiple processors to 
Simultaneously place the cells on the integrated chip (IC) 
Surface. In particular, the IC Surface can be conceptually 
divided into a plurality of regions and the multiple proces 
Sors assigned to Several, non-adjacent regions to process the 
cells of the assigned regions Simultaneously. Section 16A, 
along with FIGS. 39 to 41, discusses the multiple processor 
implementation of the placement methods. 

0204 Subsection 1-17: Cell Placement Crystallization 
0205 After applying the overlap removal procedure to 
remove the Overlap, most of the cells are close to their final 
positions. The crystallization Step places the cells in correct, 
final positions. Proper vertical cell spacing are computed So 
that horizontal wires can be routed over and between cells in 
the vertical columns. Vertical and local-horizontal “swaps” 
may be performed if doing So improves the cost functions. 
Cells must be assigned proper geometric coordinates So that 
their positions correspond to legal grid positions Specified by 
the underlying chip architecture. All of these Steps 14, 15, 
16, 17, 18 and 19 are performed by the crystallization 
procedures described in S17. These procedure “freeze” the 
cells into their final positions. Steps 14, 15 and 16 are 
iterated as a block 24, generally a specified number of times, 
such as 10 times. Steps 18 and 19 are also iterated as a block 
a specified number of times. At this point, the placement 
process is completed, and a data structure is prepared that 
can be read by the routing System for chip routing and design 
completion. 

0206) Subsection 1-18: In General 
0207. An exemplary integrated circuit chip is illustrated 
in FIG. 2 and generally designated by the reference numeral 
26. The circuit 26 includes a semiconductor Substrate 26A 
on which are formed a number of functional circuit blocks 
that can have different sizes and shapes. Some are relatively 
large, Such as a central processing unit (CPU) 27, a read 
only memory (ROM) 28, a clock/timing unit 29, one or more 
random access memories (RAM) 30 and an input/output 
(I/O) interface unit 31. These blocks, commonly known as 
macroblocks, can be considered as modules for use in 
various circuit designs, and are represented as Standard 
designs in circuit libraries. 
0208. The integrated circuit 26 further comprises a large 
number, which can be tens of thousands, hundreds of 
thousands or even millions or more of Small cells 32. Each 
cell 32 represents a single logic element, Such as a gate, or 
Several logic elements interconnected in a Standardized 
manner to perform a specific function. Cells that consist of 
two or more interconnected gates or logic elements are also 
available as Standard modules in circuit libraries. 

0209. The cells 32 and the other elements of the circuit 26 
described above are interconnected or routed in accordance 
with the logical design of the circuit to provide the desired 
functionality. Although not visible in the drawing, the Vari 
ous elements of the circuit 26 are interconnected by elec 
trically conductive lines or traces that are routed, for 
example, through vertical channels 33 and horizontal chan 
nels 34 that run between the cells 32. 
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0210 For a particular electrical circuit having predefined 
input and output terminals and interconnected in a prede 
termined way, the problem for the chip designer is in 
constructing a layout indicating the positions of the modules 
Such that the area on the chip Surface occupied by wires and 
the overall layout area are minimized. 
0211) The system shown in FIGS. 1A and 1B receives 
inputs for a user-specified integrated circuit design which 
includes a netlist. A connection between two or more inter 
connected elements of the circuit is known as a wiring net, 
or net. A netlist is a list of cells and nets. 

0212) SECTION 2: NEIGHBORHOOD CONSTRUC 
TION 

0213 A hyperedge is a Series of pins which are intercon 
nected, i.e., wired together with an electrically common 
connection. For example, a hyperedge having pins A, B, and 
C means that pins A, B, and C are all connected together 
with a common metal wire. The “length” lcq) of a wiring net 
or hyperedge is equal to the number of pins (vertices) that 
are interconnected by the net minus one. This can be 
represented mathematically as ICG)=q-1, where q is the net 
and q is the number of pins that are interconnected by the 
net q. 

0214) A particular cell, especially a large cell, can have 
two or more pins that are interconnected by one net q, and 
for this reason q is the number of pins rather than the 
number of cells interconnected by a net q. However, for 
Simplicity of description and illustration, the following 
examples will assume that each cell has only one pin 
connected to each net. 

0215. An example is illustrated in FIG. 3. A net q 40 is 
shown as interconnecting 5 cells 34, 35, 36, 37 and 38, that 
are collectively designated as W. The length of the net q is 
(5-1)=4. The cells w are illustrated as being spaced from 
each other and enclosed in an oblong shape which represents 
the net q. This is for illustrative purposes only, as it will be 
understood that the net q does not have any specific shape, 
and merely specifies that individual pins (not shown) of the 
cells w are to be interconnected. This arrangement is 
referred to as a hyperedge. 

0216 A distance p(V1,V2) between two given vertices V 
and V is defined as the length of the shortest path between 
the vertices, where the length of a path is the Sum of the 
lengths of the nets (hyperedges) that constitute the path. 
0217 FIG. 4 illustrates seven nets q to q, each of which 
interconnect a plurality of cells W. The distance between two 
given cells or vertices V and V2 is the length of the shortest 
path through the nets q to q, that interconnects the cells. 

0218. The cell v is common to the nets q and q. 
However, there is no path from the cell V to the cell v. 
through the net q1. 

0219. There is a path from the cell V to the cell v. 
through the nets q, q and q, and another path through the 
nets q2, qa and qs. The lengths of the nets q2, qa, q and qs 
are (3-1)=2, (4-1)=3, (2-1)=1, and (3-1)=2 respectively. 
The length of the path through the nets q, q and q is 
(2+3+1)=6, and the length of the path through the nets q, q 
and qs is (2+3+2)=7. The path through the nets q, q and q. 
has the shorter length, more Specifically 6. If there is no 
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other path (not shown) that is shorter, the distance between 
the cells V and V is defined as the length of this path. 
0220 FIG. 4 also illustrates how to measure a distance 
p(V,q) between a cell V and a net q. This distance can be 
expressed mathematically as p(V,q)=min, p(v,w), and is 
the shortest path between the vertex v and any pin win the 
net q. 

0221) Measurement of the distance between the cell v. 
and the net q, will be taken by way of example. There is a 
path from the cell V to a cell V in the net q7. The length of 
this path is the Sum of the lengths of the nets q and q, which 
has a value of (6+2)=8. However, the path from the cell v. 
to the vertex V through the nets q, q and q is the shorter 
path between the cell V and any cell w in the net q.7, having 
a value of 6 as described above. If there is no other path (not 
shown) that is shorter, the distance between the vertex v and 
the net q is therefore defined to be 6. 
0222. In accordance with the present metric, a “range” 
range (q) of a net q from a center cell V of a cluster or 
neighborhood (to be described in detail below) can be 
expressed mathematically as range (q)=p(V,q)+1(q). In 
other words, the range is the distance from the center cell V 
to the net q plus the length of the net. The range of the net 
q, from the cell V, for example, is equal to the distance 
p(V,q) from the cell V to the net q.7, plus the length of the net 
q7, or (6+2)=8. 
0223) One further definition is necessary for understand 
ing the present invention. A “border” is a list of all nets that 
have ranges equal to the index of the border. For example, 
a border having an index of 7 (border) is a list of all nets 
having ranges of 7. This can be expressed mathematically as 
border (i)=all nets q Such that p(V,q)sr and range (q)=j, 
where j is the index of the border and r is a predetermined 
maximum distance from the center cell V (to be described in 
detail below) to the net q. 
0224. The borders can be considered as a series of 
concentric shells or quantum levels, with each border having 
an incrementally higher indeX and including nets having an 
incrementally higher range than the border with the next 
lower index. 

0225 FIG. 5 is a flowchart illustrating the formation of 
a cell cluster or “neighborhood” N(V.M) in accordance with 
the present invention. The term “neighborhood” is illustra 
tive of the fact that the clusters can be “fuzzy”, with one cell 
being included in two or more clusters, and two or more 
clusters being allowed to overlap. 
0226 Initially, a target number M of cells are designated 
to be included in a neighborhood. A number of cells between 
15 and 30 tends to work best, with the optimal number being 
about 20 cells in each neighborhood. The algorithm outlined 
below is executed until C. * M cells are collected within 
various neighborhoods. C is a predetermined parameter. 
The preferred value of C is 2. 
0227. The first step is to specify a particular cell V to 
constitute the center of the cluster N, and a value for M as 
indicated in a step 100. 
0228. The flowchart of FIG. 5 includes a plurality of 
nested loops indicated by broken lines. This notation indi 
cates that all of the Steps included within each loop are to be 
performed for all outer loops. 
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0229. A step 102 which follows the first step 100 of 
inputting values of v and M is to determine which nets 
include the center cell V, and assigning all these nets to 
corresponding borders. 

0230. The next step, designated as 104, is to examine all 
borders, starting with border, in increasing order of index. 
0231. The next step 106 is to assign nets to borders in 
indeX order. A step 108 includes assigning all cells which are 
not in the neighborhood from the nets in the current border 
to the neighborhood. A step 110 includes assigning all nets 
which contain cells just included in the neighborhood, if 
these nets have not been previously assigned to any border, 
to corresponding borders. The cluster or neighborhood N(V, 
m) is output in a step 112. 

0232) The method of FIG. 5 will be described further 
with reference being made to an example illustrated in FIG. 
6. This example includes a center cell V and nets q to qs. 

0233 Step 102 includes assigning all nets that include the 
center cell V to borders. The nets q, q and q all include the 
center cell V. Since the distances from the center cell V to 
these nets is Zero, the ranges of these nets are equal to their 
lengths. 

0234. The net q has a length of (3-1)=2, and is assigned 
to border. The nets q and q have lengths 3 and 4, and are 
assigned to the borders border and border respectively. 

0235. In steps 104 and 106, the borders are examined in 
increasing order of index to determine if they include any 
nets. Border does not include any nets. Border includes the 
net q. Therefore, step 108 is performed, in which all cells 
w in the net q are assigned to the cluster or neighborhood 

0236. In step 110, it is determined if there are any other 
nets connected to cells that were just assigned to the neigh 
borhood. In this case, there are not, and the processing 
returns to step 104 to examine the next border. 

0237) The next border is border which contains the net 
q. All of the cells w in the net q (except V) are assigned to 
the neighborhood. The method then performs step 110 to 
determine if any other nets 
include any of the cells w (just included in the neighbor 
hood) of the net q. In the illustrated example, the nets qs and 
q include cells which are also included in the net q, and are 
thereby connected to the net q. If these nets have not been 
assigned to borders, then they are now assigned to the 
borders having indices equal to their ranges respectively. 
The ranges of both nets qs and q are 5, So these nets are 
assigned to borders. 

0238. The steps 104 and 106 are then performed for the 
next border, more specifically border which includes the net 
q. In Step 108, all cells of the net q are assigned to the 
cluster or neighborhood. Then, step 110 is performed to 
determine if any other nets 
include cells which are also included in the net q. In this 
case, the net q is connected to the net q. The net q has a 
range of 5, and is assigned to borders. 

0239). The next border is borders, which contains the nets 
q1, qs and q. No other nets are connected to q and qs, but 
all of the cells of the nets q and qs are assigned to the cluster. 
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All of the cells of the net q are also assigned to the cluster. 
The net q is connected to the net qz, and q, is added to 
borders. 
0240 Examination of the next border, border, indicates 

it contains the net q.7. All cells of the net q are assigned to 
the cluster, if they were not assigned previously. Since the 
net qs is connected to the net q7, the net qs may also be added 
to the cluster. The net q has a range of 11, and may be 
assigned to border. 
0241. In this manner, clusters or neighborhoods are 
grown one border at a time until a maximum size is reached. 
In addition, the borders are grown by "hitting” nets having 
corresponding ranges through net interconnections Starting 
at the center cell V. 

0242) SECTION3: OPTIMIZATION OF CELL NEIGH 
BORHOOD SYSTEM 

0243 In the foregoing process of constructing neighbor 
hoods, a list of the nets processed is generated. That list of 
nets includes all nets incident to cells included in the 
neighborhood. Once the neighborhood is established, coor 
dinates are assigned to each individual cell. For each cell V, 
the neighborhood of the cell is constructed and optimized 
using the cell as the center. A target number of cells C * M 
for the neighborhood is also defined. For purposes of rela 
tively large VLSI chips, testing and operation has shown that 
about a twenty cell neighborhood yields effective conver 
gence results. Larger or Smaller neighborhood sizes may 
also be employed while still within the scope of the inven 
tion. An alternative measure for the parameter M is the total 
height of all cells in the neighborhood, with height defined 
as the physical y-axis dimension of an individual cell. A 
maximum total cell height may alternately be used to define 
the neighborhood size. 

0244. In accordance with the current invention, we assign 
coordinates to each cell and to each net in the neighborhood. 
We assign the center V of the neighborhood the coordinate 
0.0. We also assign the coordinates 1.0 to all cells not 
included in the neighborhood. Neighborhood cell assign 
ment Step assigns a cell V from the neighborhood coordinate 
values equal to p(V, V)/R, where p(V, V) equals the length 
of the shortest path between the vertices V and V, and R is 
the maximum radius value for the neighborhood. AS Seen in 
FIG. 7, v is necessarily not less than 0 and not greater than 
1. We term the assigned coordinates “Z(v)” for each v. 
0245. As shown in FIG. 8, we then iterate recomputing 
of net and cell coordinates by iterating two procedures, as 
follow: 

0246 Procedure 1: The new net coordinates are com 
puted Such that for any net q within the Set of nets Q, 

1 

Zq = it. zil 

0247 where q is the number of pins of the net q. This 
equation Sums the total of the current coordinates of the cell 
V and Sums this for all cells in an individual net, then divides 
by the total number of pins on the net. The result of the 
Summation and division is the coordinate of the net q. 
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0248 Procedure 2: In new cell coordinate computation, 
for each cell V, the weight fiv) is represented by: 

= 1 
- - 
Xi 

0249 where for a net q, v is an element of q. 
0250) The new cell coordinate Zv is equal to: 

By X za) |q| 

0251 We apply the iteration procedure only on cells from 
the neighborhood except the center and only on nets that 
have at least one cell in the neighborhood. The iteration is 
generally accomplished for a pre-determined number of 
times, preferably 15 to 20 times. 

0252) SECTION3A: PARALLEL CELL PLACEMENT 
WITH MINIMAL CONFLICTS 

0253) Referring now to FIG. 43, a flowchart 1120 illus 
trates the Steps taken by the parallel processing technique of 
the present invention for Simultaneous cell placement. AS 
indicated by reference numeral 1122, the cells are preplaced 
onto the IC. However, unlike the preplacement 1112 of FIG. 
42, the technique of the present invention does not neces 
sitate a "good' preplacement. AS discussed above, prior art 
techniques require "good' preplacement of the cells to 
minimize croSSOver nets and inter-processor communica 
tions overheads. In contrast, the preplacement Step of the 
present invention is merely a step to provide a starting point 
for the cell placement algorithm being implemented. 

0254 AS indicated by the reference numeral 1124, each 
of the cells of the IC are assigned to one of the multiple 
processors which will be used to place the cells onto the IC. 
The details of the method for assigning the cells to the 
processors are discussed in the ASSigning Cells to Processors 
SubSection below. Because the cells, not the regions, of the 
IC are assigned to the processors, and because the cells of 
the same net will generally be assigned to the same proces 
sor (as will be discussed below), the crossover net problems 
are minimized. Also, each of the multiple processors can be 
assigned to approximately the same number of cells or cells 
requiring movements, thereby balancing the work load 
among the processors. Starting from the initial assignment 
1122, the number of conflicts are reduced by reassigning 
1128 the cells to other processors while keeping the proces 
Sors’ loads balanced. 

0255. After the initial assignment of cells to the proces 
Sors, the cells can be re-assigned between the processors 
1126 to further reduce possible crossover net problems and 
to increase the efficiency of parallelization of the cell place 
ment algorithm. This is done by calculating the affinities of 
the cells to each of the multiple processors, and reassigning 
the cells to different processors to increase the overall 
affinity of the System. The affinity of a cell to a processor can 
be defined as the degree of tendency of the cell to belong 
with the other cells of that processor. The details of the 
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affinity calculation and the reassignment of the cells are 
discussed in the Affinity Calculation and Cell Reassignment 
Subsection below. 

0256 AS indicated by reference numeral 1128, the affin 
ity calculation 1126 and the cell reassignments 1128 are 
iterated for a predetermined number of times or until a 
predetermined condition is met Such as no further improve 
ment or no further increase in the overall cell affinity. 
0257 To facilitate the discussion of the present invention, 
the following terms are used in this specification: 

NC the number of cells of the integrated circuit; 
NN the number of nets; 
NP the number of processors; 
C1, ..., CNc the cells; 
N1, ..., NNN the nets; 
P, ..., PN the available processors; and 

the runtime that the placement algorithm needs to make the 
decision about moving the cell C. 

time (Cp 

0258 The value of time(C) for each of the cells can be 
obtained experimentally or by estimate based on the Specific 
placement algorithm being implemented. Time(C) usually 
depends on the number of nets to which the cell belongs, or 
the cell degrees. Then, the total time needed to perform all 
cell moves, or the total load, can be expressed as 

WC 

total load = X. time (C) 
i=1 

0259 Assigning Cells to Processors 
0260 AS discussed above, the work load can be evenly 
distributed among the processors by assigning, to each of the 
processors, the average load where the average load is 

total load 
NP 

average load = 

0261 Unlike the prior art techniques where the proces 
Sors are assigned to regions of the IC, the present invention 
assigns the cells of the IC to each of the processors. For the 
initial assignment, the cells are divided into parts with the 
equal total times. More precisely, the following method is 
used. First, beginning with the first cell, C, we find a Set, 
containing minimum number of cells, with a total time(C) 
which is greater than or equal to the average load. This is 
accomplished by finding the minimal i Such that 

i 

X. time (C) > average load 
i=l 

0262 and the found set of cells C, . . . , C, are 
assigned to the first processor P. Then, the proceSS is 
repeated beginning with the cell C. Then, we find the 
next set of cells C1, . . . , C, where 
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i2 

X. time (C) > average load 

0263 and assign the set to P, and so on until all the cells 
are assigned to a processor. At the end of the process, an 
even distribution of the work load is achieved because each 
of the processors P to PNP are assigned to a set of cells 
with total work load equal to or slightly more than the 
average load. The last processor, PNP, is assigned to a set of 
cells with total work load equal to or slightly less than the 
average load. 

0264 For each processor P, the work load of the pro 
ceSSor can be defined as 

time (C) load (P) = X. 
C; is assigned to P. 

0265 Affinity Calculation and Cell Reassignment 

0266 The reduction of crossover nets and inter-processor 
communications can be achieved by assigning the cells to 
processors to obtain the highest affinity value for the entire 
System. In this invention, the affinity of a cell to Switch from 
the currently assigned processor to another processor con 
sists of two parts. The first one is the reduction in number of 
conflicts and the Second one controls the processors’ load 
balance. ASSuming that cell C, is currently assigned to 
processor P, its affinity to Switch to processor P, is deter 
mined by: 

affinity(C. P.)=netlist affinity(C P)+wload affini 
ty(C. P.) 

0267 and we define cell affinity (C) as the greatest of 
these affinities, or the greatest affinity of the cell C, to Switch 
from its currently assigned processor P to any of the other 
processor P, i.e., 

cell affinity (C) = max affinity (C. P.) 
sis 

0268) The netlist affinity(CP) is the total reduction in 
number of croSSover net conflicts if we reassign the cell C. 
from the current processor P to the processor P. The 
reduction in the conflicts can be calculated as the difference 
between the number of conflicts the net, to which the cell 
belongs to, produces before and after the movement of the 
cell. Thus, the value of netlist affinity(C, P) depends upon 
the method used to calculate the number of conflicts caused 
by a net. 

0269. The best way to calculate the number of conflicts 
caused by net N, denoted as conflicts(N), is to maintain an 
array (a1, ..., anp) for each net N where each a represents 
the number of cells from net N currently assigned to 
processor P. Then, the conflicts(N) for any N is 
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conflicts (N) = X. (ii 
1<i><NP.iii 

0270 Alternatively, conflicts(N) can be the number of 
different processors having cells from the net N minus 1. 
0271 Yet another method to determine conflicts(N) is to 
assign 1 if cells from N are assigned to more than one 
processor and 0 otherwise. 
0272. The load affinity is the work load balancing factor 
and is determined by 

load(P)-load(P) load affinity (C, P) = average load 

0273 A constant, 2., may be used as the weighing factor 
to shift the relative importance between the netlist affinity 
and the load affinity. A Small constant value would reduce 
the relative effect of the load affinity factor in the overall 
affinity calculation, thereby giving the netlist affinity factor 
a relatively larger role in the determination of the affinity. In 
this case, the cells of the integrated circuit are more likely to 
be reassigned to processors based upon the reduction in the 
number of conflicts the reassignment will effect. On the 
other hand, a larger constant value would increase the 
relative effect of the load affinity factor in the overall 
affinity calculation, thereby giving the load affinity factor a 
relatively larger role in the determination of the affinity. 
Consequently, the cells of the integrated circuit are more 
likely to be reassigned to processors based upon work load 
balance among the processors. 

0274. Once the cell affinities are calculated as discussed 
above, the cells are reassigned 1128 among the processors to 
increase the overall affinity of the system. To avoid local 
minimum, we do not reassign all the cells with positive 
affinity, but only certain percentage p of them (usually, 
p=40). Then we find the number threshold such that p % of 
positive affinities are greater than threshold. 
0275. In all Subsequent iterations 1130, we calculate 
affinities again and reassign cells with the affinity greater 
than threshold by moving the cell from the current processor 
to the one that cell has the maximal affinity to. 

0276. The number of iterations 1130 can fixed, or 
repeated until a predetermined condition is met Such as no 
further improvements are possible. 

Function: 

Reference Number of the Assigned 
Portion of the Core Space 30 as 
illustrated in FIG. 2 

0277 Referring now to FIG. 44, an apparatus 1140 for 
parallelizing cell placement with minimal number of con 
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flicts is illustrated. The apparatus 1140 comprises a plurality 
of processors 1142 and memory 1146 for storing instructions 
for the processors 1142 as described above. The processors 
1142 may be of any commercially produced RISC or CISC 
processors commonly made by a number of Vendors, or 
custom made processors Such as LSI Logic's CoreWare 
modules. The processors and the memory is connected 1152. 
Also connected to the processors 1142 and memory 1146 are 
an input device 1144 and an output device 1148 for retriev 
ing the IC information, the cell list, and the preplacement 
information 1154 to the apparatus 1140 and for outputting 
the final cell placement information 1150. 

0278. The specific algorithms described herein, as well as 
the basic steps which they represent (even if they are 
replaced by different algorithms), are designed for imple 
mentation in a general purpose computer. Furthermore, each 
of the algorithms described herein, as well as the basic Steps 
it represents, can be encoded on computer Storage media 
such as CD ROMS, floppy disks, computer harddrives, and 
other magnetic, optical, other machine readable media, 
whether alone or in combination with one or more of the 
algorithms and StepS described herein. 

0279 SECTION 3B: FLOOR PLAN OPTIMIZATION 
0280 Step One: Assign Portions of the Core Space to the 
Functions. 

0281 Referring to FIG. 44, the first step of the cell 
placement optimization method is to assign portions of core 
space 1230 to the functions of the integrated circuit. For 
illustration, this specification will use an example of an 
integrated circuit design with eight (8) functions denoted as 
f1, f2, f3, f4 f5, fo, f7, and fS. 

0282. The assignment of the functions to the portions of 
core Space 1230 is made in a manner designed to minimize 
Some Specific cost function. The cost function may require 
uniform Space utilization over the entire floor. For example, 
a cost function may require that each function utilize 70% of 
its assigned area. Another cost function may require that 
each function meet a predetermined level of utilization of 
the floor assigned to the function. For instance, a cost 
function may require f1 to utilize 70% of its assigned area 
and f2 to utilized 80% of its assigned area. This second 
example cost function describes the general case for which 
the first example cost function is a Special case. For the 
purposes of our discussion, the Second, the more general 
cost function, will be further discussed and considered. 

0283. In our example, the eight functions are assigned to 
the portions of the core space 1230 as shown by Table 3B(1) 
below. 

TABLE 3B(1) 
f1 f2 f3 fA. f5 f6 f7 f8 

1232 1234 1236 1238- 1239- 1242 1244-a- 1246 
1239 1240 1244b 

0284. Some portions border each other while other por 
tions overlap. Core portion 1232, assigned to f1, borders 
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core portions 1234 and 1238 assigned to functions f2 and f4 
respectively. Portion 1238-1239 (combination of portions 
1238 and 1239) is assigned to fa and overlaps portion 
1239-1240 (combination of portions 1239 and 1240) 
assigned to fs. 
0285) The border area and the overlap areas will be used 
by the method of the present invention to optimally place 
cells Such that the capacity distribution and utilization 
requirements are met. AS described below, the bordering and 
the overlapping areas are used to shift the capacities of the 
functions assigned to the bordering and overlapping portions 
of the core Space to create additional capacity for placing the 
cells of the functions with a shortage of capacity. For 
example, Suppose the capacity of the core portion 1238 
1239 is 25,000 cell height units, but only 20,000 cell height 
units are required to implement fa. The excess 5,000 cell 
capacity of the portion 1238-1239 can be reassigned to f1, 
whose assigned core portion 1232 borders the portion 1238 
1239, or to fs, whose assigned core portion 1239-1240 
overlaps the portion 1238-1239. 
0286. When the excess capacity of portion 1238-1239 
(assigned to function f4) is shifted, or reassigned, to portion 
1232 (f1) is shifted to then the cells of function f1 can cross 
the order 32r to be placed within portion 1238-1239. 
0287 Likewise, fs (portion 1239-1240) can be imple 
mented to use the excess 5,000 cell height unit capacity of 
portion 1238-1239 (f4) by moving the cells of fa out from, 
and moving the cells offs into, the overlap area 1239. The 
technique of using the common overlapping area to shift 
exceSS capacity from one portion assigned to a function to 
anther portion can be used, in addition to the border 
encroachment method discussed in the previous paragraph, 
to control the capacity distribution and utilization. 
0288 Moreover, the capacity-shifting technique using 
the bordering and the overlapping regions, can be employed 
to shift excess capacity from one portion (function) of the 
integrated circuit to another portion of the integrated circuit 
even when the two portions do not share a border or an 
overlapping area. For example, if portion 1236 (assigned to 
f3) has a shortage of capacity, then the access capacity of 
portion 1238-1239 (fA) can be shifted to compensate for the 
Shortage by first shifting the exceSS capacity of fak to f1 
(portion 1232), thereby creating access capacity for f1. 
Then, the access capacity of f1 can be shifted to f2 (portion 
1234). Finally, the access capacity of f2 can be shifted to f3 
(portion 1236) for the shortage. 
0289. The details of the implementation of the shifting 
technique will be discussed below. 
0290 Step Two: Define Regions. 
0291 Referring now to FIG. 45, once the functions of the 
integrated circuit are assigned specific portions (1231, 1234, 
1236, 1238-1239, 1239-1240, 1242, 1244a, 1244b, and 
1246) of the core space 1230, the core space is partitioned 
into a grid of elementary regions 1250. FIG. 45 shows the 
core space 1230 being partitioned into a grid of twelve rows 
by twelve columns containing 144 elementary regions 1250. 
For simplicity, only three elementary regions 1250 are 
referenced, and each of the elementary regions, or regions, 
will be referred to as R; where i is the column and j is the 
row on which the region R is located. For instance, region 
1250a is referred to as Rs and region 1250b, Raz. 
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0292 Each region is assigned to each of the portions 
which takes space from the region. FIG. 46 shows the 
relationship between the regions and the portions of the core 
Space. AS the table illustrates, in contrast to the one-to-one 
relationship between functions and portions, there is a 
one-to-many relationship between portions and the regions. 

0293 If a border between two or more portions lies 
within a region, then the region is assigned to all of the 
portions which have its border within the region. For 
instance, as illustrated by FIGS. 44, 46, and 47, and by Table 
3B(2) below, Rs is assigned to portions 32 (f1),34 (f2),38 
(f4), and 42 (f6). Table 3B(2) below partially lists the 
functions of the integrated circuit, the portions assigned to 
the listed function, and the regions assigned to the listed 
portions. 

TABLE 3B(2) 
Assigned 

Function Portion Assigned Elementary Regions 

f1 1232 R1.12, R212, Rs.12, R4.12, Rs.12, 
R1.11: R2.11, R3.11, R411, Rs.11 
R1.10: R2.10 Rs.10, R410 Rs.10 
R19, R2.9, Rs.9, R49, Rs.9, 
R1.8 R2.8, R38, R4.8, Rs.8, 
R17, R2.7, R3.7, R47, Rs. 7, 
R16 R26, R3.6R4.6 Rs.6 

f2 1234 R1.6 R26, R3.6R4.6 Rs.6 
R1s. R2s, R3s, R4s. Rs.s., 
R1.4; R2.4, R3.4; R44 Rs.4 
R13, R23, R3.3, R43, Rs.3 
R12, R22, R32, R42, Rs.2, 
R11, R21, R3.1, R41, Rs.1, 

f8 1246 R106, R11.6 R12.6 
Ros, R10s. R11s, R125, 

R92, R102, R11.2, R12.2, 
Ro1, R101, R11.1, R12.1 

0294 Step Three: Define the Pieces. 
0295) Referring to FIGS. 47 and 48, after partitioning 
the core region 1230 into a grid of elementary regions 1250, 
the elementary regions 1250 are grouped into pieces, each 
piece being defined as a set of regions 1250 assigned to the 
Same function or the same Set of functions. Typically, a piece 
of the IC comprises a set of adjacent regions as illustrated by 
the figures of this specification; however, adjacency of the 
regions is not required to define a piece. 
0296 FIG. 47 illustrates the relationship between the 
pieces and the regions of the core space, and Table 3B(3) 
below partially lists the pieces of the core Space and the 
regions comprising each of the listed pieces. FIG. 48 shows 
all of the pieces of the integrated circuit 1230 for the 
example illustrated by FIGS. 44-47. For clarity of discus 
Sion, the pieces are referred to Pnnnn where nnnn is the 
reference number of the piece as illustrated by FIG. 48. 

TABLE 3B(3) 
Piece reference according to 
FIGS. 47 and 48 Elementary Regions comprising the Piece 

P1262 R1.12, R2.12, Rs.12, R412, 
R1.11, R2.11, R3.11, R411, 
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TABLE 3B(3)-continued 
Piece reference according to 
FIGS. 47 and 48 Elementary Regions comprising the Piece 

R1.10: R2.10 Rs.10, R410 
R1.9, R2.9, R3.9, R49, 
R18, R2s, R38, R4s, 
R17, R27, Rs. 7, R4.7, 

P1264 R16 R26, R3.6R4.6 

P1296 Rg1, R101. R11.1 R12.1 

0297 For convenience, the following expressions are 
used: 

0298) & set of all pieces of the core; 
0299 S(f) set of all pieces from which the portion of the 
core assigned to function f may take Some space. 
0300 Referring to FIG. 48, in our example, Š={P1262, 
P1264, P1266, P1268, P1270, P1272, P1274, P1276, P1277, 
P1278, P1280, P1282, P1284, P1286, P1288, P1290, P1292, 
P1294, P1296. Table 3B(4) below lists the S(f) for some of 
the functions of the example integrated circuit. 

TABLE 3B(4) 
Set Members of the Set (FIG. 48 reference numbers to the pieces) 

S(f1) P1262, P1264, P1270, P1272 
S(f2) P1264, P1266, P1268, P1272, P1274 

S(f8) P1286, P1290, P1294, P1296 

0301 As shown by FIGS. 47 and 48 and by Tables 3B(3) 
and 3B(4), piece 12P62 comprises all elementary regions 
belonging to f1 only. Piece 1264 comprises elementary 
regions each of which belongs to both f1 and f2. Note that 
a piece can comprise only a single elementary region. For 
instance, piece P1272 comprises only one elementary region 
Rs, which belong to functions f1, f2, f4, and fö. 
0302) Each of the pieces has a capacity, or a maximum 
number of cells which can be placed in the core Space 
defined by the piece. If a piece is assigned to a single portion 
(assigned to a function) of the core space, then entire 
capacity of the piece is available to the portion (i.e., to 
accommodate the cells of the function assigned to that 
portion); however, a piece, Such as P1270, can be assigned 
to two or more portions, each portion representing a func 
tion. In Such a case, the capacity of the piece is divided and 
allocated to the functions to which the piece belongs. 
Therefore, the following notation is used to express the 
capacity of a piece assigned to a portion, which, in turn, is 
assigned to a function: 

Xp=the capacity assigned to function f in piece P 
0303 For example, if piece P1264 has capacity for 4,000 
cell height units, then Xipe may be 1,000 cell height units 
while Xtra may be 3,000 cell height units. 
0304) Step Four: 
Requirements 

Define Capacity and Utilization 

0305. A cell placement is acceptable when the placement 
results in a predetermined level of utilization for each of the 
portions assigned to the functions of the circuit. 
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0306 To place the cells with a built in factor to achieve 
the predetermined level of utilization, the cells are given 
fictive heights prior to being placed on the core Space. The 
fictive height of a cell is the height of the cell used to 
calculate the Space, or the number of cell height units, 
required to place the cell on the core space. 
0307 The actual height of a cell is usually measured in 
millimicrons. Because all of the Standard cells have the same 
width, the cell height is usually used as the measure of 
capacity as well has the height of the cell. 
0308 For example, if a function's target utilization rate is 
fifty percent, then the cells of the function should be placed 
on the core Space Such that the cells actually use fifty percent 
of the Space provided for the cells on the core Space. That is, 
when the cells of the function are placed on the core Space, 
the ratio between the actual amount of the capacity used by 
the cells divided by the amount of the capacity taken up by 
or reserved for the cells must be fifty percent. Alternatively 
expressed, the utilization ratio determines the density of the 
Space taken up to place the cells of the function. 
0309 Therefore, if a functions target utilization rate is 
50%, and the function is implemented by using two cells C1 
and C2 with cell heights of four (4) and six (6) units, 
respectively, then the fictive heights of each of the cells is Set 
to eight (8) and twelve (12), respectively. The result is that 
when the cells C1 and C2 are placed, they take up twenty 
(20) cell height units while actually using ten (10) cell height 
units, or the fifty percent of the Space taken up. At this point, 
the following definition becomes useful: 

hh(f)=the sum of all fictive heights of all cells of the 
function f. 

0310 For each piece of the core space, the following may 
be defined: 

cap(P)=the capacity of the piece P. 

0311. Then, to meet the predetermined capacity distribu 
tion and utilization requirements, the following two expres 
Sions must be Satisfied: 

Expression (A): cap(P) = sum of all Xip where P is a member of S(f), for 
all P's of the circuit; 

Expression (B): hh (f) s sum of all Xip where P is a member of S(f), for 
all functions of the circuit. 

0312 Expression (A) states that, for each piece P, the 
capacity of the piece, cap(P), must equal to the Sum of Xer 
for all functions f to which P is a member. For example, 
referring to FIGS. 47 and 47, the capacity of P1264(piece 
1264), cap(1264), must equal the capacity of P1264 assigned 
to f1 and f2. Alternatively expressed, cap(1264)=Xtre+ 
Xp2.P.1264. 
0313) If cap(P) is less than the sum of all X for any of 
the pieces, then the capacity of the P, cap(P), is over 
allocated, and the placement of the core Space is not pos 
Sible. To remedy the Situation, the capacities of the pieces 
must be reallocated to the functions. On the other hand, if 
cap(P) is greater than the Sum of all Xip for any of the 
pieces, then the capacity of P, cap(P), is under-allocated, 
meaning that Some core space of the piece is not allocated 
to any of the functions. 
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0314) If the capacity allocations, Xer, for all of the pieces 
of the core space meet Expression (A), then a feasible cell 
placement, or a Solution, exists for a valid cell placement. If 
the capacity allocations, Xer, does not meet Expression (A) 
for any piece of the core Space, then a feasible cell placement 
does not exist. In the latter case, a feasible Solution does not 
exist because not meeting Expression (A) means that the 
Sum of the capacities of the functions assigned to the piece 
exceeds the actual capacity of the piece itself. 

0315 Expression (B) states that, for each function, the 
sum of the fictive heights of all the cells of the function must 
be less than or equal to the Sum of the capacities the function 
is assigned in each of the piece in which the function is 
assigned capacities. For example, referring to FIGS. 46 and 
48, the sum of the fictive heights of all of the cells of f1 
(assigned to portion 1232, which comprises P1262, P1264, 
P1270, and P1272) must be less than or equal to the sum of 
the capacities of f1 in P1262, P1264, P1270, and P1272. 
That is, 

0316. If the sum of all fictive heights of all the cells of the 
function is greater than the Sum of all the capacities of the 
function in each of its pieces, then there is insufficient 
amount of the core pace to place the cells of the function. 
0317. In Summary, if Expression (A) is not satisfied, then 
a Solution is not feasible. In Such a case, for a feasible 
placement Solution, the functions must be reassigned to 
different portions of the core Space, the pieces may be 
redefined, or the capacities of the pieces may be reallocated 
to the functions until Expression (A) is met. When Expres 
Sion (A) is met, then a feasible cell placement exists, and 
Expression (B) is analyzed. If Expression (B) is met for a 
given cell placement, then the placement is a correct, and the 
processing stops. If Expression (B) is not met, then the 
following Steps, Step Five, Step Six, and Step Seven, are 
followed to shift, or reallocate, the capacities of the pieces 
to meet Expression (B). 
0318 Step Five: Construct the Graph. 
0319 Referring now to FIG. 49, a graph 1300 is con 
Structed where each of the vertices of the graph corresponds 
to a function, and each of the edges connecting the vertices 
represents the pieces which contain borders or overlapping 
areas of the functions (vertices) which it connects. 
0320 In the instant example, the vertices (1302, 1304, 
1306, 1308, 1310, 1312, 1314, and 1316) of the graph 1300 
correspond to functions f1, f2, f3, f4 f5, fo, f7, and f3, 
respectively. Vertices are connected (by an edge) if the 
corresponding functions share at least one piece of the core. 
Continuing to refer to FIG. 49, for simplicity, each of the 
dashed lines of the figure indicates multiple edges connect 
ing the vertices while each of the Solid lines indicates a 
Single connection between the vertices. 
0321 Continuing to refer to FIG. 49, dashed-line edges 
1302a, 1302b, and 1302c indicate that f1 (represented by 
vertex 1302) shares at least one piece with each of the 
functions f2 (vertex 1304), f4 (vertex 1308), and f6 (vertex 
1312), respectively. Likewise, the dashed-line edges 1314a 
and 1314b indicate that f7 (represented by vertex 1314) 
shares at least one piece of the core with functions fo (vertex 
1312) and f8 (vertex 1316), respectively. 

Jun. 14, 2001 

0322 The solid-line edges 1304a and 1306a show that 
functions f2 (vertex 1304) and f3 (vertex 1306) share piece 
P1268 (see FIGS. 47 and 48) of the core. Two different 
edges are used to indicate sharing of one piece of the core 
between two functions (vertices). The first edge represents 
the capacity of the shared piece assigned to the first vertex 
(function), which is potentially available to the Second 
vertex (function). The Second edge represents the capacity of 
the shared piece assigned to the Second vertex (function), 
which is potentially available to the first vertex (function). 
0323) For example, edge 1304a, represents Xtres (the 
capacity of P1268 assigned to f2). The same capacity, 
Xtress, is also the maximum amount of capacity f2 may 
given up within P1268 if f2 is found to have excess capacity. 
The direction of the arrow of edge 1304a indicates the 
direction in which the capacity may be reallocated, or 
shifted. 

0324 Edge 1304a is denoted as W(f3,f2.P1268), and has 
the value Xtress. Likewise, the edge 1306a, denoted 
W(f2.f3,P1268), has the value Xrses, and represents the 
capacity of piece 1268 assigned to f3 (vertex 1306), which 
is potentially available to f2 (vertex 1304). 
0325 Referring primarily to FIG. 49 but also referring to 
FIGS. 47 and 48, vertices 1308 and 1310 (representing fa. 
and fS, respectively) have two pairs of edges (1308a, 1310a 
and 1308b, 1310b) connecting them because fa and fS share 
two different pieces, P1282 and P1284. In this case, the 
value of the edges are: 

0326 edge 1308a, denoted W(f5.f4.P1282), has the 
value Xe4.P12s2; 

0327 edge 1310a, denoted W(f4.f5.P1282), has the 
value Xrs.P12s2; 

0328) edge 1308b, denoted W(f5.f4.P1284), has the 
Value Xelp12s, and 

0329 edge 1310b, denoted W(f4.f5.P1284), has the 
Value Xrs p1284. 

0330 Step Six: Identify the Functions with Capacity 
Shortages and the Functions with ExceSS Capacity. 
0331. After building the graph 1300, each of the vertices 
(functions) are analyzed and grouped into two sets of 
vertices V1 and V2. All functions (vertices) with deficien 
cies of capacity are assigned to group V1. All functions with 
a shortage of the core Space Satisfy the expression: 

0332 hh(f)>the sum of the capacities of all pieces 
which contribute core space to the function (i.e.,the 
sum of all Xer for all P belonging to S(f)). 

0333. In other words, V1 contains all vertices (functions) 
which do not have Sufficient core space to place all of their 
cells. 

0334) The functions (vertices) with excess core space are 
assigned to V2. All functions with exceSS core Space Satisfy 
the expression: 

0335 hh(f)<sum of the capacities of all pieces 
which contribute core space to the function (i.e., the 
sum of all X for all P belonging to S(f)). 

0336. In other words, V2 contains all vertices (functions) 
which have more than the core space needed to place their 
cells. 
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0337 Step Seven: Shifting Excess Capacities to Meet 
Deficiencies. 

0338 For each of the vertices of V1, the graph 1300 is 
traversed until a vertex belonging to V2 is encountered. The 
traversal is in the opposite direction of the arrows of the 
FIGS. 49 and 50 because the direction of the arrow indi 
cates the direction in which the exceSS capacities can be 
shifted. 

0339 During the traversal, a chain of the vertices and the 
edges traversed is maintained. The chain begins with a first 
vertex (function, f) in V1 and ends in a second vertex 
(function, f) in V2. 
0340. The maximum capacity that can be shifted from 
f to f, C., is the Smallest of the following three values: second 

0341) 1... the amount of the shortage of f, i.e. 
hh(ft)-(sum of the capacities of all P where P is a 
member of S(f)); 

0342. 2. the amount of excess capacity off i.e. second 

(sum of capacities of all P where P is a member of 
S(?econd))-hh(?econd); 

0343 3. the smallest maximum-capacity of any of 
the edges of the chain. The capacity of each of the 
edges is expressed as W(f1, f2.P). 

0344. After building the chain through which excess 
capacity of a piece can be shifted, the capacities of the each 
pieces of the chain, is updated as to shift the amount of 
capacity, represented by C., from the Second Vertex (f) 
to the first (f) vertex by updating the edge values of each 
of the edges of the chain. 
0345 The process can best be illustrated using an 
example shown by FIG.50. Referring primarily to FIG.50, 
but also to FIGS. 44-48, the following facts are assumed for 
this illustration: 

0346 A. The vertices have the following properties: 

0347 1. vertex 1306 (representing f3 and belonging 
to set V1) is deficient by 500 cell height units. 
Alternatively expressed, hh(f3)>Xrspecs and 
hh(f3)-Xsees=500 cell height units; 

0348 2. vertex 1302 (f1, set V2) has 300 excess 
capacity; 

0349) 3. vertex 1310 (f5, V2) has 1200 excess 
capacity; 

0350 4. vertices 1304 (f2) and 108 (f4) have no 
deficiencies or exceSS capacities. 

0351 B. The edges have the following properties: 

0352) 1. 1304a=W(f3,f2.P1268)=Xf2.P1268–800 
cell height units, 

0353 2. 1302b-W(f2.f1, P1264)=Xf1.P1264=400 
cell height units, 

0354) 3. 1308c=W(f2.f4.P1272)=Xf4.P1272-200 
cell height units, 

0355 4 1310a=W(f4 f5, P1282)=Xf5.P1282+300 
cell height units. 
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0356) Given the graph 1320 of FIG.50 with above-listed 
facts, the 500 cell height unit deficiency of f3 can be 
remedied by Shifting the capacities along the following two 
chains of the graph 1320. 
0357 Chain 1: 
0358 Continuing to refer to FIG.50 but also referring to 
FIGS. 44-48, the 300 excess capacity of f1 (vertex 1302) can 
be shifted to f3 (vertex 1306) via piece 1264 (edge 1302b), 
f2 (vertex 1304), and piece 1268 (edge 1304a). 
0359 The chain can be denoted 1302->1302b->1304-> 
1304a->1306. The maximum capacity of the chain, C., is the 
minimum of the following three numbers: 

0360 (1) 500, the deficiency of f3; 
0361 (2) 300, the amount of excess capacity of f1; 
and 

0362 (3) 400, the lowest maximum edge capacity of 
all of the edges of the chain, which, in this case, is 
from the edge 1302b. 

0363 Therefore, the C. of Chain 1 is 300. 
0364. The actual shifting of 300 cell height units from f1 
(vertex 102) to f3 (vertex 1306) is accomplished as follows: 

0365 (1) reallocating Xfl.P1264 to be 300 units less 
than its previous value, thereby freeing Space for 
cells of f2 in piece P1264; 

0366 (2) reallocating Xf2.P1264 to be 300 units 
more than its previous value, thereby taking the freed 
Space, and creating an excess capacity of 300 units in 
f2; 

0367 (3) reallocating Xf2.P1268 to be 300 units less 
than its previous value, thereby freeing Space for 
cells of f3 in piece P1268; and 

0368 (4) reallocating Xfl.P1268 to be 300 units 
more than its previous value, thereby adding Space 
for cells off3 in piece P1268, alleviating the shortage 
by 300 cell height units. 

0369. After the above-listed operations to shift 300 cell 
height units from f1 to f3, the shortage of capacity for f3 is 
reduced to 200 height units. 
0370 Chain 2: 
0371) The 200 units of 1200 excess capacity of function 
f5 can be shifted to f3 in a similar operation using Chain 2 
which can be denoted 1310-s 1310a-s1308-s1308C-s 
1304->1304a->1306. The maximum capacity, C., of Chain 2 
is 200, the lowest maximum edge capacity of all of the edges 
of the chain, which, in this case, is from edge 1308c. 
0372 The above described process is repeated for each of 
the vertices (functions) of the set V1 until no vertices remain 
in the set. Set V1 cannot be emptied if at least one vertex 
(function) of the Set does not have Sufficient core space to 
place all of its cells. In that case the placement is not possible 
under the given parameters. 

0373 Also, a vertex (function) cannot be reached to 
claim its exceSS core Space when the total Space assigned to 
the functions in the neighborhood is less than the minimal 
required to place the cells of the respective functions. To 
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overcome this problem, the process disclosed by this docu 
ment can be rerun after making one or more of the following 
changes: 

0374) 1... the utilization of some or all of the neigh 
boring functions can be increased; 

0375 2. the physical area assigned to the neighbor 
ing functions can be increased; or 

0376 3. elementary region grid can be modified to 
create shared core Space pieces encompassing the 
function and its neighboring functions. 

0377 SECTION 4: ITERATIVE ONE DIMENSIONAL 
PREPLACEMENT OPTIMIZATION 

0378 A one dimensional iterative optimization initially 
provides a fast, good cell coordinate placement. The one 
dimensional iterative optimization is performed in both the 
X and y directions. AS may be appreciated by one of ordinary 
skill in the art, the iterative optimization may be performed 
in the y direction initially, but the preferred method is to 
perform it in the X direction. In the X direction, a netlist or 
hypergraph H includes the set V of cells v and the set Q of 
nets q. In addition, it should be noted that where “X” or “X” 
is used below for calculation in the X-direction, when 
calculating in the y-direction, “y” or “Y” would be used. As 
used herein, “Z” and “Z” are universal notations representing 
either “x” and “X”, on the one hand, or “y” and “Y” on the 
other, depending on which direction is being considered. 
0379 FIG. 9 illustrates a cell v. 102 having several pins 
which belong to the net q 104. For purposes of pin offset 
definition for cell shifting and exact positioning purposes, 
the origin 106 of the cell defines the default “position” of the 
cell. If a net q104 is being evaluated by the system, then the 
pin 108 on the cell v. 102 which is on the net q 104 is 
positionally defined relative to the origin 106. Any point 
may be defined as the origin of the cell, including its center 
of mass, but the preferred embodiment is to define the origin 
at the physical lower left corner of the cell as shown in FIG. 
9. 

0380. As shown in FIG. 10, the core 201 is divided into 
Subregions R. Initially, the preferred value of R is one, 
indicating the core is not subdivided. The Subdivision of the 
core is represented by an array Xi of X-coordinates of 
vertical dividing lines 202(1) through 202(n) and an array 
Y of y-coordinates of horizontal dividing lines. For each 
interval Xi and Xi+1), a dividing point is calculated to 
determine finer resolution. Each cell V belongs to Some of 
these intervals, and the interval function IV is equal to i if 
the cell v belongs to the interval Xi, Xi+1). The current 
coordinates of the cell v are denoted as ZVI, while the 
coordinates of the net q are denoted by Zd. 
0381. In initial placement optimization initialization step 
250, each movable cell coordinate is assigned a coordinate 
of a dividing point of the interval the cell occupies. Thus 
Zv=DXIV). DX is typically the midpoint of the interval, 
but the dividing point may be at a different location in each 
interval while still within the scope of the current invention. 
As shown in FIG. 11, for each moveable cell within the core 
region 201, the movable cell coordinate 203 is located at the 
dividing point 204 of the interval, which is a point at a 
percentage of the width or length of the core region 201. The 
preferred implementation is locating the dividing point 204 
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at the center point of the Surface abstraction of the core 
region. Fixed cells are assigned their real coordinates. 
0382. The flowchart of FIG. 12 demonstrates the proce 
dure for obtaining an initial one dimensional placement of 
the movable cells. The movable cells are assigned the 
coordinate of the center of the region where they are located 
in initialization Step 250. In net coordinate computation Step 
251, new net coordinates are computed. These new net 
coordinates are computed Such that for any net q within the 
Set of nets Q, 

1 
Zq = it. ((Zvi + (v, o 

0383 where q is the number of pins of the net q. This 
equation Sums the total of the current coordinates of the cell 
V and the Z-offset (X or y depending on the direction) of the 
pin on the cell which belongs to the net q, and Sums this for 
all cells in an individual net, then divides by the total number 
of pins on the net. The result of the Summation and division 
is the coordinate of the net q. 
0384. In new cell coordinate computation step 252, for 
each cell V, the weight BV is represented by: 

= 1 
- - 
X, 

0385) 
0386 For each interval Xi, Xi+1 and each cell v from 
that interval, the new cell coordinate ZVI is equal to: 

where for a net q, V is an element of q. 

1 

ft) XZ (g, i. 

0387 Z* (qi) is calculated by determining a temporary 
value a, where a initially equals Zd. If a is greater than 
Xi+1), or is outside the interval, then a is set to the greater 
border condition, or equal to Xi+1). If a is less than Xi, 
again outside the interval, then a is Set to the lesser border 
condition Xi. Finally, Z (qi) is set equal to a. 
0388. This set of steps places the coordinates of the nets 
along an imaginary line as shown in FIG. 13, line 225. Cells 
are placed along this line based on the results of the initial 
Z(V) calculation described above, and these positions are 
Subsequently iteratively moved to new positions in the 
region. The positions of cells within the region are shown in 
FIG. 14, which includes positions where some of the nets 
are initially outside the region. These out of bounds nets are 
then Set to the edge of the region. 
0389. Once the new cell coordinates are computed, the 
difference between the previous value of the cost function 
and the new value of the cost function is determined in Step 
253. The typical cost function used is wire length and the 
cost function is computed as the average of the half 
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perimeters of boundary boxes for all nets. The typical cost 
function used is wire length and the cost function is com 
puted as the average of the half-perimeters of boundary 
boxes for all nets. This difference is evaluated in step 254, 
and if the difference is not below a predetermined threshold, 
the cell positions are iterated by repeating net coordinate 
computation Step 251 and new cell coordinate computation 
step 252. This iteration procedure is repeated for a number 
of times, Such as one hundred times, or until the difference 
in cost function of two consecutive iterations is less than a 
predetermined threshold, such as 0.001 microns. A unit may 
be any measure, but the preferred distance threshold is 0.001 
microns. The number of iterations and the threshold may 
vary while still within the scope of the invention. 
0390 SECTION 5: FAST PROCEDURE FOR FIND 
ING ALEVELIZING CUT POINT 

0391 The surface abstraction, or core region 201, 
denotes a region Rij. The previous one dimensional fast 
preplacement procedure provides a given dividing point 
DXi, if the region is divided horizontally, or DY) if the 
region is divided vertically. This dividing point may be 
anywhere along the line containing the cells from the 
previous procedure, but the preferred location is the mid 
point of the line. 
0392 The dividing point in the current example generates 
two subregions in the region Rij). As shown in FIG. 15, the 
placement of nets along the line in the X direction is 
partitioned along a dividing line 300 providing two Subre 
gions containing the cell positions. The capacity of each of 
these regions is the area of the regions without all fixed cells 
or blockages. The capacities of the two regions are cap0 and 
cap1. A cut point, Zo, is desired which divides the cells Such 
that a percentage of cells or cell heights is proportional to the 
Size of the region. For example, if a 50% cut point is desired, 
the required location for the cut point is where the two 
regions, defined by the physical 50% border dividing the 
Surface abstraction, would have equal numbers of cells or of 
cell heights. As shown in FIG. 16, a region physically 
divided in half by a dividing point 300 may not have a cut 
point and cut line 301 coexistent with the region dividing 
point. The Sum of all heights of all cells having coordinates 
lower than Zo, or of the total quantity of cells having 
coordinates lower than Zo must not be greater than 

capo 
capC+ capi 

0393 and the sum of all heights of all cells having 
coordinates greater than Zo, or of the total quantity of cells 
having coordinates greater than Zo must not be greater than 

cap 
capC+ capi 

0394. It is preferable to use the total of all cell heights, but 
other parameters, Such as the number of cells, may be used 
while still within the scope of the invention. 
0395. Initially, if all cells within a given region Rij are 
within an interval (A,B), the (A,B) interval is subdivided 
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into N equal Subintervals in subdivision step 325 as shown 
in FIG. 18. Initialization step 326 initializes an array Sk 
having N elements, Stores the Sum of heights of all cells 
having Subintervals with indices less than or equal to k, and 
initializes all the elements of array Sk with the value Zero. 
For each cell V within the region Rij, index calculation 
step 327 computes an index n(v) of the Subinterval where the 
cell V coordinate is located: 

(Z(v) - A) 

0396 As an example, assume (A,B) is an interval from 0 
to 200 and 10 equal Subintervals are desired. In fact, a 
number in the range of 1000 such intervals would normally 
be desired, but 10 is used here for purposes of illustration. 
Further, assume that one cell is located in each of the ten 
Subintervals, as shown in FIG. 17, although it would be 
probable that Subintervals would contain more than one cell. 
ASSigning A has a value of Zero, and B a value of 200, n(v) 
for a cell in this arrangement is equal to the minimum integer 
value greater than Z(v)/10 for the cell. The designation “X” 
denotes take the minimum integer greater than X, Such that 
for X having a value of 1.3, the value of x is 2. 
0397) This results in an integer value for a Subinterval 
within the (A,B) region where the individual cell is located. 
Height accumulation Step 328 accumulates the heights of the 
cells in each Subinterval within the array Sk according to 
the relationship: 

Sn(v)=Sn(v)+h(v) 
0398 where h(v) is the height of cell v. Value of array 
elements step 329 calculates the values within Sk by 
iterating for k equal to 2, k being less thin or equal to N, 
incrementing k, 

0399. Cut point index locator step 330 locates the mini 
mal index ko Such that 

capo 
- - : SINTs. Sk capo + capi" Ns Sko 

0400. The levelizing cut point, where cell height is 
equivalent to the percentage of area within the Surface 
abstraction is equal to 

B 
Zo = A + (ko - 0.5): 

04.01 Clustering of cells within a single region, or at a 
border of a region, may provide an inaccurate cut point. In 
Such a case, where the levelizing cut point requires a higher 
accuracy, the Subinterval where the levelizing cutpoint is 
located may be again divided into N Subintervals in Subdi 
Vision Step 332 and the procedure repeated, locating a 
Second levelizing cutpoint. 
0402. Once the levelizing cutpoint is located, all cells are 
shifted according to the following procedure. 
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0403 SECTION 6: MEDIAN CONTROL AND 
INCREASE IN RESOLUTION 

04.04 For a given region Rij having a dividing point D, 
the levelizing cut point Zo divides the cloud of cells pro 
portionally to the capacities of the Subregions induced by the 
dividing point D. From FIG. 19, offset calculation step 350 
determines the offset of the cut line from the dividing line, 
where A is the difference between the coordinates of divid 
ing point D and the levelizing cut point Zo. Coordinates for 
each cell in the region are modified Such that for any cell V 
within the region Rij, the cloud of cells is shifted in 
shifting step 351 such that the cut point is collocated with the 
dividing point: 

04.05 For cells outside the region, those cells are placed 
at the border of the region. If a is greater than XIV+1 then 
a is equal to XIV+1). If X is less than Xiv), then a is 
equal to XIV). ZVI is then set equal to this value a. 
0406. In the preferred embodiment, the system initially 
places all cells at the center of the two-dimensional abstrac 
tion of the chip Surface. The System then performs a prede 
termined number of iterations of the One Dimensional 
Preplacement Optimization in one direction, Such as the X 
direction. The Surface abstraction is then Subdivided into 
Sub-regions by dividing the Surface abstraction in the oppo 
site direction. The system then uses the Levelizing Cut Point 
procedure to partition the cells into groups proportional to 
the capacities of the Subregions. The Median Control pro 
cedure then modifies the coordinates of the cells. The 
Levelizing Cut Point and Median Control procedures are 
iterated a specified number of times (preferably 6) with the 
Specified number of iterations comprising a Block. The 
average cost function is computed after a Block is per 
formed. After each Block, an overall cost function, described 
below, is computed. After repeating this Block a predeter 
mined number of times (typically 10), the System computes 
the average cost of each cost calculated during these Block 
iterations. The current average cost value is compared with 
the previous average cost value, and if the difference 
between the average value and the previous value is less than 
a predetermined value (such as 10), the procedure for the 
first level of hierarchy is complete. Cells are then assigned 
to the respective Subregions depending on the calculated 
coordinates. 

04.07 If the average cost function has not decreased by a 
Specified amount, further Blocks of computations are 
required. At the end of this iterative procedure the cells are 
assigned to Subregions in Such a way that the capacities of 
the Subregions are not violated. 
0408. After assignment of the cells to a respective sub 
region, as is described in S1 above, the System may repeat 
the aforementioned procedures based on a cut in the oppo 
Site direction. If, for example, the initial iterative one 
dimensional preplacement optimization divides the avail 
able Space on the Surface abstraction by a vertical line, or 
divides in the X direction, the System executes the finding of 
a levelizing cut point procedure and the median control and 
resolution increase procedure in this direction. Upon 
completion of these procedures, the cells are assigned to one 
of the two regions, and the procedure may be repeated in the 
y-direction, based on the cells located in the two regions, 
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after other optimization procedures discussed below are 
completed. As shown in FIG. 20, the two regions are 
divided using two dividing lines in the y direction and cells 
are placed along these two lines. The System locates a 
levelizing cut point for each region and partitions out the 
cells to the four remaining cells. This division in the y 
direction creates a Second level of hierarchy. 
04.09 For purposes of this patent specification, hierarchy 
levels are determined based on the number of divisions of 
the surface abstraction. The level of hierarchy is the sum of 
the number of times the Surface abstraction is divided into 
Separate regions. For example, if the Surface abstraction has 
been divided three times in the X direction and two times in 
the y direction, the system has reached the fifth level of 
hierarchy. The total number of regions is equal to 2'''" 
Levely), with “Levelx” meaning the number of occasions that 
the Surface abstraction has been divided in the X direction 
and “Levely” means the number of occasions that the 
Surface abstraction has been divided in they direction. Thus, 
in the previous example, 32 regions exist at the fifth level of 
hierarchy. 

0410 SECTION 7: UNIVERSAL AFFINITY DRIVEN 
DISCRETE PLACEMENT OPTIMIZATION 

0411. After each surface abstraction division, the system 
performs a discrete placement optimization. For purposes of 
illustrating this procedure, it is assumed that the previous 
routines have furnished two sets of cells partitioned into two 
regions on the Surface abstraction. All cells are located in the 
centers of each region. 
0412. The system calculates affinities and cost functions 
for the arrangement. An affinity is calculated based on 
current cell placement and blockages in a chip. Affinities are 
heuristically connected with a desired cost function, which 
should be minimized. Affinities can be driven by cell density, 
wire length, minimizing maximal cut, clustering, etc., or 
Some combination of these parameters depending on the 
goal Sought to be achieved. Affinities may be positive or 
negative, and relate to the quality of an alternate placement 
of a cell. For example, having a cell with a higher affinity at 
a first location and a lower affinity at a Second location 
indicates that the preferred placement of the cell is the first 
location. 

0413. The parameter of the discrete placement optimiza 
tion is e, which represents the accuracy of the placement, 
and is a small number, such as 10 to 10". From FIG.21, 
adjacent cell location Step 400 initially considerS moving a 
cell from its current position to each of the adjacent regions, 
as well as considering leaving the cell in the current region. 
For higher levels of hierarchy (i.e., a substantial number of 
regions), nine total regions are evaluated for cells not located 
on an edge of the Surface abstraction. Affinity calculation 
Step 401 calculates, for each adjacent region, the maximum 
affinity of the cell is moved to these adjacent regions. The 
total number of cells having an affinity greater than a 
predetermined value p is denoted N. For the initial place 
ment received from the preceding procedural Steps, the 
affinities for the cells are calculated and ordered according 
to these affinities. 

0414 Global threshold evaluation step 402 finds a thresh 
old number, Globthresh, Such that the total number of cells, 
North, having an affinity greater than the threshold 
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number, is less than e multiplied by the number of all cells 
having positive affinities, or No. Practice has shown that 
optimal results occur fore having a value of from 30 to 40 
percent. 

0415. The overall global threshold is determined using a 
similar procedure to that described above with reference to 
the procedure for finding the levelizing cut point. The 
affinities are ordered Sequentially, and all cells are defined to 
be within an interval (A,B), exclusive of negative affinities. 
With reference to FIG. 22, the (A,B) interval is subdivided 
into k equal Subintervals in Subdivision step 450. Initializa 
tion step 451 defines an affinity array Ai having i elements. 
The initial value of all elements of this array is 0. Aistores 
the number of cells whose affinities are greater than or equal 
to (k-i)*L, where L is the length of the Subinterval within 
(A,B). For each cell V, calculation step 452 computes an 
index i(v) of the Subinterval where the cell v affinity is 
located: 

0416 MaxAff(v) is the maximum affinity over all adja 
cent regions for the cell V. This calculation yields an integer 
value denoting a Subinterval within the (A,B) region where 
the individual cell affinity is located. Now for each cell v we 
increase the appropriate element of the array by 1. Such that 
A(i(v))=A(i(v))+1. Cell affinity Summation array step 453 
calculates the value of Ai by iterating for i equal to 2, i 
being less than or equal to k, incrementing i, 

0417 Global affinity evaluation step 454 determines the 
global affinity threshold GlobThresh using the previous 
equation such that GlobThresh is equal to i where i is the 
minimum i Such that Noe is less than or equal to Ai). 
0418. After calculating GlobThresh, the system evaluates 
the list of all cells in a predetermined Sequential order. 
Affinity comparison step 455 calculates the maximal affinity 
for the present region and for each adjacent region. If the 
affinity for an adjacent region is greater than the global 
threshold GlobThresh, the cell is placed in the new region in 
cell repositioning Step 456. The original cell position data 
structure is updated in data structure update step 457. Then 
steps 455, 456 and 457 are iterated as a block 458, generally 
3 times. 

0419. The result of this procedure is a global threshold 
for all cells. Some cells have been moved to adjacent 
regions, altering affinities of other cells. The procedure is 
then repeated two more times, for a total of three iterations, 
through the list of all movable cells using the same thresh 
old. 

0420. As an additional and optional procedure, a local 
threshold can be calculated in addition to the global thresh 
old. The local threshold is calculated in the same fashion as 
the global threshold, but with respect to only the cells from 
the region where the cell is located. If we use this additional, 
optional procedure, we move the cell only if the maximal 
affinity is greater than both the global threshold and the local 
threshold. 

0421. An average cost function, representing the average 
of the three values of the cost function calculated after each 
iteration, is computed. Now we compute a new threshold as 
described above in step 454. This entire procedure, from 
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threshold computation through cost function computation 
(block 459), is repeated a predetermined number of times 
(usually 10 times). Each time block 459 is repeated the 
predetermined number of times, the average value of the 
average cost function is calculated and compared with the 
previous average value of the average cost function value. If 

AvgCosti <(1+8) AvgCosti 

0422 then the optimization process is halted. 8 is a small 
number, typically 10 or 10'. 
0423 SECTION 8: DENSITY DRIVEN CAPACITY 
PENALTY SYSTEM 

0424 The surface abstraction is partitioned alternately in 
the Vertical and horizontal directions, where each division 
denotes an additional level of hierarchy. The levels of 
hierarchy, Lev, and Levy determine the number of hierarchy 
levels. The number of grids, or channels of regions, in each 
direction are given as Grid, equal to 2', and Gridy, equal 
to 2''. Each region on each level of hierarchy is deter 
mined by (Lev. Levy, i,j) where i and j are the indices of 
corresponding Surface abstraction Segments. The capacity of 
each region is a function of these four parameters. The 
System then calculates the Sum of the heights in each region. 
0425 The System then calculates a region capacity in 
terms of the heights of cells which can be located within a 
Single region. This capacity of cell heights accounts for rows 
or columns of locations where cells may be located. AS 
shown in FIG. 23, the cell region will have a certain number 
of columns, or possibly rows, located therein. The cell 
height capacity represents the Space available to individual 
cells within the region and is based on the hierarchy of the 
Surface abstraction. AS outlined below, the highest level of 
hierarchy defines a Single column per region. AS may be 
appreciated by one of ordinary skill in the art, rows may be 
used rather than columns to define a total cell width capacity 
rather than a height capacity. 

0426 All cells are located at the center of a region during 
Some phases of the placement procedure. The height of a 
Single cell may extend into more than one region. A param 
eter Colkey is assigned to this placement System process. 
The center of each cell is assigned to the center of the region 
it occupies. If ColKey has a value of 0, the entire height of 
the cell is located within a single region. If Colkey is equal 
to 1, the height of the cell is distributed to the regions the cell 
overlaps. For example, if a cell has a height of 16 units while 
the region has a height of ten units, three units are assigned 
to the cell above and three to the cell below the current cell. 
Cells located in an edge region are assigned to the region 
away from the edge, and not to any region outside the edge. 
Hence in the example previously presented, ten units of the 
cell would be assigned to the edge region and three to the 
region above the edge region. 

0427 Movement of the cells from one region to another 
requires updating the total of the heights in each region. 

0428 Each cell v is located within regions with indices 
IV and JV), in the X and y directions, respectively. Move 
ment of a cell to an adjacent region is denoted by A; and A. 
where A is a movement in the horizontal direction, with a 
rightward movement being +1, and A representing vertical 
movement, upward yielding a +1 value. A; and A; each are 
set at either -1, 0 or +1. From FIG. 24, penalty calculation 
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step 501 computes a penalty, PenCapB(V.C.A., A), equal to 
the following values: 

SumHeight viv : 2 Cap Ivy 

0429 for A, and A both equal to zero; and 

SumHeight II (v) + All v+A) + a 3 h(v) 2k 

0430 otherwise (i.e., either or both A; and A, have a value 
other than 0 (-1 or +1)). 
0431 C. represents the degree of counting, which affects 
the movability of a cell V to a new region. C. Will typically 
have a value between 0.1 and 1. Prior level calculation step 
502 computes the penalty for the regions three levels before 
the current level. For example, if the current hierarchy 
divides the Surface abstraction into 64 by 64 total regions, 
then three levels before has 8 by 8 regions. A total of 64 eight 
by eight regions will fit into a 64 by 64 area. The total 
penalty, PenCaps(V, A, A), is calculated in the same manner 
as the PenCapB calculation in total penalty computation Step 
503. The total capacity penalty is calculated in step 504 
according to the following formula: 

PenCap(; A. A.)=W* PenCapB(, Cl, A. A.)+Sw Wad * PenCaps(; A.A.)+ ColKey* * PencapCol(; f, 
Ai, A) 

0432 where 2 is the capacity penalty weight in the total 
affinity, and SW is a Switch parameter Set to 0 or 1 depending 
on whether use of the PenCap8 variable is desired. PenCap8 
is used only when the area is divided into 16 by 16 regions 
or more. 2 and 2 are the relative weights of correspond 
ing penalties. The use of these various penalties allow the 
user to drive the placement based on predetermined desired 
characteristics. If capacity in individual columns is to be 
penalized more than other capacity weights, then the value 
of 2 is greater than the other a factors, i.e. 2 and ad, 
where all 2 factors are between Zero and one. While design 
and performance are generally a matter of choice, experi 
ence has demonstrated that may initially be set to the 
following value: 

col 

Corex 
= 0: . . . . . . . 

Grid X: Grid Y 

0433 where oranges between 0.5 and 1.5, and Corex is 
the X dimension of the core. The values initially selected for 
2 and had are 16 and 16. 

0434) SECTION 9: WIRE LENGTH DRIVEN AFFIN 
ITY SYSTEM 

0435 An alternate embodiment of the current design is to 
calculate affinities and penalties according to the relative 
wire lengths of different designs. This procedure provides a 
Set of affinities providing the minimal wire length over all 
feasible placement Solutions. 
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0436 For each cell v and net q, the minimum and 
maximum values for the X component penalties are as 
follows: 

0437 where X(w) is the current coordinate of the cell 
origin, X(V,q) is a pin offset from the origin where the pin 
belongs to the net q. The y component penalties are similar: 

0438. These equations define a bounding box 550 con 
taining the net q 551, as shown for a three pin net in FIG. 
25. 

0439. The borders of the region where the cell v is located 
are denoted by: 

0440 X(v)=XIIv 
0441 X.(v)=XIIv+1) 
0442 Y(v)=YIIv) 
0443) Y(v)=YIV+1) 

0444 The penalty vector for cell v and net q in the 
X-direction is: 

04:45 (PenHP(v,q,-1), PenHP(v,q,0), PenHP(v, 
q,1)) 

0446. These values correspond respectively to movement 
of the cell to the left, nonmovement of the cell in the 
horizontal direction, and movement of the cell to the right. 
0447 The penalty vector for cell v and net q in the 
y-direction is: 

0448 (PenHP(v,q,-1), PenHP(v,q,0), PenHP(v, 
q,1)) 

0449 These values correspond respectively to movement 
of the cell upward, nonmovement of the cell in the vertical 
direction, and movement of the cell downward. 

0450. The penalty vector for the individual situation is as 
follows. If ), is less than X, then the vector representa 
tion for the penalty in the X direction is (-1,0,1), indicating 
Zero penalty for keeping the cell in its current location, a 
penalty of one for moving the cell to the right, and a penalty 
of-1 for moving the cell to the left. This indicates that a cell 
in the net is outside the left boundary of the region, and 
movement of the entire net to the right would be a penalty 
for the wire length. Movement of the cell to the left would 
be a negative penalty, or benefit, to the wire length. For X 
greater than X, the penalty vector is (10,-1). For X 
than X and X less than or equal to X, the penalty vector 
is (0,0,1). For X, less than X and X greater than X, the 
penalty vector is (0,0,0). For X greater than or equal to X 
and X, less than or equal to X, the penalty vector is 
(1,0,1). For Xin greater than or equal to X and Xia greater 
than X, the penalty vector is (1,0,0). Similar vectors result 
for positions of the cells in the y direction. 

min 

min less 

0451. The total penalty for a cell v in the X direction is 
a normalized Sum of the penalties in the X direction over all 
nets incident to the cell v: 
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PenHPy (v., A) = (XI 1 - XIO) *X PenHPx (v, q, Ai) 
gav 

0452. In the Y direction, 

PenHPy(v, A) = (XJ1) - XI (OI): X. PenHPy (v, q, A) 
gav 

0453 The total penalty is the sum of the X and y com 
ponents: 

PenHP(;AA)=PenHPx(x, A)+PenHP (VA) 
0454. The affinity is the opposite of the penalty: 

AffHP(;AA)=-PenHP(; A.A.) 
04.55 and a first combined affinity is calculated based on 
both capacity and wire length: 

0456 QEF(v) represents a scaling factor having the fol 
lowing parameters: 

f Heightv) Y 
log - - + A s Avg Height of All Cells) 

0457 where Height(v) represents the height of the cell v. 
Although any values may be used for A and B in this 
equation, experience and testing has shown that the values 
of 5 and 5 produce the most beneficial results. 
0458 SECTION 10: MINIMIZING MAXIMAL CUT 
DRIVEN AFFINITY SYSTEM 

0459 Another parameter used to produce an affinity for 
improving cell placement is minimizing the maximal num 
ber of nets that interSect the unit Segment of the grid System 
imposed of the surface abstraction of the chip. Net overlap 
inherently yields inefficiency of wiring, and thus minimizing 
the number of nets which cross other nets improves overall 
System efficiency. For each level of chip core partitioning 
hierarchy, the number and position of the Vertical and 
horizontal lines which induced the level of partitioning 
hierarchy are evaluated, including determining the number 
of nets which intersect a line partitioning the cell into 
regions. Initially, the System determines the number of nets 
which intersect the lines and the relative affinities for these 
line crossings. The System moves the cells and the nets 
change position based on relative affinities, and then the 
number of net crossings and affinities are recomputed. 
0460. As shown in FIG. 26, each dividing line partitions 
regions, and each of these regions has a capacity denoting 
the volume of cells which can fit within the region. The 
System performs the following procedure once after each 
bisection. The System calculates the capacities as an average 
capacity of regions adjacent to the dividing line. In FIG. 26, 
the capacity of dividing line X(i) is defined as the average 
capacity of all regions to the left of the line and all regions 
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to the right of the line. The System calculates average 
Vertical line capacity and average horizontal line capacity 
for all lines, representing the amount of wiring which is 
available over the entire Surface abstraction. The capacity 
may also represent available Space for wiring available on 
multiple layers of the chip. The capacity of each horizontal 
and vertical line is then divided by the corresponding 
horizontal or vertical average values. Hence, if the capacity 
of the line represented by X(i) in FIG. 26 has a capacity of 
1500 cells and the average capacity of all vertical lines on 
the Surface abstraction is 1000 cells, the relative cut of the 
line is 1.5. The ratio of the number of nets crossing a line and 
the capacity of the line are defined as the relative cut. 
0461 Before each optimization step in the affinity driven 
discrete placement optimization procedure, and particularly 
before calculation of global and/or local thresholds, the 
System calculates a midcut for the Surface abstraction. The 
midcut represents the average relative cut over all lines of 
the Surface abstraction. FIG. 27 represents a region having 
indices (TX, TY). The number of cuts represents, with the 
current cell configuration, the number of times a net crosses 
a boundary, while the capacity of the line represents the total 
number of possible crossings of the particular boundary. The 
System calculates four penalties which represent the cost of 
a change for a half-perimeter move of cells within the region 
one unit to the right, left, up, and down: 

( Cut YTY + 1) 
Capy TY + 1 

/ (MidCap) 
DYT = (YJ1)- YJO)-( - B+ 3: / MidCap) 

0462. These equations, as illustrated in FIG. 27, repre 
Sent the number of cuts over region dividing lines TX, 
TX-1, TY, and TY+1 relative to the capacity of the dividing 
lines. The XI and YJ factors represent the size of one region. 
The factor B represents the relative penalty associated with 
cuts, and testing has shown that a reasonable range for B 
factors is 0.4 to 0.5. As shown in FIG. 27, for a region 
twenty units in length on the X and y Sides, with ten cuts 
along each dimension and a capacity for one hundred cuts, 
with an average number of cuts equal to twenty cuts, and a 
|B factor of 0.45, the values for DXL and DYB are 11.045 
each. For 40 cuts on the right hand Side and upper Side of the 
regions, the values are 11.18. 
0463 Discrete affinities in the X and y direction represent 
the numbers of nets whose half-perimeter decreases on 
movement of cells across the boundary minus the number of 
nets whose halfperimeter increases when a cell moves in a 
given direction. AffXi, i=-1,0,1; AffY, j=-1,0,1 
0464 Affinity for Zero movement represents the numbers 
calculated above. Movement of a cell in a particular direc 
tion, Such as crossing a boundary line, induces an affinity for 
that cell. From FIG. 27, movement of the cell to the right 
and up decreases the penalty, or increases the affinity for the 
cell. Thus affinity in the X direction, AffX, for movement to 
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the right is -1, to the left is 1, and affinity for movement in 
they direction, AffY for movement of the cell upward is -1, 
and downward is 1. Affinity for keeping the cell in its current 
position is 0. 

0465. The discrete affinities for movement in each of the 
four directions are multiplied by the corresponding factor: 

0466 Total affinities for movement of the cell in the 
Vertical and horizontal directions are the Summation of 
affinities in the X and Y directions: 

Affcutiji=AffcutXi+AffcutYi 

0467. In alternative embodiment of this procedure is to 
use the Square of the number of crossings as a component of 
the cost of change for the halfperimeter move. For move 
ment to the left, this would yield an equation of: 

0468 Squaring the factors increases the emphasis on the 
number of cuts, and balancing with new B' factors yields an 
arrangement wherein the total number of cuts converge 
rapidly to a relatively uniform quantity. 

0469 SECTION 11: NEIGHBORHOOD SYSTEM 
DRIVEN OPTIMIZATION 

0470 Each moveable cell v is located within a neighbor 
hood Neigh (V) constructed in accordance with the optimi 
Zation of cell neighborhood System procedure outlined 
above. That procedure yields an ordering of cells according 
to the cells distance from the center of the neighborhood, 
after optimization. FIG. 28 illustrates such an ordering of 
cells within the neighborhood, Neigh(v)=(w(v,1), w(v.2), .. 
... w(v.M)), where M is the size of the neighborhood, gener 
ally in the range of 20 cells. 
0471 From FIG. 29, weight assignment step 601 assigns 
each cell a weight equal to the size of the neighborhood M 
minus the index of the cell i. Thus, for a neighborhood of 
size 20, the 20th cell has a weight of 0, while the first cell 
has a weight of 19. 

0472. An alternate preferred method of assigning weights 
is to declare a number L, where L equals M plus Some 
positive integer, Such as 2, and weights range from 21 down 
to 2. The reason for this shift is that the weight accorded to 
a factor of 1 is infinitely greater in terms of multiplications 
than a factor of Zero. Thus relative weights may be mis 
leading if low number factors, Such as Zero and one, are used 
as weighing factors. Any monotonically decreasing function 
may be employed in defining the weights accorded the cells 
within the neighborhood. 

0473. The system then calculates attraction weights in 
Step 602. The total Sum of the weights attracting the neigh 
borhood to the region are defined as follows: 
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0474. These equations represent the weights of the neigh 
borhood attraction in a direction. For example, assume a 
neighborhood (v, V., . . . Vs), as shown in FIG. 30. The 
weights assigned to the individual cells in the neighborhoods 
represent the relative heights of the cells, but can be any 
measure of load accorded to the individual cell. The relative 
weights of the cells is (7, 6, 5, 4, 3). From the previous 
equations, the Sum of weights to the left of the current region 
minimum line in the X direction, Xi(V), is 7 plus 6 plus 4, or 
17. The sum of weights to the right of the current region 
maximum line, Xi(V), is 5. The Sum of weights within the 
region bounded by the X (v) and X(v) lines is 3. 
0475. In affinity definition step 603, the system then 
defines the following neighborhood affinities for movement 
of cells in each particular direction: 

AffNeighborhood (; 0)=0 
0476) 

2: Gridy 1 
AffWeighborhoody (v, -1) = Grid + Grid : M2 : 

(Sum Weight, (v)-Sum Weight, (v) - Sum Weight, (v)) 

AffWeighborhood (v. 1) 2: Gridy 1 8: OOO V. - : - : 
g X Gridy + Gridy M2 

(Sum Weight, (v) - Sum Weight, (v) - Sum Weight, (v)) 

0477 These values represent the relative overall benefit 
of moving the location of the neighborhood in a particular 
direction or leaving the neighborhood in its current position. 
Grid and Grid are identical to the values outlined above in 
reference to the density driven capacity penalty System, and 
represent the number of grids, or lines of regions, in the X 
and Y directions. Grid is equal to 2''' and Gridy is equal 
to 2'Y', where Lev and Levy define the number of hierar 
chy levels. The number M represents the number of cells in 
the neighborhood. 
0478 Resuming with the example of FIG. 30, M is equal 
to five and we are in the fourth level of hierarchy. Thus, 
AffNeighborhood (v.0) equals 0, and AffNeighbor 
hood (v,-1) equals (2 * 2/(2+2)) * /s * (17-5-3), or %s. 
AfNeighborhood (v,1) equals (2 * 2/(2+2)) * /s' * (3-5- 
17), or -1%5. Hence the X affinities for this example are (%5, 
0, -1%5), for leftward, center, and rightward movement, 
respectively. The Y affinities for this example are (-17/35, 0, 
and -15/35). Selecting the highest affinities yields the result 
that the neighborhood should be moved to the left and 
remain in its current vertical position. Affinities for the X and 
Y directions are therefore combined in step 604 to yield a 
total neighborhood affinity for movement of the current 
neighborhood to another region within the nine regions 
adjacent a non-edge region. 
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0479. Affinities may be combined while still within the 
Scope of the current invention. Combinations of capacity 
affinities, wire length affinities, cut affinities, and neighbor 
hood affinities present an enhanced System of determining 
the preferred direction of movement of a cell or net. Such an 
affinity combination may include combining the following 
affinities: 

AffCap(; A.A.) 
0480. As outlined above, QEF(v) represents the capacity 
penalty influence factor, which is a function of cell V relative 
height. Such a combination of affinities takes into account 
cell position as well as relative weight accorded to an 
individual neighborhood. 
0481 SECTION 12: FUNCTIONAL SIEVE OPTIMI 
ZATION TECHNIOUE 

0482. The combination of affinities introduces an element 
of randomization. A deterministic System for combining 
affinities which converges at a relatively rapid rate is desired 
to optimally utilize affinities. Such a System which itera 
tively optimizes cell placement using a combination of 
affinities is the functional Sieve approach. 
0483 The functional sieve performs several calculated 
iterations of combining affinities and moving cells based on 
relative affinities and then computing cost functions for the 
new cell positions. The functional sieve utilizes the follow 
ing basic formula: 

Aff(; Ai-A)= AffNeighborhood (; Ai-A)+iu. Aff 
HP(;AA)+QEF(v) AffCap(;AA) 

0484 As illustrated in FIG. 31, the system in step 651 
iterates a predetermined number of times, preferably once, 
calculating the above affinities with u equal to one and u 
equal to Zero. This iterative procedure produces affinities 
and cells which are then repositioned based on the combined 
neighborhood and capacity affinities. Subsequently, the SyS 
tem in step 652 performs a predetermined number of opti 
mization iterations with u equal to Zero and us equal to one, 
moving the cells based on cut and capacity affinities. The 
first iterative procedure involving neighborhood and capac 
ity affinities combined with the second iterative procedure 
entailing cut and capacity affinities define a major iteration. 
After this major iteration, the system in step 653 calculates 
the value of the cost function. The preferred cost function is 
wire length. 
0485. After computing the cost function, the system 
performs a predetermined number of major iterations and 
calculates the cost function after each major iteration. The 
preferred number of major iterations and cost function 
calculations is six. After this predetermined number of major 
iterations and cost function value calculations, the System 
computes the average cost value for all of the costs calcu 
lated in the previous Steps. This procedure Steps through 
different affinity evaluations and obtains a preferred overall 
movement of cells on the Surface abstraction. The functional 
Sieve optimization process is halted when two consecutive 
cost average function values Satisfy a given accuracy, Such 
as 10 or 10. 

0486 During the discrete placement procedure described 
above, the u parameter is utilized in a larger number of 
iterations than the u parameter. Subsequently, the System 
performs Several iterations with u equal to Zero. The entire 
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block is iterated a predetermined number of times in this 
discrete placement procedure, typically three to five times. 
0487. During final placement, a crystallization procedure 
produces fine placement of the cells after the aforemen 
tioned functional Sieve procedure is completed. The System 
uses a small non-zero value, Such as 10°, for u, for a 
predetermined number of times, Such as once, in the major 
iteration and the Zero value Several times. This procedure 
produces a detailed placement of cells. 
0488 An alternate embodiment of the current functional 
Sieve alters the multiplying factors for the various affinities. 
Such an embodiment is particularly useful in crowded net 
Situations, and emphasizes croSS cuts while taking advantage 
of open nets. 
0489. The basic equation for the alternative embodiment 

is: 

B) Affif'(; A,A). BAiOut(AASECEF(i) Aff 
Cap(v. A. A.) 

0490 where B is a number between Zero and one, 
depending on the emphasis desired placed on the number of 
CutS. 

0491. The affinity combinations disclosed within this 
functional Sieve operation are not limited to those disclosed 
here, and may include other combinations using other 
weighing factors. Such an alternate weighing and affinity 
Scheme would produce a desirable placement of cells and 
Still within the Scope of the present invention. 
0492) SECTION 13: COARSE OVERFLOW 
REMOVER (BULLDOZER) 
0493 A coarse overflow remover procedure is applied on 
the highest level of the chip core region hierarchy when each 
region contains a piece of only one column. The list of cells 
is Scanned in the order of decreasing heights in order to find 
a new region for each of them. A list of cells in order of 
decreasing cell height is made. If the height of a cell is 
Smaller than the available Space in the corresponding col 
umn Segment, then the cell retains its location. Most of the 
cells will keep their previous positions if the initial cell 
density is acceptable. 
0494 FIG. 33 represents a portion of the chip that has 
seven columns 800-806. As shown in FIG. 33, the cell 
columns 800-806 are partitioned into maximal segments 
without blockages. A plurality of megacells 810 may be 
located in the upper left corner. The megacells 810 are 
shown to extend across the columns 800-802. A first block 
age 830 extends across the second and third columns 801 
and 802, and a second blockage 832 extends across the 
column 806. Column 800 has two adjacent regions 812 and 
814 that are assigned to a single column segment 815. Each 
of the column Segments actually consists of a few regions, 
and each region belongs to exactly one of the Segments. For 
each Segment the total height of all cells assigned to the 
Segment is retained. For example, The column 806 Segment 
includes a region 816 that has a cell height of twenty-two 
and an adjacent region 818 that has a cell height of Six. 
Therefore, the column segment 806 includes a column 
segment 820 that has a cell height of twenty-eight. This 
process is applied only to cells that have been already 
Scanned, i.e. in the beginning of the proceSS all those Sums 
are equal to 0. 
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0495. The capacity of a column segment is its height. The 
next cell from the list will get a new position according to 
the following rule: look for the closest (using Manhattan 
distance) region to the current cell So that the corresponding 
column Segment will not have an overflow capacity if the 
next cell is assigned to that region. A preferred order for 
scanning the regions is shown in FIG. 34. First consider the 
original region (marked with the numeral 0) and then 
consider the regions having a distance of 1, then consider the 
regions having a distance of 2, etc. 

0496 This step considers only cells that already were 
assigned new positions and the current one. Usually, a cell 
is going to Stay on the old position. AS Soon as the region is 
found that Satisfies this condition, the region Scanning is 
Stopped, and assign the cell to that region. If the original 
region Satisfies the condition, the cell is reassigned to the 
original region. 

0497 SECTION 14: OVERLAP REMOVER WITH 
MINIMAL NOISE 

0498. The purpose of this process is to smoothly remove 
cell overlap with minimal increase of the wire length. FIG. 
36 is a flow chart of an overlap remover according to the 
invention. The Overlap remover proceSS is applied Separately 
to each column of cells. It is assumed that each column is 
continuously connected with no blockages between cells of 
the same column. As shown in FIG. 35, denote the top and 
bottom of the column with index j by TL and B, respec 
tively. Similarly the top and bottom of column k are denoted 
by Tk and Bk, respectively. The vertical grid step is used 
as the unit of measure. 

0499 First the cells in a column are sorted in the order of 
increasing cell bottom y coordinates. Denote cells in that 
order by 

0500 v, v', . . . v 

0501) 

0502. The bottom coordinates of these cells are 

0503) Ys Ys...Y 

0504. As shown in FIG.35, the parameter Zaz is defined 
as the distance between the top of one cell in a column and 
the bottom of the next cell upward. There must be at least 
one grid Space between adjacent cells to have a feasible 
layout. 

0505 FIG. 37 illustrates a numerical example. Suppose 
a column 850 has a height Heol=60 and that the column 850 
consists of five regions 852-856 that contain cells with 
heights of 5, 7, 3, 9 and 6, respectively. The total cell height 
S 

Heu = X height(vi). 
we collinn 
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0506 The average extra space per cell is now calculated 
S 

Ho! - Hell 60-30=5 
total no. of cells + 1 5+1 

0507 The parameter minzaz satisfies the condition 

< Ho! - Heel 
milC3, # cells + 1 

0508 Therefore, for the example given a possible value 
for minzaz is 3. 

0509. The following array is calculated: 
zazO-Y-Bil. zazn=Ti-Y, 
zazi=Y1-Y-NormHv, i=1, 2..., n-1, 

0510 where Norms v is the cell height in grids. 
0511. The parameter of the overlap remover process is 
integer values of minZaZ, which can be positive or negative. 
The process further includes the Step of modifying the array 
Zaz Such that all its elements are not less than minZaZ. The 
array elements are processed forward and backward alter 
nately. The following procedure is executed: 
0512 (a) At the beginning of the process the counter is 
initialized to Zero. If the processing element is less than 
minZaz, then the element is increased by 1 and the counter 
is decreased by 1 and the next element is processed. 
0513 (b) If the element is greater than minzaz and also 
positive, but the counter is negative, then the counter is 
increased by 1 and the element is decreased by 1. The Steps 
(a) and (b) are repeated until the condition is satisfied. Then 
We proceed with the next element. 
0514 (c) If all elements became not less than minzaz 
ZaZ(i)2 minzaz) and the counter has Zero value, the process 
is stopped. The cells are moved in one grid interval incre 
ments until the condition is Satisfied. 

0515 FIG. 36 is a flowchart of a preferred process 
adjusting cell Spacing in the column to remove overlap with 
minimal noise. The process of adjusting cell spacing begins 
with a step 900 where all movable cells from i=1 to i=n are 
to be considered. For each cell i, the spacing Zaz(i) between 
the top of cell i and the bottom of cell i+1 is compared to 
minzaz in a process step 902. If Zaz(i) is less than minzaz, 
then Zaz(i) is replaced with Zaz(i) plus one grid step (Zaz(i) 
Zaz(i)+1) in a process step 904. A counter is then decre 
mented by one in a proceSS Step 906. The foregoing Steps 
900, 902, 904 and 906 are repeated until Zaz(i) is not less 
than minzaZ. 

0516) If Zaz(i) is not less than minzaz, then a process step 
908 compares ZaZ(i) a parameter maxZaz, where maxZaz is 
the largest value of Zaz(i) that will be permitted on the chip. 
If Zaz(i) is less than maXZaz and the count is greater than 0, 
then ZaZ(i) is replaced by Zaz(i) plus one grid step (Zaz(i) 
Zaz(i)+1) in a process step 910. The counter is then decre 
mented by one in a process Step 912, and the foregoing Steps 
902,908,910 and 912 are repeated until the count becomes 
ZCO. 
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0517. The remaining situation to be considered is when 
Zaz(i) is not less than minzaz and the condition count >0 and 
Zaz(i) <maXZaz is not satisfied. In a process Step 914 Zaz(i) 
is compared to maxZaz. If Zaz(i) is greater than maxZaz, then 
Zaz(i) is replaced by maxzaz in a step 916. The count then 
is incremented by the quantity ZaZ(i)-maXZaz in a step 
918. The steps 902,908,914,916 and 918 are repeated for 
the Selected cell until the condition Zaz(i)>maXZaz of Step 
914 is not satisfied. 

0518. The process of adjusting cell spacing then proceeds 
to a step 920 where a parameter A is defined such that 
A=ZaZ(i)-minzaz. Then in a step 924 the parameter A is 
compared to the negative of the count to determine whether 
As-count. If A is not less than or equal to -count, then the 
parameter A is Set equal to -count in a Step 926; and the 
process proceeds to a step 928. If in the step 924, the 
parameter A is less than or equal to -count, then the proceSS 
proceeds to the step 928 where Zaz(i) is replaced with 
Zaz(i)-A. The count is then incremented by parameter A in 
a Step 930, and the process of adjusting cell spacing is 
completed. 
0519. The result of adjusting the cell spacing in accor 
dance with this preferred process is that overlap between 
cells is removed and spacing that were too large have been 
reduced to acceptable values. Cells that previously over 
lapped now have a spacing Zaz(i) of one grid space. Cells 
that were too far apart now have spacings Zaz(i) Such that 
minZaz is ZaZ(i)smaXZaZ. 
0520. After finishing the procedure the cell coordinates 
are modified: 

0521) Y=BI+zazO); 
0522 Y=Y-NormHv+Zazi-1, 
0523 For i=2,3,..., n. 

0524) SECTION 15: SINUSOIDAL OPTIMIZATION 
0525) This procedure significantly levelizes the cell den 
sity with almost no increase in wire length. The ColKey 
parameter has been discussed above in the Section that 
describes the density-driven capacity penalty System. For 
the sinusoidal optimization procedure the Colkey parameter 
should be set to 1. Setting the Colkey parameter to 1 means 
that the height of a cell is distributed over all regions with 
which the cell overlaps. Precisely, if the cell has been 
assigned to the highest level hierarchy region with an indeX 
j, it is assumed that the cell center is in the center of the 
region. Depending on the real height of the cell, the occu 
pancy is updated for all regions the cell with which the cell 
overlaps. 
0526. The region occupancy is updated after every cell 
move. Because the number of cells higher than the Smallest 
region height is relatively Small, updating the region occu 
pancy is not going to affect the complexity of the optimi 
Zation. In addition to the basic region capacity penalty, 
which is calculated taking into account real cell dimensions 
as described above, the Segment column capacity penalty is 
also used now. It is necessary to consider the capacity 
penalty to achieve more uniform distribution of big cells on 
the chip. 
0527 The main block of the sinusoidal optimization 
procedure comprises a number of big iterations of the 
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discrete placement optimization described previously herein 
with reference to FIGS. 21 and 22. Denote that main block 
by Optim (k), where k is the number of iterations. The main 
parameter is the capacity penalty influence parameter 2, 
which has been described previously with reference to 
FIGS. 23 and 24. The value of the capacity penalty influ 
ence parameter will be changed during the Sinusoidal 
optimization process. 
0528 Steps that preferably are included in the sinusoidal 
optimization procedure are as follows: 

0529) { 
0530 Optim(m); 
0531 = 1 
0532. Optim(2-m); 
0533) = 1 
0534) Optim(m) 
0535) =/1 
0536) Optim(2-m); 
0537) =/1 
0538 }. 
0539 where m and l are predetermined integer param 
eters. Typically m is one of the numbers 6 to 10, and ) is 2. 
This sinusoidal optimization procedure typically is iterated 
in combination with the other levelizing procedures 
described herein, Specifically, the dispersion-driven leveling 
system described in S16. 
0540. There are two types of sinusoidal optimization. 
One type is unconstrained and contains Standard discrete 
placement optimization. The other type of Sinusoidal opti 
mization controls cell column densities inside the discrete 
placement optimization. 

0541) SECTION 16: DISPERSION-DRIVEN LEVEL 
IZING SYSTEM 

0542. This procedure does smooth continuous cell den 
sity levelization on the chip and is illustrated by FIG. 32. 
First, a new coordinate System is introduced on the chip by 
imposing a mesh on the chip and assigning integer coordi 
nates to the nodes of the mesh. The nodes of the mesh are 
classified as to whether they are movable or fixed. Nodes of 
a Square that overlaps with a blockage or a megacell are 
fixed. All other nodes are movable. 

0543. The densities of the square regions are calculated 
as a Sum of portions of the height of the cells that overlap the 
region. 

0544. After coordinates are assigned to the nodes of the 
Square mesh, the node coordinates are transformed Such that 
the Squares defined by the mesh are deformed into arbitrary 
equilaterals. A constraint on the deformation of the mesh is 
that regions that overlap with megacells are not deformed. 

0545. The coordinates of the movable nodes are itera 
tively recalculated to minimize the Special cost function 
density dispersion. To speed up the convergence, the whole 
optimization procedure is organized hierarchically. Starting 
from the mesh Square regions the hierarchy is built up using 
quadragrouping (reverse quadrasection). 
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0546) On the hierarchy level k denote by den (k, i, j) the 
density of the region (k, i,j), and by S (k, i, j) the area of the 
region. The total density DEN will be the sum of the 
densities of the regions for all i and j. 

DEN = 22 and, i,j) 

0547. If the total available core area is a fixed number S, 
then define 

DEN 
M = - 

S 

0548. The density dispersion D is then given by 

- sk, i, j). (derik, i, j). D-XX. ----M. 

0549 which is the cost function. The dispersion is mini 
mized by doing coordinate node local moves. Suppose the 
node is not on the core border and therefore has four 
adjacent regions. Then for each node A with coordinate (X, 
y) the local average density is computed as 

0550 where den are the densities of the four adjacent 
regions, and S(x,y) are the areas of the images after defor 
mation of the original regions assuming A has coordinates 
(x,y). 

0551. The local cost function is defined as 

2 X. Si(X, y). den; M(A) 
S \s; (x, y) J 

0552. The coordinates for A are chosen in order to 
minimize the local cost function. An algorithm for minimiz 
ing the local cost is to separately move each point A(x,y) a 
distance 8 to the left or right (up or down for the y 
coordinate). The value of 6 can change with each coordinate. 
The value of the cost function is calculated for each move. 
In each local region the Set of the coordinates that minimizes 
the cost function is chosen for the cells. 

0553. After all of the global levelization steps have been 
performed, there may still be Some density “peaks” in the 
core region of the chip. The bulldozer procedure described 
above may be applied to remove these peakS. Finally, the 

30 
Jun. 14, 2001 

Sinusoidal optimization procedure is applied again to the 
chip surface, which is by now subdivided into cell columns. 
Reapplying the Sinusoidal optimization proceSS ensures that 
the cells will be evenly assigned to the columns as required 
by the Structure of the final design. 

0554 SECTION 16A: EFFICIENT MULTIPROCESS 
ING OF CELL, PLACEMENTALGORITHMS 

0555 An exemplary integrated circuit chip is illustrated 
in FIG. 2 and generally designated by the reference numeral 
26. For cell placement purposes, the entire integrated circuit 
26, including all of its components may be processed under 
one of the placement algorithms discussed above. It is also 
possible to process a Subset or a Sub-area of the circuit 26. 
For the purposes of this discussion, the phrase “core area’ 
will refer, in this Section of the Specification and its related 
claims, to the area of the integrated circuit 26 which is being 
processed for optimal cell placement. 

0556 FIG. 39 illustrates one possible partitioning of a 
core area 1030 into a plurality of regions. Although the 
regions may be of any shape and configuration, FIG. 39 
shows the core area 1030 being divided into a rectangular 
grid of seven (7) columns and five (5) rows. The number of 
columns, denoted as M, and the number of rows, denoted as 
N, may be arbitrarily assigned. Typically, however, M is set 
as one half of the number of cell columns in the core area, 
and N is Set as the same number, resulting in a Square grid. 
0557. To simplify the discussion, this specification will 
refer to each of the regions of the grid as R; where i refers 
to the column and j refers to the row on which the region R; 
is located. Again, referring to FIG. 39, the region located at 
the bottom, left corner of the core area 1030 is identified as 
R1, the region adjacent to and to the right of R is 
identified as R. Also in FIG.39, regions R1s and R.7s are 
identified. For Simplicity, other regions are not specifically 
identified. In addition, each of the regions contain a large 
number of cells to be placed. Cells are not shown by FIG. 
39, except that a representation of cells is shown in region 
Rs.2. 
0558 FIG. 39 also illustrates cell swaps between regions 
of the core area 1030, which are required by the optimization 
process to improve the fitness of the placement. The cell 
Swaps are represented by double-pointed arrows 1032a, 
1032b, 1032c, 1032d, 1034a, 1034b, 1034c, 1034d, 1036, 
1038a, 1038b, 1038c, 1038d. 

0559 For the purposes of our discussion, it is assumed 
that three (3) processors-P, P2, and Pi—are used to 
process Simultaneously the cell placement algorithm. 

0560 If the regions are assigned to the processors 
Sequentially, then the order in which the regions are pro 
cessed and the processor assignments to the regions might 
be as shown below in Table 16A(1). 

TABLE 16A(1) 
Column 

Row i = 1 2 3 4 5 6 7 

5 5 (P.) 10 (P.) 15 (P.) 20 (P.) 25 (P.) 30 (P.) 35 (P.) 
4 4 (P) 9 (P.) 14 (P.) 19 (P.) 24 (P) 29 (P.) 34 (P) 
3 3 (P.) 8 (P.) 13 (P.) 18 (P.) 23 (P.) 28 (P.) 33 (P.) 
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TABLE 16A(1)-continued 
Column 

Row i = 1 2 3 4 5 6 7 

2 2 (P.) 7 (P.) 12 (P.) 17 (P.) 22 (P.) 27 (P.) 32 (P.) 
j = 1 1 (P.) 6 (P.) 11 (P.) 16 (P.) 21 (P.) 26 (P.) 31 (P) 

0561. The entire Table 16A(1) represents the core area 
1030 of FIG. 39, and each of the rectangular areas of the 
table represent the corresponding rectangular region of FIG. 
39. In the table, each of the regions has a number. The 
number corresponds to the region's rank in the order of 
processing. The Specific processor which will process the 
cells of the region is also identified. Table 14(B)2 below sets 
forth the order in which the regions are processed by the 
processors. 

TABLE 16A(2) 
Iteration Set of regions simultaneously processed by P, P., and Ps 

1. R11, R12, and R13 
2 R14, R1s. and R21 
3 R22, R2.3, and R2.4 

11 
12 

R71, R72, and R7s 
R74 and R.7s 

0562 Under the cell placement process described above, 
the first set of regions R, R2, and Ris is processed by the 
three processors simultaneously. Then, the Second Set of 
regions is processed simultaneously, followed by the Simul 
taneous processing of the third set of regions, and So on. 
However, as is discussed in detail below, Simultaneous 
processing of the third set of regions-R22, R2s, and 
Re-generates the area-conflict, local optimum, and dead 
lock problems described above. 

0563) As illustrated by FIG. 39, regions R., R., and 
R, require the indicated cell movements, or cell Swaps, to 
increase the fitness of the placement. The required cell 
movements are detailed in Table 16A(3) below. 

TABLE 16A(3) 
R2.2 Cell movements 1032a between R22 and R41; 

Cell movements 1032b between R22 and Rs.2: 
Cell movements 1032c between R. and R2; 
Cell movements 1032d between R22 and R2s; and 
Cell movements 1036 between R22 and R24. 
Cell movements 1032d between R.2s and R22; and 
Cell movements 1034d between Rs and R. 
Cell movements 1034a between R. and Ras: 
Cell movements 1034b between R. and Ras: 
Cell movements 1034c between R. and R.: 
Cell movements 1034d between R. and Rs; and 
Cell movements 1036 between R24 and R22. 

R2,3 

R2,4 

0564) In this scenario, three sets of area-conflict problems 
arise. The first area-conflict is between P (processing R22) 
and P (processing Rs). Both P, and P are attempting to 
make cell movements 1032d into and out of the region being 
processed by the other processor. Likewise, due to the cell 
movements 1036, the second area-conflict is between P and 
Ps (processing R2). The third area-conflict is between P 
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and P. due to the cell movements 1034d. Because of these 
conflicts, the parallel processing cannot be accomplished 
Simultaneously. This is because at least one of the processors 
must wait for another to complete the cell movements in the 
conflicting regions before processing its own cells. 

0565. By constraining cell movements to adjacent 
regions only, the cell movement 1036 is eliminated from 
consideration, and the area-conflict between P (processing 
R2) and P (processing R2) is eliminated. However, the 
restriction of the movement of cells only to adjacent regions 
may eliminate cell movements which could result in a better 
overall fitness (global optimum). This is because the restric 
tion traps the optimization proceSS at an undesirable local 
optimum solution. In FIG. 39, if the cell movements are 
restricted to adjacent cells only, movements 1032a, 1034a, 
1036, and 1038a are eliminated. 

0566. The final problem arising out of the current sce 
nario is a possibility of a deadlock between the processors. 
If, for example, P is waiting for P to complete the cell 
movement 1032d, P is waiting for P to complete the 
movement 1034d, and P is waiting for P to complete the 
movement 1036, a deadlock is created. 

0567 All three problems discussed above can be mini 
mized, or eliminated, if any two processors are, at any one 
time, operating Sufficiently distant from each other to avoid 
area-conflicts. Automated assignments of regions to multiple 
processors for Simultaneous processing Such that the regions 
are Sufficiently distant to avoid area conflicts is an important 
aspect of the present invention. The assignment is accom 
plished as follows: (1) dividing the core area into a plurality 
of rectangular regions of M columns by N. rows; (2) deter 
mining the “interval parameter” for both the columns and for 
rows, and (3) determining a sequence in which the rectan 
gular regions are to be processed Such that each Set of 
Simultaneously processed regions contains regions which 
are Sufficiently distant from each other to avoid conflicts. 
0568 Consequently, when the multiple processors are 
assigned to the regions, each of the processors will be 
processing cells of a region far enough from the other 
regions being processed at that time Such that area-conflict 
and deadlock problems are greatly reduced. In addition, the 
need to restrict the movements of cells, which creates local 
optimum problem, is also eliminated. 

0569. The number of columns M and the number of rows 
N are predetermined and can be arbitrarily set. However, the 
value of M is typically set as one half of the number of cell 
columns in the core area, and the value of N is typically 
equal to M. FIG. 40 shows the core area 1030' which has 
been divided into 35 rectangular regions with M=7 and N 
=5. The rectangular regions of the core area 1030' are still 
referred to as R; where i indicates the column andjindicates 
the row of the position which the region occupies. 

0570. The column “interval parameter,” denoted KX, 
may be any number greater than one and less than M. The 
row “interval parameter,” denoted KY, may be any number 
greater than one and less than N. The interval parameters are 
used in Sequencing the rectangular regions as will be dis 
cussed more fully below. Although KX and KY may be 
assigned arbitrary values within the respective limits, it has 
been found that good choices for KX and for KY are: 
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if the number of columns of cells in the 
core area is less than 100; and 
if the number of columns of cells in the 
core area is greater than or equal to 100. 

0571 Referring now to FIG. 41, a flowchart 1040 out 
lines the Steps which may be used to create the desired 
sequence. The flowchart 1040 of FIG. 41 includes a plural 
ity of nested loops indicated by lines ending with arrow 
points. This notation indicates that all of the Steps included 
within each loop are to be performed for all outer loops. 
0572 To create the sequence, the first operation, as 
indicated by the reference number 1042 of FIG. 41, is to 
traverse columns one (1) through the KX" column using a 
first index, which will be denoted as p to facilitate this 
discussion. 

0573 For each of the columns traversed by p, a second 
index, denoted as q for the purposes of this discussion, is 
used to traverse the rows one (1) through the KY" row. This 
is indicated by the operation referred to by the reference 
number 1044. 

0574 AS indicated by the operation 1046, for each of the 
columns traversed by p, denoted C for the purposes of this 
discussion, the column index i is used to traverse the column 
C and all the columns of the core area 1030, which is a 
multiple of KX columns away from C. Therefore, in 
general, the column traversal, for each value of the indeX p, 
will be: 

Cp Cpkx, Cp2kx. . . Cpinkx where nKXSM and in 
is an integer multiple. 

0575 For the instant example, the column traversal will 
be 

0576 for p=1: C, C, and C7; 

0577 for p=2: C, and Cs; and 

0578 for p=3: C, and C. 
0579. The index p will not reach 4 because KX=3. 
0580 Operation 1048 shows that, for each row traversed 
by q, denoted W for the purposes of this discussion, the row 
index j is used to traverse the row W. and all the rows of the 
core area 1030, which is a multiple of KY rows away from 
W. Therefore, in general, the row traversal, for each value 
of the index q, will be: 

WWKy, W2Ky., ... Winky where nKYsN and 
n is an integer multiple. 

0581 For the instant example, the row traversal will be: 

0582 for q=1: W, W, and Ws; and 

0583 for q=2: W, and W. 
0584) The index q will not reach 3 because KY=2. 
0585. Using the indices i and j to traverse columns and 
rows in the above described manner, the Sequence is created, 
as indicated by operation 1050, by adding the region R; to 
the Sequence during the traversal. Finally, the list of the 
regions is finalized 1052 and output is created. 
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0586 The above-described operations to produce a 
sequence of regions R, can be expressed using pseudo 
computer programming language as follows: 

for p = 1 to KX do 
for q = 1 to KY do 

for i = p to M step KX do 
for q =0 to N step KY do 

assign R; to the list 
endido 

enddo 
enddo 

endido 

0587 Alternatively, using a repeat-until construct, the 
pseudo-program becomes: 

p = 
repeat 

q = 1 
repeat 

1 = p 
repeat 

= q 
repeat 

assign R; to the list 
i = j +KY 

until j > N 
i = i +KX 
until i> M 

q = q + 1 
until q > KY 

p = p + 1 
until p > KX 

0588 Utilizing the operations as described above, and 
using the values discussed previously, the core area 1030' of 
FIG. 40 will be processed in the sequence indicated by Table 
16A(4) below. 

TABLE 16A(4) 
Column 

Row i = 1 2 3 4 5 6 7 

5 3 (P.) 18 28 6 21 31 9 
4 11 23 33 13 25 35 15 
3 2 (P.) 17 27 5 2O 3O 8 
2 1O 22 32 12 24 34 14 

i = 1 1 (P) 16 26 4 19 29 7 

0589 The entire Table 16A(4) represents the core area 
1030' of FIG. 40, and each of the cells of the table represents 
the corresponding rectangular region of the core area 1030 
of FIG. 40. In the table, each of the regions has a number 
representing the region's rank in the processing order. The 
Specific processor which will process the region is identified 
for the first three regions only. This is because once the 
Sequence is determined, the regions are assigned to the 
processors as follows: (1) initially, each of the processors are 
assigned to the first available, unassigned regions in accor 
dance with the Sequence; (2) from then on, the next region 
to be processed according to the Sequence is assigned to the 
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next available processor. A processor becomes available 
when it finishes the processing of the cells of its currently 
assigned area. 
0590. In the instant example, the first three regions of the 
Sequence, R1, R1a, and R1s are initially assigned to pro 
ceSSors P, P, and Ps, respectively. Then, the next region of 
the sequence, R., is assigned to the first processor which 
becomes available. For example, if P finishes processing of 
the cells of region Ra before P, and P. finish processing 
their assigned regions, then P is assigned to R, the fourth 
region of the Sequence. Likewise, the fifth region of the 
Sequence, Ras, is assigned to the next available processor, 
and So on. 

0591. The above described assignment technique 
increases the effectiveness of parallel processing because no 
processor has to wait idlely for another processor to finish its 
operation before processing another region. The effect of the 
above discussed assignment technique on the overall per 
formance of the placement algorithm is most evident when 
the number of cells in each of the rectangular regions varies 
or when processors are operating at different Speeds from 
each other. 

0592 Table 16A(5) below sets forth one possible order in 
which the regions may be simultaneously processed by the 
processors. 

TABLE 16A(5) 
Iteration Set of regions simultaneously processed by P, P., and Ps 

1. R11, R13, and R1s 
2 R41, R43, and R4.6 

is R. R., and Rs. 
12 R. and R. 

0593. As Tables 16A(4) and 16A(5) illustrate, no two 
adjacent regions are processed Simultaneously in this 
example. In particular, note that regions R22, R2s, and R2, 
which caused area-conflict, deadlock, and local optimum 
concerns under the old technique, are not processed Simul 
taneously. 
0594 Under the new cell placement process described 
above, the first Set of regions to be simultaneously processed 
by the three processors are R., Ris, and Rs. Then, the 
Second Set of regions are processed simultaneously, fol 
lowed by the Simultaneous processing of the third Set of 
regions, and So on. In addition, after each iteration of 
Simultaneous processing, a database or a list of cells located 
in each of the regions is updated to reflect the current 
location of each of the cells of the core area 1030'. 

0595. However, it is possible, even under the new cell 
placement process, for Some conflicts to exist. The eighth 
iteration of the new process, as detailed by Tables 16A(4) 
and 16A(5) may be used to illustrate the advantages of the 
new process even where Some conflicts occur. 
0596) The eighth iteration of the cell placement process 
involves the regions R-2, R2, and Rs processed simulta 
neously by processors P, P, and Ps, respectively. AS FIG. 
39 indicates, regions R-2, R2, and Rs require the cell 
movements, or cell Sways, to increase the fitness of the 
placement as detailed in Table 16A(6) below. 
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TABLE 16A(6) 
R2.2 Cell movements 1032a between R22 and R1; 

Cell movements 1032b between R22 and Rs.2: 
Cell movements 1032c between R22 and R12; 
Cell movements 1032d between R22 and Rs; and 
Cell movements 1036 between R22 and R24. 

R2,4 Cell movements 1034a between R. and Rs: 
Cell movements 1034b between R. and Ras: 
Cell movements 1034c between R. and R.: 
Cell movements 1034d between R. and R2s; and 
Cell movements 1036 between R. and R22. 

R5,2 Cell movements 1038a between Rs 2 and Ro: 
Cell movements 1038b between Rs and R2: 
Cell movements 1038c between Rs 2 and Roo; and 
Cell movements 1038d between Rs 2 and R2. 

0597. In this scenario, only one area-conflict problem 
exists. The area-conflict is between P (processing Raa) and 
P2 (processing R2). Both P and P are attempting to make 
cell movements 1036 into and out of the region being 
processed by the other processor. No deadlock is possible in 
this situation because the area being processed by P. does 
not interSect with any areas being processed by processors 
P, and P. Finally, with a greatly decreased number of 
area-conflicts and no possibility of deadlocks, restrictions on 
the movements of cells are not necessary and are eliminated. 

0598 SECTION 17; CELL PLACEMENT CRYSTAL 
LIZATION 

0599. The purpose of this procedure is to get final cell 
placement. First, the height of each cell is increased by one 
grid plus y percent of the remaining available Space. Then, 
the dispersion driven levelizing System and the Sinusoidal 
optimization procedures are iterated k times (e.g. 5 times). 

0600 Now, the original height of each cell is increased by 
one grid plus a certain percentage of the remaining available 
space. For this purpose, 72% is preferable. Then the overlap 
remover procedure is executed with maxZaZ Set equal to the 
column height to ensure that there is no overflow in any of 
the connected column Segments. 

0601 Next the positions of the large cells are fixed and 
then the Sinusoidal optimization is executed for kiterations 
where k may be 10 for example. 

0602. Now the detailed coordinates of each cell are 
obtained. In the remaining part of the placement crystalli 
Zation the following three procedures are iterated: 

0603 1. The vertical optimization is performed for 
k3 iterations. During one iteration, the list of cells is 
Scanned. For each cell the change in the cost function 
is calculated if the cell is moved down for a (param 
eter). The change in cost function is calculated if the 
cell is moved up. The move that improves the cost 
function the most (if any) is performed. 

0604 2. Overlap remover with minimal noise. 
0605 3. Next kiterations of optimal permutations 
are performed. In this process the cost function is 
calculated if vertically adjacent cells are inter 
changed. Any Such change that improves the cost 
function is performed. Referring to FIG. 1, if two 
cells C and C are interchanged, the Space between 
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them is maintained the same as before the inter 
change. The area occupied by these two cells is kept 
at a constant value. 

0606 Finally, referring to FIG.38, the cells are set to the 
grids by increasing the y-coordinate until the bottom of each 
cell reaches the closest horizontal grid line. 
0607 At this point, most of the cells are close to their 
final positions. The crystallization Step places them in cor 
rect, final positions. Proper vertical cell spacings are com 
puted, So that horizontal wires can be routed over and 
between cells in the vertical columns. Vertical and local 
horizontal "Swaps” may be performed if doing So improves 
the cost functions. Cells must be assigned proper geometric 
coordinates So that their positions correspond to legal grid 
positions Specified by the underlying chip architecture. All 
of these Steps are performed by the crystallization proceSS 
described above, and the cells are frozen into their final 
positions. At this point, the placement process according to 
the invention System has completed its work. A data Struc 
ture is prepared that can be read by a routing System (not 
shown) for chip routing and design completion. 
0608 While the invention has been described in connec 
tion with specific embodiments thereof, it will be understood 
that the invention is capable of further modifications. This 
application is intended to cover any variations, uses or 
adaptations of the invention following, in general, the prin 
ciples of the invention, and including Such departures from 
the present disclosure as come within known and customary 
practice within the art to which the invention pertains. 
0609 SECTION 18: NET ROUTING AND PIN CON 
NECTION 

0610 Referring to FIG. 51, a flow chart 1409 of the 
figure illustrates the method of organizing the pins of a net 
in accordance with the present invention. AS indicated by the 
reference numeral 1410, the net, or a set of pins, to route and 
the coordinates of each of the pins are provided into the 
System. Typically, the routing is performed after finalizing 
the placement of the cells on the integrated chip. Another 
given parameter is K which represents the Size of the 
partitions into which the pins or Subnets will be grouped for 
routing. K can be assigned any reasonable number which is 
less than the total number of pins of the net. In experiments, 
K of twenty (20) has shown to be preferable. 
0611. The step referenced by reference number 1412 
indicates that the pins are partitioned into Sets of pins, each 
Set containing, at minimum, the number of pins indicated by 
parameter K. The method of partitioning, or grouping, the 
pins into Sets of pins will be discussed in detail in the 
Partitioning Method subsection below. Partitioning pins of a 
net into groups of K creates a number of pin-partitions 
(pps). Because the pins of the net may number in the order 
of thousands or more, partitioning of the pins into groups of 
K (20 in this example) creates a large number of pps. 
Specifically, in this instance, the number of pp's is only one 
order of magnitude Smaller than the number of pins them 
Selves. 

0612 Therefore, the partition method is iterated with 
pp's as the elements of the new partition. This operation is 
identified by boxes 1413 and 1414 of FIG. 51. As indicated 
by boxes 1413 and 1414, partitioning of the sets is iterated, 
using the Sets of the previous iteration as the elements of the 
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meta partition, until the number of the partitions is in the 
Same order of magnitude as K. Because of the iterative 
application of the partitioning of the pins, the Set, and the 
meta Sets, the resultant partition hierarchy can be logically 
represented as a partition tree. 
0613 For example, if K is 20 and the integrated circuit 
contains 4,000 pins to be routed, the first partitioning of the 
pins into groups of about 20 pins each results in approxi 
mately 200 pin partitions (pps). Because 200 is much larger 
than 20, the pp's are partitioned into Sets of about 20 pp's 
each, resulting in approximately ten (10) sets of pps. In this 
example, the number of Sets of pp's, ten, is in the same order 
of magnitude as K, therefore, no further iteration of the 
partitioning Step is necessary. 
0.614. After the partitioning of the pins, as indicated by 
boxes 1416 and 1418, a Minimum Spanning Tree (MST) is 
created for each level of the partition tree, commencing at 
the lowest level of the tree. For each level of the sets and the 
sets of the sets of the pins, a MST is created with the pp's 
as the Vertices. 

0615. After creating an MST for each set of the pps, the 
partitions of each set pp's are redefined to “link' the 
partitions of the sets connected by the edge of the MST. This 
operation is indicated by box 20 of FIG. 1. 
0616) The creation of the MSTs and the redefinition of the 
partitions to link the members of the sets are iterated 1422 
for each level of the partition tree. When the top level of the 
partition tree is reached, 1422, then the top-level MST is 
created 1424. 

0.617 To create a minimal spanning tree, any of the well 
known algorithms can be used. The inventors of the present 
invention has used Steiner's tree with good results. 
0618. The details of the method to create an MST for any 
Set of Vertices is discussed in the Minimal Spanning Tree 
Subsection below. 

0619. The partition tree is distinguishable from the mini 
mal Spanning tree. The partition tree represents the iterative 
partitioning of the pins into pps, the pp's into Sets, and the 
Sets into meta-sets, and So on until the highest level of meta 
sets are formed. The MST represents the relationship, or 
interconnection between the sets and all of the members of 
any Set. 

0620. For instance, at the lowest level, the pins are 
partitioned into pp's having, on average, approximately K 
pins belong to each pps. After assigning the pins to the pp's, 
an MST is generated for each set whereby the pins of each 
of the Sets are connected to the other pins of the Set to 
minimize the traversal, or Spanning of the pins of the Set. 
Then, each of the Sets of the pp's are thus connected, and So 
O. 

0621. The result of the above operations is a one large 
MST at the top level of the partition tree where each of the 
Vertices of the top level MST represents, on average, 
approximately K number of Sets. That is, each node of the 
top level MST represents, on average, approximately 20 (the 
value of Kin the example) Subnodes, each of which, in turn, 
represent, on average, about 20 Sub-Subnodes, and So on. At 
the leaf level of the MST, each of the pp's represents, on 
average, about 20 pins. In fact, all of the Sets belonging to 
the same level of the partition tree represents roughly the 
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Same number of pins. Consequently, if the Same number of 
nodes of the MST are assigned to each of the multiple 
processors, then the processors will have approximately 
Same number of pins to connect. This leads to balanced work 
load among the processors and efficient implementation of 
parallel processing technique. 

0622 Furthermore, the routing process itself will be 
efficient because, as will be explained below, the present 
invention partitions the pins into clusters of pins near each 
other. 

0623 Partitioning Method 
0624. The pins of the net are partitioned as discussed 
below. 

0625 First, from each pin of the net as a center pin, a 
neighborhood is constructed. Each of the neighborhoods 
contains at least K pins of the net. The neighborhood is 
constructed for the center pin as follows: 

0626 a... find the nearest pin from the center pin; 
0627 b. determine the distance (rectilinear distance 
is used in this example but Euclidean distance can be 
used) to the nearest pin; 

0628 c. define a bounding box to include the nearest 
pin, 

0629 d. if any other pins are included within the 
bounding box, include the other pins in the neigh 
borhood; and 

0630 e. if the neighborhood contains less than K 
pins, then find the next nearest pin (not yet a member 
of the neighborhood) and repeat the steps b to e. 

0631 Referring to FIG. 52, a sample net 1430 with 
fourteen (14) pins are shown. For simplicity of discussion, 
K is assumed to have a value of five (5). Also for simplicity, 
only three neighborhoods 1431, 1433, and 1451 are illus 
trated by the figure. Neighborhood 1431, with center pin 
1432, was constructed by first including pin 1434, then, in 
order, pins 1446, 1438, and 1440 for a total of five (5=K) 
pins. Likewise, neighborhood 1451, with center pin 1450, 
was constructed by including, in order, pins 1456, 1458, 
1454, and 1452 for a total of five (5=K) pins. 
0632. Neighborhood 1433, with center pin 1442, was 
constructed by first including pin 1440, then pin 1438, then 
pin 1446, then pins 1444 and 1448 at the same time, 
resulting in a total of Six (6) pins which is greater than K 
pins. Neighborhood 1433 contains six pins because the 
inclusion of pins 1440, 1438, and 1446 resulted in only four 
(4) pins in its neighborhood, and the inclusion of pin 1448 
caused the bounding box to expand to include pin 1444. 
0633 Second, the net is covered, or partitioned, with the 
neighborhoods with highest ratio between the number of 
pins in the neighborhood (not already used by another 
neighborhood) divided by the geometric area of the neigh 
borhood. This ratio indicates how “clustered” the pins are. 
Because the number of pins in the neighborhood is approxi 
mately K, the determining factor is the geometric area of the 
neighborhood. A high ratio indicates that the pins of the 
neighborhood are clustered together within a Small area. On 
the other hand, a low ratio indicates that the pins of the 
neighborhood are apart from each other. 
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0634. The covering of the net is accomplished as follows: 

0635 a. analyze each of the neighborhood to deter 
mine its ratio; 

0636 b. select the neighborhood, among the remain 
ing neighborhoods, with the highest ratio; 

0637) 
and 

c. the Selected neighborhood covers its pins, 

0638 d. repeat steps a to c until all of the pins are 
covered. 

0639 Continuing to refer to FIG. 52, it seems that 
neighborhood 1451 has the highest ratio. Also, neighbor 
hood 1431 appears to take much less geometric Space than 
neighborhood 1433, and is likely to be selected before 
neighborhood 1433 to cover pins 1438 and 1440 as well as 
pins 1432, 1434, and 1436. However, neighborhood 1433 
will continue to be analyzed until all of the pins are 
covered-either by neighborhood 1433 or by another neigh 
borhood which includes pins 1442, 1444, 1446, and 1448 
and has a greater ratio of pins to area. The neighborhoods 
Selected to cover its pins are called the covering neighbor 
hood. Each of the covering neighborhoods has a set of pins 
(numbering at least Kpins including its center pin) which it 
COWCS. 

0640 Third, after all of the pins have been covered, the 
center pins of the covering neighborhoods are used to 
construct pin partitions. The pin partitions are created by 
taking all of the center pins, and assigning all other pins of 
the net to the closest centerpin. For the purposes of partition 
construction, the neighborhood definitions are abandoned. 
The neighborhood definitions were used only to determine 
the center pins of the partitions. 

0641. Therefore, in the example as illustrated by FIG. 52, 
assuming that all three neighborhoods 1431, 1433, and 1451 
were Selected as covering neighborhoods, pins 1444, 1446, 
and 1448, as well as pins 1452, 1454, 1456, and 1458 will 
be assigned to the partition having pin 1450 as its centerpin. 
Pins 1434, 1436, and 1438 will be assigned to the partition 
with pin 1432 as the center pin. Pin 1440 will be assigned 
to the partition with center pin 1442. Then, the resultant pin 
partitions will appear as illustrated by FIG. 53. 

0642. The net as illustrated by FIGS. 52 and 53 resulted 
in only three pin partitions (pp's) 1460, 1462, and 1464. 
However, in practice, a net may result in many thousands of 
pp's requiring another application of the Partitioning 
Method with the pp's as the “elements” for the next level of 
analysis. The iterative application of the Partitioning 
Method can be repeated until the number of the resultant 
partitions (or meta sets) is in the order of magnitude of the 
value of K. Typically, the resultant partitions are considered 
manageable when the number of partitions are in the same 
order of magnitude as the parameter K. 

0643 Minimal Spanning Tree and Partition Routing 
0644. Following the construction of the partition tree. 
The pp's and the meta Sets are organized into minimum 
spanning trees (MST). To construct an MST for a set of pp's, 
the center pins of each of the pp's are considered as the 
Vertices and the distance between any two pp's is defined as 
the distance between the closest pins of the two partitions. 
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0645 FIG.53 illustrates three pp's 1460, 1462, and 1464 
having center pins 1432, 1442, and 1452. Each of the 
remaining pins of the net 1430' is assigned to the nearest 
centerpin from itself. Therefore, pin partition 1460 contains 
pins 1432, 1434, 1436, and 1438, partition 1462 contains 
pins 1440, 1442, and partition 1464 contains pins 1444, 
1446, 1448, 1450, 1452, 1454, 1456, and 1458. 
0646) Referring to FIG. 53, for the purposes of construct 
ing the MST for the pp's 1430", the distance between 
partition 1460 and partition 1462 is the distance between a 
pins 1432 and 1440. The distance between partition 1460 
and partition 1464 is the distance between pins 1438 and 
1444. The distance between partition 1462 and partition 
1464 is the distance between pins 1442 and 1446. 
0647. Given the partitions and the distances between the 
partitions, the process of constructing a MST from the given 
information is well known in the art and will not be 
discussed here. Professor James A. McHugh provides an 
adequate overview of the MST construction method in 
ALGORITHMIC GRAPH THEORY (1990, Prentice-Hall) 
pp. 124-126. 
0648. Once a MST is constructed, each of the connected 
partitions (as represented by the connected vertices of the 
MST) are connected as follows: 

0649 a... the two pins which determined the distance 
between the two partitions are identified; 

0650 b. for each of the two pins, calculate the 
minimal distance between the pin and any of the 
other pins of its partition; and 

0651 c. the pin whose just calculated distance is 
greater is assigned to the partition of the other pin as 
well as retaining its assignment to the original par 
tition. 

0652 Referring again to FIG. 53, assuming that the 
Vertices representing partitions 1462 and 1464 are connected 
in the MST, partitions 1462 and 1464 are connected follow 
ing the steps defined above. In FIG. 52, the pin pair for 
connecting partitions 1462 and 1464 are pins 1442 and 1446, 
respectively. It appears that the distance between pins 1442 
and 1440 in partition 1462 is greater than the distance 
between pins 1446 and 1448 in partition 1464. Therefore, 
pin 1442 is assigned to partition 1464 as well as retaining its 
assignment to partition 1462. 
0653. Likewise, assuming that the vertices representing 
partitions 1460 and 1462 are connected in the MST, parti 
tions 1460 and 1462 are connected following the steps 
defined above. Continuing to refer to FIG. 52, the pin pair 
for connecting partitions 1460 and 1462 are pins 1432 and 
1440, respectively. It appears that the distance between pins 
1432 and 1434 in partition 1460 is greater than the distance 
between pins 1440 and 1442 in partition 1462. Therefore, 
pin 1440 is assigned to partition 1460 as well as retaining its 
assignment to partition 1462. 
0654. After the additional assignments of pins 1440 and 
1442 of partition 1462, the partition of the net may be 
graphed as illustrated by FIG. 54. Because the partitions 
now overlap, the routing of the cells of the partitions will not 
be limited to the boundaries of the cells. In addition, the 
routing of the net will not have closed loops or cycles 
because the partitions are organized using a MST Structure. 
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0655 Similar to the iterative application technique used 
to partition the pins and the sets of pins, the MST and the 
above-described partition routing technique can be applied 
interactively to effect the same connections between Sets of 
partitions and meta Sets of the Sets of partitions. 
0656 IN GENERAL 
0657 Referring now to FIG.55, an apparatus 1470 for 
placing cells on an integrated circuit chip is illustrated. The 
apparatus 1470 comprises processor 1472 and memory 1474 
connected to the processors for Storing instructions for the 
processors 1472. The apparatus 1470 may comprise multiple 
processors 1472, 1472 to simultaneously process the cells of 
the IC. The memory stores the instructions for the processors 
to perform the above-discussed tasks. The harddrive 1476 
contains the initial net and pin layout information and Stores 
computer readable representation of the final placement. The 
placement and other information Such as the System status 
information may be displayed on the monitor 1478 which is 
also attached to the processors. 
0658) SUMMARY 
0659 The specific algorithms described herein, as well as 
the basic steps which they represent (even if they are 
replaced by different algorithms), are designed for imple 
mentation in a general purpose computer. Furthermore, each 
of the algorithms described herein, as well as the basic Steps 
it represents, can be encoded on computer Storage media 
such as CD ROMS, floppy disks, computer hard drives, and 
other magnetic, optical, other machine readable media, 
whether alone or in combination with one or more of the 
algorithms and StepS described herein. 
0660 Although the present invention has been described 
in detail with regarding the exemplary embodiments and 
drawings thereof, it should be apparent to those skilled in the 
art that various adaptations and modifications of the present 
invention may be accomplished without departing from the 
Spirit and the Scope of the invention. Thus, by way of 
example and not of limitation, the present invention is 
discussed as illustrated by the figures. Accordingly, the 
invention is not limited to the precise embodiment shown in 
the drawings and described in detail hereinabove. 
0661. In the following claims, those elements which do 
not include the words “means for are intended not to be 
interpreted under 35 U.S.C. S112 T 6. 
We claim: 

1. A method for locating a plurality of elements on a 
Surface, Said method comprising the Steps of: 

assigning the elements to portions of the Surface; 
preplacing the elements onto the Surface; 
repositioning the elements depending on relative affinities 

of the elements to each other, and 
connecting the elements on the Surface. 
2. A method according to claim 1, wherein the elements 

are cells of an integrated circuit chip (IC), and the Surface is 
Surface of Said IC. 

3. A method according to claim 1, further comprising the 
Step of planning the element layout on the Surface prior to 
preplacing the elements onto the Surface. 

4. A method according to claim 3, wherein Said step of 
planning the element layout comprises Steps: 
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partitioning the Surface into a grid comprising a plurality 
of regions, 

defining pieces, each piece comprising at least one of Said 
regions, and each piece having a capacity, 

allocating Said capacity of each of Said pieces to pre 
defined groups of the elements, and 

reallocating Said capacity of Said pieces to Said groups of 
the elements. 

5. A method according to claim 1, wherein Said Step of 
repositioning the elements is performed using a plurality of 
processors. 

6. A method according to claim 5, wherein plurality of 
processorS operate Simultaneously. 

7. A method according to claim 5, wherein Said Step of 
repositioning the elements comprises the Steps: 

dividing the Surface into a plurality of regions, 
assigning non-adjacent regions to Said processors, each 

processor determining affinities of the elements of its 
assigned region; and 

repositioning the elements. 
8. A method according to claim 5, wherein Said Step of 

repositioning the elements comprises the Steps: 
assigning the elements to Said processors, each processor 

determining affinities of its assigned elements, and 
repositioning the elements. 
9. A method according to claim 1, wherein Said Step of 

connecting the elements comprises the Steps: 
partitioning the elements into a plurality of Sets, each Set 

having at least a predetermined number of elements, 
constructing a minimal spanning tree having vertices and 

edges, Said vertices of Said Spanning tree representing 
the elements and Said Sets, and 

connecting the elements per Said edges of Said minimal 
Spanning tree. 

10. A computer-implemented method for locating a plu 
rality of elements on a Surface, Said method comprising the 
Steps of: 

forming a neighborhood defined as a set of the elements, 
ordering the elements within each Said neighborhood 

according to their relative distance from Said target 
element; 

preplacing the elements within a two-dimensional 
abstraction of the Surface; 

iteratively Subdividing the Surface into a plurality of 
regions, 

assigning the elements to Said plurality of regions, 
calculating affinities of the elements using a plurality of 

processors, 

moving the elements based on affinities of the elements, 
levelizing element density over the Surface based on 

relationships between the elements, 
relocating any overlapping elements, and 
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performing a final cell adjustment for element positions. 
11. A computer-implemented method according to claim 

10, further comprising the Steps: 
dividing the Surface into a plurality of regions, and 
assigning non-adjacent regions to each of Said plurality of 

processors to place the elements onto Said regions 
Simultaneously. 

12. A computer-implemented method according to claim 
10, further comprising the Steps: 

assigning the elements to each of Said plurality proces 
Sors, and 

determining the element placements by Simultaneously 
operating Said plurality of processors. 

13. A computer-implemented method according to claim 
10, wherein the elements are grouped into functions and the 
Surface can be partitioned into portions, each of Said portions 
having a capacity, and further comprising the Step of assign 
ing Said groups of the elements to Said portions of the 
Surface to meet a predetermined utilization requirement of 
Said capacity of each of Said portions of the Surface. 

14. An apparatus for placing a plurality of elements on a 
Surface, Said apparatus comprising: 

a proceSSOr, 

memory connected to Said processor, 
Said memory having instructions for Said processor to 

assign the elements to portions of the Surface; to 
preplace the elements onto the Surface; to reposition the 
elements depending on relative affinities of the ele 
ments to each other; and to connect the elements on the 
Surface. 

15. An apparatus according to claim 8 further comprising 
a plurality of processors. 

16. An apparatus according to claim 9 wherein Said 
plurality processors operate simultaneously. 

17. An apparatus according to claim 8 further comprising 
a harddrive and a monitor. 

18. An apparatus according to claim 8 wherein Said 
apparatus is a general purpose computer. 

19. An apparatus according to claim 8 wherein Said 
elements are cells of an integrated circuit chip (IC), and Said 
Surface is the IC. 

20. A machine-readable Storage medium containing 
instructions for a processor, Said instructions comprising the 
Steps for locating a plurality of elements on a Surface and 
comprising the Steps of: 

assigning the elements to portions of the Surface; 
preplacing the elements onto the Surface; 
repositioning the elements depending on relative affinities 

of the elements to each other, and 
connecting the elements on the Surface. 
21. A Storage medium according to claim 5 wherein Said 

Storage medium is Selected from a group consisting of 
magnetic device, optical device, magneto-optical device, 
floppy diskette, harddrive, CD-ROM, magnetic tape, com 
puter memory, and memory card. 
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