wo 20097154742 A1 |1 0000 OO0 O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oL, LN
(19) World Intellectual Property Organization- /25 |)| HIIHND 00O W00 00O O 0
A 5 (10) International Publication Number
(43) International Publication Date Vs
23 December 2009 (23.12.2009) WO 2009/154742 Al
(51) International Patent Classification: Street, #2, Waltham, MA 02453 (US). TAMM-
GO6F 17/30 (2006.01) DANIELS, Rik [US/US]; 1 Park Lane, Apt. 1410,

Boston, MA 02210 (US). PROBSTEIN, Sid [US/US];

(21) International Application Number: 270 Eliot Street, Chestnut Hill, MA 02467 (US).

PCT/US2009/003609 YOUNG, Jonathan, H. [US/US]; 47 Churchill Street,
(22) International Filing Date: Newton, MA 02460 (US).
17 June 2009 (17.06.2009) 743 Agents: SMITH, James, M. et al; Hamilton, Brook,
(25) Filing Language: English Smith & Reynolds, P.C., 530 Virginia Road, P.O. Box
. 9133, Concord, MA 01742-9133 (US).
(26) Publication Language: English
. (81) Designated States (unless otherwise indicated, for every
(30) Priority Data: kind of national protection available): AE, AG, AL, AM,
61/073,156 17 June 2008 (17.06.2008) UsS AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(71) Applicant (for all designated States except US): ATTIV- CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
IO, INC. [US/US]; 246 Walnut Street, Newtonville, MA DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
02460 (US). HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(72) Inventors; and ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(75) Inventors/Applicants (for US only): SMITH, Tim [US/ NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
US]J; 135 North Street, Apt. D, Newtonville, MA 02460 SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
(US). JOHNSON, William, K., III [US/US]; 22 Stearns TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

[Continued on next page]

(54) Title: QUERYING JOINED DATA WITHIN A SEARCH ENGINE INDEX

(57) Abstract: Techniques and systems for in-
dexing and retrieving data and documents
stored in a record-based database management
system (RDBMS) utilize a search engine inter-
face. Search-engine indices are created from
tables in the RDBMS and data from the tables
is used to create "documents" for each record.
Queries that require data from multiple tables
may be parsed into a primary query and a set
of one or more secondary queries. Join map-
- pings and documents are created for the neces-
SEé_?ggE%%?&JMEg;?N%ND L-720 sary tables. Documents matching the query
string are retrieved using the search-engine in-
=i dices and join mappings.
USE INDEX TO RETURN
PRIMARY RESULT SET |-730a
FOR A PRIMARY QUERY
Y

USE INDEX TO RETURN
SECONDARY RESULT SETS |-730b
FOR SECONDARY QUERIES

!

USE JOIN MAPPINGS TO
[DENTIFY DOC IDs HAVING |-740
MATCHING FIELD VALUES

RETRIEVE AT LEAST A
SUBSET OF THE IDENTIFIED }-750
DOCUMENTS

JOIN
MAPPING
STORED

YES

FIG. 7

WO 20097154742 A1 0000V 0T 0 T 0 A

(84) Designated States (unless otherwise indicated, for every OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
kind of regional protection available): ARTPO (BW, GH, MR, NE, SN, TD, TG).
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Published:
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, —upished
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, — with international search report (Art. 21(3))
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),

WO 2009/154742 PCT/US2009/003609

10

15

20

25

QUERYING JOINED DATA WITHIN A SEARCH ENGINE INDEX

RELATED APPLICATION(S)

This application claims the benefit of U.S. Provisional Application No.
61/073,156, entitled “Querying Joined Data Within a Search-Engine Index,” filed on
June 17, 2008. The entire teachings of the above application are incorporated herein

by reference.

BACKGROUND OF THE INVENTION

The increased availability of computer systems and the ability to connect the
computer systems using various networks such as intranets and the Internet, for
example, has made vast repositories of information available to a large number of
people. In many instances, having such a large amount of information at one’s
fingertips greatly enhances productivity.

But these advances in information accessibility and processing have created
other challenges, e.g., how to search and manage such a large collection of
information, especially when the information is stored in various formats and
repositories. Many new tools have been developed to deal with the ever-expanding
volume of information that is now available for consumption in an electronic form.

For example, referring to Fig. 1, conventional record-based data storage 100
is typically organized around the concepts of tables, columns and rows. A table is
defined by a series of columns, each having certain characteristics (i.e.,
corresponding to a particular category of data, e.g., a name or date), and the data is
stored as rows in the tables. For example, a database of customer-related data may
include a CUSTOMER table 110, having columns for CUST_ID (customer
identifier), L NAME (last name), and F_NAME (first name). Another table (the
PURCHASES table 115) may include data related to purchases made by the
customers, and be defined as having columns named CUST _ID, PUR_ID (purchase
identifier) and PUR_DATE (purchase date). Furthermore, each purchase may
include more than one product, so a PRODUCT table 120 may be defined as having

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-2.

a PUR_ID column and a PRO_ ID (product identifier) column. Such an
arrangement allows for multiple purchases (each may have more than one product)
to be recorded for an individual customer without having large amounts of
redundant data (e.g., having to store data in the LAST NAME for every purchase).
As an example, customer number 00001 (Ann Smith) made three purchases
(PUR_IDs 9901, 9902 and 9903). Further, one of those purchases (9901) included
two products, AAAA and BBBB. However, a simple inquiry into one table (e.g.,
the PURCHASES table 115) may not provide all the desired information for a report
because certain descriptives such as customer names and product names are stored
in other tables.

To accommodate queries and other data transactions that require data from
more than one table, certain columns may be designated as foreign keys. A foreign
key is a referential constraint between two tables that identifies a column (or a set of
columns) in one table (typically referred to as the “referencing” table) that refers to a
column or set of columns in another table (the “referenced” table). Using the
example above, the CUST _ID column serves as a foreign key from the
CUSTOMER table 110 to the PURCHASES table 115, and the PUR_ID column
serves as a foreign key to the PRODUCT table 120. Therefore, a request to retrieve
a listing of all products purchased by customer 00001 with the customer’s name and

date of purchase may be formulated as follows:

Select CUSTOMER.F_NAME, CUSTOMER.L_NAME,
PURCHASES.PUR_DATE, PRODUCT.PRO_ID from
CUSTOMER, PURCHASES, PRODUCT where
CUSTOMER.CUST_ID = PURCHASES.CUST_ID,
PURCHASES.PUR_ID = PRODUCT.PUR_ID, CUST_ID =
‘00001”

by taking advantage of the foreign keys from each table. Such an approach works
well for applications that utilize a database interface for information retrieval.
However, with the increased popularity and simple user interface of search engines,
the desire to use conventional database retrieval techniques has waned.
Unfortunately, database design techniques that are aimed at reducing data
redundancy and enforcing data normalization rules typically do not support full-text

indexing and querying of text documents as do modern search engines.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-3-

For example, the World Wide Web ("WWW" or 'fweb") can provide access
to a vast amount of information, and specialized search tools, known as “search
engines” (e.g., Google, Yahoo, and MSN Search) have achieved great success in
facilitating searching of static text documents. Conventional web-based search
engines, however, are not designed for use in an enterprise environment because
data can be stored in many different forms, using various localized repositories and
databases. While a data repository on the Internet or an intranet may contain record-
based data relevant to a search query, the search engine may not be capable of
indexing and/or accessing the data. A similar problem may be encountered with
other forms of content such as word-processing documents, graphical or image files,
MP3 clips, interactive blogs, and other data that may change in real time.

Conventional methods of executing a query referencing multiple tables in a
search engine tend to fall into one of two categories: (i) denormalization, in which
the joined tables must be combined at index time, or (ii) subdivision, where the
query is divided into two or more table queries which are processed independently,
and the results combined in a post-processing phase. Denormalization has several
drawbacks, primarily the increase in the size of the index, because tables with
multiple foreign keys can expand by orders of magnitude after denormalization. The
post-processing approach involves extracting a large volume of data from the index
(typically the entire contents of one or more tables) and then winnowing the data

down based on the join constraints. This is also an inefficient use of resources.

SUMMARY OF THE INVENTION

What is needed is a technique and system for utilizing search engines to
efficiently query and retrieve structured data that can be stored in multiple tables of
a record-based database.

A method and corresponding article of manufacture, having computer
readable program portions, relate to accessing data in a record-based data storage
system using a search engine in response to a join query. Multiple database tables
are indexed using a search engine. Rows in each database table are mapped to
documents in the search engine, and table columns are mapped to document fields.

Documents are searched and join mappings are stored. Using an index (i.e. the

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-4-

search engine index), primary and secondary result sets are returned for primary and
secondary queries of the join query. Using the join mappings, documents are
identified from the primary result sets and the secondary result sets that have
common field values. Further, at least a subset of the identified documents are
retrieved from the primary result sets and the secondary result sets that have
common field values.

Advantageously, in some applications, join queries are executed without
having to retrieve a large volume of data from disk. By using features of a scalable
Information Retrieval (IR) library (e.g., Lucene), join mappings that map join field
values to internal document IDs are extracted from the search engine index. When a
join query is detected, a primary query, a set of one or more secondary queries, and
corresponding join fields are extracted from the join query. The primary query and
secondary queries are executed against an index, resulting in primary and secondary
result sets. Join constraints in the join query are then enforced by using the join
mappings to identify documents from the primary and secondary result sets that
have common field values. After the documents are identified, the queried for
documents are retrieved from disk.

The join mappings may be used to identify values for fields relative to
documents. Alternatively, the join mappings may be used to identify documents
relative to values for fields. In addition, the join queries may be used to identify a
field on which a join is performed.

The join query may comprise an inner join between the primary and
secondary queries of the join query. Alternatively, the join query may comprise an
outer join between the primary and secondary queries of the join query.

Further, the identified documents may be filtered according to the join query.

Join mappings may be stored in volatile memory. Storing join mappings
may include i) determining if sufficient volatile memory is available to store the join
mappings; ii) if sufficient memory exists, storing the join mappings in volatile
memory; and iii) if sufficient memory does not exist, deleting existing join
mappings and storing the new join mappings. When deleting, the least recently used

join mappings may be deleted.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-5-

A combined score may be computed for each of the identified documents
from the primary result sets and the secondary result sets that have common field
values. Further, each of the identified documents may be ranked from the primary
result set and the secondary result sets that have common field values as a function
of at least the combined score and present the at least a subset of the identified
documents in a list of results on a display according to the ranking.

An electronic system of accessing data in a record-based data storage system
using a search engine in response to a join query may comprise a search engine,
storage, and join engine. The search engine may be configured to provide indices
and return result sets from the indices in response to queries. The storage may store
the indices and result sets. The join engine may be configured to query the search
engine to provide join mappings to storage. Further, the join engine may be
configured to query the search engine to return primary and secondary result sets for
primary and secondary queries of the join query. The join engine may also be
configured to use the join mappings and result sets to identify documents from the
primary result sets and the secondary result sets that have common field values. The
search engine may be configured to retrieve at least a subset of the identified
documents from the primary result sets and the secondary result sets that have

common field values.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing will be apparent from the following more particular
description of example embodiments of the invention, as illustrated in the
accompanying drawings in which like reference characters refer to the same parts
throughout the different views. The drawings are not necessarily to scale, emphasis
instead being placed upon illustrating embodiments of the present invention.

Fig. 1 is a graphical representation of a conventional table-based relation
database schema for a collection of customer purchases data;

Fig. 2 is a graphical representation of a conventional table-based relational
database schema for a collection of economic summaries related to specific

countries;

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-6-

Fig. 3 is a graphical representation of a collection of indexed documents
created from the tables of Fig. 2;

Fig. 4 is a graphical representation of fully enumerated documents that
include data from the tables of Fig. 2;

Fig. 5 is a graphical representation of an inner join between two tables in a
conventional table-based relational database schema,;

Fig. 6 is a graphical representation of an outer join between two tables in a
conventional table-based relational database schema,;

Fig. 7 is a flow diagram of a method for querying joined data using an index
and performing a join operation;

Fig. 8 is a graphical representation of join mappings employed in querying
joined data using an index;

Fig. 9A is a flow diagram of a more specific method for querying joined data
using a join mapping derived from an index and performing a join operation;

Fig. 9B is a Venn diagram of the relationship between the collection of field
values of primary and secondary result sets;

Fig. 10 is a flow diagram of an alternate more specific method for querying
joined data using a join mapping derived from an index and performing a join
operation;

Fig. 11 a graphical representation of scoring and ranking documents;

Fig. 12 is a schematic diagram of a system for querying joined data using an

index.

DETAILED DESCRIPTION OF THE INVENTION

A description of example embodiments of the invention follows.

The teachings of all patents, published applications and references cited
herein are incorporated by reference in their entirety.

A relational database is a database that groups data using common attributes
found in the data set. The resulting "clumps" of organized data are much easier for
people to understand. For example, a data set containing all the real estate
transactions in a town can be grouped by the year the transaction occurred; or it can

be grouped by the sale price of the transaction; or it can be grouped by the buyer's

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-7-

last name; and so on. Such a grouping uses the relational model (a technical term
for this schema). Hence such a database is called a "relational database." Relational
databases are currently the predominate choice in storing financial records,
manufacturing and logistical information, personnel data and much more.

Strictly, a relational database is a collection of relations (frequently called
tables). Other items are frequently considered part of the database, as they help to
organize and structure the data, in addition to forcing the database to conform to a
set of requirements. As stated above, a table is defined by a series of columns, each
having certain characteristics and mapping to a field (i.e., corresponding to a
particular category of data, e.g., a name or date), and the data is stores as rows in the
tables.

Fig. 2 is a graphical representation of a conventional table-based relational
database schema for a collection of economic summaries related to specific
countries. For example, a database of country-related data may include a Country
table 210, having a column for a Country field, and Economic Summary field that
contains economic summaries related to a specific country (e.g., gross domestic
product, inflation, unemployment, monetary unit, natural resources). Another table
(the Medal table 240) may include data related to the number of gold, silver, and
bronze medals won by a specific country during the Olympics. As illustrated, the
Country field 215 serves as a foreign key 230 to the Medal table. For illustration
purposes only, the Country table 210 and Medal table 240 contain three rows of
information. However, tables typically include many rows of information.

In general, techniques and systems are provided for indexing and retrieving
data and documents stored in a record-based database management system
(RDBMS) using a search engine interface. Search-engine indices are created from
tables in the RDBMS that map unique document numbers (“Doc IDs” or “document
IDs”, used interchangeably throughout) to keys (e.g., foreign and/or primary keys)
for each table. Data from the tables within the RDBMS is used to create a
“document” for each record (typically a row in a table) as a string of field/value
pairings. Queries submitted to a search engine may then refer to the search-engine
index to find the Doc IDs associated with the correct index value, and the Doc IDs

are then used to locate the correct document. Queries that include “join” clauses

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-8-

(clauses linking fields from different tables based on a common value) may be
parsed into a primary query and a set of one or more secondary queries, and in such
cases join mappings and documents are created for the necessary tables. The
resulting documents may be scored and/or ranked and presented to a user in
response to a search query.

Data stored as records in a database may be stored in a index, or search-
engine index as a set of (field, value) pairs. Using such notation, each table row is
represented as a searchable document, with the table columns as field names, and the
row values as the field values. Using the example above, a record from the Medal
table 240 can be represented using the following notation:

{(Country; USA), (Gold, 100), (Silver, 25), (Bronze, 62)}
with each table row “document” being assigned a unique document ID. Databases
containing multiple tables may be represented as a single index (e.g., records from
different tables can all be stored in the same index and have unique document IDs).
In some implementations, groups of tables (based, for example on data type, data
format and/or data usage) may be combined into a collection of indices; in most
cases, there are fewer indices than tables.

Fig. 3 illustrates a collection of indices 300 created using one
implementation of this technique as applied to the tables of Fig. 2. Because each
row in an index or table is a searchable document, each row includes a unique
document ID. Country table 210 includes one field that is to be used as a foreign
key 230 (Country field) and therefore index 310 includes a unique document ID for
each row and the corresponding foreign key value (Country value) for each record.
Similarly, the Medal table 240 has a foreign key 235 (Country field). Therefore,
another index 320 is created for the Medal table 240. Index 320 includes a unique
document ID for each row (M1, M2, and M3) to specify each searchable document,
and corresponding foreign key value for each record. Other indices may be created
based on other tables, reporting requirements, and other functions of other
application(s) supported by the database.

Fig. 4 illustrates a collection of fully enumerated documents 410, 420
corresponding to the tables of Fig. 2 that are included in search-engine index. By

using the indices described in Fig. 3 and separately storing the data as individually

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-9.

searchable documents, each corresponding to a table row, primary document sets
and secondary document sets, linked via foreign keys, can be identified and
combined to present a complete result set. For example, the document set 410
includes strings of key-value pairs and field-value pairs for each record in the
Country table 210. Queries searching for economic summaries of specific countries
would use the Country table 210 as the primary table. For example, in the following

query:

Select Country.Country, Country.Economic Summary from
Country where Country = ‘USA’

the field following the “Select” clause are primary keys in the Country table 210. In
processing the query, the index 310 is first searched to identify the document IDs
that include the desired Country value (in this case “USA”), and then retrieve the
document with the corresponding document IDs from document set 410. Similarly,
document set 420 provides fully enumerated listings of data in the Medals table 240
of Fig. 2.

In some instances, queries having join clauses (e.g., requiring data from
multiple tables joined on fields having a common value) are submitted to a search
engine. A JOIN clause combines records from two tables in a database. It creates a
set that can be saved as a table or used as is. A JOIN is a means for combining fields
from two tables by using values common to each. JOIN clauses may include an
inner join or outer join between two tables in a database. An inner join requires eaéh
record in the two joined tables to have a matching record. An inner join essentially
combines the records from two tables (A and B) based on a given join-predicate. An
outer join does not require each record in the two joined tables to have a matching
record. The joined table retains each record—even if no other matching record
exists.

Fig. 5 is a graphical representation of an inner join between two tables in a
conventional table-based relational database schema. A query whose aim is to
produce all documents from table Country 510 and table Medal 540 having Country

values that match may be queried as follows:

Select * from Country, Medal where Country.Country =
Medal.Country.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-10 -

The inner join would produce an inner join table 550 that contains a document set of
all documents whose Country field value matched including the associated fields for
each document from each table. As a result, inner join table 550 contains the foreign
key (Country), and the following associated fields: Economic Summary, Gold,
Silver, and Bronze. Because the inner join function only produces the document
whose Country values matched, the document containing the Country value India
from table Country 510 and the document containing the Country value Russia from
table Medal were not produced in the inner join table 550.

Fig. 6 is a graphical representation of an outer join between two tables in a
conventional table-based relational database schema. As stated above, an outer join
does not require each record in the two joined tables to have a matching record.
Therefore, a full outer join between table Country 610 and table medal 640 would
produce join table 650. As illustrated, join table 650 contains every record from
each table even if there is not a matching Country value. The document containing
Country value India from table Country 610 and the document containing Country
value Russia from table Medal 640 are produced in the join table 650. Because table
Medal 640 does not have a document for Country value India, the field values in
join table 650 that correspond to the field values from table Medal 640 are NULL.
Similarly, the field values for Country value Russia from table Country 610 are
Null.

Full Outer Joins may be subdivided into left outer joins and right outer joins.
The result of a left outer join (or simply left join) for table Country 610 and Medal
640 always contains all records of the "left" table (Country 610), even if the join-
condition does not find any matching record in the "right" table (Medal 640). This
means that a left outer join returns all the values from the left table (Country 610),
plus matched values from the right table (Medal 640) (or NULL in case of no
matching join predicate). Therefore, the resulting join table would produce all the
documents from outer join table 650, except for the document containing Country
value Russia. A right outer join (or right join) closely resembles a left outer join,
except with the treatment of the tables reversed. Every row from the "right" table
(Medal 640) will appear in the joined table at least once. If no matching row from

the "left" table (Country 610) exists, NULL will appear in columns from Country

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-11 -

610 for those records that have no match in Country 610. Therefore, the resulting
join table would produce all the documents from outer join table 650, except for the
document containing Country value India.

A technique for indexing and retrieving data and documents stored in a
record-based database management system (RDBMS) using a search engine
interface may include extracting a large volume of data (documents) from the index
(typically the entire contents of one or more tables), retrieving the identified
documents from disk, and then winnowing the documents down based on join
constraints. However, an approach that requires retrieval of documents to perform
the join constraints also requires substantial processing time.

Fig. 7 is a flow diagram of a method 700 for querying joined data using an
index and performing a join operation without having to retrieve a substantial
number of documents that are then filtered. At step 710, the method begins by
receiving a query from a search engine interface to join information from at least
two different tables in a record-based management system (RDBMS). In response
to the query, at 715, the method determines if a join mapping required for the join
query is stored in memory. If so, the method continues to steps 730a and 730b. If
not, the method, at 720, searches for related dbcuments in an index, or search-engine
index, and stores join mappings. At 730a, the method then uses the index to identify
and return a first result set containing document IDs from a primary query parsed
from the join query. Contemporaneously, the method uses the index to identify and
return secondary result sets containing document IDs from secondary queries parsed
from the join query at 730b. The method then uses the stored join mappings to
identify document IDs that have matching field values from the first result set and
secondary result sets at 740. The method, at 750, retrieves at least a subset of the
identified document IDs that have matching field values from the first result set and
secondary result sets. Although the method 700 is shown to transpire in a particular
sequence, other sequences are possible, as well, in other embodiments.

As stated above, data is stored in an index as a set of (field, value) parings.
As such, the index may hold a pairing consisting of a document ID field, and
foreign-key value as illustrated in Fig. 3. A foreign key is a referential constraint

between two tables. The foreign key identifies a column or a set of columns in one

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-12-

(referencing) table that refers to a column or set of columns in another (referenced)
table. Therefore, from the search-engine index, join tables may be created that
consist of join mappings of document IDs to foreign key values or foreign key
values to document IDs associated with documents having the value. Because
foreign key values may be mapped to document IDs, join tables may be created
dynamically for a specific query. In addition, join tables may exist for every field
that serves as a foreign key. The join tables may be stored as hash tables that
associate keys from each of the tables with their corresponding values in order to
efficiently find records given a key and find the corresponding value. The hash
tables may transform the key using a hash function into a number that is used as an

index in an array to locate the desired location (“bucket”) where the values should

- be found. The tables can be created during a pre-processing phase and persist in

storage, or, in other cases the tables may be created dynamically at query time and
stored in cached memory.

Fig. 8 illustrates join mappings for the foreign key “Country.” Join
mappings may be stored in a join table as an index in an array. Join mapping A 810
contains the set of document IDs in a RDBMS that contain the foreign key
“Country.” Join mapping A 810 allows a search-engine index, in response to a join
query, to immediately identify all the documents that have the foreign key in which
the join query is employing to join data from at least two different tables in the
RDBMS. Join mapping B 820 contains the set of document IDs associated with a
specific foreign key value. As illustrated in Fig. 8, documents IDs C1 and M1 are
associated with the foreign key value “USA.” Join mapping B 820 allows a search-
engine index, in response to a join query, to immediately identify all the documents
that have a specific foreign key value in which the join query is employing to join
data from at least two different tables in the RDBMS.

Join mapping B 820 may be represented as a bit map for each value. For
example, the bit map for the Country value ‘USA’ may be illustrated as:

{10100.....}
in relation to table Country 210 and table Medal 240 of Fig. 2, wherein each position
in the bit map, represents document IDs C1, C2, M1, M2, and M3, in order, and ‘1’

indicates a true value and ‘0’ indicates a false value.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-13 -

Fig. 9A is a flow diagram of a more specific method 900 for querying joined
data using a join mapping derived from an index. The method begins at step 910 by
parsing a join query received at a search-engine interface into primary and
secondary queries. From the primary query, the method, at 920a, uses an index to
return a primary result set containing the document IDs related to the primary query.
The method, at step 920a, does not retrieve documents from disk, but rather returns a
result set of document IDs from the index. Contemporaneously, the method, at
920b, returns secondary result sets, from the index, related to the secondary queries.
Using the join mapping A as illustrated in Fig. 8, at step 930a, the method identifies
the key value for each identified document ID from the primary result sets as a
primary value set (V,). Similarly, at 930b, the method identifies the key value for
each identified document ID from the secondary result sets as a secondary value sets
(V). At step 940, the method then compares the primary value set and the
secondary value sets and filters for values that match as matching value set (V2).

Fig. 9B illustrates the relationship between the collection of value sets of
primary and secondary result sets. As stated above, the method 900 compares the
primary value set 935a and the secondary value sets 935b. Section 945 indications
where the primary value set and the secondary value sets have a common
relationship. The method finds this common relationship and at 940 filters out the
matching value(s) 945.

Continuing with Fig. 9A, the method 900 then at 950 uses the join mapping
B from the join mappings illustrated in Fig. 8 to identify all documents in the
database that have the matching value from step 940. Next, at 960 the method
identifies the queried for document IDs, by filtering for common document IDs
between the identified documents in step 950 and one of the following: the primary
result set, secondary result sets, or combination of primary and secondary result sets.
The method then at 970 ranks the documents according to scoring system for each
document that computes a combined score for each primary document and
secondary document that have common field values. At step 980, the method
retrieves the documents from the database by using the document IDs, and presents

the documents according to the ranking. Although the method 900 is shown to

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-14 -

transpire in a particular sequence, other sequences are possible, as well, in other
embodiments.

For example, assume that a join query was received that requested economic
summaries for countries that won more than 50 gold medals in the past Olympics.
At step 910, the method 900 parses a join query into a primary query and a
secondary query. Generally, the primary query would query for all documents in the
table Country as illustrated in Fig. 2. However, the method, at 920a, does not
require querying the database, but will return a primary result set containing
documents IDs associated with documents in the table Country 210 by querying a
search-engine index. Similarly, at 920b the method returns a secondary result set
containing document IDs associated with documents in the table Medal related to
the secondary query. At steps 920a and 920b, the method 900 has identified
document IDs C1, C2, and C3 in a primary result set, and documents M1 and M3 in
a secondary result set.

Using the join mapping A illustrated in Fig. 8, at steps 930a-b, the method
identifies the value of the foreign key ‘Country’ for each document ID from the
primary result set and the secondary result sets. Value Set 1 (V) for the primary
result set includes the ‘Country’ values ‘USA,” ‘SA,” and ‘India.” Value Set 2 (V)
for the secondary result set includes the ‘Country’ values ‘USA,’ and ‘Russia.” The
method then at 940 filters Value Set 1 and Value Set 2 for matching values. This
filtering is illustrated in the Venn diagram of Fig. 9B wherein, the matching value
945 is ‘USA.> Using the join mapping B illustrated in Fig. 8, at step 950, the
method identifies all the documents in the database that have the value ‘USA.” In
this example embodiment, the join table for field/key ‘Country’ contains all the
documents in the database that contain the field/key ‘Country.’ In alternate
embodiments, the joint mappings may be limited to the documents produced in the
primary result set and the secondary result sets.

The method then at 960 identifies the queried for document IDs by
intersecting the documents from join mapping B for the value USA with the
document IDs from the primary result set because the query is only interested
obtaining documents containing economic summaries. In this example, C1 is the

only document that matches. The method then at 970 ranks the intersected

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-15 -

documents, in this example, ranking may not be necessary because only one
document was identified, but in the situation where more than one document is
identified, the method ranks each identified document by computing a combined
score for the identified document and all associated child documents, which are
documents linked by foreign keys. In this example, the child document for
document C1 would be document M1. The method then at 980 retrieves document
C1 from the database and presents the document in a results list on a display.

Fig. 10 is a flow diagram of an alternate more specific method 1000 for
querying joined data using a join mapping derived from an index. The method
begins at 1010 by parsing a join query received at a search-engine interface into
primary and secondary queries. From the primary query, the method at 1020a uses
the index to return a primary result set containing the document IDs related to the
primary query. The method, at step 1020a, does not retrieve documents from disk,
but rather returns a result set of document IDs from the index. Contemporaneously,
the method, at 1020b, returns secondary result sets, from the index, related to the
secondary queries.

Using the join mapping A as illustrated in Fig. 8, at step 1030, the value of
the join field is extracted for each document identified in the primary result set. At
1040, using the join mapping, the method determines the set of secondary
documents to be attached to each primary document by identifying the set of
secondary documents that have common join field values with each primary
document. If the join query specifies an inner join and no secondary documents are
found, the primary document is discarded. Next, at 1060, the method filters the
identified documents from the primary and secondary result sets having common
field values with the primary and/or secondary result sets. At 1070, the method then
ranks the documents according to scoring system for each document that computes a
combined score for each primary document and secondary document that have
common field values. The method then at 1080 retrieves the documents from the
database by using the document IDs, and presents the documents according to the
ranking. Although the method 1000 is shown to transpire in a particular sequence,

other sequences are possible, as well, in other embodiments.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-16 -

For example, assume that a join query was received that requested economic
summaries for countries that won more than 50 gold medals in the past Olympics.
At step 1010, the method 1000 parses a join query into a primary query and a
secondary query. Generally, the primary query would query for all documents in the
table Country as illustrated in Fig. 2. However, the method, at 1020a, does not
require querying the database, but will return a primary result set containing
documents IDs associated with documents in the table Country 210 by querying a
search-engine index. Similarly, at 1020b the method returns a secondary result set
containing document IDs associated with documents in the table Medal related to
the secondary query. At steps 1020a and 1020b, the method 1000 has identified
document IDs C1, C2, and C3 in a primary result set, and documents M1 and M3 in
a secondary result set.

Using the join mapping A as illustrated in Fig. 8, at step 1030, the value of
the join field is extracted for each document identified in the primary result set. At
1040, using the join mapping, determine the set of secondary documents to be
attached to each primary document by identifying the set of secondary documents
that have common join field values with each primary document.

Using the join mapping A illustrated in Fig. 8, at step 1030, the method
identifies the value of the foreign key ‘Country’ (join field value) for each document
ID from the primary result set and the secondary result sets. Value Set 1 (V) for the
primary result set includes the ‘Country’ values ‘USA,” ‘SA,” and ‘India.” Using the
join mapping, at step 1040, determine the set of documents to be attached to each
primary document by identifying the set of secondary documents that have common
join field values with each primary document. In this case, document M1, in the
secondary result set is the only document having a matching field value.

The method then, at 1060, identifies the queried for document IDs by
intersecting the identified documents with the document IDs from the primary result
set because the query is only interested obtaining documents containing economic
summaries. In this example, C1 is the only document that matches. The method
then at 1070 ranks the intersected documents, in this example, ranking may not be
necessary because only one document was identified, but in the situation where

more than one document is identified, the method ranks each identified document

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-17-

by computing a combined score for the identified document and all associated child
documents, which are documents linked by foreign keys. In this example, the child
document for document C1 would be document M1. The method then at 1080
retrieves document C1 from the database and presents the document in a results list
on a display.

In many implementations, the tables being joined may use the same
nomenclature for a common data element, as seen above; however, the possibility
exists that common data elements in tables being joined may be described using
different field names (different nomenclature). While not optimal from a database-
design perspective, such mismatches occur when disparate systems — often not
originally designed to operate together — are merged or used to supply data to a
common application. In such a situation, a join table for each table with different
nomenclature for common data elements are used. Similarly, multiple join tables
may be implemented if a join query contains one or more join fields.

For example, assume the table Medal 240, as illustrated in Fig. 2, used a
column ‘CTRY,’ rather than ‘Country.” A join table for the column Country would
not identify the documents from the table Medal 240. A join query requiring the
joining of tables Country 210 and Medal 240 would require a join table for the
column ‘Country’ and a join table for the column ‘CTRY.” At steps 930b and 1040
in the methods described above, the methods would use the join table ‘CTRY’ to
identify join field values from the secondary result sets.

In some implementations, the resulting documents are scored based on
various attributes of individual documents retrieved from the primary table,
documents selected using the join mappings, or both. For example, one scoring
technique considers the number of documents retrieved using the join mappings as a
score for the primary document. In such cases, a document having many “children”
will score higher than those having few or no linked documents, and therefore the
higher score indicates higher importance. In some cases, a hierarchical scoring
approach may be used where a “child-count” score is computed for each document
at each level of the hierarchy and summed cumulatively to obtain a total score for

the primary document.

WO 2009/154742 PCT/US2009/003609
-18 -

One example of a scoring technique is Lucene scoring, which uses a
combination of a vector space model (VSM) of information retrieval and a Boolean
model to determine how relevant a given document is to a query. In general, the
VSM method computes a score based on the frequency that a query term appears in

5 adocument relative to the number of times the term appears in all the documents in
the collection. As such, the higher the score the more relevant that document is to
the query. Lucene uses the Boolean model to first narrow down the documents that
need to be scored based on the use of Boolean logic in the query specification.

The assigned scores may be further modified (e.g., boosted or lowered)

10 based on other data attributes, such as age (older records receiving less weight than
newer ones), source, author, and/or others. The scores may then be used to
influence the presentation of the documents as a response to the query by, for
example, using a cut-off score to eliminate results that are not likely to be relevant or
displaying the results according to the score (e.g., a ranked list).

15 Fig. 11 is a graphical representation of a scoring and ranking technique. For
example, assume that a join query was received that requested economic summaries
for countries that won more than 50 gold medals in the past Olympics. Therefore,
documents need to analyzed from table Country 1110, and table Medal 1140. Using
either of the methods described above, a join query is parsed into a primary query

20 and one or more secondary queries. Each query returns a result set from a search-
engine index that contains a set of document IDs associated with documents in a
table.

In this case, a primary query returns documents IDs C1, C2, and C3
associated with documents from table Country 1110 in a primary result set 1115.

25 The result set 1115 may include scores for each document ID associated with the
query. Because the primary query is interested in all countries from the table
Country 1110, each document ID, in this example, is given the same score. The
secondary query returns all the documents from table Medal 1140 with countries
that have won more than 50 gold medals. Therefore, the secondary result set 1145

30 contains documents M1, M3, and M4, with appropriate scores. In this case, the
scores assigned to documents IDs is based on the query of more than 50 gold, and

scoring for this result set is based on the number of gold medals, such that the

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-19-

document ID with the highest number of gold medals is given the greatest score.
Result set 1145 contains document ID ‘M1’ with a score of 4, document ID ‘M3’
with a score of 3, and document ID ‘M4’ with a score of 2.

In this example, the query is only interested in producing the documents
from table Country 1110. However, each document ID associated with documents
from table Country 1110 all have the same score. A combined score table 1150
contains the combined score of all primary and linked secondary documents. Using,
the method described above, a combined score is calculated for each primary
document and linked secondary document. Documents are linked based on common
field values. In this case document C1 is linked with M1, document C2 is linked
with M2, and document C3 is linked with M4. As illustrated, the documents are
ranked and presented according to the combined score. Documents C1 and C3 are
the documents that are to be returned, document C1 has a score of 5, and document
C3 has a score of 3. Therefore, document C1 is ranked as a first document, and C3
is ranked as the second document. As illustrated, the documents are presented in a
result list 1160 according to the ranking.

Fig. 12 illustrates a system 1200 for querying joined data using an index.
The system includes both a storage apparatus 1202 and a processing apparatus 1204.
The processing apparatus 1104 includes both a join engine 1210 and search engine
1205.. The processing apparatus1104 provides the functional operations of system
1200, including the creation of search-engine indices and join mappings, and the
processing of search engine queries against the indices. The storage apparatus 1102
includes storage 1220 that provides storage (volatile and non-volatile) for indices
and documents.

The search engine 1205, which executes in main memory, receives queries
and instructions from join engine 1210, retrieves record-based data from tables in an
RDBMS 1215, and creates search-engine indices as described above. For each
table, associated with a join query the search engine 1205 creates both a search-
engine index having a document ID and a foreign key, and a document that includes
the corresponding document ID from the search-engine index and the rest of the
non-key data from the corresponding record. The join engine 1210 receives requests

from users (which, in many cases, will require data from multiple tables), queries the

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

-20-

search engine 1205 to return primary and secondary result sets for primary and
secondary queries parsed from the join query. The join engine 1210 queries the
search engine 1205 to provide join mappings to storage based on the parsed queries.
Using the join mappings, the join engine 1210, identifies documents from the
primary result sets and the secondary result sets that have common field values. The
search engine 1205 may then retrieve the identified documents from the RDBMS
1215.

Storage 1220 may manage the storage of indices and join mappings. For
example, storage 1220 may determine that certain indices are large and accessed
infrequently, and therefore are better placed on disk, whereas other indices and/or
join mappings may benefit from being placed in volatile memory (e.g. RAM) for
quicker and more frequent usage.

Join engine 1210 may use the join mappings to identify a field on which a
join is performed. Further, the join engine 1210 may use the join mappings to
identify values for fields relative to documents. Alternatively, the join engine 1210
may use the join mappings to identify documents relative to values for fields.

Join engine 1210 may also compute a combined score for all identified
documents and associated “child” documents. Join engine 1210 may also rank the
identified documents according to the combined scores. Join engine 1210 may then
query the search engine 1205 to retrieve the identified documents from the RDBMS
1135 and present them to a user in a list organized by the rank of each document.

In practice, the systein 1200 may be implemented as part of or a module
within a larger application, including, for example, web-based applications that
utilize conventional search engine interfaces. In such instances, multiple clients
1225 submit queries over a network 1230. The queries are received at a web server
1235, and passed on to the system 1200 for processing. Results may then be
integrated into other application pages as presented to the clients 1225.

The clients 1225 may be implemented as software running on a personal
computer (e.g., a PC with an INTEL processor or an APPLE MACINTOSH
processor) capable of running such operating systems as the MICROSOFT
WINDOWS family of operating systems from Microsoft Corporation of Redmond,
Washington, the MAC OS operating system from Apple Computer of Cupertino,

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

221 -

California, and various varieties of Unix, such as SUN SOLARIS from SUN
MICROSYSTEMS, and GNU/Linux from RED HAT, INC. of Durham, North
Carolina (and others). The clients 1195 may also be implemented on such hardware
devices as a smart or dumb terminal, network computer, set top box, game player,
mobile device, wireless device, personal digital assistant, media (e.g., music and/or
video) player, information appliance, workstation, minicomputer, mainframe
computer, or any other device with computing functionality.

The network 1230 connecting the clients to the system 1200 may include any
media such as standard telephone lines, LAN or WAN links (e.g., T1, T3, 56kb,
X.25), broadband connections (ISDN, Frame Relay, ATM), wireless links (802.11,
bluetooth, etc.), and so on, in any suitable combination. Preferably, the network
1230 can carry TCP/IP protocol communications, and HTTP/HTTPS requests made
by the clients 1225 may be communicated over such TCP/IP networks. The type of
network is not a limitation, however, and any suitable network may be used. Non-
limiting examples of networks that can serve as or be part of the communications
network 1230 include a wireless or wired Ethernet-based intranet, a local or wide-
area network (LAN or WAN), and/or the global communications network known as
the Internet, which may accommodate many different communications media and
protocols.

Examples of the RDBMS 1215 that may be used to support the system 1200
include the MySQL Database Server by Sun Microsystems, the ORACLE Database
Server, or the SQLServer Database Server by Microsoft.

The present invention can be realized in hardware, software, or a
combination of hardware and software. An implementation of the method and
system of the present invention can be realized in a centralized fashion in one
computer system, or in a distributed fashion where different elements are spread
across several interconnected computer systems. Any kind of computer system, or
other apparatus adapted for carrying out the methods described herein, is suited to
perform the functions described herein.

Various embodiments of the invention may be provided as an article of
manufacture having a computer-readable medium with computer-readable

instructions embodied thereon for performing the methods described in the

WO 2009/154742 PCT/US2009/003609

10

-22-

preceding paragraphs. In particular, the functionality of a method of the present
invention may be embedded on a computer-readable medium, such as, but not
limited to, a floppy disk, a hard disk, an optical disk, a magnetic tape, a PROM, an
EPROM, CD-ROM, or DVD-ROM or downloaded from a server. The functionality
of the techniques may be embedded on the computer-readable medium in any
number of computer-readable instructions, or languages such as, for example,
FORTRAN, PASCAL, C, C++, Java, C#, Tcl, BASIC and assembly language.
Further, the computer-readable instructions may, for example, be written in a script,
macro, or functionally embedded in commercially available software (such as, e.g.,
EXCEL or VISUAL BASIC).

While this invention has been particularly shown and described with
references to example embodiments thereof, it will be understood by those skilled in
the art that various changes in form and details may be made therein without

departing from the scope of the invention encompassed by the appended claims.

WO 2009/154742 PCT/US2009/003609

223 -
CLAIMS
What is claimed is:
1. A method of accessing data in a record-based data storage system using a

search engine in response to a join query, the method comprising, in an
5 electronic processing system:

searching documents and storing join mappings;

using an index, returning primary and secondary result sets for
primary and secondary queries of the join query;

using the join mappings, identifying documents from the primary

10 result sets and the secondary result sets that have common field values;

retrieving at least a subset of the identified documents from the

primary result sets and the secondary result sets that have common field

values.

15 2. The method of claim 1 wherein the join mappings identify values for fields

relative to documents.

3. The method of claim 1 wherein the join mappings identify documents

relative to values for fields.

20
4. The method of claim 1 further comprising using the join query, identifying a
field on which a join is performed.
5. The method of claim 1 wherein the join query comprises an inner join
25 between the primary and secondary queries of the join query.
6. The method of claim 1 wherein the join query comprises an outer join
between the primary and secondary queries of the join query.
30 7. The method of claim 1 further comprising filtering the identified documents

according to the join query.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

10.

11.

12.

-24 -

The method of claim 1 further comprising storing the join mappings in

volatile memory.

The method of claim 8 further comprising:

determining if sufficient volatile memory is available to store the join
mappings;

if sufficient memory exists, storing the join mapping in volatile
memory; and

if sufficient memory does not exist, deleting existing join mappings

and storing the join mapping.

The method of claim 9 wherein deleting existing join mappings includes

deleting the least recently used join mappings.

The method of claim 1 further comprising:
computing a combined score for each of the identified documents
from the primary result sets and the secondary result sets that have common

field values.

The method of claim 11 further comprising:

ranking each of the identified documents from the primary result sets
and the secondary result sets that have common field values as a function of
at least the combined score and presenting the at least a subset of the

identified documents in a list of results on a display according to the ranking.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

13.

14.

15.

16.

17.

18.

-25-

An electronic system of accessing data in a record-based data storage system
using a search engine in response to a join query, the electronic system
comprising:
a search engine configured to provide indices and return result sets
from the indices in response to queries;
storage to store the indices and result sets;
a join engine configured to:
query the search engine to provide join mappings to storage;
query the search engine to return primary and secondary result
sets for primary and secondary queries of the join query;
using the join mappings and result sets, identifying documents
-from the primary result sets and the secondary result sets that have

common field values;

The system of claim 13 wherein the search engine is further configured to
retrieve at least a subset of the identified documents from the primary result

sets and the secondary result sets that have common field values.

The system of claim 13 wherein the join engine is further configured to use

the join mappings to identify values for fields relative to documents.

The system of claim 13 wherein the join engine is further configured to use

the join mappings to identify documents relative to values for fields.

The system of claim 13 wherein the join engine is further configured to use

the join query to identify a field on which a join is performed.

The system of claim 13 wherein the join engine is further configured to filter

the identified documents according to the query.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

19.

20.

21.

22.

23.

24.

25.

-26-

The system of claim 13 wherein the join engine is further configured to parse

the query as an inner join between the primary and secondary queries of the

query.

The system of claim 13 wherein the join engine is further configured to parse

the query as an outer join between the primary and secondary queries of the

query.

The system of claim 13 wherein the storage is further configured to store the

join mappings in volatile memory.

The system of claim 21 wherein the storage is further configured to:

1) determine if sufficient volatile memory is available to store the
join mappings;

2) if sufficient memory exists, store the join mapping in volatile
memory; and

3) if sufficient memory does not exist, delete existing join mappings

and store the join mapping.

The system of claim 22 wherein the storage is further configured to delete

the least recently used join mappings.

The system of claim 13 wherein the join engine is further configured to
compute a combined score for each of the identified documents from the
primary result sets and the secondary result sets that have common field

values.

The system of claim 24 wherein the join engine is further configured to rank
each of the identified documents from the primary result sets and the
secondary result sets that have common field values as a function of at least

the combined score.

WO 2009/154742 PCT/US2009/003609

10

15

20

25

30

26.

27.

28.

29.

30.

31

32.

-27-

The system of claim 25 wherein the search engine is further configured to
retrieve and present the at least a subset of the identified documents from the
primary result sets and the secondary result sets that have common field

values in a list of results on a display according to the ranking.

An article of manufacture having computer-readable program portions
embedded thereon for accessing data in a record-based data storage system in
response to a join query, the program portions comprising instructions for:

searching documents and storing join mappings;

using an index, returning primary and secondary result sets for
primary and secondary queries of the join query;

using the join mappings, identifying documents from the primary
result sets and the secondary result sets that have common field values;

retrieving at least a subset of the identified documents from the
primary result sets and the secondary result sets that have common field

values.

The article of manufacture of claim 27 wherein the join mappings identify

values for fields relative to documents.

The article of manufacture of claim 27 wherein the join mappings identify

documents relative to values for fields.

The article of manufacture of claim 27 wherein the program portions further
comprise instructions for using the join query, identifying a field on which a

join is performed.

The article of manufacture of claim 27 wherein the join query comprises an

inner join between the primary and secondary queries of the join query.

The article of manufacture of claim 27 wherein the join query comprises an

outer join between the primary and secondary queries of the join query.

WO 2009/154742 PCT/US2009/003609

10

15

20

33.

34.

35.

36.

37.

-28-

The article of manufacture of claim 27 wherein the program portions further

comprise instructions for filtering the identified documents according to the

join query

The article of manufacture of claim 27 wherein the program portions further

comprise instructions for storing the join mappings in volatile memory.

The article of manufacture of claim 27 wherein the program portions further
comprise instructions for:

determining if sufficient volatile memory is available to store the join
mappings;

if sufficient memory exists, storing the join mapping in volatile
memory; and

if sufficient memory does not exist, deleting existing join mappings

and storing the join mapping.

The article of manufacture of claim 35 wherein deleting existing join

mappings includes deleting the least recently used join mappings.

The article of manufacture of claim 27 wherein the program portions further
comprise instructions for computing a combined score for each of the
identified documents from the primary result sets and the secondary result

sets that have common field values.

WO 2009/154742 PCT/US2009/003609

38.
5
39.
10
15
20
40.
41.
25 42,

-29.

The article of manufacture of claim 37 wherein the program portions further
comprise instructions for ranking each of the identified documents from the
primary result sets and the secondary result sets that have common field
values as a function of at least the combined score and presenting the at least
a subset of the identified documents in a list of results on a display according

to the ranking.

A method for accessing data in a record-based data storage system using a
search engine, the method comprising:

selecting a table from the record-based data storage system as a
primary table;

creating a search engine index from the primary table, wherein each
document in the search engine index represents one record in the primary
table;

receiving a request to extract data from the record-based data storage
system, the request including data from a plurality of tables;

for each table in the plurality of tables, creating a join mapping
comprised of a foreign key from the primary table;

extracting data from the search engine index and each of the join

mappings according to received request.

The method of claim 39 wherein the received request comprises an inner join

between the primary table and one or more of the plurality of tables.

The method of claim 39 wherein the received request comprises an outer join

between the primary table and one or more of the plurality of tables.

The method of claim 39 wherein the search engine index is stored to disk and

the join mappings are stored to RAM.

WO 2009/154742

1/13

PCT/US2009/003609

110 100
¢ -
CUSTOMER
CUST_ID | L_LNAME | F_NAME
00001 SMITH ANN
00002 JONES JOHN
00003 WHITE | PERRY
00004 CLARK RICH
115
Z
PURCHASES
»ICUST_ID | PUR_ID |PUR_DATE
00001 9901 080108
00001 9902 091208
00001 9903 101008
00003 9904 102008
120
Z
PRODUCT
= PUR_ID | PRO_ID
9901 AAAA
9901 BBBB
9902 BBBB
9903 AAAA
9904 BBBB
FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2009/154742

2/13

PCT/US2009/003609

20
TABLE: COUNTRY
DOC ID_| COUNTRY ECONOMIC SUMMARY
Ct USA XXXX
C2 SOUTH AFRICA [YYYY
(SA)
c3 INDIA 7777
F
I
230 240
' TABLE: MEDAL

DOC ID|COUNTRY _ |GOLD [SILVER |BRONZE

M |USA 100 [25 |62

M2 [SOUTHAFRICA[50 [19 |5

(SA)
M3 |RUSSIA 90 |33 |17
4
/
235
FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2009/154742 PCT/US2009/003609

3/13

310\

{(C1, USA)
{(C2, SA)}
{(C3, INDIA)}

320~
{M1, USA)}
{(M2, SA))
{(M3, RUSSIA)}

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2009/154742 PCT/US2009/003609

4/13

'/410

{(DOC ID: C1), (COUNTRY:; USA), (ECONOMIC SUMMARY: XXXX)}
{(DOC 1D; C2), (COUNTRY: SA), (ECONOMIC SUMMARY; YYYY)}
{(DOC 1D; C3), (COUNTRY: INDIA), (ECONOMIC SUMMARY: ZZZZ)}

Ps 420

{(DOC 1D; M1), (COUNTRY; USA), (GOLD; 100), (SILVER; 25), (BRONZE; 62)}
{(DOC ID: M2), (COUNTRY: SA), (GOLD; 50), (SILVER; 19), (BRONZE; 5)}
{(DOC 1D; M3), (COUNTRY; RUSSIA), (GOLD: 90), (SILVER: 33), (BRONZE; 17)}

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/003609

WO 2009/154742

5/13

G Old

sl el os] ama VS
2ol szl ool oo v
RAVANS
37N0wg | wanTis | @109 | DINONOD3 | AYINNOD
NIOT 93NN
ass—"

1) gel 08| wiIssSny
(vs)
YORd4v
S 6L| 0S| HLNOS
79 §z| 00} VSN
JZNOYE | ¥3ATS [T109| AYLINNOD
TWaIW -F1avL
ors—"
7777 YIONI
(vS)
AAAA | YOI44Y HLNOS
XXXX vsSn
AHYWANS DINONODT AYINNOD

ALINNCD F18vL

01—

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/003609

WO 2009/154742

6/13

9 ©Old

W g5l 06l vssnd| . TNl TN
TNl Nl on] 7777] vioN
VORI YOIy
s| 6| os| HOS| Al HLNOS
2o szl ool wsn| xooxx SN
RHINNOD
waan| wvaaw | waaw| vaan | aavanns | ainnoo
TZNOwE| W3NS | 109 | AYINNOD [JINONODT | ASINNOD
NIOF 93LN0
09"

L} ee 06| VISSIY
voIrdav
G 6l 0S| HLNOS
29 Gc| 001 vsn
FZNOHE | HIATIS | TT109 | AJLINNOD
TYA3an F7avl
o%\\
777 VIONI
YOld4V
AAAA HLNOS
XXXX vsn
AHYIWANS OINONODT | AJLINNOD

AYINNOO F18vL

oE\\

SUBSTITUTE SHEET (RULE 26)

WO 2009/154742 PCT/US2009/003609

7/13
700
@ECEWE JOIN QUERY }-710

JOINN_-715
YES MAPPING
STORED

?
NO
SEARCH DOCUMENTS AND |L-720
STORE JOIN MAPPING

P
y

/

USE INDEX TO RETURN
PRIMARY RESULTSET p730a
FOR A PRIMARY QUERY

\

USE INDEX TO RETURN
SECONDARY RESULT SETS |~730b
FOR SECONDARY QUERIES

A\

USE JOIN MAPPINGS TO
IDENTIFY DOC IDs HAVING |~740
MATCHING FIELD VALUES

A\
RETRIEVE AT LEASTA
SUBSET OF THE IDENTIFIED }-750
DOCUMENTS

FIG. 7

SUBSTITUTE SHEET (RULE 26)

WO 2009/154742 PCT/US2009/003609

8/13

810\ JOIN MAPPINGS

A: {(C1: USA), (C2: SA), (C3: INDIA), (M1: USA), (M2: SA), (M3: RUSSIA), ...}

B USA — {C1.M1)
80" SA - {C2M2
INDIA - {C3)
RUSSIA —> (M3}
®

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2009/154742

913

PCT/US2009/003609

900

L-910

PARSE JOIN QUERY

PRIMARY QUERY

{

USE INDEX TO
RETURN PRIMARY
RESULT SET
(DOC IDs: C1, C2, C3)

L-920a

IDENTIFY FIELD VALUE
FOR EACHDOC ID
USING A JOIN MAPPING

J
V4 = USA, SA, INDIA

L-930a

FILTER V4 + Vo FOR

\

SECONDARY QUERIES

f

USE INDEXTO

920b~J RETURN SECONDARY

RESULT SETS

930b~

L-040

(DOC IDs: M1, M3)

/
IDENTIFY FIELD VALUE
FOR EACH DOC ID
USING A JOIN MAPPING

{
V, = USA, RUSSIA

>| MATCHING VALUES }+*

(V42 = USA)

Y

IDENTIFY DOC IDs HAVING
THE MATCHING FIELD

VALUE USING JOIN MAPPING

3
USA = {C1, M1}

L-950

FOR DOC IDs
A

RANK DOCUMENTS

\ 4

EDENTIFY QUER!ED I,geo

L-970

RETRIEVE AND 980
PRESENT DOCUMENTS

FIG. 9A

SUBSTITUTE SHEET (RULE 26)

WO 2009/154742 PCT/US2009/003609

10/13

USA, SA, INDIA

FIG. 9B

SUBSTITUTE SHEET (RULE 26)

WO 2009/154742 PCT/US2009/003609

11/13
1000
1010
PARSE JOIN QUERY [~
Y Y
PRIMARY QUERY SECONDARY QUERIES
\ i \
USE INDEX TO USE INDEX TO
RETURN PRIMARY }-1020a 1020b~y RETURN SECONDARY
RESULT SET RESULT SETS
(DOC IDs: C1, C2, C3) (DOC IDs: M1, M3)
\
Y 1040
y e,
IDENTIFY FIELD VALUE ’
ZOR EACH DOC D _|IDENTIFY WHICH SECONDARY
0 DOCUMENTS HAVE COMMON
_ FIELD VALUE WITH THE
V1= USA SA INDIA PRIMARY DOCUMENT

Y

FILTER IDENTIFIED DOCUMENTS
FROM PRIMARY & SECONDARY 1060
RESULT SETS HAVING COMMON [~
FIELD VALUES WITH PRIMARY
AND/OR SECONDARY RESULT SETS

Y
RANK FILTERED DOC IDs }-1070

Y

RETRIEVE AND 1080
PRESENT DOCUMENTS

FIG. 10

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/003609

WO 2009/154742

12/13

Ll OId

{(zzz7 *AYINANS DINONODT) “(VIANT SAYLINNOD) (€2 ‘al 00a)
{0COXCAYYIINNS JINONODT) (VSN “AYLINNOD) (1D ‘al Doak

Orl

¥ \
0911~
EIYN+ED ¢ W } £0
ClCN+2ZD € EN| l 49
GlIN+1D 14 W | 10
44005 | d120d 34006 [dl 00d 34006 (a1 200
a &
omi\x «/ﬁi mE\\
€ | ¢S VIANI 7N
Ll €€ 06 YISSNY en 217 VIONI €0
G| 6| 0G|VORIHVHLNOS| zw (vS)
AAAA | YOI HLNOS [48)
¢9 G¢| 00l vsh LA XXX VS %
JZNOUd | d3aATS | 370D AHINNQD | 1 00d ASYIWNNS DINONODS AMINNOD [al D0a

TYQ3an 31gvl
F\« 0LLL

A A4INNOO T8Vl

SUBSTITUTE SHEET (RULE 26)

PCT/US2009/003609

13/13

WO 2009/154742

¢l 9ld

Gizl
Swaay

e | [L o Mls301oNI
INIONS HOWY3S | | Jowiois | g
&
A 1 M
0lzh SONIddY
ANIONI NIOF S3JIaNI NIOP
Ve T
-y ~+—z0z)
F 3
ooz Y
w . 7
YINGIS M | MYOMLIN

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

. International application No

PCT/US2009/003609

A. CLASSIFICATION OF SUBJECT MATTER - .
IN. GO6F17/30

According to International Patent Classification (IPC) or to both nationall classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, INSPEC, COMPENDEX

Electronic 0ata base consulted during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages ‘Relevant 1o claim No.

Al1 Riaz"[Online]

XP002544245
INTERNET

27 May 2008 (2008-05-27), pages 1-5,

X ARNOLD S.E.: “Atti?io; An Interview with 1-42

Retrieved. from the Internet:
URL:http://arnoldit.com/search-wizards-spe
ak/attivio.ntm1> [retrieved on 2009-09-03]

" the whole document

/;

m Further documents are listed in the continuation of Box C.

E See patent family annex.

* Special categories of cited documents :

A document defining the general stale of the art which is not
considered 10 be of particular relevance

E earlier document but published on or after the international
filing date

"L’ document which may throw doubts on priority claim(s) or
which is ¢ited to establish the publication date of another
citation or other special reason (as specified)

0O document referrinig to an oral disclosure, use, exhibition or
other means

"P* document published prior to the international filing date but.
later than the priority date claimed

T later document published afier the international filing date
or priority date-and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considerad novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu~
ments, such combination being obvious to a person skilled
in the an.

*&" document member of the same patent family

Date of the actual completion of the intemationai search

_ 4 September 2009

Date ot mailing of the intemational search report

17/09/2009

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentiaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (#31-70) 340-3016

Authorized officer

Jaedicke, Michael

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2009/003609

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

L

ARNOLD S.E.: "Attivio Interview Runs on
May 27, 2008"[Online]
23 May 2008 (2008-05-23), XP002544246
Retrieved from the Internet:
~ URL:http://arnoldit.com/wordpress/2008/05/
23/attivio—interview-runs-on-may-27- 2008/>
[retrieved on 2009-09-03]
cited to establish the publication date of
-the interview with Mr. Riaz
the whole document
AGRAWAL S ET AL: "DBXplorer: a system for
keyword-based search over relational
databases"
- PROCEEDINGS 18TH. INTERNATIONAL CONFERENCE
ON DATA ENGINEERING. (ICDE’2002). SAN
~ JOSE, CA, FEB. 26 - MARCH 1, 2002;
[INTERNATIONAL CONFERENCE ON DATA
ENGINEERING. (ICDE)], LOS ALAMITOS, CA :
IEEE COMP. SoC, US,
vol. CONF. 18,
26 February 2002 (2002-02-26), pages 5-16,
XP010588195
ISBN: 978-0-7695-1531-1
abstract '
page 7, left-hand column, paragraph 2 -
page 11, left-hand column, paragraph 1
HRISTIDIS V ET AL: "DISCOVER: keyword
search in relational databases"
PROCEEDINGS OF THE TWENTY-EIGHTH
INTERNATIONAL CONFERENCE ON VERY LARGE
DATA BASES MORGAN KAUFMANN PUBLISHERS SAN
FRANCISCO, CA, USA, 2002, pages 670-681,
XP002544247
ISBN: 1-55860-869-9
section 3
abstract
US 6 665 640 Bl (BENNETT IAN M [US] ET AL)
16 December 2003 (2003-12-16)
abstract
US 2007/192306 A1 (PAPAKONSTANTINOU YANNIS
{US] ET AL) 16 August 2007 (2007-08-16)
abstract
WO 2004/095428 A (WHAMTECH INC [US];
ROBERTSON GAVIN [USI)
4 November 2004 (2004-11-04)
abstract

1-42

1-42

Form PCT/ISA/210 (continuation of sacond chaet) (April 2008)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2009/003609
Patent document Publication Patent family Publication
cited in search report date . -member(s) date
US 6665640 Bl 16-12-2003 NONE
US 2007192306 Al "~ 16-08-2007 NONE
WO 2004095428 A 04—11—_2004‘ US 2004230571 Al 18-11-2004

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - wo-search-report
	Page 46 - wo-search-report
	Page 47 - wo-search-report

