PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 1/00 Al

(11) International Publication Number:

(43) International Publication Date:

WO 99/64946

16 December 1999 (16.12.99)

(21) International Application Number: PCT/US99/12912

(22) International Filing Date: 9 June 1999 (09.06.99)

(30) Priority Data:
09/097,218 12 June 1998 (12.06.98) uUs
(71) Applicant: MICROSOFT CORPORATION [US/US]; One

Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors;: CHAN, Shannon, J.; 415 174th Place N.E., Belle-
vue, WA 98008 (US). JENSENWORTH, Gregory; 3428
264th Avenue N.E., Redmond, WA 98053 (US). GO-
ERTZEL, Mario, C.; 12631 N.E. 107th Place, Kirkland, WA
98033 (US). SHAH, Bharat; 8223 136th Avenue S.E., New
Castle, WA 98059 (US). SWIFT, Michael, M.; 4220 1st
Avenue N.E., Seattle, WA 98105 (US). WARD, Richard,
B.; 8565 261st Avenue N.E., Redmond, WA (US).

(74) Agent: MICHALIK, Albert, S.; The Law Offices of Albert
S. Michalik, Suite 193, 704 228th Avenue N.E., Redmond,
WA 98053 (US).

(81) Designated States: JP, European patent (AT, BE, CH, CY, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.)
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND SYSTEM FOR SECURE RUNNING OF UNTRUSTED CONTENT

(57) Abstract

Restricted execution contexts are provided for
untrusted content, such as computer code or other data
downloaded from websites, electronic mail messages
and any attachments thereto, and scripts or client
processes run on a server. A restricted process is
set up for the untrusted content, and any actions at-

Restricted \
Token

130
tempted by the content are subject to the restrictions \
of the process, which may be based on various cri- \
teria, Whenever a process attempt to access a re-
source, a token associated with that process is com-
pared against security information of that resource to
determine if the type of access is allowed. The secu-

Browser

18

Restricted
Process

Helper
Process

rity information of each resource thus determines the
extent to which the restricted process, and thus the
untrusted content, has access. In general, the criteria
used for setting up restrictions for each untrusted con-
tent’s process is information indicative of how trusted
or untrusted the content is likely to be.

v | 154

APl

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
M
CN
CuU
Cz

DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
Kp

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
D
TG
TJ
™
TR
T
UA
uG
us
UZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/64946 PCT/US99/12912

METHOD AND SYSTEM FOR SECURE RUNNING OF UNTRUSTED CONTENT

FIELD OF THE INVENTION

The invention relates generally to computer systems,
and more particularly to improvements in security for

computer systems.

BACKGROUND OF THE INVENTION

Historically, executable content could only
installed on a computer system by physically bringing
magnetic media to the computer and having someone with
administrative privileges install it. At present,
however, the Internet has made it very easy and popular
for ordinary computer users to download executable
content such as programs, HTML pages and controls. In
many cases, executable content may be downloaded and
executed via the Internet without the user even realizing
that such an event took place. Similarly, computer users
may receive electronic mail or news containing files that
include executable content, such as executable programs
and/or documents containing macros, and moreover, the
mail or news itself may be an HTML page. Opening such a

message or an attachment therein exposes the recipient’s

'system to whatever executable content is present.

Unfortunately, such executable content is often
unruly, e.g., it may be malicious and intentionally
destroy data on the client machine, error-prone and cause
the client machine to crash, or well-intentioned but
careless and divulge confidential information about the
client. Although these types of computer problems have
previously existed in the form of “viruses” and
“trojans,” the ubiquitous presence of World Wide Web has
made these problems widespread, and in some cases out of

control.

10

15

20

25

30

WO 99/64946 PCT/US99/12912
On the server side, web servers launch server o

programs such as CGI scripts on behalf of clients and
return data from the programs back to the clients. The
source of such scripts is not necessarily carefully
controlled, nor are all such scripts well written. As a
result, poorly written CGI scripts have caused web server
machines to crash or to slow down by using too many
computer resources. Moreover, poorly written server
programs may be tricked by a malicious client into
performing actions it should not do, such as executing
other applications or writing or reading data to or from
storage. Lastly, some web servers even allow a client
program to send scripts to the server to be executed on
the client's behalf, posing many dangers.

In general, client and server operating environments
are not adequately protected against unruly executable
content. At the same time, because so much executable
content is valuable, the need to be able to receive and
run executable content continues to grow despite the

inherent risks of untrusted content.

SUMMARY OF THE INVENTION

Briefly, the present invention provides restricted
execution contexts for untrusted content (such as
executable code, dynamic HTML, Java or Active-X controls)
that restricts the resources that the content may access.
A restricted process is set up for untrusted content, and
any actions attempted by the content are subject to the
restrictions of the process, which are based on various
criteria. Whenever a process attempts to access a
resource, a restricted token associated with each process
is compared against security information of the resource
to determine if the type of access is allowed. The

resource’s security information thus determines whether a

-2 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912
process, and thus the untrusted content, may access the

resource, and if so, the type of access that is allowed.

Untrusted content includes data downloaded from
websites, and each such site has a restricted process‘set
up therefor based on the site identity and the zone in
which the site is categorized. APIs and helper processes
enable the website to access its own site, files and ,
registry keys, while ACLs on other resources not related
to the site restrict the access of that site as desired,
based on the site identity, zone or other criteria;
Other untrusted content includes electronic mail messages
or news along with any attachments thereto. Such content
is similarly run in a restricted execution context
wherein the restrictions are based on criteria such as
the identity of the sender. Servers also may run
untrusted content such as scripts and client processes in
restricted execution contexts, whereby the restrictions
may be based on criteria such as the script author, the
method of client authentication used, and/or any other
information available to the server indicative of how
trusted or untrusted the content may be.

Other advantages will become apparent from the
following detailed description when taken in conjunction

with the drawings, in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a block diagram representing a computer
system into which the present invention may be
incorporated;

FIG. 2 is a block diagram generally representing the
creation of a restricted token from an existing token;

FIG. 3 is a block diagram generally representing the
various components for determining whether a process may

access a resourcey

10

15

20

25

30

WO 99/64946 PCT/US99/12912
FIGS. 4 - 5 comprise a flow diagram representing the

general steps taken to create a restricted token from an
existing token;

FIG. 6 is a block diagram generally representing a
process having a restricted token associated therewith
attempting to access a resource;

FIG. 7 is a block diagram generally representing the
logic for determining access to an object of a process
having a restricted token associated therewith;

FIG. 8 is a flow diagram representing the general
steps taken when determining whether to grant a process
access to a resource;

FIG. 9 is a representation of a job object having
nultiple processes therein having common restrictions;

FIG. 10 is a block diagram generally representing
untrusted content in a process set up therefor and
restricted with respect to access to resources in
accordance with one aspect of the present invention;

FIGS. 11 - 12 are block diagrams representing
components in accordance with another aspect of the
present invention for restricting processes according to
criteria for untrusted site and e-mail content,
respectively;

FIG. 13 is a block diagram generally representing a
helper process for accessing a resource on behalf of a
restricted process in accordance with another aspect of
the present invention; ,

FIGS. 14 and 15 comprise a flow diagram showing how
an application programming interface (API) uses a helper
process to return information from a resource to a
process that is restricted from accessing the resource in
accordance with another aspect of the present invention;

FIG. 16 is a representation of a site’s files

isolated from the files of other sites in a file system

10

15

20

25

30

WO 99/64946 PCT/US99/12912
in accordance with another aspect of the present o

invention;
FIGS. 17 and 18 are a block diagrams representing

how untrusted content’s file system and registry

requests, respectively, are redirected in accordance with

another aspect of the present invention;

FIG. 19 is a flow diagram representing an example of
how e-mail content may be restricted according to
criteria including the identity of the sender, in
accordance with another aspect of the present invention;

FIG. 20 is a block diagram generally representing
untrusted scripts in a processes set up therefor and
restricted with respect to their access to resources in
accordance with another aspect of the present invention;
and

FIG. 21 is a flow diagram representing an example of
how client processes may be restricted on a server
according to criteria, including how the client was
authenticated, in accordance with another aspect of the

present invention.

DETAILED DESCRIPTION

Exemplary Operating Environment

Figure 1 and the following discussion are intended
to provide a brief general description of a suitable
computing environment in which the invention may be |
implemented. Although not required, the invention will
be described in the general context of computer-
executable instructions, such as program modules, being
executed by a personal computer. Generally, program
modules include routines, programs, objects, components,
data structures and the like that perform particular

tasks or implement particular abstract data types.

10

15

20

25

30

WO 99/64946 PCT/US99/12912
Moreover, those skilled in the art will appreciate that ’

the invention may be practiced with other computer system
configurations, including hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers,
mainframe computers and the like. The invention may also
be practiced in distributed computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a
distributed computing environment, program modules may be
located in both local and remote memory storage devices.
With reference to FIG. 1, an exemplary system for
implementing the invention includes a general purpose
computing device in the form of a conventional personal
computer 20 or the like, including a processing unit 21,
a system memory 22, and a system bus 23 that couples
various system components including the system memory to
the processing unit 21. The system bus 23 may be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus
using any of a variety of bus architectures. The system
memory includes read-only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system 26
(BIOS), containing the basic routines that help to
transfer information between elements within the personal
computer 20, such as during start-up, is stored in ROM
24. The personal computer 20 may further include a hard
disk drive 27 for reading from and writing to a hard
disk, not shown, a magnetic disk drive 28 for reading
from or writing to a removable magnetic disk 29, and an
optical disk drive 30 for reading from or writing to a
removable optical disk 31 such as a CD-ROM or other
optical media. The hard disk drive 27, magnetic disk

drive 28, and optical disk drive 30 are connected to the

- 6 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912
system bus 23 by a hard disk drive interface 32, a T

magnetic disk drive interface 33, and an optical drive
interface 34, respectively. The drives and their
associated computer-readable media provide non-volatile
storage of computer readable instructions, data
structures, program modules and other data for the
personal computer 20. Although the exemplary environment
described herein employs a hard disk, a removable
magnetic disk 29 and a removable optical disk 31, it
should be appreciated by those skilled in the art that
other types of computer readable media which can store
data that is accessible by a computer, such as magnetic
cassettes, flash memory cards, digital video disks,
Bernoulli cartridges, random access memories (RAMs),
read-only memories (ROMs) and the like may also be used
in the exemplary operating environment.

A number of program modules may be stored on the
hard disk, magnetic disk 29, optical disk 31, ROM 24 or
RAM 25, including an operating system 35 (preferably
Windows NT), one or more application programs 36, other
program modules 37 and program data 38. A user may enter
commands and information into the personal computer 20
through input devices such as a keyboard 40 and pointing
device 42. Other input devices (not shown) may include a
nicrophone, joystick, game pad, satellite dish, scanner
or the like. These and other input devices are often
connected to the processing unit 21 through a serial port
interface 46 that is coupled to the system bus, but may
be connected by other interfaces, such as a parallel
port, game port or universal serial bus (USB). A monitor
47 or other type of display device is also connected to
the system bus 23 via an interface, such as a video

adapter 48. 1In addition to the monitor 47, personal

10

15

20

25

30

WO 99/64946 PCT/US99/12912
computers typically include other peripheral output

devices (not shown), such as speakers and printers.

The personal computer 20 may operate in a networked
environment using logical connections to one Or more
remote computers, such as a remote computer 49. The
remote computer 49 may be another personal computer, a
server, a router, a network PC, a peer device or other
common network node, and typically includes many or all
of the elements described above relative to the personal
computer 20, although only a memory storage device 50 has
been illustrated in FIG. 1. The logical connections
depicted in FIG. 1 include a local area network (LAN) 51
and a wide area network (WAN) 52. Such networking
environments are commonplace in offices, enterprise-wide
computer networks, Intranets and the Internet.

When used in a LAN networking environment, the
personal computer 20 is connected to the local network 51
through a network interface or adapter 53. When used in
a WAN networking environment, the personal computer 20
typically includes a modem 54 or other means for
establishing communications over the wide area network
52, such as the Internet. The modem 54, which may be
internal or external, 1s connected to the system bus 23
via the serial port interface 46. In a networked
environment, program modules depicted relative to the
‘personal computer 20, or portions thereof, may be stored
in the remote memory storage device. It will be
appreciated that the network connections shown are
exemplary and other means of establishing a

communications link between the computers may be used.

The General Security Model

The preferred security model of the present

invention is described herein with reference to the

- 8 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912
Windows NT security model. Notwithstanding, there is no ’

intention to limit the present invention to the Windows
NT operating system, but on the contrary, the present
invention is intended to operate with and provide
benefits with any mechanism that performs security checks
at the operating system level. In addition, the present
invention may also be used with software-fault isolation
on a per-thread basis, or with a virtual machine where
restrictions are determined from the stack of classes
currently executing. Moreover, the present invention
does not necessarily depend on kernel-mode operation, as
with software-fault isolation or a virtual machine it may
be implemented in user-mode.

In general, in the Windows NT operating system, a
user performs tasks by accessing the system’s resources
via proceéses (and their threads). For purposes of
simplicity herein, a process and its threads will be
considered conceptually equivalent, and will thus
hereinafter simply be referred to as a process. Also,
the system’s resources, including files, shared memory
and physical devices, which in Windows NT are represented
by objects, will be ordinarily referred to as either
resources or objects herein.

When a user logs on to the Windows NT operating
system and is authenticated, a security context is set up
for that user, which includes building an access token
60. As shown in the left portion of FIG. 2, a
conventional user-based access token 60 includes a
UserAndGroups field 62 including a security identifier
(Security ID, or SID) 64 based on the user’s credentials
and one or more group IDs 66 identifying groups (e.g.,
within an organization) to which that user belongs. The
token 60 also includes a privileges field 68 listing any

privileges assigned to the user. For example, one such

9

10

15

20

25

30

WO 99/64946 PCT/US99/12912

privilege may give an administrative-level user the .
ability to set the system clock through a particular
application programming interface (API). Note that
privileges over-ride access control checks, described
below, that are otherwise performed before granting
access to an object.

As will be described in more detail below and as
generally represented in FIG. 3, a process 70 desiring
access to an object 72 specifies the type of access it
desires (e.g., obtain read/write access to a file object)
and at the operating system (e.g., kernel) level provides
its associated token 60 to an object manager 74. The
object 72 has a security descriptor 76 associated
therewith, and the object manager 74 provides the
security descriptor 76 and the token 60 to a security
mechanism 78. The contents of the security descriptor 76
are typically determined by the owner (e.g., creator) of
the object, and generally comprise a (discretionary)
access control list (ACL) 80 of access control entries,
and for each entry, one or more access rights (allowed or
denied actions) corresponding to that entry. Each entry
comprises a type (deny or allow) indicator, flags, a
security identifier (SID) and access rights in the form
of a bitmask wherein each bit corresponds to a permission
(e.g., one bit for read access, one for write and so on).
The security mechanism 78 compares the security IDs in
the token 60 along with the type of action or actions
requested by the process 70 against the entries in the
ACL 80. If a match is found with an allowed user or
group, and the type of access desired is allowable for
the user or group, a handle to the object 72 is returned
to the process 70, otherwise access is denied.

By way of example, a user with a token identifying

the user as a member of the “Accounting” group may wish

- 10 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912
to access a particular file object with read and write ’

access. If the file object has the “Accounting” group
identifier of type allow in an entry of its ACL 80, and
the group has rights enabling read and write access, a
handle granting read and write access is returned,
otherwise access is denied. Note that for efficiency
reasons, the security check is performed only when the
process 70 first attempts to access the object 72 (create
or open), and thus the handle to the object stores the
type of access information so as to limit the actions
that can be performed therethrough.

The security descriptor 76 also includes a system
ACL, or SACL 81, which comprises entries of type audit
corresponding to client actions that are to be audited.
Flags in each entry indicate whether the audit 1is
monitoring successful or failed operations, and a bitmask
in the entry indicates the type of operations that are to
be audited. A security ID in the entry indicates the
user or group being audited. For example, consider a
situation wherein a particular group is being audited so
as to determine whenever a member of that group that does
not have write access to a file object attempts to write
to that file. The SACL 81 for that file object includes
an audit entry having the group security identifier
therein along with an appropriately set fail flag and
write access bit. Whenever a client belonging to that
particular group attempts to write to the file object and
fails, the operation is logged.

Note that the ACL 80 may contain one or more
identifiers that are marked for denying users of groups
access (as to all rights or selected rights) rather than
granting access thereto. For example, one entry listed
in the ACL 80 may otherwise allow members of “Groups”

access to the object 72, but another entry in the ACL 80

11

10

15

20

25

30

WO 99/64946 PCT/US99/12912
may specifically deny “Group:s” all access. If the token ;

60 includes the “Group:s” security ID, access will be
denied regardless of the presence of the “Groups” security
ID. Of course to function properly, the security check
is arranged so as to not allow access via the “Groups”
entry before checking the “DENY ALL” status of the Group:,
entry, such as by placing all DENY entries at the front
of the ACL 80. As can be appreciated, this arrangement
provides for improved efficiency, as one or more isolated
members of a group may be separately excluded in the ACL
80 rather than having to individually list each of the
remaining members of a group to allow their access.

Note that instead of specifying a type of access, a
caller may request a MAXIMUM ALLOWED access, whereby an
algorithm determines the maximum type of access allowed,
based on the normal UserAndGroups list versus each of the
entries in the ACL 80. More particularly, the algorithm
walks down the list of identifiers accumulating the
rights for a given user (i.e., OR-ing the various
bitmasks). Once the rights are accumulated, the user is
given the accumulated rights. However, if during the
walkthrough a deny entry is found that matches a user or
group identifier and the requested rights, access is

denied.

Restricted Tokens

A restricted token is created from an existing
access token (either restricted or unrestricted) as
described below. As also described below, 1if the
restricted token includes any restricted security IDs,
the token is subject to an additional access check
wherein the restricted security IDs are compared against

the entries in the object’s ACL.

10

15

20

25

30

WO 99/64946 PCT/US99/12912
The primary use of a restricted token is for a i

process to create a new process with a restricted version
of its own token. The restricted process is then limited
in the actions it may perform on resources. For example,
a file object resource may have in its ACL a single
restricted SID identifying the Microsoft Word application
program, such that only restricted processes having the
same Microsoft Word restricted SID in its assoclated
restricted token may access the file object. Note that
the original user still needs to have access to the
object, so to access it, the ACL also needs to contain an
access control entry granting the user access, as well as
the Microsoft Word program. Then, for example, untrusted
code such as downloaded via a browser could be run in a
restricted process that did not have the Microsoft Word
restricted Security ID in its restricted token,
preventing that code’s access to the file object.

For security reasons, creating a process with a
different token normally requires a privilege known as
the SeAssignPrimaryToken privilege. However, to allow
processes to be associated with restricted tokens,
process management allows one process with sufficient
access to another process to modify its primary token to
a restricted token, if the restricted token is derived
from the primary token. By comparing the ParentTokenld
of the new process’s token with the TokenId of the
existing process’ token, the operating system 35 may
ensure that the process is only creating a restricted
version of itself.

A restricted token 84 has less access than its
parent token, and may, for example, prevent access to an
object based on the type of process (as well as the user
or group) that is attempting to access the object,

instead of simply allowing or denying access solely based

_13__

10

15

20

25

30

WO 99/64946 PCT/US99/12912
on the user or group information. A restricted token may o

also not allow access via one oOr more user Or Jgroup
security IDs specially marked as “USE_FOR_DENY ONLY,”
even though the parent token allows access via those
SIDs, and/or may have privileges removed that are present
in the parent token.

Thus, one way in which to reduce access 1is to change
an attribute of one or more user and/or group security
identifiers in a restricted token so as to be unable to
allow access, rather than grant access therewith.
Security IDs marked USE FOR DENY_ ONLY are effectively
ignored for purposes of granting access, however, an ACL
that has a “DENY” entry for that security ID will still
cause access to be denied. By way of example, if the
Group. security ID in the restricted token 84 (FIG. 3) is
marked USE FOR DENY ONLY, when the user’s process
attempts to access an object 72 having the ACL 80 that
lists Group. as allowed, that entry is effectively ignored
and the process will have to galn access by some other
security ID. However, if the ACL 80 includes an entry
listing Group, as DENY with respect to the requested type
of action, then once tested, no access will be granted
regardless of other security IDs.

Note that access to objects cannot be safely reduced
by simply removing a security ID from a user’s token,
since that security ID may be marked as “DENY” in the ACL
of some objects, whereby removing that identifier would
grant rather than deny access to those objects. Thus, a
SID’s attributes may be modified to USE_FOR_DENY_ ONLY in
a restricted token. Moreover, no mechanism is provided
to turn off this USE_FOR DENY ONLY security check.

Another way to reduce access in a restricted token
is to remove one or more privileges relative to the

parent token. For example, a user having a normal token

.._.14_

10

15

20

25

30

WO 99/64946 PCT/US99/12912
with administrative privileges may set up a system such

that unless that user specifically informs the system
otherwise, the user’s processes will run with a
restricted token having no privileges. As can be
appreciated, this prevents inadvertent errors that may
occur when the user is not intentionally acting in an
administrative capacity. Similarly, programs may be
developed to run in different modes depending on a user’s
privileges, whereby an administrative-level user has to
run the program with administrative privileges to perform
some operations, but operate with reduced privileges to
perform more basic operations. Again, this helps to
prevent serious errors that might otherwise occur when
such a user is simply attempting to perform normal
operations but is running with elevated privileges.

Yet another way to reduce a token’s access is to add
restricted security IDs thereto. Restricted security IDs
are numbers representing processes, resource operations
and the like, made unique such as by adding a prefix to
GUIDs or numbers generated via a cryptographic hash or
the like, and may include information to distinguish
these Security IDs from other Security IDs. Although not
necessary to the invention, for convenience, various
application programming interfaces (APIs) are provided to
interface applications and users with Security IDs, such
as to accomplish a GUID to Security ID conversion,
represent the Security IDs in human readable form, and so
on.

In addition to restricting access to a resource
based on the application (process) reguesting access,
specific Security IDs may be developed based on likely
restricted uses of a resource. By way of example, a
Security ID such as “USE WINDOWS” would be placed in the
default ACLs of windowstations and the desktop to allow

15

10

15

20

25

30

WO 99/64946 PCT/US99/12912

access thereto only by a process having a corresponding
SID in its restricted token. Similarly, the default ACL
of a printer object may include a USE_PRINTING SID in its
default ACL, so that a process could create a restricted
process with only this Security ID listed in its
restricted token, whereby the restricted process would be
able to access the printer but no other resource. As can
be appreciated, numerous other Security IDs for accessing
other resources may be implemented.

As shown in FIG. 3, restricted security IDs are
placed in a special field 82 of a restricted token 84,
such as for identifying a process that is requesting an
action. As described in more detail below, by requiring
that both at least one user (or group) security ID and at
least one restricted security ID be granted access to an
object, an object may selectively grant access based on a
requesting process (as well as a user or group). For
example, an object such as a file object may allow
Microsoft Word, Microsdft Excel or Windows Explorer
processes to access 1it, but deny access to any other
process. Moreover, each of the allowed processes may be
granted different access rights.

The design provides for significant flexibility and
granularity within the context of a user to control what
different processes are allowed to do. One usage model
for these features, described in detail below, includes a
distinction between trusted applications and untrusted
applications. Note that the term “application” is used
in a generic sense to describe any piece of code that may
be executed in ‘user mode” under a given security
context. For example, an application such as Microsoft
Word may run as a process from an ActiveX control, which
may be loaded into an existing process and executed.

Applications which launch other applications, such as

16

10

15

20

25

WO 99/64946 ' PCT/US99/12912
Microsoft’s Internet Explorer, may introduce a “trust ’

model” using this infrastructure.

By way of example, and as described in more detail
below, an application such as Internet Explorer can use
restricted tokens to execute untrusted executable code
under different processes, and control what those
processes can do within the user’s overall access rights
and privileges. To this end, the Internet Explorgr
application creates a restricted token from its own
token, and determines which restricted security IDs will
be placed in the restricted token. Then, the untrusted
executable code is restricted to accessing only those
objects that the restricted context may access.

Moreover, entries corresponding to restricted SIDs
and other restrictions may be placed in a field of the
SACL 81 for auditing purposes. For example, the SACL of
a resource may be set up to audit each time that Internet
Explorer program attempts read or write access of that
resource, and/or the use of SIDs marked USE FOR DENY ONLY
may be audited. For purposes of simplicity, auditing
will not be described in detail hereinafter, however it
can be readily appreciated that the concepts described
with respect to access control via restricted SIDs are
applicable to auditing operations.

To create a restricted token from an existing token,
an application programming interface (API) is provided,

named NtFilterToken, as set forth below:

NTSTATUS
NtFilterToken
IN HANDLE ExistingTokenHandle,
IN ULONG Flags,
IN PTOKEN GROUPS SidsToDisable OPTIONAL,
IN PTOKEN PRIVILEGES PrivilegesToDelete OPTIONAL,
IN PTOKEN GROUPS RestrictingSids OPTIONAL,
OUT PHANDLE NewTokenHandle
)7

10

WO 99/64946

PCT/US99/12912

The NtFilterToken API is wrapped under a Win32 API

named CreateRestrictedToken, further set forth below:

WINADVAPI
BOOL
APIENTRY

CreateRestrictedToken (

IN
IN
IN
IN
IN
IN
IN
IN

OUT PHANDLE NewTokenHandle

) ;

HANDLE ExistingTokenHandle,

DWORD Flags,

DWORD DisablesidCount,

PSID_AND_ATTRIBUTES SidsToDisable OPTIONAL,
DWORD DeletePrivilegeCount,
PLUID_AND_ATTRIBUTES PrivilegesToDelete OPTIONAL,
DWORD RestrictedSidCount,

PSID_AND_ATTRIBUTES SidsToRestrict OPTIONAL,

As represented in FIGS. 2 and 4 - 5, these APIs 86

work in conjunction to take an existing token 60, either

restricted or unrestricted, and create a modified

(restricted) token 84 therefrom. The structure of a

restricted token, which contains the identification

information about an instance of a logged-on user,

includes three new fields, ParentTokenld,

RestrictedSidCount and RestrictedSids (shown in boldface

below):
Typedef struct TOKEN {

TOKEN SOURCE TokenSource; // Ro: l6-Bytes
LUID TokenId; // Ro: 8-Bytes

LUID AuthenticationId; // Ro: 8-Bytes

LUID ParentTokenld; // Ro: 8-Bytes
LARGE INTEGER ExpirationTime; // Ro: 8-Bytes

LUID ModifiedId; // Wr: 8-Bytes
ULONG UserAndGroupCount; // Ro: 4-Bytes
ULONG RestrictedsSidCount; // Ro: 4-Bytes
ULONG PrivilegeCount; // Ro: 4-Bytes
ULONG VariableLength; // Ro: 4-Bytes
ULONG DynamicCharged; // Ro: 4-Bytes
ULONG DynamicAvailable; // Wr: 4-Bytes (Mod)
ULONG DefaultOwnerIndex; // Wr: 4-Bytes (Mod)
PSID AND ATTRIBUTES UserAndGroups; // Wr: 4-Bytes (Mod)
PSID AND ATTRIBUTES RestrictedSids; // Ro: 4-Bytes _

18.

10

15

20

25

WO 99/64946 PCT/US99/12912

} TOKEN, * PTOKEN;

PSID PrimaryGroup; // Wr: 4-Bytes (Mod)
PLUID AND ATTRIBUTES Privileges; // Wr: 4-Bytes (Mod)
PULONG DynamicPart; // Wr: 4-Bytes (Mod)
PACIL DefaultDacl; // Wr: 4-Bytes (Mod)
TOKEN TYPE TokenType; // Ro: 1l-Byte

SECURITY IMPE RSONATION LEVEL
ImpersonationLevel; // Ro: 1-Byte

UCHAR TokenFlags; // Ro: 4-Bytes
BOOLEAN TokenInUse; // Wr: 1-Byte
PSECURITY TOKEN PROXY DATA ProxyData; // Ro: 4-Bytes
PSECURITY TOKEN AUDIT_DATA AuditData; // Ro: 4-Bytes
ULONG VariablePart; // Wr: 4-Bytes (Mod)

Note that when a normal (non-restricted) token is now
created, via a CreateToken API, the RestrictedSids field
is empty, as is the ParentTokenld field.

To create a restricted token 84, a process calls the
CreateRestrictedToken API with appropriate flag settings
and/or information in the input fields, which in turn
invokes the NtFilterToken API. As represented beginning
at step 400 of FIG. 4, the NtFilterToken API checks to
see if a flag named DISABLE MAX SIDS is set, which
indicates that all Security IDs for groups in the new,
restricted token 84 should be marked as
USE_FOR_DENY ONLY. The flag provides a convenient way to
restrict the (possibly many) groups in a token without
needing to individually identify each of the groups. If
the flag is set, step 400 branches to step 402 which sets
a bit indicating USE FOR DENY ONLY on each of the group
security IDs in the new token 84.

If the DISABLE MAX SIDS flag is not set, then step
400 branches to step 404 to test if any security IDs are
individually listed in a SidsToDisable Field of the
NtFilterToken API. As shown at step 404 of FIG. 4, when
the optional SidsToDisable input field is present, at

step 406, any Security IDs listed therein that are also

19.

10

15

20

25

30

WO 99/64946 PCT/US99/12912
present in the UserAndGroups field 62 of the parent token ~°

60 are individually marked as USE_FOR_DENY ONLY in the
UserAndGroups field 88 of the new restricted token 84.
As described above, such Security IDs can only be used to
deny access and cannot be used to grant access, and
moreover, cannot later be removed or enabled. Thus, in
the example shown in FIG. 2, the Group: security ID is
marked as USE FOR DENY ONLY in the restricted token 84 by
having specified the Group; security ID in the
SidsToDisable input field of the NtFilterToken API 86.

The filter process then continues to step 410 of
FIG. 4, wherein a flag named DISABLE MAX PRIVILEGES is
tested. This flag may be similarly set as a convenient
shortcut to indicate that all privileges in the new,
restricted token 84 should be removed. If set, step 410
branches to step 412 which deletes all privileges from
the new token 84.

If the flag is not set, step 410 branches to step
414 wherein the optional PrivilegesToDelete field is
examined. If present when the NtFilterToken API 86 1is
called, then at step 416, any privileges listed in this
input field that are also present in the privileges field
68 of the existing token 60 are individually removed from
the privileges field 90 of the new token 84. In the
example shown in FIG. 2, the privileges shown as
“Privilege: " to “Privilege,” have been removed from the
privileges field 90 of the new token 84 by having
specified those privileges in the PrivilegesToDelete
input field of the NtFilterToken API 86. This provides
the ability to reduce the privileges available in a
token. The process continues to step 420 of FIG. 5.

When creating a restricted token 84, if SIDs are
present in the RestrictingSids input field at step 420,

then a determination is made as to whether the parent

20

10

15

20

25

30

WO 99/64946 PCT/US99/12912

token is a normal token or is itself a restricted token
having restricted SIDs. An API, IsTokenRestricted is
called at step 422, and resolves this question by
querying (via the NtQueryInformationToken API) the
RestrictingSids field of the parent token to see if it 1is
not NULL, whereby if not NULL, the parent token is a
restricted token and the API returns a TRUE. If the test
is not satisfied, the parent token is a normal token and
the API returns a FALSE. Note that for purposes of the
subsequent steps 426 or 428, a parent token that 1is
restricted but does not have restricted SIDs (i.e., by
having privileges removed and/or USE_FOR_DENY ONLY SIDs)
may be treated as being not restricted.

At step 424, if the parent token is restricted, step
424 branches to step 426 wherein any security IDs that
are in both the parent token’s restricted Security ID
field and the API’s restricted Security ID input list are
put into the restricted Security ID field 92 of the new
token 84. Requiring restricted security IDs to be common
to both lists prevents a restricted execution context
from adding more security IDs to the restricted Security
ID field 92, an event which would effectively increase
rather than decrease access. Similarly, if none are
common at step 426, any token created still has to be
restricted without increasing the access thereof, such as
by leaving at least one restricted SID from the original
token in the new token. Otherwise, an empty restricted
SIDs field in the new token might indicate that the token
is not restricted, an event which would effectively
increase rather than decrease access.

Alternatively, if at step 424 the parent token is
determined to be a normal token, then at step 428 the
RestrictingSids field 92 of the new token 84 is set to
those listed in the input field. Note that although this

21

10

15

20

25

30

WO 99/64946 PCT/US99/12912
adds security IDs, access 1s actually decreased since a ;

token having restricted SIDs is subject to a secondary
access test, as described in more detail below.

Lastly, step 430 is also executed, whereby the
ParentTokenId 93 in the new token 84 is set to the
TokenId of the existing (parent) token. This provides
the operating system with the option of later allowing a
process to use a restricted version of its token in
places that would not normally be allowed except to the
parent token.

Turning an explanation of the operation of
restricted tokens with particular reference to FIGS. 6 -
8, as represented in FIG. 6, a restricted process 94 has
been created and is attempting to open a file object 70
with read/write access. In the security descriptor of
the object 72, the ACL 80 has a number of security IDs
listed therein along with the type of access allowed for
each ID, wherein "RO" indicates that read only access 1is
allowed, "WR" indicates read/write access and "SYNC"
indicates that synchronization access is allowed. Note
that “XJones” is specifically denied access to the object
72, even if “XJones” would otherwise be allowed access
through membership in an allowed group. Moreover, the
process 94 having this token 84 associated therewith will
not be allowed to access any object via the “Basketball”
security ID in the token 84, because this identifier is
marked “DENY” (i.e., USE“FOR_DENY_ONLY).

For purposes of security, restricted security
contexts are primarily implemented in the Windows NT
kernel. To attempt to access the object 72, the process
94 provides the object manager 74 with information
identifying the object to which access is desired along
with the type of access desired, (FIG. 8, step 800). 1In

response, as represented at step 802, the object manager

22

10

15

20

25

30

WO 99/64946 PCT/US99/12912
74 works in conjunction with the security mechanism 78 to °°

compare the user and group security IDs listed in the
token 84 (associated with the process 94) against the
entries in the ACL 80, to determine if the desired access
should be granted or denied.

As generally represented at step 804, 1f access is
not allowed for the listed user or groups, the security
check denies access at step 814. However, if the result
of the user and group portion of the access check
indicates allowable access at step 804, the security
process branches to step 806 to determine 1f the
restricted token 84 has any restricted security IDs. If
not, there are no additional restrictions, whereby the
access check is complete and access 1s granted at step
812 (a handle to the object is returned) based solely on
user and group access. In this manner, a normal token is
essentially checked as before. However, if the token
includes restricted security IDs as determined by step
806, then a secondary access check 1is performed at step
808 by comparing the restricted security IDs against the
entries in the ACL 80. If this secondary access test
allows access at step 810, access to the object is
granted at step 812. If not, access is denied at step
814.

As logically represented in FIG. 7, a two-part test
is thus performed whenever restricted Security IDs are
present in the token 84. Considering the security IDs in
the token 84 and the desired access bits 96 against the
security descriptor of the object 72, both the normal
access test and (bitwise AND) the restricted security IDs
access test must grant access in order for the process to
be granted access to the object. Although not necessary
to the invention, as described above, the normal access

test proceeds first, and if access 1is denied, no further

23

10

15

20

25

30

WO 99/64946 PCT/US99/12912
testing is necessary. Note that access may be denied

either because no security ID in the token matched an
identifier in the ACL, or because an ACL entry
specifically denied access to the token based on a
security identifier therein.

Thus, in the example shown in FIG. 6, no access to
the object 72 will be granted to the process 94 because
the only Restricted SID in the token 84 (field 92)
identifies “Internet Explorer,” while there is no
counterpart restricted SID in the object’s ACL 80.
Although the user had the right to access the object via
a process running with a normal token, the process 94 was
restricted so as to only be able to access objects having
an “Internet Explorer” SID (non-DENY) in their ACLs.

Note that instead of specifying a type of access,
the caller may have specified MAXIMUM ALLOWED access,
whereby as described above, an algorithm walks through
the ACL 80 determining the maximum access. With
restricted tokens, 1f any type of user or group access at
all is granted, the type or types of access rights
allowable following the user and groups run is specified
as the desired access for the second run, which checks
the RestrictedSids list. In this way, a restricted token
is certain to be granted less than or equal to access
than the normal token.

Lastly, it should be noted that the security model
of the described herein may be used in conjunction with
other security models. For example, capability-based
security models residing on top of an operating system
may be used above the operating system-level security

model of the present invention.

24

10

15

20

WO 99/64946 PCT/US99/12912
Jobs T

A Job is a kernel object having a set of processes
organized therein, wherein each job may have a different
type of restriction associated therewith. In keeping
with the present invention, restricted tokens may be
integrated with Windows NT Job Objects to allow
management of multiple processes running under the same
restrictions. A Job object restriction is set forth

below:

Typedef struct _JOBOBJECT_SECURITY__LIMIT_INFORMATION {
ULONG SecurityLimitFlags ;
HANDLE JobToken ;
PTOKEN GROUPS SidsToDisable ;
PTOKEN PRIVILEGES PrivilegesToDelete ;
PTOKEN GROUPS RestrictedSids ;
} JOBOBJECT SECURITY LIMIT INFORMATION,
*PJOBOBJECT SECURITY LIMIT INFORMATION ;

wherein the relevant SecurityLimitFlags may be:

#define JOB OBJECT SECURITY FILTER TOKENS 000000008

These various pieces of information can be set on a
Job object using an NtSetInformationJobObject API, while
a process is assigned to a job using the
NtAssignProcessToJobObject API. The security limit set
on the job takes effect when a process is assigned. To
restrict a job, the JOB OBJECT SECURITY_ FILTER TOKENS
limit flag is set, whereby the primary token of the
process being assigned to the job is filtered using the
SidsToDisable, PrivilegesToDelete and RestrictedSids

information provided in the security limit information,

__25_

10

15

20

25

30

WO 99/64946 PCT/US99/12912
in a similar manner to how tokens associated with o

processes are filtered as described above.

As shown in FIG. 9, a job 110 has a number of
processes (e.g., processes 112 - 114) assigned thereto
via the job NtAssignProcessToJobObject API. Each process
112 - 114 has a respective token 116. - 116. associated
therewith that is the same with respect to its
restrictions, shown as “Restrictions R.” For example,
the Job object 110 restricts the processes 112 - 114
therein to only perform certain operations, because the
tokens 116, -116. under which they are running have
certain Security IDs (e.g., Administrator SID) disabled,
certain privileges removed and/or a set of restricted
Security IDs added. Note that the tokens may be the same
with respect to their other access rights as well, in
which event all of the tokens are essentially identical,
but this is not required. If a process (e.g., the
process 114) produces another process 118, that process
118 also runs in the job 110 with the same restrictions
R, as the job object 110 ensures that the same
restrictions R are associated with the new process 118

via its token 1164.

Running Untrusted Content

In accordance with one aspect of the present
invention, restricted tokens are used to set up
restricted security contexts for running untrusted
content. One type of content that is typically not
trusted is content downloaded from an Internet site. To
restrict such content, a restricted process may be set up
for running each site that is browsed, by associating the
process with (at least) a generically restricted token
along with other restrictions. ©Note that the process may

also be within a job object, whereby any processes

26

10

15

20

25

30

WO 99/64946 PCT/US99/12912
created by the site’s process are automatically given the -

same restrictions. Another advantage to job objects is
that windowing operations may be restricted, so that, for
example, a process cannot shut down the machine or access
clipboard data. In any event, any actions that the
site’s content performs, such as via dynamic HTML, Java
or Active-X controls, takes place within the process,
whereby it is subject to the restrictions of the process.
Note that different frames are treated as different
sites, regardless of their actual site source, even
though multiple frames may simultaneously be displayed in
windows on the screen.

By way of example, as shown in FIG. 10, any content
accessed via a browser 130, such as Internet Explorer,
may be run in a process 132 that has a restricted token
134 including an “Internet Explorer” restricted SID in
its restricted SIDs field 136. As described above, this
automatically prevents access to any resource not having
an allow entry corresponding to the Internet Explorer
SID, (unless access 1s via another matching restricted
SID). Thus, for example, the process 132 may render HTML
pages in a window of Internet Explorer, but is restricted
from doing much else unless an ACL of a resource
specifically includes an entry with a corresponding
restricted SID that allows the action.

Another way in which to restrict downloaded Internet
content is to restrict access to resources based on the
site identity. For example, each site has a unique URL
(Uniform Resource Locator), and may have a binary
certificate ID. To restrict based on the URL, as shown
in FIG. 11, the browser 130 acts as a discrimination
mechanism that passes the site URL 138 to a converter 140
that converts the URL string into a restricted SID. One

such mechanism uses a one-way cryptographic hash such as

- 27 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912
MD5 to convert the string into 128-bit binary value, -

which then becomes a restricted SID by adding a small
amount of information such as a header or the like
thereto indicating that the number is a SID and how the
number was generated. Such a SID is, to an extremely
high probability, unique with respect to other SIDs.

Note that if a binary certificate ID is available for the
site, then that value may be used to generate the
restricted SID. In any event, as shown in FIG. 10, the
restricted SID is placed in the restricted SIDs field 136
of the restricted token 134 associated with the process
132 set up for that site.

Further, the restriction may be based on Internet
zones (a collection of sites). For example, as also
shown in FIG. 11, user may set up a zone comprising a
list of specifically trusted sites, and another for
specifically untrusted. The trusted zone will correspond
to one restricted SID while the untrusted zone will
correspond to another. Zones may also be set up to
distinguish between Intranet sites and Internet sites. A
further distinction may be made for Internet sites having
one type of certificate and so on, to any desired
granularity wherein a distinction may be made. In any
event, the browser 130 has access to information 131 that
groups sites into zones, whereby a restricted SID may be
generated that corresponds to the site’s zone, and placed
in the restricted token 136 to identify the zone to
system resources for ACL-based security checking.

As described above, once a restricted SID is present
in a token, the security mechanism 78 performs an access
evaluation with a user and group check followed by (if
the user and group test is passed) a check of the
restricted SIDs. As a result, the ACL for each resource

determines how untrusted code is handled by the presence

- 28 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912
or absence of corresponding entries therein. For -

example, a file object may allow read access to a
specifically trusted site or zone, but not any other type
of access or any access whatsoever to any other site or
zone. A highly confidential file may specifically deny
access to any restricted token having the “Internet
Explorer” SID therein so as to prevent any access via
some other restricted SID. Thus, for example, as shown
in FIG. 10, the Resource A (142) allows read access to
the process 132 because its ACL 144 contains a
“Sitel.com” entry corresponding to the “Sitel.com”
restricted SID in the restricted token 134 of the process
132. However, Resource B (146) will not allow access
because no corresponding entry is present.

While the above mechanism functions to restrict
access, certain difficulties arise in that resources may
lack the granularity to discriminate based on the various
distinctions such as sites or zones. For example, the
process set up for a particular Internet site may need to
access that site. However, the driver that handles
Windows sockets (the AFD device driver) has its ACL set
up to either allow or deny networking, but cannot
practically distinguish between each site or zone. To
deny networking altogether prevents a process from
accessing its own corresponding site, yet allowing a
process to access any site allows the process access to
other sites, which can potentially divulge confidential
information about a client. Reasons to restrict network
access include preventing access to unsecured files on
file servers not normally accessible from the Internet,
preventing access to unsecured internal databases,
preventing attacks on network resources (for example via
bad packets or DHCP responses) and preventing information

leaks about other possible ways to reach the network.

29

10

15

20

25

30

WO 99/64946 PCT/US99/12912
To resolve this dilemma by selectively restricting a

process to certain sites, the present invention generally
restricts the process from networking, but employs a
trusted helper process that can perform networking for
the site. The helper process restricts the process to an
extent that allows the restricted process to access only
selected sites (e.g., all sites ending in
“Microsoft.com”) as determined by the helper process.
More particularly, as shown in FIG. 13, the restricted
process 132 is denied direct access to the windows
sockets AFD driver 150, (as represented by the “X”),
whereby the restricted process 132 cannot directly get
the socket handle for any site, including its own. Note
that by denying access to restricted processes via the
ACL 152 of the device driver 150, the device driver 150
may not be accessed by the restricted process 132 via
some other manner, such as by directly calling into the
kernel. However, a helper process 154, which 1s trusted,
has access to the driver 150 via its own non-restricted
token 156 and can retrieve a socket handle. By modifying
the Winsock connect () API 158 to invoke the helper
process 154 whenever a restricted process 132 attempts to
retrieve a socket handle, the handle to one of a site’s
verified or allowed sockets is returned when the
appropriate mechanism (i.e., the API 158) is used.

More particularly, as shown in FIG. 14, when the
Winsock socket () and connect () API 158 is called at step
1400 to return a handle to a socket, the connect() API
158 first checks at step 1502 to see if the calling
process 132 is restricted via an appropriate restricted
SID in its token 134. If not restricted, step 1402
branches to step 1404, wherein the connect() API 158

operates as before to return a socket handle or an

10

15

20

25

30

WO 99/64946 PCT/US99/12912
appropriate errorcode (e.g., no socket available, host :

unreachable, access denied and so on).

However, when a restricted process 132 makes the
connect () call as determined by step 1402, the connect()
API 158 calls the helper process 154 (FIGS. 13 and 18) at
step 1406. As represented by step 1510 of FIG. 15, the
helper process 154 extracts the site information of the
site from the restricted token 134, and at step 1512,
compares the site’s allowed (or denied) addresses with
the requested address. If they are not allowed, step
1512 branches to step 1514 wherein the socket request 1is
effectively denied such as by setting an appropriate
errorcode. If they are the same, step 1512 branches to
step 1516, wherein the helper process 154 accesses the
device driver 150 to obtain the socket handle to the site
corresponding to the process 132 (assuming a handle is
available and that there are no other errors). The
helper process 154 (FIG. 15) duplicates the handle at
step 1518, then returns to the connect () API 158 (FIG.
14) with either the duplicated handle or some indication
of an error, after which the connect() API 158 returns
the socket handle or an errorcode to the restricted
process 132 at step 1420 (FIG. 14). 1In this manner, 1if a
handle is returned, the restricted process 132 may
thereafter access the verified / allowed site via the
handle, but no other sites. ©Note that the helper process
154 is trusted, and is carefully written to allow only
that site’s socket handle.

Similarly, the Wininet.dll which (among other
functions) downloads URL-identified data at the file
level employs a helper process when a restricted process
downloads a file. The helper process extracts and
validates the URL that a site is requesting, and if

validated, does the downloading and other Wininet work

~31

10

15

20

25

30

WO 99/64946 PCT/US99/12912

while providing notifications to the restricted process.
As can be readily appreciated, allowing the helper
process to set the ACLs on downloaded files secures those
files from other sites. Again, when a restricted process
calls the wininet-related API, the API invokes the
appropriate helper process.

In addition to restricted access to other sites, a
restricted process set up for a site is restricted from
accessing files other than its own. To this end, any
file created by a site on the user’s system is placed in
a folder that has an ACL entry specifically corresponding
to that site. For example, as shown in FIG. 16, (Wherein
folders are represented as triangles to indicate the
hierarchical folder structure), each site (Site:;.com to
Site,.com) has its own subfolder 160. - 160, in the file
system, such as under an Internet site file folder 162.
Since only the process of that site (e.g., Sitel.com)
will have a restricted SID in its token that corresponds
to the entry in its ACL 164;, no other site (e.qg.,
Site2.com) will be able to access its files, and vice-
versa. Such isolation enables sites to access (e.g.,
create, open, read, write and delete) its own files, but
prevents content from another site from accessing those
files.

AS shown in FIG. 17, the mechanism for accomplishing
isolation of files based on a site may be built into the
APIs 170 for opening and creating fiies. The APIS for
creating and opening files are set up to recognize (by
examining the restricted SIDs in the restricted token
134) when a process 132 set up for an Internet site 1is
calling, and adjust the path to appropriately place
and/or locate each file based on the restricted token
134. Note that since other file operations (e.g., read,

write and delete) use the file handle returned by these -

32

10

15

20

25

30

WO 99/64946 PCT/US99/12912
APIs, the other APIs need not be modified for path -

redirection.

Similarly, as shown in FIG. 18, a restricted
process 132 may only indirectly access the system
registry 174, but in accordance with the invention, only
via a virtualized view of the registry, e.g., under its
own site-based key name (regardless of the key name
provided by the process). For example, a site may
include an Active-X control that tries to write to the
system registry 174. To provide a virtualized view of
the registry for a restricted process, the registry WIN32
APIs 176 for accessing the registry (e.g., the
RegSaveKey () and RegRestoreKey() APIs) redirect
restricted processes to and from their site-specific
subtree 178 in the registry (or copy thereof). In this
way, the untrusted content believes it is able to
register information in the registry 174 at the specified
location, but actually is restricted to accessing a
subtree or virtual registry 178, thereby effectively
isolating the existing registry information.

Another way in which untrusted content may be
downloaded to a machine is via electronic mail (e-mail).
With e-mail, the level of trust depends on who sent the
message, and, if there are any attachments, the type (and
if known, the origin) of the attachments. FIG. 12 shows
exemplary components for determining trust based on the
identity of the sender, wherein a mail application 133
passes the identity 135 to a discrimination mechanism
137. The discrimination mechanism 137 determines a trust
level of the user in order to convert the user identity
(and other criteria such as some authentication verifying
that the identity is true) to a restricted SID 139, such
as by looking up the restricted SID 139 in a trust level
to SID table 141 or the like. The process 143 in which -

- 33 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912
the mail content is run is associated with a restricted

token 145 that includes the restricted SID 139.

FIG. 19 represents the general logic used by the
discrimination mechanism 137 for an exemplary way to
restrict access based on the sender of an e-mail message.
Note that the “From” field of the message is used to
determine the purported identity of the sender, while an
authentication mechanism (e.g., within the e-mail
application 133) such as via a digital signature may be
used to verify that the sender is indeed the source of
the message. It should further be noted that source-
based restrictions may be similarly set up for on-line
news, whereby the downloaded news content runs in a
restricted context based on the identity of the sender.

By way of example, consider the following simplified
policy that may be set up on a machine, wherein an e-mail
message sender is either highly trusted, trusted or
untrusted, and the sender may or may not be
authenticated. For example, an individual'’s supervisor
and immediate co-workers may be highly trusted senders,
employees and close friends trusted senders, and all
others untrusted. On the machine, the resource ACLs are
set up with entries corresponding to restricted SIDs such
that a process with a restricted token having a
restricted SID indicating a trust level of one is able to
read and write files, while a trust level two process may
only read files. A process with a restricted token
having a restricted SID indicating a trust level of three
is denied access to any resources. A trust level of zero
means that the normal (non-restricted) token will be
assocliated with the process.

As shown in FIG. 19 at step 1900, if the user is
highly trusted (e.g., by comparing the name in the “From”

field with a list of names), then step 1902 1is executed -

- 34 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912
to determine if the sender is authenticated. For -

example, the message may be digitally signed such that
the recipient is assured of the true identity of the
sender. If authenticated, then step 1904 sets the trust
level to zero and step 1906 associates the normal token
with the process set up for the message. If not
authenticated, step 1908 sets the trust level to two,
after which step 1920 creates a restricted token for the
process that set up for the message based on the trust
level of two and associates the restricted token with the
process set up for the message. Note that the restricted
SIDs for trust levels of one, two and three are
predetermined and are stored on the machine such as in
the table 141 or the like.

If the user is not highly trusted then step 1900
branches to step 1910 to determine if the user is trusted
or untrusted. In accordance with the security policy, if
trusted, step 1910 branches to step 1912 to determine 1if
the sender is authenticated. If so, the message process
is set up so as to be level one trusted (read and write
access) at steps 1914 and 1920. If not authenticated at
step 1912, then the trust level is set to two (read only)
at step 1908 and the process restricted accordingly at
step 1920, again by looking up and inserting the
appropriate restricted SID into the restricted token.
Lastly, if the user 1is untrusted, step 1910 branches to
step 1916 wherein the trust level is set to three and at
step 1920 the process 1s correspondingly restricted so as
to be denied access to the system resources. Note that
the above security policy suggests implementation via a
point system, 1.e., accumulate various points depending
on the sender identity and various points if
authenticated, and determine an access level based on the

total points. -

- 35 -

10

15

20

25

30

WO 99/64946 PCT/US99/12912

As can be readily appreciated, a similar policy may
be set up to restrict attachments. However, in addition
to restricting based on the sender of an attachment, the
attachment may be checked for its type. For example,
executable files (*.exe, *.bat, *.com and so on) files
may be differentiated from text only documents, which in
turn are treated differently with respect to restrictions
than Microsoft Word and Microsoft Excel documents (which
may contain viruses or other unruly code via macros) .
Indeed, any number of criteria may be employed and/or
combined with other criteria to set up restricted
security contexts according to a desired security policy.

Turning to a consideration of untrusted content on
web servers, client processes, scripts and other such
helper programs may be limited via restricted execution
contexts as to what such content can do. In accordance
with another aspect of the present invention, a first way
for a web server to use contexts is to launch all such
content in restricted contexts that prevent them from
harming any core operating system data and from
interfering with the data of other helper programs. As
described above, this may be accomplished by setting up
a process assoclated with an appropriately restricted
token for each piece of untrusted content, thereby
denying access to system data files via their ACLs and
isolating any files of the untrusted content as desired.
Note that memory protection is already present via
process boundaries.

Moreover, restrictions may be based on the server
script being run, such as by discriminating according to

the author of the script and/or determining whether the

' script needs access to any files or needs to share files

with other users or system files. For example, as shown

in FIG. 20, by running a web server helper script 200 in

36.

10

15

20

25

30

WO 99/64946 PCT/US99/12912
a process 202 that is restricted by creating a restricted ;

token 204 including a restricted SID 206 especially
therefor, a script may be limited to only those resources
it needs and no others, effectively limiting it from
doing anything other than that for which it is intended.
Thus, as shown in FIG. 20, the Scriptl 200 may access the
ResourceX (218) and the ResourceZ (226) because each of
their respective ACLs 220, 228 includes a “Scriptl”
entry. Similarly, the Scriptz 210 may access the
ResourceY (222) and the ResourceZ (226) because each of
their respective ACLs 224, 228 includes a “Script2”
entry. Thus, if the resources shown are data files,
Scriptl cannot interfere with the data of Script2 and
vice-versa, except possibly in resourceZ, however
ResourceZ is designed to be a shared file. For example,
via its ACL entries, the resource Z (226) may be a read
only data file with respect to these processes 202, 212,
whereby both scripts 200, 210 may use the file’s
information but not change it.

Another option provided by the present invention 1is
to create a Job object, which as described above, is a
kernel-level object that contains the restrictions for
all processes therein. Moreover, a job object may
contain other limitations such as how much of a CPU’s
processing may be consumed. As described above, any
process added to that Jjob receives the same restrictions,
whereby the web server can create processes on the
client's behalf and then add the process to an existing
job. The restrictions are then automatically applied to
the process.

In keeping with the present invention, the web
server may further choose what restrictions to apply to
client processes and the like based on any number of

criteria, including the identity of the client (e.g., are

__37_.

10

15

20

25

30

WO 99/64946 PCT/US99/12912
they a company employee or not), the method of -

authentication used by the client (e.g., by presenting a
password, a certificate, using a smartcard, or even a
thumbprint/retina scan), and also the client’s location
(e.g., based on whether the client is on the same
network, dialing in, or conhecting over the Internet).
FIG. 21 shows an exemplary flow diagram showing the logic
for setting up trust levels depending on the type of
authentication, and depending on whether the
authentication took place via some remote (and thus
theoretically less secure) connection, as opposed to via
the local machine. For purposes of simplicity, the
individual steps and logic of FIG. 21 will not be
described in detail, since trust levels and their use in
retrieving corresponding restricted SIDs to set up
restricted tokens are similarly described above. Note,
however, that in general, the more trusted the
authentication, the lower the assigned trust level (which
herein corresponds to increased access rights).

Lastly, an Internet Service Provider can use
restricted execution contexts to safely host nmultiple web
sites on a single web server. To this end, each web site
runs in a separate restricted execution context composed
of a job object and a restricted token. The job object
provides quotas, so that a portion of the web server's
resources is allocated to each web site. The restricted
token provides isolation between the web sites,
protecting private data such as customer lists, from
unauthorized access.

As can be seen from the foregoing detailed
description, restricted execution contexts of the present
invention restrict the access of untrusted content to

system resources. Restrictions may be applied on a

10

WO 99/64946 PCT/US99/12912
resource-by-resource basis, dependent on any criteria .

available to the system.

While the invention is susceptible to various
modifications and alternative constructions, certain
illustrated embodiments thereof are shown in the drawings
and have been described above in detail. It should be
understood, however, that there is no intention to limit’
the invention to the specific forms disclosed, but on the
contrary, the intention 1s to cover all modifications,
alternative constructions, and equivalents falling within

the spirit and scope of the invention.

39

10

15

20

25

30

WO 99/64946 PCT/US99/12912
WHAT IS CLAIMED IS: -

1. In a system having an operating system provided
security mechanism that determines access of proéesses to
resources based on information in an access token
associated with each of the processes against security
information associated with each of the resources, a
method of restricting access of content to resources,
comprising the steps of, setting up a process for the
content, determining restriction information based on
criteria available to the system, adding the restriction
information to a restricted access token, and using the
restricted access token as the access token of the

content’s process.

2. The method of claim 1 wherein the content

comprises data obtained from an untrusted source.

3. The method of claim 2 wherein the untrusted

source is a floppy disk.

4. The method of claim 2 wherein the content
writes a file to the system, and further comprising the
steps of generating a restricted security identifier
corresponding to the site, adding the security identifier
to security information of the file, and storing the file

in the system.

5. The method of claim 2 wherein the content
writes a file to the system, and further comprising the
step of redirecting a path provided by the content to a

path associated with the site.

10

15

20

25

30

WO 99/64946 PCT/US99/12912
6. The method of claim 2 wherein the data -

comprises network data and the untrusted source is a

network site.

7. The method of claim 6 wherein the site is an
Internet site, and the step of determining restriction
information includes the step of generating a security

identifier from unique information of the Internet site.

8. The method of claim 7 wherein the unique
information comprises a binary certificate identifier of

the Internet site.

9. The method of claim 7 wherein the unigue
information comprises a Uniform Resource Locator (URL) of
the Internet site, and wherein the step of generating a
security identifier includes the step of converting the

URL to the restricted security identifier.

10. The method of claim 9 wherein the step of
converting the URL to the restricted security identifier
includes the step of hashing the URL with a cryptographic

hash function.

11. The method of claim 1 wherein the content

comprises an electronic mail message.

12. The method of claim 11 wherein the step of
determining restriction information includes the steps of

determining the sender of the message.

13. The method of claim 12 wherein the step of
determining the sender of the message includes the step

of authenticating the sender.

41

10

15

20

25

30

WO 99/64946 PCT/US99/12912

14. The method of claim 1 wherein the content

comprises a script.

15. The method of claim 14 wherein the system is a
server, and wherein the step of determining restriction
information includes the step of determining how the

client was authenticated to the server.

16. The method of claim 1 wherein the content
comprises data downloaded from a site, further comprising
the steps of determining a zone corresponding to the
site, and wherein the step of adding the restriction
information to a restricted access token includes the
step of adding a restricted security identifier

corresponding to the zone to the restricted access token.

17. The method of claim 1 further comprising the

step of accessing the resource through a helper process.

18. The method of claim 17 wherein the helper
process extracts information associated with the content

from the restricted token.

19. The method of claim 17 further comprising the
steps of detecting at an application programming
interface an attempt to access a resource from the
process having the restricted token as its access token,
and in response, calling the helper process to access the
resource, and returning information from the helper
process to the process having the restricted token as its

access token.

.42

10

15

20

25

30

WO 99/64946 PCT/US99/12912

20. The method of claim 17 further comprising the
step of setting the security information of the resource
to allow access to the helper process and deny access to
the to the process having the restricted token as its

access token.

21. The method of claim 1 further comprising the
step of putting the process into a job object.

52. The method of claim 1 wherein the content
attempts to access a system registry, and further
comprising the step of redirecting a registry location
provided by the content to a registry location associated

with the content.

23. In a computer system, a system for restricting
access of content to resources, comprising, a process set
up for the content, a discrimination mechanism for
determining at least one restricted security identifier
pased on information corresponding to the content, a
mechanism for creating a restricted access token for the
process by adding the at least one restricted security
identifier to the restricted access token, and a security
mechanism for determining access of the content’s process
to a resource by comparing information in the restricted
access token to security information associated with the

resource.

24. The system of claim 23 wherein the content

comprises data downloaded from a site.

25. The system of claim 24 wherein the site is an

Internet site, and wherein the discrimination mechanism

...43_

10

15

20

25

30

WO 99/64946 PCT/US99/12912
generates a restricted security identifier from -

information of the Internet site.

26. The system of claim 25 wherein the information
of the Internet site comprises a binary certificate

identifier of the Internet site.

27. The system of claim 25 wherein the information
of the Internet site comprises a Uniform Resource Locator
(URL), and further comprising a converter for converting

the URL to the restricted security identifier.

28. The system of claim 27 wherein the converter

includes a one-way cryptographic hash function.

29. The system of claim 23 wherein the content

comprises an electronic mail message.

30. The system of claim 29 wherein the
discrimination mechanism determines a restricted security

identifier based on the sender of the message.

31. The system of claim 23 wherein the content

comprises a script.

32. The system of claim 23 wherein the system is a
server, and wherein a restricted security identifier is
generated according to how the client was authenticated

to connect to the server.

33. The system of claim 23 further comprising a
helper process for extracting information associated with
the content from the restricted token and for accessing

the resource on behalf of the process. -

_44__

10

15

20

WO 99/64946 PCT/US99/12912

34. The system of claim 23 further comprising a job

object, wherein the process runs in the job object.

35, 1In a computer server, a system for restricting
access of content to resources, comprising, a plurality
of content arranged in distinct web sites, the content of
each web site having a process set up therefor, a
discrimination mechanism for determining at least one
restricted security identifier based on information
corresponding to each site, a mechanism for creating a
restricted access token for each process by adding the at
least one restricted security identifier corresponding to
the site to the restricted access token for the process
thereof, and a security mechanism for determining access
of each content’s process to a resource by comparing
information in the restricted access token to security

information associated with the resource.

PCT/US99/12912

WO 99/64946

5§ SWY¥90ud
NOILYOI1ddV

v

lajndwon
ajoway

[

HIOMION
Boly |e20]

S

snop

I "Old

A

JoJIUo

" ov / 8¢ S31NAOW 9¢ g¢ |

i VivVad | WvHOOoud | SWVNOONd WILSAS

&P e . 7 NVYHOO0Nd | LS ¥AUIHLO | NOILYODITddY | ONILVYHEIdO
@ H-unun-n m--u ---.--. .- X -

| o4 // -7
6¢ ..J ~ -
\I_vm r /// \.\\
Wopo |- @ __ __ . L
JOM}ON BalY 9pIAA € wN/// 12 \\\\
IIIIIIIIIIIIIIIIII —1- II!\III‘*\ —— :llf ——— = N IIVKHIII\\\II!I!!III&IA
= e— it m
— _
€9 oy ve £e rA 8¢ viva |
J IJ Yy J IJ ..J NVYYO0ONd |
soBLISIU aoeji9)U| aoejIalU] aoeji9)U| aoeIa3u] |
" owzwz_ J10d oALIQ oAl 3SIA aALQ |
— _
jeuas leonndo onaubey | |sia pieH T S31ndon |
NY YO 0¥d J3H1O "
_
g¢ SWV¥O0¥d |
) NOILYDIddY _
sng wojsAsg . W
N\ 5c W3lsAs |
€¢ ONILVYH3dO "
s¢ (avy) ||
||||||||||||||||||| _
(| 1odepy 0opin | o7 |
gt \ __an | %% som |
1SS990 —

uissasolid zZ 5z (wow) ||

h.v|\

1/19

WO 99/64946

60

TOKEN

I 84\

User SID

PCT/US99/12912

,—

64 88

Group4 SID

Group2 SID

o [

Groupp, SID

Privilegeq

Privilegey

Privilegen,

Token ID

Filter
—1» Token >
API

Create
Restricted
Token
APl

68 /

90

92 — |

93 —_|

RESTRICTED TOKEN

User SID

Group4 SID

Group, SID
DENYONLY

Groupp, SID

Privilegeq

Z

-

Restricted SID1

Restricted SID,

Restricted SID4

Restricted SID,.

Token ID

I Parent Token ID

FIG. 2
2119

WO 99/64946 PCT/US99/12912

72
' 84 N OBJECT
RESTRICTED TOKEN 76
|}~ SECURITY
User SID 1| e DESCRIPTOR
Group1 SID Header
Groups SID (DENY)
: Owner
Groupy, SID /
) /
y / f
Privilege4 90
DACL [~ Entry; -
Restricted SID4 80 :
Restricted SID, T Entryy, -
Restricted SID3 B R
Restricted SID, 81_,——\ :
Entry, -
/ /
¥ 1 1
PROCESS P
I a
60
70 ~—
_,PROCESS TOKEN
i —l y y
| OBJECT — SECURITY
MANAGER {«—— MECHANISM
§
u—" T e

3M9

WO 99/64946 PCT/US99/12912

FIG. 4

DISABLE_
MAX_SIDS

402 Flag Set
(404
~ Mark All
Groups as SidToDisable
Deny Only Field Present
?
Mark SIDs Listed in
Both Parent Token |__406
and SidToDisable
Field as Deny Only
410
Is _
DISABLE_
MAX_PRIVLIGES
Flag Set 414
412 ' ?
(D Is
elete All . :
Privileges PrivilegesToDelete
\Field Present

416 Remove Privileges
__| Listed in Both Parent
Token and
PrivilegesToDelete Field

WO 99/64946

FIG. 5

420

Yes

PCT/US99/12912

(FROM FIG. 4)

Are
RestrictedSids
Present in
Input Field

Call API
IsTokenRestricte

/

Is
Parent Token

?
426

|

I Put SIDs Listed in Both
Parent Token and
RestrictedSids
Input Field (Intersection)
into RestrictedSids
Field of New Token

424

Restricted

428

/

Put SIDs Listed in |
RestrictedSids
Input Field into
RestrictedSids

Field of New Token

430 Set Parent Token ID
_ of New Token to
Token ID of
Parent Token

5/19

WO 99/64946 PCT/US99/12912

84 72
\ \" OBJECT
80
RESTRICTED TOKEN ~H— ACL
User ID: /88 XJones (DENY ALL)
VBaker v SJohnson (RD)
' VBaker (RD, WR, SYNC)
Group IDs: Team1 (RD)
Team1 Team2 (RD, SYNC)
Accounting Accounting (RD, WR, SYNC)
90 Basketball (DENY) Corporate (RD, WR, SYNC)
Corporate Finance (RD, SYNC)
— MSWord (RD, WR)
Privileges: MSExcel (RD)
- \J_ Set System Clock
Restricted SIDs: A
Internet Explorer
94
PROCESS /
A
74
\ Yy v
(ACCESS) <
P ——P
(OBJECTID) | OBJECT SECURITY
———
(RESULT) MANAGER MECHANISM
.‘_.__
|
78

FIG. 6

6/19

WO 99/64946 PCT/US99/12912

76
SECURITY
DESCRIPTOR
96
“—»{ DESIRED
ACCESS
84
™ TOKEN
T l 100
. r v)
ggggn}? - ACCESS RESTRICTED SIDS
(Normal SIDs in Token ACCESS CHECK
USE_FOR_DENY_ONLY) (Restricted SIDs in Token)

Granted Granted
Access Access
Bitwise AND
Granted
Access
FIG. 7

719

WO 99/64946 PCT/US99/12912

FIG. 8 @

800

L

[Receive Type of
Access Desired

802 v
k Perform UserAndGroup
- Access Check
Against ACL

804

Is
Access

806 Allowable

/ Any
Restricted

SIDs
? 808
[Yes
Perform Restricted SIDs
Access Check “
Against ACL
810
Is
Access q
Allowable
812 ? No 814
N v Y 1[
‘Grant Access 5 A
(Return Handle eny Access
to Object)

8/19

WO 99/64946

110
\

PCT/US99/12912

JOB

112 —
N

113 —
N

PROCESS

.

1

TOKEN A

PROCESS
2

Restrictions R

1163"//

TOKEN B

/
116},

Restrictions R

1
14-\

N

—» PROCESS

3

118
—\\

» PROCESS

4

TOKEN C

TOKEN D

11ac-—//

Restrictions R

/

116

Restrictions R

FIG. 9

9/19

WO 99/64946

PCT/US99/12912

Process for
132—~ sitet.com Restricted
Token ~ 134
130 :
(Easip —{[136
Internet Zone SID
Site1.com SID
Internet Explorer '
Token
74 78
\1 Y \] Y
OBJECT |—»1 SECURITY
MANAGER |«—— MECHANISM
>
142
Y g 146
RESOURCE A \ RESOURCE B \
ACL \ ACL /
] ‘ -
Site1.com Entry Site2.com Entry

10/19

WO 99/64946 PCT/US99/12912

Siteto —— 131

Zone Data
138
130 132
4 A (
\ \] 5 134
Browser —» URL - Site

fSi Process | /
of Site r Restricted

Token

!

140\ _|_ URL to Restricted

~ SID Conversion | L_,| Browser SID
Mechanism - Site SID
Zone SID ~
AN
\
FIG. 11 136
133 3 135 \ (143
\ \] 5 145
Aporioation 1 Sencir [~ Process
Restricted
‘ Token
137 —_|- Discrimination » Restricted SID
l——b Mechanism \/
| 139

Trust Level

to SID Table

FIG. 12

11119

WO 99/64946 PCT/US99/12912

[— 134 152\\

/
132 Restricted \
130 \ \ Token 150 \ Token
\) \
Restricted Helper
Browser |—
Process Process

Nty

\
150\ l APl [o— |
\

152
\\ AFD Device Driver
‘—
ACL l

FIG. 13

12/19

WO 99/64946

FIG. 14

1406

begin
Connect()
Y 1400
Receive URL |——/
Requesting
Socket Handle

Requesting
Process Have

y

Yes

Restricted

Token
?

PCT/US99/12912

1404

)

Call Helper
Process

To/ From
FIG. 15

Return Socket
Handle or
Errorcode

Denying

/

/

Return Handle
or Errorcode

1420

13/19

’(end Connect())"—

WO 99/64946 PCT/US99/12912

FIG. 15

Cen)
'

Extract URL 1410
from Restricted)
Token /]

1412

Same as

Yes Req u;asted No
1414

1416 J
Access Device Driver to /*——J Y 7
Retrieve Socket Handle Deny Action
Corresponding to URL (Errorcode)

¢ 1418

Duplicate Handle

Return to
FIG. 14

14/19

WO 99/64946 PCT/US99/12912

Siteq
.com \ ACL 1644
. 77

Siteq.com Entry

162

1604

Siteg

Sitep,
.com \ ACL com \ ACL
. ' . Ve

164,

Sites.com Entry Site.com Entry

File System
(Folder)

1642

FIG. 16

15/19

WO 99/64946

PCT/US99/12912

170 162 —~
132 (File
Path |/ Open Redirected System
’Site1.com Croate Path
Process [~ APls |« Site1.com
. Folder
Restricted 4
L~ Token /\
/ 1604
134
FIG. 17
174
132 176 —
(System
K 4 Redirected Registry
Ta ey . K
Sitet.com — Registry ey Sito1
Process APIs iet.com
€ Virtual
Restricted Registry ~
- Token /\
/" 178
134

16/19

WO 99/64946

1900

Highly
Trusted

Sender .
?

Yes

Trusted Authenti-

PCT/US99/12912

1902

ender cated
v \ Yes
Authenti-
cated
1914 ? 1
19{ 6 \ ! 908 1904
- S ’_J \'\
Level 3 Level 1 Level 2 Level 0
Trusted Trusted Trusted Trusted
1906 Ul
se
> -
> i \ Normal
Token for
1920 | Create Restricted Token Process
N\ with Restricted SID
based on Trust Level,
Associate with Process

1719

WO 99/64946 PCT/US99/12912

2‘&/ _ Process
Process for Script2 | Restricted
for Script 1| Restricted Token
Token M4 T :
204 : Script2 SID
Script1 SID 216 | L :
206 — :
74 78
D S
¢
» OBJECT |—»{ SECURITY <
MANAGER |e«— MECHANISM
A
—>| ResourceZ
Y 226 | ACL
218 7 _
Y 7 999 ResourceY Script1 Entry
1 ACL Script2 Entry
ResourceX 298 .
. e
ACL Script2 Entry
: 24 |
Script1 Entry
220 | — :

18/19

WO 99/64946 PCT/US99/12912

/-1800
- 4
Determine
Authentication
Method
1814 l

1882 l 1806\/ 1810~_ ¢ \
Thumbprint %E:,r.tlf:éiaetf Password Smartcard

/ Retina

Scan

- 1808 1812 1816

1804) \ \

\ < < T

< Level 1 Level 2 Level 3

Level 0 Trusted Trusted Trusted

Trusted

Remote

Connection l 1820
5 Yes \

<
No Add n to

Trust Level

FIG. 21
19/19

INTERNATIONAL SEARCH REPORT

Interr “nal Apptication No

PC1/US 99/12912)

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 GO6F1/00

According to International Patent Classification (IPC) or to both national classification and 1PC

B. FIELDS SEARCHED

IPC 6 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X EP 0 588 415 A (IBM)
23 March 1994 (1994-03-23)

figures 1-3,8,9

A WO 97 15008 A (AT & T CORP)
24 April 1997 (1997-04-24)

figures 1,2
page 5, tine 1 -page 7, line 11

column 5, line 37 -column 9, line 27
column 11, line 38 -column 15, line 33

1,14,15,
17-21,
23,31-35

1,2,6,7,
16-18,
23-25,

31-33.35

D Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particuiar relevance

"E" earlier document but published on or after the internationai
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the pubiication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the intsrnational filing date but
fater than the priority date claimed

oy

NG

e

g

later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

invention

document of particular relevance; the claimed invention
cannot be considered novel or canhot be considered to
involve an inventive step when the document is taken alone

document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

in the art.
document member of the same patent family

Date of the actual completion of the international search

28 October 1999

Date of mailing of the international search report

05/11/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Weiss, P

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

~ormation on patent family members

interr- "~nal Application No

PC1/US 99/12912

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0588415 A 23-03-1994 JP 2519390 B 31-07-1996
JP 6223014 A 12-08-1994
us 5506961 A 09-04-1996
us 5542046 A 30-07-1996

WO 9715008 A 24-04-1997 us 5696898 A 09-12-1997
CA 2196867 A 07-12-1996
CN 1159234 A 10-09-1997
EP 0793826 A 10-09-1997

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

