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AN EXTENSIBLE TYPE SYSTEM FOR REPRESENTING AND CHECKING
CONSISTENCY OF PROGRAM COMPONENTS DURING THE PROCESS OF
COMPILATION

TECHNICAL FIELD
The present invention relates to type systems, and particularly, to a type system that is

extensible to new and updated programming languages.

BACKGROUND

A type system is a system used in programming languages to aid in the detection and
prevention of run-time errors. A programming language is “typed” if it contains a set of
types that are declared for objects such as variables, functions, etc., and these types are
checked versus a set of rules during compilation of a program written in the language. If the
source code written in the typed language violates one of the type rules, a compiler error is
determined.

Typed intermediate languages for use in compilers have received significant study in
the research community over the past few years. They enhance the reliability and robustness
of compilers, as well as provide a systematic way to track and check information needed by
garbage collectors. The idea is to have an intermediate representation that has types attached
to it and that can be type-checked in a manner analogous to type-checking for source
programs. However, a typed intermediate language is more difficult to implement because
types that represent ifems made explicit during the compilation process are necessary.

A typed intermediate language is even more difficult to implement if it must represent
a number of different high-level programming langnages. The different languages not only
have different primitive operations and types, but the high-level programming languages have
different levels of typing. For instance, some languages, such as assembly languages, are
generally untyped. In other words, they have no type system. Of the languages that are
typed, some are strongly typed while others are more loosely typed. For instance, C++ is
generally considered a loosely typed language, whereas ML or Pascal are considered strongly
typed languages. Further, some languages that are loosely typed have smaller sub-sets of the
language that allow for a majority of the code sections within a program to be strongly typed,
while other code sections are loosely typed. For example, C# and Microsoft Intermediate
Language used in .NET (MSIL) allow this. Therefore, a typed intermediate language used to
represent any of these high-level languages must be able to represent different types strengths.
Likewise, the type system of such a typed intermediate language must be able to implement

different rules depending on characteristics of the code being type checked.
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Another problem arises when a typed intermediate language is lowered throughout the
process of compilation. The lowering of a language refers to the process of changing the form
of a language from a higher level form, such as what a programmer would write, to a lower
level, such as to an intermediate language. The language can then be further lowered from the
intermediate language to levels closer to what a computer executes, such as machine-
dependent native code. In order to type-check an intermediate language that is lowered to
different levels during the compilation process, a different set of rules must be used for each
representation.

Attempts to create typed intermediate languages often fall short of solving the
problems discussed above. For instance, Cedilla Systems' Special J compiler uses a typed
intermediate language. However, this compiler is specific to the Java source language and
therefore did not need to process multiple languages that may, for instance, have non-type-safe
code. Additionally, this compiler only uses one set of rules for type-checking and therefore
could not be used for multiple levels of compilation. In the research community, typed
intermediate languages often tend to be highly specific to the source language and difficult to

engineer (and design the types) for the multiple stages of compilation.

SUMMARY

A representation of types, type-checker, method and compiler are provided for
checking consistency in various forms of an intermediate language. Specifically, the typed
intermediate langnage is suitable for use in representing programs written in multiple
(heterogeneous) source languages including typed and untyped languages, loosely and strongly
typed languages, and languages with and without garbage collection. Additionally, the type
checker architecture is extensible to handle new languages with different types and primitive
operations. The representation of types, type-checker, method and compiler include various
aspects. The various aspects may be used separately and independently, or the various aspects
may be used in various combinations and sub-combinations.

In one aspect, a method of type-checking a programming language in a compiler is
provided. One or more rule sets is taken as input to a type-checker, which selects one or
more of the rule sets based upon any one, or combination of two or more, of numerous
criteria. Among them are stage of compilation, source language, architecture, and level of
typing present in the language being type-checked. The language is then type-checked using
the selected one or more rule sets.

In another aspect, a compiler is provided with a type-checker that constructs one or
more sets of rules based on any one, or combination of two or more, of numerous criteria.

The rule sets can include one rule set corresponding to strong type-checking, one rule set
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corresponding to weak type-checking, and one rule set corresponding to representation type-
checking. The weak rule set can allow more flexibility in typing, such as allowing type casts,
while the representation rule set can allow dropped type information in parts of the
intermediate program representation.

In another aspect, a programming interface is provided for constructing a plurality of
rules for checking the consistency of an intermediate representation of a program. Checking
the consistency of the intermediate representation can include providing a plurality of rules to
a type-checker that applies a first set of rules to a one intermediate representation, and a
second set of rules to a another intermediate representation, based on predetermined criteria.

These and other aspects will become apparent from the following detailed description,

which makes references to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow diagram of a generic compilation process.

FIG. 2 is a table listing showing a conversion of a source code statement into an high-
level representation, and then to a machine-dependent low-level representation.

FIG. 3 is a data flow diagram illustrating one embodiment of a compiler system for
type-checking a typed intermediate language at various stages of compilation.

FIG. 4 is a block diagram of a type-checker for use in a compiler system.

FIG. 5 is a flowchart for one possible procedure for choosing a rule set to be applied
by a type-checker.

FIG. 6 is a direct graph diagram showing a hierarchical relationship between types.

FIG. 7 is a direct graph diagram showing the addition of a type to a hierarchical
relationship between types.

FIG. 8 is a flow chart of a method for checking an instruction against a type rule in a
type-checking system.

FIG. 9 is a block diagram of an example of a computer system that serves as an

operating environment for an embodiment of a type-checking system.

DETAILED DESCRIPTION
A representation of types, type-checker, and compiler are provided for checking
consistency in various forms of an intermediate language. The type-checker and compiler
allow use of different types and type-checking rules, depending on the source language for a
program component and/or the stage of compilation. For example, it may be desirable to
have a high-level optimizer apply to programs written in a variety of languages. These

languages may have different primitive types and primitive operations. One language may
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contain types and operations for complex arithmetic, for example, whereas another language
may contain types and operations specific to computer graphics. By allowing the intermediate
representation to be parameterized by different type systems, the optimizer can be used for
languages with different primitive types and operations. Another example can include a
program where certain components are written in a strongly-typed subset of a language and
other components are written in the full language, which is not type-safe. It is desirable to
have more error checking for the first set of components. This can be accomplished by using
different type-checking rules for the different components. Yet another example is dropping
type information during compilation. The type-checker and compiler can allow type
information to be dropped at later stages, while forcing precise information to be maintained
during earlier stages. This can be accomplished by using an unknown type in combination
with different type-checking rules for different stages of compilation.

FIG. 1 shows a generic compilation process for a system utilizing a typed

" intermediate language with different levels of lowering for representing a number of different

source languages. Source code 100-106 is written in four different source languages that may
or may not be typed and have differing levels of type strength. For instance, source code 100
written in C# will be typed much stronger than source code 106 written in C++ for instance.
Source code is first processed and entered into the system by a reader 108. The source
language is then translated into a high-level intermediate representation of the typed
intermediate language (HIR). The HIR can then optionally be analyzed and optimized at
block 110. The HIR is then translated into a mid-level intermediate representation of the
typed intermediate langnage (MIR). This representation is lower than the HIR but still
machine independent. At this point, the MIR can optionally be analyzed and optimized as
shown at block 112. The MIR is then translated into a machine-dependent low-level
representation of the typed intermediate language (LIR) by code generation at block 114. LIR
can then optionally be analyzed and optimized at block 116, and supplied to an emitter at
block 118. The emitter will output code in one of many formats 120-126 representing the
original source code read into the system. Throughout this process, the data necessary to
complete the process is stored in some form of persistent memory 128.

Thus, the compilation process consists of transforming the intermediate language
instructions from one level of representation to another. For instance, Figure 2 shows the
conversion of a source code statement into an HIR, as well as the conversion of the HIR to a
machine-dependent LIR. Source code statement 200 can be written in a number of high-level
programming languages. These languages are designed to allow programmers to write and

read code in a manner that is easily understood. Thus, the programmer is allowed to use
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characters like ‘+ for addition, and allowed use of more powerful forms, such as adding
more than two operands as shown in statement 200.

Statements 202-206 are an HIR representation of statement 200 that represents the
same functionality, but does so in a format closer to that as would be understood by a
computer and yet still architecture independent. Statement 202 uses an ‘ADD’ command to
add a first and second variable and assigns the result to a first temporary variable t1.
Statement 204 then uses another ‘ADD’ command to add t1 to the third variable and assigns
the result to a second temporary variable t2. Statement 206 then assigns the value of t2 to the
result variable z using an ‘ASSIGN’ instruction.

Statements 208-212 are a LIR of the intermediate language of the statements 202-206.
Statement 208 uses an add instruction specific to the x86 architecture to add the values of two
variables stored at specified registers and stores the result in a register assigned to a temporary
variable t1. Statement 210 uses the add instruction specific to the x86 architecture to add the
values of t1 and a third variable stored at the specified registers and stores the result in the
specified register (EAX) assigned to t2. Statement 212 then uses a move instruction specific
to the x86 architecture to move the value stored in EAX to the output variable z.

In order to implement type-checking, the typed intermediate language contains type
representations expressed either explicitly or implicitly. An explicit type expression is
declared directly in the representation. For example, the statement:

int a;
expressly defines the variable ‘a’ as type int. A type representation can be expressed
implicitly by defining a default type for certain statements of code. For instance, if the default
return type for functions is int, then the statement:

f start ();
would declare a function f _start that takes no arguments and returns a value of type int.

One embodiment of type representations for a typed intermediate language suitable for
use with multiple programming languages at multiple levels of representation is shown in
Appendix A. It should be noted that this is only an example of numerous possible
embodiments.

Referring to Appendix A, a number of type representations are defined in a type class
hierarchy such that type systems of various languages can be represented by the typed
intermediate language. An abstract base class is defined as ‘Phx::Type’ for all types. The
base class can contain, for instance, size information in ‘sizekind’ for the various types, such
as actual, symbolic or unknown (or variable) types. The base class can also contain

‘typekind’ in order to designate type classification. Additionally, an external type can be
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provided as an abstract type that wraps an externally defined type in order to provide back
mapping from the typed intermediate language to the original source code.

Below the base class, a class defined as ‘Phx::PtrType’ can represent pointer types.
Various kinds of pointers can be defined as well. For instance, a managed, garbage collected
pointer (points to a location within a garbage collected object), a managed, non-garbage
collected pointer (points to a location within a non-garbage collected object), an unmanaged
pointer (such as would be found in code written in C++-, for instance), a reference pointer
(points to the base of a garbage collected object), and null.

At the same level in the hierarchy, a class defined as ‘Phx::ContainerType’ can
represent container types, such as types that contain internal members. The internal members
can have fields, methods and other types. A class defined as ‘Phx::FuncType’ can represent
function types, including any necessary calling conventions, lists of arguments and lists of
return types. Also, a class defined as ‘Phx::UnmgdArrayType’ can represent unmanaged
array types. Under ‘Phx::ContainerType’ in the hierarchy, four more classes can be defined.
A class defined as ‘Phx::ClassType’ can represent class types, a class defined as
‘Phx::StructType’ can represent struct types, a class defined as ‘Phx::InterfaceType’ can
represent interface types, and a class defined as “Phx: :EnumType’ can represent enumerated
types. Under ‘Phx::ClassType’ in the hierarchy, an additional class defined as
‘Phx::MgdArrayType’ can represent managed array types.

In the representations shown in Appendix A, a class ‘primtype’ is defined as a special
instance of a struct type. ‘primtype’ can include various types such as int, float, unknown,
void, condition code, unsigned int, xint, etc. These representations can be used in both a HIR
or LIR of the typed intermediate language.

Additionally, target specific primitive types can be included in the type
representation. Some languages have complex arithmetic types that can be handled efficiently
if the type system is made aware of them. Take for instance an ‘MMX instruction. Such an
instruction is one of a set of extra instructions built into some versions of x86 processors for
supporting single instruction/multiple data operations on multimedia and communications data
types. The type system can be customized to recognize and use these instructions with.
minimal alteration of the type representations.

The embodiment of the type representation of types shown in Appendix A also
includes an “unknown” type, which can represent any type and optionally has a size
associated with it. The size is the size of the machine representation of the value. An
unknown type allows a compiler to drop type information in a controlled manner by changing
the type information from a specific type to an unknown type. It allows the compiler to

generate code that depends on the size of the value being manipulated, even when the type is
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unknown. Other types may use unknown types, so the unknown type also allows the
representation of partial type information (where some but not all information is known).

For instance, assume a pointer to an int type. At some stage of lowering, it may be
desirable to drop the type information, int. The unknown type allows the compiler to replace
the int type with the unknown type. The type-checker then need not check that the pointer of
interest is pointing to a correct type. It essentially takes the chance the value pointed to will
be handed in such a manner as to not adversely affect the program functionality at runtime.

Another example of using an unknown type is for defining a type for a function. Ifa
function with an argument of type pointer to unknown is called, where the argument
previously had the type pointer to int, the compiler must trust that right type is being passed.
The result of dereferencing the pointer may or may not be known to be an int; however, it
will be used as an int. A more complex example is the introduction of an intermediate
temporary variable during the conversion from high-level to low-level intermediate
representation of a virtual function call. Virtual tables (vtables) are widely used to implement
virtual calls in object-oriented languages. The first step in making a virtual function call in
the low-level intermediate representation is to fetch the first field of an object of memory.
The first field contains a pointer to a vtable. The result of fetch is then assigned to a
temporary variable. Constructing the type of the temporary variable (a type that represents a
pointer to a vtable, where the vtable may have many fields), may be complex and burdensome
to represent. Instead, the compiler may simply assign the intermediate temporary variable
“pointer to unknown.” Thus, the use of the unknown type simplifies latter stages of
compilation where keeping detailed type information is unnecessary or may represent a
significant burden to the compiler implementer.

FIG. 3 illustrates one embodiment of a compiler system for type-checking a typed
intermediate language at various stages of compilation, and therefore, type-checking a typed
intermediate language at various levels of lowering. Source code 300 represents any one of a
variety of source languages. The source code 300 is translated into a HIR of the typed
intermediate language 302. In doing so, the types representations of the source language are
translated into the type representations internal to the typed intermediate language.

The HIR, as explained with respect to FIGs. 1 and 2, is lowered throughout the
compilation process. For purposes of this illustration, a high (HIR) 302, mid (MIR) 304, and
low (LIR) 306 level representations are shown. However, the embodiment is not so limited.
Any number of stages of compilation may be type-checked.

The intermediate language at each level of representation may be type-checked by
type-checker 308. The type-checker 308 implements an algorithm or procedure for applying

one or more rule sets 310 to each stage of the compilation process, and therefore to each
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representation of the intermediate language. The rule sets 310 are a set of rules designed for
varying properties of languages, such as the source language, stage of compilation, what
strength of typing, etc.

For example, assume source code 300 contains code authored in the C+ +
programming language. The C+ + source code 300 is first translated into an HIR 302 of the
typed intermediate language. If desired, at this point the type-checker 308 can interact with
the HIR 302 in order to determine any number of properties. Such properties might include
the stage of compilation (HIR), the type of source code present (C++), whether or not the
language is typed (yes), whether it is loosely or strongly typed (loosely), etc. Based on the
properties, the type-checker can select an appropriate set of rules. Once a rule set is selected,
the type-checker type-checks the HIR according to that set of rules. Once the HIR is lowered
to MIR or LIR, the properties will be accessed again and the same or a different set of rules
may be appropriate.

In one embodiment, three sets of typé-checking rules can be supplied to the type-
checker. One set can correspond to “strong” type-checking, such as would be desirable to
type-check C# or MSIL. Another set can correspond to “weak” type-checking, which would
be a looser type-checking than the “strong” type-checking. For instance, the weak type-
checking rule set could permit type casts. A type cast is when a variable of one type is made
to act like another for a single use. For instance, a variable of type int can be made to act like

bl

a char (character). The following code uses a type cast to print the letter ‘P

int a;
a = 80;
cout< <(char) a;

Thus, even though ‘a’ is defined as type int and assigned the value 80, the cout statement will
treat the variable ‘a’ as type char due to the type cast and therefore display a ‘P’ (ASCII value
80) rather than 80.

Lastly, a set can correspond to “representation” checking. The "representation”
checking can allow dropped type information in parts of the intermediate program
representation, such as by using an unknown type, and can include rules that dictate when
such type information can be dropped or when an unknown type can be substituted for another
type. For instance, the result of a function that returns a value of type Void may be prohibited
from being assigned to a variable of unknown type.

Additionally, more than one set of rules can be used at a single stage of compilation.
For instance, assume the source code 300 contains a single language, but contains sections that

are strongly typed and some sections that are loosely typed. The type-checker can use one set
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of rules for the HIR at certain strongly typed sections, and another set of rules for code
sections that are loosely typed.

FIG. 4 is a block diagram of a type-checker for use in a compiler system similar to
that described in FIG. 3. Type-checker 400 can accept as input any number of rules sets
corresponding to different source languages and/or different stages of compilation. InFIG. 4,
four rules sets 402-408 are provided to type-checker 400. Rule set 402 represents a rule set
for an HIR for languages with strong typing, rule set 404 represents a rule set for an HIR for
languages with weak typing, rule set 406 represents a rule set for an HIR for languages with
no typing, and rule set 408 represents a rule set for an LIR. Program module 410 represents a
language with strong typing in a HIR, and program module 412 represents program module
410 after being lowered to an LIR.

The type-checker 400 selects an appropriate rule set based on properties of the
program module being type-checked and applies the selected rule set to the program module
using an incorporated procedure or algorithm. For instance, type-checker 400 may select rule
set 402 (representing a rule set for an HIR for languages with strong typing) in order to type-
check program module 410 (representing a language with strong typing in a HIR).
Subsequently, the type-checker 400 may then select rule set 408 (representing a rule set for an
LIR) in order to type-check program module 412 (representing a language with strong typing
in a LIR).

FIG. 5 is a flowchart for one possible embodiment of a procedure for choosing a rule
set to be applied by the type-checker. At block 500, a type-checker reads in a section of a
typed intermediate representation of source code and must select a rule set for type-checking.
Decision 502 determines if the typed intermediate language is a HIR, MIR, or LIR.

If it is a HIR or MIR, decision 504 is processed to determine if the original source
code was loosely or strongly typed. If it was loosely typed, block 506 is processed to select a
rule set corresponding to weak type-checking. If it was strongly typed, block 508 is processed
to select a rule set corresponding to strong type-checking.

If it is an LIR, decision block 510 is processed to select a rule set corresponding to
representation type-checking. It should be noted that FIG. 5 is just one embodiment. Any
number of rule sets can be selected, corresponding to and based on different properties.

The rule sets of the type-checking system described are easily extended to entirely
new languages, and also to new features of existing languages. For instance, should a new
language be introduced, a new rule set is simply authored for the new language. Since the
rule sets are separate from the type-checker or compiler system itself and are designed to
accept the rule sets as separate entities, new rule sets for new languages can be distributed

without having to re-distribute or update existing type-checking systems or compilers.
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Likewise, if a new feature is added to an existing language, such as adding XML support to
C+ + for instance, the rule set corresponding to C+ + at the various stages of compilation
can be easily reconfigured dynamically to handle the new feature. Again, no new core system
need be updated or distributed.

The rule sets can also allow for constraints on types. For instance, whether sub-
typing is allowed for a particular type when a class inherits from another may be a constraint
described in the rules. Another constraint may be a boxed constraint, such as might be
desired to indicate data can be converted into a virtual table containing the data. Others may
include a size constraint, or a primitive type constraint indicating the necessity for identical
types of primitives. Like any other part of the rule set, new constraints can be added as
desired.

The set of rules used by the type-checker can be constructed through a programming
interface to an application for authoring the rule sets. The application can construct the rules
such that the rule set is represented in a hierarchy of type primitives with rules assigned to
individual instructions of the typed intermediate language. The hierarchy can be provided in
the form of a type graph that will explicitly express various elements of types relevant to a
particular program module or compilation unit. The IR elements such as symbols and
operations will be associated with elements of the type systems. The type graph nodes will
describe the primitive and constructed types and their relationships such as components,
nested types, function signatures, interface types, elements of hierarchy and other information
such as source names and references to module/assembly external type elements.

An example of a simple type rule is as follows:

ADD
N=addn, n

Assume for purpose of this example that I is a signed integer type, U is an unsigned
integer type, X is either type of integer, F is float, and N is any of the above. FIG. 6 shows
the hierarchical relationship between these types. Type N is at the top of the hierarchy. The
types F and X branch down from type N to form the subsequent level of the hierarchy.
Lastly, types U and I branch down from the X type to form the Jowest level of the hierarchy.
Thus, for an ‘ADD’ intermediate language instruction, according to this rule only type N or
lower in the hierarchy can be processed by the add instruction, and the operands must be no
higher on the hierarchy than the result. For instance, two integers can be added to produce an
integer I=ADD i, i), or an integer and a float can be added to produce a float (F=ADD i, f).
However, a float and an integer cannot be added to produce an integer I=ADD i, .

Representing the type primitives as hierarchies allows the rule sets to be altered

easily. In the past, type rules have often been expressed programmatically using source code.
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For example, a type-checker may contain a large number of switch statements that implement
the type-checker rules. Thus, changing a rule required modifying the source code for the
type-checker. However, the hierarchical rule sets provide for much easier extensibility.
Consider the previous rule for the ADD instruction. If a developer wanted to add a type, for
instance C for a complex type, it can simply be added under the N type in the hierarchy as
shown in FIG. 7 and the rule for the ADD instruction need not be altered to function as
desired.

One method for checking an instruction in a type checking system against a type rule
is shown in FIG. 8. First, block 800 is processed to check the instruction syntactically.

Thus, considering the instruction at 806, the type-checker will ensure that the correct number
of source and destination expressions exist according to the type rule for the ADD instruction
(for example, in this case there are 2 source expressions and one destination expression).
Each expression (and subexpression) may have an explicit type on it in the intermediate
representation. At block 802, the type-checker will then actually verify that the explicit types
for el, €2, and foo(e3) conform to the type rule for the ADD instruction. At block 804, the
type-checker will traverse sub-levels if necessary to further type-check instructions. For
instance, the type-checker can check that the expressions el, €2, and foo(e3) are consistent
with their explicit types. For instance, the type-checker may check that foo has a function
type. It may check that the result type of the function type is the same as the explicit type on
foo(e3). It may further check that there is a single argument type and that the type €3 matches
that type. This ensures that the type of the call to €3 is consistent with type rules.

FIG. 9 illustrates an example of a computer system that serves as an operating
environment for an embodiment of a type-checking system. The computer system includes a
personal computer 920, including a processing unit 921, a system memory 922, and a system
bus 923 that interconnects various system components including the system memory to the
processing unit 921. The system bus may comprise any of several types of bus structures
including a memory bus or memory controller, a peripheral bus, and a local bus using a bus
architecture such as PCI, VESA, Microchannel (MCA), ISA and EISA, to name a few. The
system memory includes read only memory (ROM) 924 and random access memory (RAM)
925. A basic input/output system 926 (BIOS), containing the basic routines that help to
transfer information between elements within the personal computer 920, such as during start-
up, is stored in ROM 924. The personal computer 920 further includes a hard disk drive 927,
a magnetic disk drive 928, e.g., to read from or write to a removable disk 929, and an optical
disk drive 930, e.g., for reading a CD-ROM disk 931 or to read from or write to other optical
media. The hard disk drive 927, magnetic disk drive 928, and optical disk drive 930 are
connected to the system bus 923 by a hard disk drive interface 932, a magnetic disk drive
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interface 933, and an optical drive interface 934, respectively. The drives and their associated

. computer-readable media provide nonvolatile storage of data, data structures, computer-

executable instructions (program code such as dynamic link libraries, and executable files),
etc. for the personal computer 920. Although the description of computer-readable media
above refers to a hard disk, a removable magnetic disk and a CD, it can also include other
types of media that are readable by a computer, such as magnetic cassettes, flash memory
cards, digital video disks, Bernoulli cartridges, and the like.

A number of program modules may be stored in the drives and RAM 925, including
an operating system 935, one or more application programs 936, other program modules 937,
and program data 938. A user may enter commands and information into the personal
computer 920 through a keyboard 940 and pointing device, such as a mouse 942. Other input
devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or
the like. These and other input devices are often connected to the processing upit 921 through
a serial port interface 949 that is coupled to the system bus, but may be connected by other
interfaces, such as a parallel port, game port or a universal serial bus (USB). A monitor 947
or other type of display device is also connected to the system bus 923 via an interface, such
as a display controller or video adapter 948. In addition to the monitor, personal compuiers
typically include other peripheral output devices (not shown), such as speakers and printers.

The personal computer 920 may operate in a networked environment using logical
connections to one or more remote computers, such as a remote computer 949. The remote
computer 949 may be a server, a router, a peer device or other common network node, and
typically includes many or all of the elements described relative to the personal computer 920,
although only a memory storage device 950 has been illustrated in FIG. 9. The logical
connections depicted in FIG. 9 include a local area network (LAN) 951 and a wide area
network (WAN) 952. Such networking environments are commonplace in offices, enterprise-
wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the personal computer 920 is
connected to the local network 951 through a network interface or adapter 953. When used in
a WAN networking environment, the personal computer 920 typically includes a modem 954
or other means for establishing communications over the wide area network 952, such as the
Internet. The modem 954, which may be internal or external, is connected to the system bus
923 via the serial port interface 946. In a networked environment, program modules depicted
relative to the personal computer 920, or portions thereof, may be stored in the remote
memory storage device. The network connections shown are merely examples and other

means of establishing a communications link between the computers may be used.
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Having illustrated and described the principles of the illustrated embodiments, it will
be apparent to those skilled in the art that the embodiments can be modified in arrangement
and detail without departing from such principles.

For instance, one embodiment herein describes one or more rule sets that can be
supplied to a type-checker or compiler such that the compiler or type-checker chooses one or
more of the rule sets to type-check a language based on the language and/or phase of
compilation being type-checked. However, in the alternative, a single set of rules can be
supplied to a type-checker or compiler such that the compiler or type-checker constructs one
or more subsets of rules from the single set of rules, either statically or dynamically at
runtime, based on the language and/or phase of compilation being type-checked.

In view of the many possible embodiments, it will be recognized that the illustrated
embodiments include only examples and should pot be taken as a limitation on the scope of the

invention. Rather, the invention is defined by the following claims. We therefore claim as the

. invention all such embodiments that come within the scope of these claims.
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Appendix A

1l /l
/] Description:
/!
/I IR types
1
1
/Il Type Class Hierarchy Description & Primary Properties Introduced
1
/I Phx::Type - Abstract base class for types
1 Phx::PuType - Pointer types
1 Phx::ContainerType - Container types (types that have members)
1 Phx::ClassType - Class types
/1 Phx::MgdArrayType - Managed array types
1 Phx::StructType - Struct types
I Phx::InterfaceType - Interface types
1 Phx::EnumType - Enumerated types
1 Phx::FuncType - Function types
1 Properties: ArgTypes, ReturnType
1
1 Phx::UnmgdArrayType - Unmanaged arrays
1! Properties: Dim, Referent
1
1!
17
1!
/! Description:
/!
// Base class for IR types
1
1l

abstract __public __gc

class Type : public Phx::Object

{

public:

/! Functions for comparing types.

virtual Boolean IsAssignable(Phx::Type * srcType);
virtual Boolean IsEqual(Phx::Type * type);

public:

// Public Properties

DEFINE_GET_PROPERTY (Phx::TypeKind, TypeKind, typeKind);
DEFINE _GET PROPERTY (Phx::SizeKind, SizeKind, sizeKind);
DEFINE GET PROPERTY (Phx::BitSize, BitSize,  bitSize);
DEFINE_GET PROPERTY (Symbols::ConstSym *, ConstSym, constSym);

PCT/US2004/015964



WO 2005/006119 PCT/US2004/015964

10

15

20

25

30

35

40

45

50

15

DEFINE _GET PROPERTY (Phx::ExternalType *, *, ExternalType, externalType);
DEFINE_GET PROPERTY(Phx anTypeKlndNum, PrimTypeKind, prlmTypeKmd)
GET PROPERTY(Phx :TypeSystem *, TypeSystem);

protected:
// Protected Fields
Phx::TypeKind typeKind; // type classification
Phx::SizeKind sizeKind; // size classification
Phx::BitSize bitSize; // size in bits when constant

Symbols::ConstSym * constSym; // size in bits when symbolic
Phx::PrimTypeKindNum primTypeKind;
Phx::ExternalType * externalType; // optionally null

|5

/1
1
/! Description:

1

// Container Type - Abstract class for types that have members.
1
/1

__abstract __public __gc
class ContainerType : public QuantifiedType, public IScope

{

DEFINE_PROPERTY (Symbols: :FieldSym * FieldSymList, fieldSymList);
private:

// Private Fields

Symbols::FieldSym * fieldSymList;
b

/1
1
/] Description:

1

/1 Class Container Type
I
11

__public _ gc
class ClassType : public ContainerType

{
public:

// Public Static Constructors
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static Phx::ClassType * New

Phx::TypeSystem * typeSystem,

Phx::BitSize bitSize,
Phx::ExternalType * externalType
)
public:
/! Public Properties

PCT/US2004/015964
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DEFINE GET PROPERTY (Phx::Type *, UnboxedType, unboxedType);
DEFINE PROPERTY( ClassType *, ExtendsClassType, extendsClassType);

DEFINE_GET PROPERTY (Phx::Collections: :InterfaceTypeList *,
Explicitlylmplements, explicitlylmplements);

protected:

// Protected Properties

DEFINE_SET PROPERTY (Phx::Collections::InterfaceTypeList *,
Explicitlylmplements, explicitlylmplements);

private:

// Private Fields

Phx::Type * unboxedType;
Phx::ClassType *# extendsClassType;
Phx::Collections: :InterfaceTypeList * explicitlyImplements;

b

Il
1
/I Class: StructType
1l

/] Description:

1

/I Type of structs.
1
11
11

__public __gc
class StructType : public ContainerType

{
public:
// Public Static Constructors

static Phx::StructType * New
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(
Phx::TypeSystem * typeSystem,
Phx::BitSize " DbitSize,
Phx::ExternalType * external Type

);

public:
/] Public Properties

DEFINE_GET PROPERTY (Phx::ClassType *, BoxedType, boxedType);

private:
/] Private Fields

Phx::ClassType * boxedType;
b

11

PCT/US2004/015964

1

// Class: PrimType
11

/] Description:

1l

/1 Primitive types
1

11

__public __gc
class PrimType : public StruciType

{
public:
// Public Static Constructors

static Phx::PrimType *
New

Phx::TypeSystem * typeSystem,
Phx::PrimTypeKindNum  primTypeKind,
Phx::BitSize bitSize,
Phx::ExternalType * externalType

)

public:
/] Public Methods

static Phx::PrimType *
GetScratch

(
Phx::PrimType * type,
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PrimTypeKindNum kind,
Phx::BitSize bitSize
)

Phx::PrimType * GetResized

(
Phx::BitSize bitSize
)

public:

/] Public Properties

DEFINE_GET PROPERTY (Phx::TypeSystem *, TypeSystem, typeSystem);
private:

/] Private Fields

Phx::TypeSystem * typeSystem;

k4

/1
I
// Class: InterfaceType
/!

/! Description:

1

/' Interface types

1
I

__public _gc
class InterfaceType : public ContainerType

{
public:
// Public Static Constructors
static Phx::InterfaceType * New
Phx::TypeSystem * typeSystem,
Phx::ExternalType * externalType
)
public:
// Public Properties
DEFINE PROPERTY( Phx::ClassType *, ExtendsClassType, extendsClassType);

DEFINE_GET_PROPERTY (Phx::Collections::InterfaceTypeList *,
Explicitlylmplements, explicitlyImplements);
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protected:
// Protected Properties

DEFINE_SET PROPERTY(Phx:

PCT/US2004/015964
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:Collections: :InterfaceTypeList *,

ExplicitlyImplements, explicitlylmplements);

private:
// Private Fields

Phx::ClassType *

extendsClassType;

Phx::Collections: : InterfaceTypeList * explicitlylmplements;

}s
i

1
// Class: EnumType
1!

// Description:

/!

/! Enumeration types
/!
/!

__public __gc

class EnumType : public ContainerType

{
public:
// Public Static Constructors

static Phx::EnumType * New
(

Phx::TypeSystem * typeSystem,
Phx::ExternalType * externalType,

)
public:
// Public Properties

DEFINE_GET PROPERTY (Phx
DEFINE_GET_PROPERTY (Phx

private:
/1 Private Fields
Phx::Type * underlyingType;

Phx::ClassType * boxedType;
IE

Phx::Type * underLyingType

::ClassType *, BoxedType, boxedType);
::Type *, UnderlyingType, underlyingType);
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/1

1

/1 Class: MgdArrayType
/1

/I Description:

/1

//  Managed array types.
1

1

I

__public __gc
class MgdArrayType : public ClassType

{

public:
// Public Static Constructors

static Phx::MgdArrayType * New

(
Phx::TypeSystem * typeSystem,
Phx::ExternalType * externalType,
Phx::Type * elementType

)

public:

// Public Properties

PCT/US2004/015964

DEFINE_GET PROPERTY (Phx::Type *, ElementType, elementType);

private:
/I Private Fields
Phx::Type * elementType;
|5
1
11
// Class: UnmgdArrayType
/1
/] Description:
11
/I Unmanaged array types.
11
1
11
__public _gc

class UnmgdArrayType : public Type
{



WO 2005/006119

21
public:
// Public Static Constructors
5
static Phx::UnmgdArrayType * New
Phx::TypeSystem * typeSystem,
Phx::BitSize bitSize,
10 Phx::ExternalType * externalType,
Phx::Type * referentType
);
public:
15
/] Public Properties
DEFINE_GET _PROPERTY (int, Dim, dim);
DEFINE_GET PROPERTY (Phx::Type *, Referent, referent);
20
private:
/1 Private Fields
25 int dim;
Phx::Type * referent;
3
30 /f
1
// Description:
1
/I Pointer types
35/
/1
/1
__public __gc
40  class PtrType : public Type
{
public:
45 /! Public Static Constructors
static Phx::PtrType * New
(
Phx::TypeSystem * typeSystem,
50 Phx::PtrTypeKind ptrTypeKind,
Phx::BitSize bitSize,
Phx::Type * referent,

Phx::ExternalType * externalType

PCT/US2004/015964
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/| Constructor without type pointed to.
static Phx::PtrType * New

Phx::TypeSystem * typeSystem,

Phx::PtrTypeKind ptrTypeKind,
Phx::BitSize bitSize,
Phx::ExternalType * externalType
);
public:
// Public Properties

DEFINE_GET PROPERTY (Phx::PtrTypeKind, PurTypeKind, ptrTypeKind);
DEFINE_GET_PROPERTY (Phx::Type *, Referent, referent);

private:
// Private Fields

Phx::PtrTypeKind  ptrTypeKind;
Phx::Type * referent;

15

1l
1/
// Enum: CallingConvention

/!

/] Description:

/!

// A preliminary enum to represent calling convention types.
1
1!

BEGIN_ENUM(CallingConventionKind)

_Illegal = 0,
CLRCall,
CDecl,
StdCall,
ThisCall,
FastCall

END_ENUM(CallingConventionKind);

/1
1
/I Class: FuncType
1

/] Description:

1

/! Function types.

PCT/US2004/015964
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23

__public __ gc
class FuncType : public QuantifiedType

{
public:

// Public Static Constructors

public:
// Public Methods
Int32 CountArgs();
Int32 CountRets();
Int32 CountArgsForlnstr();
Int32 CountRetsForInstr();
Int32 CountUserDefinedArgs();
Int32 CountUserDefinedRets();
Phx::FuncArg * GetNthArgFuncArg(Int32 index);

Phx:
Phx:
Phx:
Phx:
Phx:
Phx:
Phx:

Phx:
Phx:

public:

:FuncArg * GetNthRetFuncArg(Int32 index);

:FuncArg * GetNthArgFuncArgForInstr(Int32 index);
:FuncArg * GetNthRetFuncArgForInstr(Int32 index);
:FuncArg * GetNthUserDefinedArgFuncArg(Int32 index);
:FuncArg * GetNthUserDefinedRetFuncArg(Int32 index);
:Type * GetNthArgType(Ini32 index);

:Type * GetNthRetType(Int32 index);

Phx::
:Type * GetNthRetTypeForlnstr(Int32 index);
Phx::
:Type * GetNthUserDefinedRetType(Int32 index);

Type * GetNthArgTypeForInstr(In32 index);

Type * GetNthUserDefinedArgType(Int32 index);

/] Public Properties

DEFINE_GET PROPERTY (Phx: :CallingConventionKind,
callingConvention);
GET_PROPERTY (Phx::Type *, RetType);

// True if this function type has an ellipsis funcarg.

GET_PROPERTY (Boolean, IsVarArgs);
GET_PROPERTY (Boolean, IsInstanceMethod);
GET_PROPERTY (Boolean, IsClrCall);
GET_PROPERTY (Boolean, IsCDecl);
GET_PROPERTY (Boolean, IsStdCall);
GET_PROPERTY (Boolean, IsThisCall);

GET _PROPERTY (Boolean, IsFastCall);

// Not True if this function has a return value.

PCT/US2004/015964
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GET_PROPERTY (Boolean, ReturnsVoid);

protected:
// Protected Fields
Phx::CallingConventionKind callingConvention;
Phx::FuncArg * argFuncArgs;
Phx::FuncArg * retFuncArgs;

|5

I

1

// Description:

1

// The global type system used during compilation.
1
1
11

__public __gc
class TypeSystem : public Phx::Object

{

public:
/1 Public Static Constructors
static TypeSystem *

New

(
Phx::BitSize  reglntBitSize,
Phx::BitSize  nativeIntBitSize,
Phx::BitSize nativePtrBitSize,
Phx::BitSize  nativeFloatBitSize,

)
public:

// Public Methods

void Add(Type * type);
public:

// lists of created types

DEFINE _GET PROPERTY(Phx::Type *, AllTypes,
private:

/I List of all types in the system.

allTypes);

PCT/US2004/015964
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Phx::Type * allTypes;
|5

25

1
1
/! Description:
1

/! Various enums to describe types.

1!

11

/1 Classes and value types for IR types

/! The different kinds of types.
BEGIN_ENUM(TypeKind)

_Tllegal = 0,
Class,

Struct,
Interface,
Enum,
MgdArray,
UnmgdArray,
Ptr,

Func,
Variable,
Quantifier,
Application,
TypedRef,

}
END_ENUM(TypeKind);

/I The different kinds of type sizes.

BEGIN_ENUM(SizeKind)
_Illegal = 0,
Constant,
Symbolic,
Unknown
}
END_ENUM(SizeKind);
// The different types of pointers

BEGIN_ENUM(PtrTypeKind)

/I __gc pointer to object interior.

_Illegal = 0,

ObjPtr, /] __gc pointer to object whole.
MgdPtr,

UnmgdPtr, /! __nogc pointer.

NullPtr, // pointer to nothing.

_NumPtrTypeKinds

PCT/US2004/015964
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.END_ENUM(PtrTypeKind);
}
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We Claim:

1. A method of type-checking a programming language in a compiler according
to one or more rule sets comprising:
selecting one or more of the rule sets based upon the present stage of compilation; and

type-checking the programming language based on the selected one or more rule sets.

2. The method of claim 1 wherein selecting one or more of the rule sets is based

upon a characteristic of the programming language rather than the stage of compilation.

3. The method of claim 2 wherein the characteristic of the programming

language describes the type system of the language.

4. The method of claim 1 wherein type-checking the programming language
comprises type-checking each of a plurality of intermediate representations of the

programming language.

5. The method of claim 4 wherein the selected one or more rule sets are

different for each representation.

6. The method of claim 4 wherein selecting one or more of the rule sets is based
upon a characteristic of the representation being type-checked rather than the stage of
compilation.

7. The method of claim 1 wherein the programming language includes a type

that indicates an element of the programming language can be one of a plurality of types.

8. The method of claim 7 wherein the one or more rule sets contains rules for
type-checking a type that indicates an element of the programming language can be one of a

plurality of types.

0. The method of claim 1 wherein the one or more rule sets comprise a plurality

of rules in a hierarchical format.

10. The method of claim 1 wherein the one or more rule sets comprise one rule
set corresponding to strong type-checking, one corresponding to weak type-checking, and one

corresponding to representation type-checking.
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11. The method of claim 10 wherein the representation type-checking will allow

dropped type information for elements of the programming language.

12. The method of claim 10 wherein the weak type-checking will allow type

casting.

13. A compiler for compiling source code written in a source language
comprising:

a plurality of type rules;

a type-checker that selects a subset of type rules from the plurality of type rules based

upon the source language to construct a rule set.

14. The compiler of claim 13 wherein the subset of type rules is selected based

upon an intermediate representation of the source code rather than the source language.

15. The compiler of claim 13 wherein subset of type rules is selected based upon

a stage of compilation rather than the source language.

16. The compiler of claim 13 wherein three rule sets are constructed: one
corresponding to sirong type-checking, one corresponding to weak type-checking, and one

corresponding to representation type-checking.

17. The compiler of claim 16 wherein the representation type-checking will allow

dropped type information for elements of the source code.

18. The compiler of claim 16 wherein the weak type-checking will allow type

casting.

19. A type-checking system for type-checking source code authored in a plurality
of source languages comprising:
a plurality of rule sets; and
a type-checker, wherein the type-checker selects one or more rule sets to

apply to the source code at each of a plurality of representations.
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20. The system of claim 19 wherein the selected one or more rule sets is selected

‘based on one or more characteristics of the source language.

21. The system of claim 19 wherein the type-checker is part of a compiler.

22. The system of claim 19 wherein each of the plurality of rule sets corresponds

to a specific source language.

23. The system of claim 19 wherein each of the plurality of rule sets corresponds

to a specific strength of type-checking.

24, A method of analyzing source code represented as a typed intermediate
representation in a compiler comprising:

selecting a rule set from among different rule sets based on the typed intermediate
representation; and

analyzing the typed intermediate representation based on the selected rule set.

25. The method of claim 24 wherein selecting a rule set is based on which step in

a series of steps in a compilation process produced the typed intermediate representation.

26. The method of claim 24 wherein selecting a rule set is based on a source

language from which the typed intermediate representation was produced.

27. The method of claim 24 wherein selecting a rule set is based on a processor
architecture.
28. The method of claim 24 wherein selecting a rule set is based on a whether the

typed intermediate representation represents verified or unverified code.

29. The method of claim 24 wherein selecting a rule set is based on a whether the

typed intermediate representation represents type-safe code or code that is not type-safe.

30. The method of claim 24 wherein selecting a rule set is based on a whether the

typed intermediate representation represents typed or untyped code.
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31. The method of claim 24 wherein selecting a rule set is based on a whether the

typed intermediate representation represents strongly or weakly typed code.

32, A computer-readable medium containing computer-executable instructions for

implementing the method of claim 24.

33. A programming interface comprising:

a means for constructing a plurality of rules for checking the consistency of an
intermediate representation of a program, wherein checking the consistency of the
intermediate representation of a program comprises providing a plurality of rules to a type-
checker operable to apply a first set of the plurality of rules to a first intermediate
representation, and a second set of the plurality of rules to a second intermediate

representation.

34. A computer-readable medium containing computer-executable instructions for

implementing the method of ¢laim 1.
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