实用新型名称
一种轴套、搅拌机传动装置及混凝土搅拌机

摘要
本实用新型公开了一种轴套，还公开了一种带有该轴套的搅拌机传动装置及带有该传动装置的混凝土搅拌机。公开的轴套包括第一端面、第二端面、内孔和外壁面，所述的内孔能够与轴颈相配合，所述的第一端面外径大于第二端面的外径，所述的轴套的外壁面为锥形曲面。由于公开的轴套外壁面为锥形曲面，该锥形曲面与相应部件的定位环槽的内侧面相配合，其配合面的法线与轴线存在相应的夹角，配合面之间的作用力能够分解成在轴向和径向两个方向的作用力，能够同时在轴向和径向对相应部件进行定位，防止相应部件在轴向和径向的窜动。公开的带有该轴套的搅拌机传动装置及带有该传动装置的混凝土搅拌机中也能够达到相同的技术效果。
1. 一种轴套，所述轴套包括第一端面、第二端面、内孔和外壁面，所述的内孔能够与轴颈相配合，其特征在于，所述的第一端面外径大于第二端面的外径，所述轴套的外壁面为锥形曲面。

2. 根据权利要求1所述的轴套，其特征在于，所述的锥形曲面为圆锥曲面；所述轴套上设有开口，所述的开口贯通轴套外壁面、内孔壁面、第一端面和第二端面。

3. 根据权利要求2所述的轴套，其特征在于，所述的开口走向与轴套轴线平行。

4. 根据权利要求2或3所述的轴套，其特征在于，所述开口的间隙为2-3mm。

5. 根据权利要求1-3任一项所述的轴套，其特征在于，所述的锥形曲面为圆锥曲面；所述圆锥曲面与参照平面的两个交线之间的夹角为10-15度，所述的参照平面通过圆锥曲面中心线。

6. 根据权利要求1所述的轴套，其特征在于，所述的锥形曲面为圆锥曲面；所述轴套上设有开口，所述的开口走向与轴套轴线平行，间隙为2-3mm，且贯通轴套外壁面、内孔壁面、第一端面和第二端面；所述圆锥曲面与一个参照平面的两个交线之间的夹角为10-15度，所述的参照平面通过圆锥曲面中心线。

7. 一种搅拌机传动装置，包括上减速机、下减速机，搅拌臂；所述下减速机包括下减速机壳体、太阳轮、行星轮和下输出轴；所述的上减速机的输出轴输出端与上减速机壳体固定，所述太阳轮与上减速机相对固定，所述下输出轴安装在下减速机壳体上；所述行星轮安装在下输出轴上，且与太阳轮啮合；所述的搅拌臂设有安装孔，所述安装孔与下输出轴相配合；所述下输出轴设有轴肩；所述搅拌臂与轴肩之间设有与下输出轴配合的轴套，其特征在于，所述的搅拌臂安装孔靠近轴肩一端设有定位环槽；所述的轴套为权利要求1-6任一项所述的轴套，所述轴套的外壁面与定位环槽的内侧面相配合。

8. 根据权利要求7所述的搅拌机传动装置，其特征在于，所述安装孔与下输出轴相配合，具体是，所述安装孔的内花键与下输出轴上的外花键相配合。

9. 一种混凝土搅拌机，包括搅拌筒、动力源和的传动装置，其特征在于，
所述传动装置为权利要求 7 或 8 所述的搅拌机传动装置。
技术领域

本实用新型涉及一种定位机构，特别涉及一种轴套，还涉及到一种带有该轴套的搅拌机传动装置及带有该传动装置的混凝土搅拌机。

背景技术

轴向定位是当前机械领域常用的技术，定位的可靠性对机械性能有直接的影响。比如说：立式行星混凝土搅拌机传动装置中，搅拌臂的定位就对混凝土搅拌机的使用性能有直接的影响。

立式行星混凝土搅拌机的搅拌臂的运动轨迹是由两个运动复合而成，搅拌臂在随下减速机以上减速机输出轴为轴进行公转的同时，本身也以下减速机的下输出轴为轴进行自转。为了应对不同的作业要求，还需要经常调整搅拌臂的公转转速，因此，搅拌臂的搅拌频率经常发生变化。

当前，搅拌臂与下减速机下输出轴之间通常采用花键联接，在搅拌臂和下输出轴的轴肩之间设有相应的轴套对搅拌臂进行定位。结合图 1 和图 2 所示，下减速机的行星轮 13 安装在下减速机的下输出轴上，且与太阳轮 10 的轮齿相啮合，下减速机的下输出轴 12 通过滚动轴承可旋转地安装在下减速机壳体 9 内，下减速机壳体 9 安装在上减速机输出轴下端；为了安装的方便，下减速机壳体 9 还包括端盖 91，端盖 91 通过螺钉与下减速机壳体 9 的本体连接，搅拌臂 11 与下输出轴 12 通过花键连接，在搅拌臂 11 与下输出轴 12 轴肩 12-1 之间直筒形轴套 16，搅拌臂 11 的下端用压板 17 和螺母 18 拧紧；螺母 18 的拧紧力能够保持搅拌臂 11 与筒形轴套之间有相应的作用力，使搅拌臂 11 与下输出轴 12 固定。下减速机壳体 9 在上减速机输出轴的驱动下旋转，同时带动行星轮 13 绕太阳轮 10 的轴线做行星运动；由于行星轮 13 与太阳轮 10 的轮齿相啮合，在绕太阳轮 10 做行星运动时，行星轮 13 带动输出轴 12 进行自转。由于搅拌臂 11 安装在下输出轴 12 上，下输出轴 12 带动搅拌臂 11 在绕上减速机输出轴轴线做公转的同时，进行自转运动。

搅拌臂运动的复杂性决定了搅拌臂受力的复杂性，不仅受到轴向的作用力，也要承受径向的作用力。搅拌臂受力的复杂性对搅拌臂稳定性和固定的有效。
可靠性提出了较高的要求。如果搅拌臂安装不牢固，就会很容易造成搅拌臂的窜动，进而造成搅拌臂与缸体内壁卡死，导致整个搅拌系统损坏。

上述结构的直筒形轴套16虽然能够在轴向对搅拌臂11起到相应的定位作用，防止搅拌臂11在受力不均匀情况下，在轴向方向上的窜动。但却不能防止搅拌臂11径向的窜动。由于搅拌臂11与下输出轴12之间通过键相连接，其配合面之间不可避免地会存在相应的间隙，相应间隙的存在为搅拌臂11在径向窜动提供了可能，在受到径向作用力时，搅拌臂11就会产生径向的窜动，从而导致混凝土搅拌系统受损；另外，径向的窜动还会造成混凝土搅拌机的不稳定，产生噪音。在其他机械设备中也存在上述问题。

因此，如何同时防止相应部件在轴向和径向上的窜动，是当前的一个技术难题。

发明内容

针对上述技术问题，本实用新型的目的在于，提供一种轴套，以能够同时防止相应部件在轴向和径向的窜动。另外本实用新型还提供了一种能够保持相应部件与轴套配合面作用力的轴套，从而保证轴套与相应部件配合的稳定性。

在提供上述轴套的基础上，还提供了一种带有该轴套的搅拌机传动装置和带有该传动装置的混凝土搅拌机。

本实用新型提供的轴套包括第一端面、第二端面、内孔和外壁面，所述的内孔能够与轴颈相配合，所述的第一端面外径大于第二端面的外径，所述轴套的外壁面为锥形曲面。

优选地，所述的锥形曲面为圆锥曲面；所述轴套上设有开口，所述的开口贯通轴套外壁面、内孔壁面、第一端面和第二端面。

优选地，所述的开口走向与轴套轴线平行。

优选地，所述开口的间隙为2-3mm。

优选地，所述的锥形曲面为圆锥曲面；所述圆锥曲面与一个参照平面的两个交线之间的夹角为10-15度，所述的参照平面通过圆锥曲面中心线。

优选地，所述的锥形曲面为圆锥曲面；所述轴套上设有开口，所述的开口走向与轴套轴线平行，间隙为2-3mm，且贯通轴套外壁面、内孔壁面、第
一端面和第二端面；所述圆锥曲面与一个参照平面的两个交线之间的夹角为10-15度，所述的参照平面通过圆锥曲面中心线。

本实用新型提供的搅拌机传动装置，包括上减速机、下减速机，搅拌臂；所述下减速机包括下减速机壳体、太阳轮、行星轮和下输出轴；所述的上减速机的输出轴输出端与上减速机壳体固定，所述太阳轮与上减速机相对固定，所述下输出轴安装在下减速机壳体上；所述行星轮安装在下输出轴上，且与太阳轮相啮合；所述的搅拌臂设有安装孔，所述安装孔与下输出轴相配合；所述下输出轴设有轴肩；所述搅拌臂与轴肩之间设有与下输出轴配合的轴套，其特征在于，所述的搅拌臂包容孔靠近轴肩一端设有定位环槽，所述的轴套为上述的轴套，所述轴套的外壁面与定位环槽的内侧面相配合。

优选地，所述安装孔与下输出轴相配合，具体是，所述安装孔的内花键与下输出轴上的外花键相配合。

本实用新型提供的混凝土搅拌机，包括搅拌简、动力源和的传动装置，其特征在于，所述传动装置为上述的搅拌机传动装置。

与现有技术相比，本实用新型提供的轴套外壁面为锥形曲面，该锥形曲面与相应部件的定位环槽的内侧面相配合，其配合面的法线与轴套轴线存在相应的夹角，配合面之间的作用力能够分解成在轴向和径向两个方向的作用力，能够同时在轴向和径向对相应部件进行定位，防止相应部件在轴向和径向的窜动。

在进一步的技术方案中，所述轴套上设有内外贯通的开口，在安装相应部件时，相应部件与轴套之间和预紧力能够使轴套产生相应的弹性变形，弹性变形能够补偿配合面的径向和轴向的间隙，保证轴套轴向和径向定位的可靠性。

由于轴套具备上述的技术效果，带有该轴套的搅拌机传动装置也具备相应的技术效果；同样，带有该传动装置的混凝土搅拌机也具备相应的技术效果。

附图说明

图 1 是现有技术中搅拌机传动装置结构示意图；
图 2 是图 1 中 I—I 部分放大图；
图 3 是搅拌机传动装置原理示意图；
图 4 是实施例一提供的搅拌机传动装置结构示意图；
图 5 是图 4 中 II—II 部分放大图；
图 6 是实施例一中轴套剖视结构示意图；
图 7 是图 6 中 A 向视图；
图 8-1 是另一种轴套的结构示意图；
图 8-2 是再一种轴套的结构示意图。

具体实施方式

下面结合附图对本实用新型的内容进行详细描述，本部分的描述仅是示范性和解释性，不应对本实用新型的保护范围有任何限制作用。

以下对搅拌机传动装置进行详细描述，同时对轴套的结构进行描述，为了描述的简洁，不再对轴套的结构进行单独描述。

实施例一提供了一种混凝土搅拌机传动装置，参考图 3 的原理示意图，结合图 4 和图 5，该传动装置包括上减速机 2、下减速机，搅拌臂 11，图 3 中还示出电机 1；所述下减速机包括下减速机壳体 9、太阳轮 10、行星轮 13 和下输出轴 12；所述太阳轮 10 与上减速机 2 相对固定，所述行星轮 13 固定在下输出轴 12 上，且与太阳轮 10 的轮齿相啮合，所述下输出轴 12 通过轴承可旋转地安装在下减速机壳体 9 上，本例中，为了组装的方便，所述下减速机壳体 9 包括盖体 91，盖体 91 上设有输出孔，所述下输出轴 12 穿过输出孔向下伸出；所述的搅拌臂 11 设有安装孔 12-2，所述安装孔 12-2 设有内花键，下输出轴 12 伸出部分设有外花键，所述搅拌臂 11 通过内花键与外花键的配合与下输出轴 12 相连。所述下输出轴 12 为阶梯轴，阶梯过渡时有轴肩 12-1。所述的搅拌臂 11 安装孔 12-2 上端，即靠近轴肩 12-1 的一端设有定位环槽 11-1。所述搅拌臂 11 与轴肩 12-1 之间设有轴套 16。搅拌臂 11 通过压板 17 和螺母 18 拧紧固定，螺母 18 产生相应的轴向作用力，使搅拌臂 11 将轴套 16 压在轴肩 12-1 上，使搅拌臂 11 固定在下输出轴 12 上。

如图 6 所示，所述轴套 16 包括第一端面 16-1、第二端面 16-2、内孔 16-3 和外壁面 16-4，截面为梯形，内孔 16-3 与下输出轴 12 的轴颈相配合，第一端面 16-1 外径大于第二端面 16-2 的外径，轴套 16 的外壁面 16-4 为圆锥曲面，
第一端面 16-1 与轴肩 12-1 相接触, 从而轴肩 12-1 能够阻止轴套 16 沿轴向上滑动, 外壁面 16-4 与定位环槽 11-1 的内侧面相配合; 所述第二端面 16-2 与定位环槽 11-1 底面之间有预定的间隙, 即与定位环槽 11-1 的内侧面内边沿之间有预定的间隙, 以避免搅拌臂 11 与轴套 16 之间的过定位。

由于轴套 16 轴线与搅拌臂 11 之间配合面的法线方向有一定的斜度, 搅拌臂 11 与轴套 16 之间的作用力可以分解成轴向和径向两个方向的作用力, 能够同时在轴向和径向对搅拌臂 11 进行定位, 防止搅拌臂 11 在轴向和径向的窜动, 增加搅拌臂 11 固定的稳定性。另外, 还可以减弱因搅拌臂 11 窜动而产生的噪音, 改善混凝土搅拌机的使用舒适性。根据混凝土搅拌机搅拌臂 11 的受力特点, 实施例中, 优选的技术方案是, 圆锥曲面与参照平面两个交线之间的夹角为 10-15 度, 所述参照平面通过轴套内孔的中心线; 当圆锥曲面的锥度为 10-15 度时, 能够更好地同时对搅拌臂 11 进行轴向和径向定位。所述第二端面 16-2 与定位环槽 11-1 底面之间有预定的间隙, 避免搅拌臂 11 与轴套 16 之间的过定位, 保证轴套 16 外壁面 16-4 与定位环槽 11-1 内侧面的配合。本领域技术人员可以理解, 上述轴套 16 的外壁面不限于为圆锥曲面; 只要是配合面的法线与下输出轴 12 的轴线有相应倾斜度, 就可以同时在轴向和径向对搅拌臂 11 进行定位, 因此, 其外壁面也可以是其他具体形状的锥形结构。

本领域技术人员可以理解, 在安装搅拌臂 11 后, 轴套 16 与搅拌臂 11 和轴肩 12-1 的配合关系可能会因振动而改变, 存在不稳定因素, 使轴套 16 与搅拌臂 11 之间配合间隙过大。如图 7 所示, 实施例中, 在轴套 16 上设有开口 16-5, 优选的技术方案是开口 16-5 开口走向与轴套 16 轴线平行, 开口 16-5 间隙优选 2-3mm, 开口 16-5 能够为轴套 16 变形提供相应的空间; 在安装搅拌臂 11 时, 在预紧力作用下, 使轴套 16 产生一定的弹性变形; 在安装后, 即使轴套 16 与搅拌臂 11 之间配合关系发生相应变化, 轴套 16 产生的弹力也可以补偿轴向和径向间隙, 保持轴套 16 与搅拌臂 11 之间的作用力, 从而增加轴套 16 轴向和径向定位的可靠性。本领域技术人员可以理解, 开口 16-5 的不限于上述结构, 实现上述目的可以有多种具体结构; 比如说: 开口方向可以与轴线有一定的夹角, 也可以设 “Z” 形的开口, 如图 8-1 和图 8-2 所示。
本领域技术人员可以理解，环形定位槽的结构不限于上述结构，其内侧面可以是一个与安装孔内壁相交的圆锥形曲面，只要能够与轴套16外壁面相配合，就能够实现本实用新型的目的。

本实用新型提供的混凝土搅拌机包括搅拌筒、动力源和的传动装置，所述传动装置为上述的搅拌机传动装置；由于上述的搅拌机传动装置具备上述的技术效果，带有该传动装置的混凝土搅拌机也具备相应的技术效果。

以上所述仅是本实用新型的优选实施方式，应当指出，对于本技术领域的普通技术人员来说，在不脱离本实用新型描述的原理前提下，还可以做出若干改进和润饰，比如说，搅拌臂与下输出轴的连接方式不限于花键连接，也可以是平键和圆形键相连，这些改进和润饰也应视为本实用新型的保护范围。