


W. S. STAPLEY. CANISTER TOP. APPLICATION FILED JAN. 11, 1906.

WITNESSES
H. A. Samb,
Sw. atherton.

Fig. 7.

INVENTOR
William S. Stapley
BY
A. W. Wooster
ATTORNEY

UNITED STATES PATENT OFFICE.

WILLIAM S. STAPLEY, OF BRIDGEPORT, CONNECTICUT, ASSIGNOR TO THE BRIDGEPORT BRASS COMPANY, OF BRIDGEPORT, CONNECTICUT, A CORPORATION OF CONNECTICUT.

CANISTER-TOP.

No. 827,822.

Specification of Letters Patent.

Patented Aug. 7, 1906.

Application filed January 11, 1906. Serial No. 295,593.

To all whom it may concern:

Be it known that I, WILLIAM S. STAPLEY, a citizen of the United States, residing at Bridgeport, county of Fairfield, State of Con-5 necticut, have invented a new and useful Canister-Top, (Case B,) of which the follow-

ing is a specification.

This invention relates to the class of canister-tops in which a neck or nozzle and a cap adapted to rotate thereon are provided with openings which when placed in alinement permit the contents of the canister to be poured out and when placed out of alinement close the carister; and the invention has for 15 its object to provide a canister-top of this character which shall be simple and inexpensive to produce, strong and durable, and in which the cap when placed in the closed position or in either the open or closed position, 20 if preferred, will remain there until power is applied to move it to the other position, so that filled canisters may be shipped and handled freely without danger of leakage. In order to accomplish this result at a minimum cost of production and at the same time produce a canister-top that shall be neat and attractive in appearance and while easy to operate will be self-locking in the closed position or in both the open and closed positions, 3° I have devised the novel structure of which the following description, in connection with the accompanying drawings, is a specification, reference characters being used to indicate

the several parts. Figure 1 is an elevation of my novel canister-top, the cap which is shown in the open position being partly broken away; Fig. 2, an elevation from a point of view at right angles to that in Fig. 1; Fig. 3, a transverse section on the line 3 4 in Figs. 1 and 2 looking down, the cap being in the open position; Fig. 4, a similar section with the cap in the closed position; Fig. 5, a vertical section of the neck or nozzle with the cap removed, the point of 45 view being directly opposite to that in Fig. 1 and corresponding with that in Fig. 2; Fig. 6, a vertical section on the line 6 6 in Fig. 7 looking in the direction of the arrow, illustrating a variant form of the invention in which the cap is made shorter and the pour-

ing-openings are in the end of the neck and

cap instead of in the side as in the other form,

77 in Fig. 6. 10 denotes the top and 11 the neck or nozzle which is formed integral therewith from a blank of sheet metal and is provided in either

and Fig. 7 is a transverse section on the line

the top or side, as preferred, with a pouringopening 12.

13 denotes the cap, which is likewise formed from sheet metal and is provided with a corresponding pouring-opening 14, which when placed in alinement with the opening in the neck permits the contents of a canister to be 65 poured out and when moved wholly out of alinement with the opening in the neck closes the canister. In the form illustrated in Fig. 6 the inner face of the top or end of the cap fits the top or end of the neck closely. In the 70 form illustrated in Figs. 1 and 2 the cap is shown as made longer than the neck. both forms the outer end of the cap is shown as provided with a knurled circular rib 15 for convenience in rotating the cap. Below rib 75 15 in both forms is a circular rib 16, which is provided with a break or depressed portion which forms a projection or lug (indicated by 17) on the inner side of the cap—that is, filling the groove which corresponds with said rib. 80

18 denotes arc-shaped ribs on the neck, which are formed after the cap is placed in position on the neck by spinning the metal of the neck outward into the groove corresponding with rib 16 on the inner side of the cap— 85 that is to say, ribs 18 are pressed into and engage rib 16, the engagement being of course loose enough to permit the cap to be turned easily. The engagement of ribs 18 with rib 16 serves to lock the cap in place on the neck, 90 and ribs 18 also serve as stops to limit the rotation of the cap in either direction when the ends thereof are engaged by lug 17 on the cap.

In order to provide for locking the cap in the closed position or in both the open or 95 closed position, if preferred, I form locking-bosses 19 on the surface of the neck in the path of movement of lug 17. These bosses may be readily formed by striking out the metal of the neck. In use when the cap is 100 rotated lug 17 passes over the bosses, and when in the closing position or in both the open and closed positions, if preferred and as shown in the drawings, lug 17 will be seated between the boss and the end of one of the 105 the cap being shown in the closing position; arc-shaped ribs, the boss serving to lock the

cap at the extreme of its movement in either direction until power is applied to turn the cap in the opposite direction, the lug then passing over the boss again and passing over the other 5 boss, if used, to lock the cap at the other extreme of its movement. It is of course important that the cap be self-locking at the closed position, so that filled canisters provided with my novel top may be shipped and 10 handled freely without danger of the contents

handled freely without danger of the contents leaking out. For that reason I always provide a locking-boss contiguous to the rib 18, which is engaged by the lug when the cap is in the closing position—that is, when the pouring-openings in the cap and neck are out of alinement. As it is frequently considered

of alinement. As it is frequently considered desirable that the cap be self-locking in the open as well as in the closed position I have illustrated a locking-boss contiguous to each arc-shaped rib which is adapted to be engaged by the lug on the cap to lock the cap at either extreme of its movement. In the form illustrated in Figs. 1 to 5, inclusive, the arc-shaped ribs and locking-bosses are placed at the outer and of the neck and in the form

25 at the outer end of the neck, and in the form illustrated in Figs. 6 and 7 the arc-shaped ribs and locking-bosses are placed below the end of the neck, the location of the arc-shaped ribs and locking-bosses being wholly immate-

rial so far as the principle of the invention is 30 concerned. I preferably place the arcshaped ribs and locking-bosses at the end of the neck when the pouring-openings are in the side of the neck and cap and below the end of the neck when the pouring-openings 35 are in the end of the neck and cap.

Having thus described my invention, I

claim—

A canister-top comprising a neck and a cap provided with pouring-openings, said cap being provided with a circular rib with a depressed lug therein, and said neck being provided with arc-shaped ribs engaging the rib on the cap and with a locking-boss in the path of movement of the lug and contiguous 45 to one of the arc-shaped ribs, whereby the cap is retained upon the neck but is permitted to rotate and is self-locking in the closed position, through the seating of the lug between the arc-shaped rib and the lock- 50 ing-boss.

In testimony whereof I affix my signature

in presence of two witnesses.

WILLIAM S. STAPLEY.

Witnesses:
ANKER S. LYHNE,
ARTHUR H. MOORE.