METHOD OF MAKING FREE FORM WAX
DESIGNS BY CASTING WAX IN WATER

Inventor: Alfred William Waddill, 16937
Willard, Van Nuys, Calif. 91406

Filed: July 20, 1971
Appl. No.: 164,338

ABSTRACT
The method includes the steps of pouring melted wax onto the surface of a pan of cool water so that the wax solidifies in an arbitrary pattern or design. After the wax has hardened sufficiently to enable removal of the same from the pan as an integral mass, it may serve as an ornamental plaque or in accord with further steps of the method be rolled into an open ended cylindrical shape to provide a lamp shade.

3 Claims, 6 Drawing Figures
METHOD OF MAKING FREE FORM WAX DESIGNS BY CASTING WAX IN WATER

This invention relates to methods of making wax products and to the resulting products themselves.

BACKGROUND OF THE INVENTION

Decorative wax products are well known in the art. For example, candle sticks of unique design have been formed by successively dripping wax about the exterior of a base wax form and in some instances different colored waxes may be used to build up a pyramid of wax. Other wax products have been made in various types of molds but in these latter methods, the resulting products formed from any one mold are all substantially identical.

BRIEF DESCRIPTION OF THE PRESENT INVENTION

While it is known to provide free form wax products such as by dripping wax onto a base structure, full advantage has not been taken of the properties of wax in the formation of arbitrary and unique wax patterns and designs.

The present invention contemplates a novel method of making free form wax designs wherein each resulting product is unique unto itself. Briefly, the method includes the steps of filling a shallow pan having a perimeter following a desired contour with cool water. A given quantity of wax sufficient to cover the area of the surface of the water to a given thickness is melted and poured onto the surface of the water by sweeping motions over the surface following a desired path until the entire surface of the water is covered. After the wax has solidified, it is removed from the pan as an integral mass of wax. The resulting product can be used as a plaque the front surface exhibiting a design in relief which is wholly arbitrary although it may be determined to some extent by the sweeping path followed while pouring the wax into the pan.

In accord with further steps of the method, the integral mass of wax after removal from the pan and before it has hardened completely may be molded about a cylindrical form and the edges sealed together to form an open ended cylinder of wax. This cylinder may be used as a lamp shade.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the method and resulting products of this invention will be had by now referring to the accompanying drawings in which:

FIG. 1 is an exploded view illustrating one product which may be formed in accordance with the method of the present invention;
FIG. 2 is a side elevational view of the components of FIG. 1 in assembled relationship;
FIG. 3 illustrates a plaque which may be formed in accord with the method of this invention;
FIG. 4 illustrates certain steps in performing the method of the invention;
FIG. 5 illustrates an additional step in accord with a method for forming one type of product; and
FIG. 6 shows a final step in the forming of the product in accord with the step of FIG. 5.

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, there is illustrated by way of example a physical product which may be formed in accord with the method of this invention. As shown, this product is in the form of a lamp including a stand 10 for supporting a source of light which may comprise a candle holder 11 and candle 12. An open ended cylinder comprised entirely of wax is illustrated at 13 and is arranged to be positioned on the stand to surround the light source or handle. The exterior surface includes a design in relief as shown at 14 which may be entirely arbitrary.

FIG. 2 illustrates the open ended wax cylinder 13 in position on the stand 10 to surround the light source. The wax material is semitransparent so that the exterior relief portions will be illuminated by the light source. The wax may be multi-colored to enhance the ornamental appearance.

FIG. 3 shows another product in the form of a plaque 15 made entirely of wax and having on its front surface an arbitrary design in relief as indicated at 16. The wax forming the plaque may be multi-colored and also semitransparent so that a light source positioned behind the plaque will illuminate the design in relief.

Referring now to FIG. 4 the method involved in forming the products shown in FIG. 1, 2 and 3 will be described. As shown, there is initially provided a shallow pan 17 having a perimeter following a desired contour. In the example chosen, this perimeter constitutes a rectangle. The pan 17 is filled with cool water 18. A given quantity of wax is melted and this wax may be divided into separate containers 19, 20 and 21, each container having a different colored wax.

The melted wax is poured onto the surface of the water as indicated by the arrows while at the same time executing manual sweeping motions of the container over the surface. These sweeping motions may follow a desired path such as circular or back and forth motions. The pouring from the different containers may take place alternately to result in a mixing of the various colored waxes.

The pouring of the wax is continued until the entire surface of the water is covered and the pan 17 is filled to a desired thickness of the wax. The wax itself is almost immediately solidified upon striking the cool water. However, depending upon the height from which the pouring takes place and the viscosity of the wax, it will penetrate the surface of the water as it strikes the surface to a certain depth and at a certain angle and will almost immediately solidify into an arbitrary shape. The wax itself will float in a solidified condition so that the upper surface of the wax after the entire area of the water is covered will be relatively smooth.

The wax is permitted to remain in the pan 17 until it has solidified to the extent that it can be removed from the pan as an integral mass of wax. Thus in the particular product illustrated in FIG. 3, the same could be formed by the process steps described thus far, the resulting plaque 15 constituting the integral mass of wax removed from the water. The front design in relief 16 would constitute the underside of the wax removed from the pan.

Typically dimensions might be 11 inches by 14 inches with a thickness of from ¼ to 1 inch. The resulting rectangular mass or plaque is semi-transparent so that if a source of light is placed behind the plaque, the multi-colored relief designs 16 will be illuminated and provide an attractive display.
In order to form the product described in FIGS. 1 and 2, additional steps of the method are performed after the integral mass of wax has been removed from the pan. Thus, as shown in FIG. 5 the integral mass of wax is wrapped about a cylindrical form. The circumference of the cylindrical form corresponds substantially to the long dimension of the rectangular shape for the pan so that the end edges of the integral mass of wax will be juxtaposed after being completely wrapped about the form.

Referring to FIG. 6, this juxtaposed position of the edges is shown at 24. In accord with the last step of the method a hot iron or other heat source may be moved along the juxtaposed edges to seal the same thereby providing the open ended cylinder of wax such as shown at 13 in FIGS. 1 and 2.

The thickness of this open ended cylinder may be controlled by the amount of wax poured into the pan and again may vary between one fourth to one inch although other thicknesses are possible. In the case of forming an open ended cylinder to be used as a lamp shade such as described in FIGS. 1 and 2, it is desirable to limit the thickness to the extent that the wax is sufficiently transparent to radiate some light from the source within the cylinder.

Since it is substantially impossible to pour the wax onto the surface of the water in the pan in an identical manner each time a product is to be made, each product is necessarily unique in relief design so that any purchaser of such product formed in accord with the method of this invention will be assured of having something entirely unique.

While only two specific types of products such as lamp shades and plaques have been described herein, it will evident that the method set forth can be utilized to make up many different types of free form wax products. Thus while the perimeter of the pan in FIG. 4 has been shown as rectangular, it could be circular or any other arbitrary shape for the formation of different types of plaques having corresponding contours. The invention accordingly is not to be though of as limited to the specific embodiment set forth merely for illustrative purposes.

What is claimed is:
1. A method of making free form wax designs comprising the steps of: filling a shallow pan having a perimeter following a desired contour with cool water; melting a given quantity of wax sufficient to cover the area of the surface of the water in said pan to a given thickness; pouring the melted wax onto the surface of said water after the water is stationary by sweeping motions over the surface of the water following a desired path until the entire surface of the water is covered to said desired thickness, the pouring being done from a desired height above the water so that the wax penetrates the surface of the water as it strikes the surface and waiting until said wax at least solidifies to the extent that it can be removed from said pan as an integral mass of wax, the contour of said mass following that of the pan and the undersurface of the wax exhibiting a design in relief determined to a given extent by the sweeping path followed while pouring said wax into said pan and by the height above the water that the wax is poured.
2. The method of claim 1, in which said given quantity of wax is divided into separate containers and is colored different colors so that pouring of the wax onto the surface of the water can be done from alternate containers to provide a multi-colored integral mass of wax.
3. The method of claim 1, in which said mass of wax is permitted to solidify completely after removal from said pan to provide a semitransparent plaque.

* * * *