PROCESS FOR THE PRODUCTION OF MOLDINGS BASED ON POLYURETHANES

Filed: Jun. 27, 1980

Foreign Application Priority Data

Int. Cl. C08G 18/32; C08G 18/54; C08G 18/08

U.S. Cl. 525/504; 528/44; 528/76; 528/77; 528/78; 528/79; 528/902

Field of Search 528/44; 528/44; 76-79; 528/902; 525/504

References Cited
U.S. PATENT DOCUMENTS
2,929,800 3/1960 Hill .. 260/77.5
3,192,185 6/1965 Achterhof et al. 260/75
3,310,533 3/1967 McElroy 260/77.5
3,966,662 6/1976 Ołotowski 260/30.6
4,145,515 3/1979 Pogorzelski et al. 528/77

FOREIGN PATENT DOCUMENTS
1071457 6/1967 United Kingdom
1150508 4/1969 United Kingdom

Primary Examiner—H. S. Cockeram
Attorney, Agent, or Firm—Gene Harsh; Joseph C. Gil

The instant invention is directed to a process for the production of moldings based on polyurethanes comprising reacting organic polyhydroxy compounds with organic polyisocyanates in quantitative ratios corresponding to an NCO/OH equivalent ratio of from 0.8:1 to 1.2:1, wherein said polyhydroxy compounds are selected from the group consisting of:
(a) alkoxylation products of ammonia containing 3 hydroxyl groups and having a molecular weight of at least 149 and a hydroxyl group content of at least 12% by weight,
(b) alkoxylation products of aromatic polyamines containing at least 4 hydroxy groups and having a molecular weight of at least 284 and a hydroxyl group content of at least 12% by weight,
(c) phenol/formaldehyde condensates containing at least 3 phenolic hydroxyl groups and having a phenolic hydroxyl group content of at least 12% by weight,
(d) mixtures of (a), (b), and (c), and
(e) mixtures containing at least 25% by weight of at least one of the polyhydroxy compounds mentioned in (a), (b), and (c) with other polyhydroxy compounds optionally containing ether or ester groups and having a molecular weight in the range from 62 to 3000, said mixture having a mean OH functionality of at least 2.7 and a hydroxyl group content of at least 12% by weight, wherein said reaction is conducted at a temperature from 0°C to 100°C to form a solid, powderable and fusible reaction product which contains free isocyanate and hydroxyl groups, but which will not react further in said temperature range.
PROCESS FOR THE PRODUCTION OF MOLDINGS BASED ON POLYURETHANES

BACKGROUND OF THE INVENTION

This invention relates to a process for the production of moldings based on polyurethanes by reacting organic polyisocyanates with selected polyhydroxy compounds to form an intermediate product containing free isocyanate and hydroxy groups which is present in the "B-stage," i.e., an intermediate product which is stable in storage at temperatures below 100° C., more particularly at temperatures below 40° C., solid and capable of being powdered and melted, and subsequently hardening this intermediate product, accompanied or followed by forming a molding.

Solid polyurethanes in the so-called "B-stage," i.e., partial reaction products of organic polyisocyanates and polyhydroxy compounds, which still contain free isocyanate and hydroxy groups at room temperature, but which nevertheless, are stable in storage at room temperature or moderately elevated temperature and can only be hardened by the action of heat, have not been known before. On the other hand, intermediate-stage mixtures such as these would represent interesting one-component systems which could be stored at room temperature and hardened at any time by the action of heat.

It has now surprisingly been found that combinations of organic polyisocyanates of the type known from polyurethane chemistry can be reacted with selected polyhydroxy compounds described in detail hereinafter to form intermediate stages which are stable in storage at from 0° to 40° C., particularly at room temperature, and which still contain free isocyanate and hydroxy groups, and hence, are capable of being cross-linked under the effect of heat.

DESCRIPTION OF THE INVENTION

The present invention also relates to a process for the production of moldings based on polyurethanes comprising reacting organic polyhydroxy compounds with organic polyisocyanates in quantitative ratios corresponding to an NCO/OH equivalent ratio of from 0.8:1 to 1.2:1. The polyhydroxy compounds are selected from the group consisting of:

(a) alkoxylolation products of ammonia containing 3 hydroxy groups and having a molecular weight of at least 149 and a hydroxy group content of at least 12% by weight,
(b) alkoxylolation products of aromatic polyamines containing at least 4 hydroxy groups and having a molecular weight of at least 284 and a hydroxy group content of at least 12% by weight,
(c) phenol/formaldehyde condensates containing at least 3 phenolic hydroxy groups and having a phenolic hydroxy group content of at least 12% by weight,
(d) mixtures of (a), (b), and (c), and
(e) mixtures containing at least 25% by weight of at least one of the polyhydroxy compounds mentioned in (a), (b), and (c) with other polyhydroxy compounds optionally containing ether or ester groups and having a molecular weight in the range of from 62 to 3000, said mixture having a mean OH functionality of at least 2.7 and a hydroxy group content of at least 12% by weight, wherein said reaction is conducted at a temperature from 100° to 250° C. and said reaction is terminated just before gelation of the reaction mixture, which is liquid at temperatures in this range, by cooling to a temperature below 100° C., and wherein said reaction mixture is powderable and fusible and contains free isocyanate and hydroxy groups and which is solid below 100° C.

The polyhydroxy compounds used in the present invention are described in (a) through (e) below.

(a) They may be alkoxylolation products of ammonia having a molecular weight in the range of from 149 to 420, a hydroxy functionality of 3 and a hydroxy group content of at least 12% by weight. Alkoxylolation products of ammonia free from ether groups such as triethanolamine, tripropylamine, particularly triisopropylamine, or trisubstituted amine are preferred. Corresponding trialkanolamines with different hydroxyalkyl radicals, of the type obtainable, for example, by alkoxylolation mono- or dialkanolamines with alkylene oxides (such as ethylene oxide or propylene oxide) may also be used. The alkylene oxide used for the alkoxylolation reaction should differ from the hydroxyalkyl radical of the hydroxyalkyl amine to be alkoxylated as to its carbon chain.

(b) The polyhydroxy compounds may be alkoxylolation products of aromatic diamines containing at least 4 hydroxy groups and having a molecular weight in the range of from 284 to 570 and a hydroxy group content of at least 12% by weight. Compounds in which the hydroxyalkyl radicals contain at most 1 ether group on a statistical average and particularly compounds in which the hydroxyalkyl radicals are free from ether groups are preferred. These compounds may be obtained by the alkoxylolation, particularly with ethylene oxide and/or propylene oxide, of aromatic polyanimes such as 1,4-diaminobenzene, 2,4-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminodiphenyl methane, 2,4'-diaminodiphenyl methane, or polyamine mixtures of the diphenyl methane series formed by condensing aniline with formaldehyde.

(c) The polyhydroxy compounds may be phenol/formaldehyde condensates, or "novolaks," which have a hydroxy functionality of at least 3, and a hydroxy group content of at least 12, generally from around 15 to 17% by weight. It is preferred that they have a softening point of from about 75° to 150° C., preferably from 75° to 100° C., and a viscosity in a 30% solution in cresol/xylene (1:1) of from about 100 to 1000, preferably from 250 to 500 mPAs. Phenol/formaldehyde condensates such as these containing phenolic hydroxy groups may be obtained, for example, in accordance with Kunststoff-Handbuch, Vol. X, "Duroplaste" by Vieweg/Becker, Carl-Hanser-Verlag, Munich, 1968, pages 30 and 47/48, of Methoden der Organischem Chemie, Makomlekulare Stoffe, Part 2, Houben-Weyl, Vol XIV/2, pages 272-273, Georg Thieme Verlag, Stuttgart.

(d) Mixtures of the above-described polyhydroxy compounds may also be used.

(e) It is also possible to use mixtures of organic polyhydroxy compounds which contain at least 25% by weight, preferably at least 50% by weight of at least one of the polyhydroxy compounds mentioned in (a) to (c) and which, in addition to these polyhydroxy compounds essential to the present invention, contain hydroxy compounds optionally containing ether or ester groups and having a molecular weight of from 62 to 3000, which are different from the polyhy-
droxyl compounds mentioned in (a) to (c). The mixtures should also have a mean hydroxyl functionality of at least 2.7 and a hydroxyl group content of at least 12% by weight.

Any known aliphatic, cycloaliphatic, araliphatic or aromatic polysiocyanates may be used in the process according to the present invention, such as tetramethylene disiocyanate, hexamethylene disiocyanate, dodeca-

methylene disiocyanate, cyclohexane-1,3- and 1,4-
disocyanate and mixtures of these isomers, 1-isocya-
nate-3,3,5-trimethyl-5-isocyanatomethyl cyclohexane,

1,3- and 1,4-phenylene disiocyanate, 2,4- and 2,6-tol
ylene disiocyanate and mixtures of these isomers, 2,4-
and 2,5-hexahydropyrene disiocyanate and mixtures of these isomers, diphenylmethane-4,4'-disiocyanate,
naphthylene-1,5-diisocyanate, triphenylmethane-4,4',4'-
trisioocyanate, polyphenylpolyethylene-polysio-
cyanates of the type obtained by condensing aniline with formaldehyde, followed by phosgenation, polysiocyanates containing carbodiimide-isocyanate adducts (German Pat. No. 1,092,007), disiocyanates of the type described in U.S. Pat. No. 3,492,330, polysiocyanates contain-
ing aliphatic groups (British Pat. No. 994,890, Belgian Pat. No. 761,626 and unpublished Dutch patent application No. 7,102,524), polysiocyanates containing isocyanurate groups (German Pat. Nos. 1,022,789 and 1,027,394 and German Offenlegungsschriften Nos. 1,929,034 and 2,004,048), polysiocyanates containing biuret groups (German Pat. No. 1,101,394, British Pat. No. 889,050 and French Pat. No. 7,017,514), polysiocyanates produced by telomerization reactions (Belgian Pat. No. 723,640) and polysiocyanates containing ester groups (British Pat. Nos. 956,474 and 1,072,956). Al-

phatic, cycloaliphatic, araliphatic or aromatic polysio-
cyanates of the type described by W. Sieff in Justus Liebig's Annalen der Chemie, 562, pages 75 to 136 may be used. Reaction products of the above-mentioned isocyanates with acetics (German Pat. No. 1,072,385) and isocyanates of the type described in German Pat. Nos. 1,022,789 and 1,027,394 may also be used. It is also possible to use mixtures of the above-mentioned poly-
isocyanates.

The preferred organic polysiocyanates are polysio-
cyanates of the diphenylmethane series which are liquid at room temperature, i.e., the phosgenation product of aniline/formaldehyde condensates, liquid mixtures of 2,4- and 4,4'-disocyanatodiphenylmethane; 4,4'-disocyanatostyrene and 1-isocyanato 3,3,5-
trimethyl-5-isocyanatomethyl cyclohexane (isophorone disiocyanate) liquefied by converting some of the isocy-
nate anlages into carbodiimide or urethane groups.

Auxiliaries and additives suitable for use in the present invention are, for example, drying agents (such as zeolite powder, orthophoric acid triethy1 ester), fillers (such as quartz powder, chalk or aluminum oxides), pigments (such as titanium dioxide and iron oxide), organic pigments (such as phthalocyanine pigments), plasticizers (such as dioctyl phthalate, dibutyl phthalate or triphenyl phosphate) or soluble organic dyes.

To carry out the process according to the present invention, the polysiocyanates and the polyhydroxy compounds are mixed with one another in quantities which correspond to an NCO:OH equivalent ratio of from 0.8:1 to 1.2:1, more particularly of the order of 1:1. The auxiliaries and additives exemplified may be added either to the mixture or the above-mentioned starting materials.

After the reactants have been mixed, the reaction mixture is further treated by one of the two methods described below.

(a) The reaction mixture is stored at a temperature in the range of from 0° to 100° C., preferably at a tempera-
ture in the range of from 0° to 40° C. Partial reaction of the isocyanate groups with the hydroxyl groups results in the formation of a reaction product which is solid at temperatures in the above-mentioned range and which contains isocyanate hydroxyl groups de-
tectable, for example, by IR-spectroscopy, but which nevertheless, has not hardened completely on ac-
count of the solid aggregate state of the product, i.e., it is still stable in storage at temperatures in the above-
mentioned range. The mixture thus formed is brittle and may readily be reduced to a powder. In many cases, it is soluble in conventional solvents such as methy1ethyl ketone, methy1isobutyl ketone, acetic acid ethyl ester or mixtures of these polar solvents with aromatic hydrocarbons. On heating to between 100° and 250° C., preferably between 120° and 180° C., the systems present in the so-called "B-stage" melt before finally hardening through reaction of the free isocyanate and hydroxyl groups still present in them.

(b) The reaction mixtures are reacted by heating to between 100° and 250° C., preferably between 160° and 200° C., optionally after intermediate storage at from 0° to 100° C. The reaction is terminated shortly before gelation of the reaction mixture, which is liq-
uid at temperatures in this range, by cooling to below 100° C. and preferably to below 40° C. This results in the formation of intermediate stages which are also in the "B-stage" and which have the properties men-
tioned in (a) above.

The temperature to be selected from the above-men-
tioned temperature ranges for method (a) is determined by the type of starting materials used and may be reli-
bly determined by a brief preliminary test. The same also applies in regard to the temperatures used for method (b) and in regard to the time at which the reaction has to be terminated by freezing. Method (b) is recommended in particular where starting mixtures solid at temperatures in the range from 0° to 100° C. are used. Where starting mixtures which are liquid at temperatures in the range of from 0° to 100° C. are used, both methods may be applied.

The systems obtained by methods (a) or (b) are stor-
able at room temperature and may be processed at any time after their production to form cross-linked, insu-
fible moldings. To this end, the "B-stage" systems may, for example, be powdered, optionally provided with further auxiliaries and additives of the type already mentioned or with catalysts for the isocyanate addition reaction and hardened after or during forming, for ex-
ample, in molds, at a temperature in the range of from 100° to 250° C., preferably at a temperature in the range of from 120° to 180° C. When the "B-stage" systems are heated to this hardening temperature, the intermediate products melt before their final cross-linking to form readily formable melts. Hardening of the "B-stage" intermediate products after or during forming may even be carried out in the presence of solvents of the type exemplified by dissolving the intermediate products in such a solvent, forming the resulting solution and then hardening it at a temperature in the above-mentioned range, followed or accompanied by removal of the solvent by distillation.
4,311,815

The process according to the present invention is especially suitable for the production of moldings, particularly for the electrical industry (such as insulators, switch components, coverings for electronic components, transformers, transducers and the like) or as binders for heat-cross-linkable powder lacquers or solvent-containing lacquers for the production of coatings of any type. The starting materials used in the process according to the present invention may even be directly processed to form moldings of the type exemplified, i.e., without the isolation of the "B-stage" intermediate product essential to the present invention. In this case, the particularly high compatibility of the polyhydroxyl compounds used in accordance with the present invention with the polyisocyanates is particularly advantageous.

The percentages quoted in the following Examples represent percent by weight, unless otherwise indicated.

EXAMPLE 1

100 parts by weight of trisopropanolamine are mixed with 10 parts by weight of a paste of 50% zeolite powder and 50% castor oil. The resulting mixture is heated to 120°C and then degassed for 30 minutes with stirring under a vacuum of 1 mbar. After cooling to room temperature, 290 parts by weight of quartz powder (mean grain size 0.4 mm) are added to the polyl. The mixture thus obtained is finally mixed at room temperature with 190 parts by weight of isophorone diisocyanate (NCO/OH equivalent ratio = 1:0.9). The mixture thus obtained, which is liquid at room temperature, is stored for 8 days. During this period, the reaction mixture thickens and solidifies. The solidified reaction mixture still contains isocyanate and hydroxyl groups which are detectable by IR-spectroscopy. The hardened material is ground in a double-runner disc mill to form a powder having a particle diameter of approximately 0.5 mm which is then introduced into a mold treated with a release agent. Under a pressure of approximately 40 kPa/cm² and at a temperature of 160°C, the powder melts once again and coalesces to form a homogeneous, bubble-free plate, on which the following values were determined after tempering for 16 hours at 160°C.

<table>
<thead>
<tr>
<th>Flexural strength (DIN 53452)</th>
<th>MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact strength (DIN 53453)</td>
<td>kJ/m²</td>
</tr>
<tr>
<td>Martens temperature (DIN 53462)</td>
<td>°C</td>
</tr>
</tbody>
</table>

(b) 4 parts by weight of the powder are mixed with 100 parts by weight of a quartz sand having a particle diameter of 1 mm. In addition, 1 part by weight of a solid amine accelerator (N,N,N',N'-tetramethyl-4,4'-diaminodiphenylmethane) is added. The gel time of this mixture is determined on a drop plate at 160°C. It amounts to 60 seconds. After 4 minutes, the solidified mass can be removed from the drop plate. The same mixture is poured into a steel mold (40x40x160 mm), which has been treated with a release agent and heated to 160°C, and compacted with a tamper. After 15 minutes, the mass has hardened completely and a test specimen having a flexural strength of 6 MPa after cooling can be removed from the mold.

(c) The powder is uniformly scattered onto a metal plate heated to 260°C. On contact with the metal, the powder melts immediately and forms a uniform, slightly foamed coating which assumes a duroplastic character after further hardening for 2 hours at 180°C.

What is claimed is:

1. A process for the production of polyurethanes which are solid, powdery and fusible and which contain free isocyanate and hydroxyl groups which will not react further below 100°C, comprising reacting organic polyhydroxyl compounds with organic polyisocyanates in quantitative ratios corresponding to an NCO/OH equivalent ratio of from 0.8:1 to 1:2.1, wherein said polyhydroxyl compounds are selected from the group consisting of:

(a) alkoxylation products of ammonia containing 3 hydroxyl groups and having a molecular weight of at least 149 and a hydroxyl group content of at least 12% by weight,

(b) alkoxylation products of aromatic polyamines containing at least 4 hydroxyl groups and having a molecular weight of at least 284 and a hydroxyl group content of at least 12% by weight,

(c) phenol/formaldehyde condensates containing at least 3 phenolic hydroxyl groups and having a phenolic hydroxyl group content of at least 12% by weight,

(d) mixtures of (a), (b), and (c), and

(e) mixtures containing at least 25% by weight of at least one of the polyhydroxyl compounds mentioned in (a), (b), and (c) with other polyhydroxyl compounds optionally containing ether or ester groups and having a molecular weight in the range of from 62 to 3000, said mixture having a mean OH functionality of at least 2.7 and a hydroxyl group content of at least 12% by weight.
wherein said reaction is conducted at a temperature from 0° to 100° C.

2. The product of the process of claim 1.

3. A process for the production of polyurethanes which are solid, powderable and fusible and which contain free isocyanate and hydroxyl groups which will not react further below 100° C., comprising reacting organic polyhydroyl compounds with organic polyisocyanates in quantitative ratios corresponding to an NCO/OH equivalent ratio of from 0.8:1 to 1.2:1, wherein said polyhydroyl compounds are selected from the group consisting of:

(a) alkoxylation products of ammonia containing 3 hydroxyl groups and having a molecular weight of at least 149 and a hydroxyl group content of at least 12% by weight,

(b) alkoxylation products of aromatic polyamines containing at least 4 hydroxyl groups and having a molecular weight of at least 284 and a hydroxyl group content of at least 12% by weight,

(c) phenol/formaldehyde condensates containing at least 3 phenolic hydroxyl groups and having a phenolic hydroxyl group content of at least 12% by weight,

(d) mixtures of (a), (b), and (c), and

(e) mixtures containing at least 25% by weight of at least one of the polyhydroyl compounds mentioned in (a), (b), and (c) with other polyhydroyl compounds optionally containing ether or ester groups and having a molecular weight in the range of from 62 to 3000, said mixture having a mean OH functionality of at least 2.7 and a hydroxyl group content of at least 12% by weight.

wherein said reaction is conducted at a temperature from 0° to 100° C., (B) heating the product of (A) in a mold after or during formation to between 100° to 250° C. until hardened optionally after powdering or dissolution in a suitable solvent optionally after admixture with further auxiliaries and additives.

6. A process for the manufacture of cross-linked, insoluble moldings comprising (A) producing polyurethanes which are solid, powderable and fusible and which contain free isocyanate and hydroxyl groups which will not react further below 100° C., by reacting organic polyhydroyl compounds with organic polyisocyanates in quantitative ratios corresponding to an NCO/OH equivalent ratio of from 0.8:1 to 1.2:1, wherein said polyhydroyl compounds are selected from the group consisting of:

(a) alkoxylation products of ammonia containing 3 hydroxyl groups and having a molecular weight of at least 149 and a hydroxyl group content of at least 12% by weight,

(b) alkoxylation products of aromatic polyamines containing at least 4 hydroxyl groups and having a molecular weight of at least 284 and a hydroxyl group content of at least 12% by weight,

(c) phenol/formaldehyde condensates containing at least 3 phenolic hydroxyl groups and having a phenolic hydroxyl group content of at least 12% by weight,

(d) mixtures of (a), (b), and (c), and

(e) mixtures containing at least 25% by weight of at least one of the polyhydroyl compounds mentioned in (a), (b), and (c) with other polyhydroyl compounds optionally containing ether or ester groups and having a molecular weight in the range of from 62 to 3000, said mixture having a mean OH functionality of at least 2.7 and a hydroxyl group content of at least 12% by weight, wherein said reaction is conducted at a temperature from 100° to 250° C. and said reaction is terminated just before gelation of the reaction mixture, which is liquid at temperatures in this range, by cooling to a temperature below 100° C.

4. The product of the process of claim 3.

5. A process for the manufacture of cross-linked, infusible moldings comprising (A) producing polyurethanes which are solid, powderable and fusible and which contain free isocyanate and hydroxyl groups which will not react further below 100° C., by reacting organic polyhydroyl compounds with organic polyisocyanates in quantitative ratios corresponding to an NCO/OH equivalent ratio of from 0.8:1 to 1.2:1 wherein said polyhydroyl compounds are selected from the group consisting of:

(a) alkoxylation products of ammonia containing 3 hydroxyl groups and having a molecular weight of at least 149 and a hydroxyl group content of at least 12% by weight,

(b) alkoxylation products of aromatic polyamines containing at least 4 hydroxyl groups and having a molecular weight of at least 284 and a hydroxyl group content of at least 12% by weight,

(c) phenol/formaldehyde condensates containing at least 3 phenolic hydroxyl groups and having a phenolic hydroxyl group content of at least 12% by weight,

(d) mixtures of (a), (b), and (c), and

(e) mixtures containing at least 25% by weight of at least one of the polyhydroyl compounds mentioned in (a), (b), and (c) with other polyhydroyl compounds optionally containing ether or ester groups and having a molecular weight in the range of from 62 to 3000, said mixture having a mean OH functionality of at least 2.7 and a hydroxyl group content of at least 12% by weight, wherein said reaction is conducted at a temperature from 100° to 250° C. and said reaction is terminated just before gelation of the reaction mixture, which is liquid at temperatures in this range, by cooling to a temperature below 100° C. (B) heating the product of (A) in a mold to between 100° to 250° C. until hardened, optionally after powdering or dissolution in a suitable solvent and optionally after admixture with further auxiliaries and additives.

* * * * *