
US 200600901 68A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2006/0090168 A1

Ogasawara et al. (43) Pub. Date: Apr. 27, 2006

(54) METHOD AND SYSTEM FOR SPEEDING UP (52) U.S. Cl. .. 719/320
MUTUAL EXCLUSION

(76) Inventors: Takeshi Ogasawara, Tokyo-to (JP);
Akira Koseki, Sagamihara-shi (JP);
Hideaki Komatsu, Yokohama-shi (JP); (57) ABSTRACT
Kiyokuni Kawachiya, Yokohama-shi
(JP); Tamiya Onodera, Ageo-shi (JP) In a multiprocessor computer system, a lock operation is

Correspondence Address: maintained with a thread using non-atomic instructions.
LIEBERMAN & BRANDSDORFER, LLC Identifiers are assigned to each thread. Flags in conjunction
802. STILL CREEK LANE with the thread identifiers are used to determine the conti
GAITHERSBURG, MD 20878 (US) nuity of the lock with a thread. However, in the event

continuity of the lock with the thread ceases, a compare
(21) Appl. No.: 10/952,142 and-swap operation is executed to reset the lock with the

same thread or another thread. Similarly, in the event there
(22) Filed: Sep. 28, 2004 has been a collision between two or more threads requesting

the lock, a compare-and-Swap operation is executed to
Publication Classification assign the lock to one of the requesting threads. Accordingly,

prolonged ownership of a lock operation by a thread is
(51) Int. Cl. encouraged to mitigate use of atomic operations in granting

G06F 9/44 (2006.01) of the lock to a non-owning thread.

12

14

Has there been
a collision?

Has lock been
reset?

: Thread waits until thread not assigned
Ownership has passed critical region

10
Lock acquired

US 2006/0090168 A1 Patent Application Publication Apr. 27, 2006 Sheet 1 of 3

Patent Application Publication Apr. 27, 2006 Sheet 2 of 3 US 2006/0090168 A1

102

104

Has lock been
reset?

106 Yes

ASsign flag

100

FIG. 2A

Patent Application Publication Apr. 27, 2006 Sheet 3 of 3 US 2006/0090168 A1

126 150

ls flag set and flag2 not
Set? Return to step (102)

132

138
Suspend thread that previously set flag

140

ls the threadid value =
the suspended thread id?

42

ls flag set and flag2 not
Set?

144
Get suspended thread to start if in critical region

146
Set value of flag = 0

148
Resume suspended thread

149

FIG. 2B

US 2006/0090 168 A1

METHOD AND SYSTEM FOR SPEEDING UP
MUTUAL EXCLUSION

BACKGROUND OF THE INVENTION

0001) 1. Technical Field
0002 This invention relates to a method and system for
assigning a lock to a thread in a multiprocessing computer
system requesting exclusive access to a shared resource.
More specifically, execution of non-atomic operations are
utilized to extend lock ownership to a thread repeatedly
requesting the lock.
0003 2. Description of the Prior Art
0004 Multiprocessor systems contain multiple proces
sors (also referred to herein as CPUs) that can execute
multiple processes or multiple threads within a single pro
cess simultaneously in a manner known as parallel comput
ing. In general, multiprocessor systems execute multiple
processes or threads faster than conventional single proces
Sor systems. Such as personal computer, that execute pro
grams sequentially. The actual performance advantage is a
function of a number of factors, including the degree to
which parts of a multithreaded process and/or multiple
distinct processes can be executed in parallel and the archi
tecture of the particular multiprocessor System. The degree
to which processes can be executed in parallel depends, in
part, on the extent to which they compete for exclusive
access to shared memory resources.
0005 Shared memory multiprocessor systems offer a
common physical memory address space that all processors
can access. Multiple processes therein, or multiple threads
within a process, can communicate through shared variables
in memory which allow the processes to read or write to the
same memory location in the computer system. Message
passing multiprocessor systems, in contrast to shared
memory systems, have a separate memory space for each
processor. They require processes to communicate through
explicit messages to each other. The architecture of shared
memory multiprocessor Systems may be classified by how
memory is physically organized. In distributed shared
memory (DSM) machines, the memory is divided into
modules physically placed near one or more processors,
typically on a processor node. Although all of the memory
modules are globally accessible, a processor can access local
memory on its node faster than remote memory on other
nodes. Because the memory access time differs based on
memory locations, such systems are also called non-uniform
memory access (NUMA) machines. In centralized shared
memory machines, the memory is physically in one location.
Centralized shared memory computers are called uniform
memory access (UMA) machines because the memory is
equidistant in time from each of the processors. Both forms
of memory organization typically use high-speed cache in
conjunction with main memory to reduce execution time.

0006. The use of NUMA architecture to increase perfor
mance is not restricted to NUMA machines. A subset of
processors in a UMA machine may share a cache. In Such an
arrangement, even though the memory is equidistant from
all processors, data can circulate among the cache-sharing
processors faster (i.e., with lower latency) than among the
other processors in the machine. Algorithms that enhance
the performance of NUMA machines can be applied to any

Apr. 27, 2006

multiprocessor System that has a Subset of processors with
lower latencies. These include not only the noted NUMA
and shared cache machines, but also machines where mul
tiple processors share a set of bus-interface logic as well as
machines with interconnects that “fan out” (typically in
hierarchical fashion) to the processors.
0007. A significant issue in the design of multiprocessor
systems is process synchronization. The degree to which
processes can be executed in parallel depends in part on the
extent to which they compete for exclusive access to shared
memory resources. For example, if two processes A and B
are executing in parallel, process B might have to wait for
process A to write a value to a buffer before process B can
access it. Otherwise, a race condition could occur, where
process B might access the buffer while process A was part
way through updating the buffer. To avoid conflicts, process
synchronization mechanisms are provided to control the
order of process execution. These mechanisms include
mutual exclusion locks, condition variables, counting Sema
phores, and reader-writer locks. A mutual exclusion lock
allows only the processor holding the lock to execute an
associated action. When a processor requests a mutual
exclusion lock, it is granted to that processor exclusively.
Other processors desiring the lock must wait until the
processor with the lock releases it. To address the buffer
scenario described above, both processes would request the
mutual exclusion lock before executing further. Whichever
process first acquires the lock, updates (in the case of
process A) or accesses (in the case of process B) the buffer.
The other processor must wait until the first processor
finishes and releases the lock. In this way, the lock guaran
tees that process B sees consistent information, even if
processors running in parallel execute processes A and B.
0008 Mutual exclusion locks are granted through the use
of atomic operations, which utilize system resources and
degrade performance. Locks may be requested for shared
and non-shared subjects alike. Depending upon the opera
tion executing on the processor, the frequency of lock
requests may vary. During an extended lock ownership,
every lock operation does not stall a processor, and instruc
tions not related to each lock can be executed without
undergoing negative impact of an operation that uses an
atomic operation to grant a lock to a requesting thread.
Accordingly, there is a need for an algorithm that improves
system performance through non-atomic operations in lim
ited circumstances.

SUMMARY OF THE INVENTION

0009. This invention comprises a method and system for
managing ownership of a lock in a multithreaded computer
system.

0010. In one aspect of the invention, a method is provided
for managing a multithreaded computer system. A determi
nation if ownership of a lock by a first thread has been
discontinued is made through a non-atomic operation. Own
ership of the lock is assigned to a thread executing a
compare-and-Swap operation if it has been determined that
ownership of the lock by the first thread has been discon
tinued.

0011. In another aspect of the invention, a computer
system is provided with a lock manager adapted to deter
mine if ownership of a lock by a first thread has been

US 2006/0090 168 A1

discontinued. The lock manager makes this determination
through a non-atomic operation. If the lock manager has
determined that ownership of the lock has been discontinued
by the first thread, ownership of the lock is assigned to a
thread executing a compare-and-Swap operation.
0012. In yet another aspect of the invention, an article is
provided having a computer-readable signal-bearing
medium. Instructions in the medium are provided for deter
mining if ownership of a lock by a first thread has been
discontinued. Determination of ownership is conducted with
a non-atomic operation. In addition, instructions in the
medium are provided for assigning ownership of the lock to
a thread executing a compare-and-swap operation if it has
been determined that ownership of the lock by the first
thread has been discontinued.

0013. Other features and advantages of this invention will
become apparent from the following detailed description of
the presently preferred embodiment of the invention, taken
in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

0014 FIG. 1 is a flow chart illustrating a process for
maintaining lock ownership with a thread according to the
preferred embodiment of this invention, and is suggested for
printing on the first page of the issued patent.
0.015 FIGS. 2a and 2b are flow charts illustrating an
alternative process for maintaining lock ownership with a
thread.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Overview

0016. In a multiprocessing computer system having
shared objects, locks are granted to threads requesting
exclusive access to one or more of the shared objects. Java
program perform many lock operations while Supporting
thread locality. To mitigate use of atomic operations asso
ciated with granting of the lock to the requesting thread,
continuity of the lock with a previously granted thread may
be maintained with non-atomic operations. Atomic opera
tions are implemented on a limited basis to either reset
ownership or to assign a lock to a requesting thread in the
event continuity of the lock with the thread is interrupted.

Technical Details

0017 FIG. 1 is a flow chart (10) illustrating a process for
efficiently managing ownership of a lock by a thread in a
multithreaded computer system. Each thread in the system is
assigned an identification number. Initially an instruction of
a thread is loaded and a first set of tests is conducted to
determine if ownership of a lock may be held by a thread for
an extended period. The following tests and instructions are
implemented with simple instructions, i.e. non-atomic
instructions, of load, compare, and store. In the first step
following loading of the instruction at step (12), a thread
identifier of the owner of the last thread to own the lock is
loaded and compared to the thread identifier associated with
the instruction at step (12) to determine if the identifiers of
the thread of the instruction matches the identifier of the last
thread to own the lock (14). A positive response to the test
at step (14) will result in setting a first flag (16) to show that

Apr. 27, 2006

ownership of the lock has been verified to belong to the last
thread to own the lock and to prevent a change in ownership
of the lock. However, since the operation at step (16) is a
non-atomic instruction, it is possible that a change in own
ership of the lock can occur between the initial verification
of ownership at step (14) and setting of the first flag at step
(16). As such, a second of test is conducted to confirm
ownership of the lock prior to maintaining ownership of the
lock with the requesting thread. A second test includes
loading the thread identifier of the owner of the last thread
to own the lock and comparing this thread identifier with the
thread identifier of the thread associated with the instruction
at step (12) to determine if the identifier of the thread of the
instruction matches the identifier of the thread owning the
lock (18). A positive response to the test at step (18) will
result in setting a second flag (20) to show that ownership of
the lock has been verified. Finally, a third test includes
loading the thread identifier of the owner of the last thread
to own the lock and comparing this thread identifier with the
thread identifier of the thread associated with the instruction
at step (12) to determine if the identifier of the thread of the
instruction continues to match the identifier of the thread
owning the lock (22). A positive response to the test at step
(22) will result in the thread queried at steps (14), (18), and
(22) acquiring the lock (24), or in this case retaining
ownership of the lock. The process outlined in steps (14)-
(22) is executed with non-atomic operations efficiently. In a
case of a high frequency of repeated lock ownership by a
specific thread owner, locality is established. However, since
these operations are implemented only with non-atomic
instructions, it is possible that the querying processor thread
may be denied ownership of the lock by another thread
acquiring ownership at any time prior to actual acquisition
of the lock by the querying thread. Accordingly, confirma
tion of ownership is performed at two subsequent steps (18)
and (22) to ensure that the lock ownership has not changed.

0018) A positive response to each of the test at steps (14),
(18), and (22) will result in the inquiring thread retaining
ownership of the lock. However, a negative response to the
test at steps (14) or (18) is an indication that lock ownership
may have changed. Similarly, a negative response to the test
at step (18) is an indication that there has been a collision
between two threads requesting the lock. If it is determined
at step (18) that there has been a collision between two
threads trying to acquire one lock, a collision flag is set (26).
Following the negative response to the test at steps (14) or
(22), or setting of the collision flag at Step (26), an initial
compare and swap operation (30) is initiated to determine if
the lock has been reset, i.e. the lock is not acquired by any
thread. The compare-and-swap operating is comprised of
two essential steps that allows a processor or thread to
automatically test and modify a memory location. The first
step in the first compare and Swap operation (30) is a test to
determine if the two flags identified at steps (16) and (20)
have been cleared (32). A positive response to the test at step
(32) will result in an atomic operation assigning the lock to
the thread executing the compare-and-Swap operation (34),
i.e. acquisition of the lock by the thread executing the
compare-and-Swap operation. Accordingly, the initial com
pare and Swap operation is executed if it is determined that
ownership of the lock has been reset, and is so assignment
of the lock to the thread executing the compare-and-Swap
operation.

US 2006/0090 168 A1

0019. If the initial compare-and-swap operation (30)
fails, this is an indication that ownership of the lock has not
been cleared. A second compare-and-Swap operation (40) is
then initiated by one of the threads to reset ownership of the
lock following a collision between two threads competing
for the same lock. The first step in the second compare-and
swap operation (40) is a test to determine if there has been
a collision between two or more threads (42), i.e. if the flag
at Step (26) has been set. A negative response to the first step
(42) will result in a return to the first compare-and-swap
operation (30). However, a positive response to the test at
step (42) will result in an atomic operation to assign the lock
to the thread executing the compare and Swap operation
(44). Following the assignment at step (44), the thread
assigned ownership of the lock in the second compare-and
swap operation (40) Waits until the thread that was not
assigned ownership of the lock has passed the critical
section (46), i.e. one or more instructions, before the thread
assigned ownership of the lock acquires the lock (24). The
implementation of the critical section is set to prevent
handing off of the lock and setting of associated flags, which
would result in another collision between threads. Accord
ingly, the second compare-and-Swap operation is used to
reset ownership of a lock to a requesting thread following a
collision between two or more threads.

0020 FIG. 2a is a flow chart (100) illustrating an alter
nate process for efficiently managing ownership of a lock by
a thread in a multithreaded computer system. Initially an
instruction of a thread is loaded (102) and a first set of tests
is conducted to determine 5 if ownership of a lock may be
held by a thread for an extended period. The following tests
and instructions are implemented with simple instructions,
i.e. non-atomic, of load, compare, and store. In the first step
following loading of the instruction at step (102), the thread
identifier of the owner of the last thread to own the lock is
loaded and compared to the thread identifier associated with
the instruction at step (102) to determine if the identifier of
the thread of the instruction matches the identifier of the last
thread to own the lock (104). A positive response to the test
at step (104) will result in setting a first flag (106) for the
lock to show that ownership of the lock has been verified to
belong to the last thread to own the lock and to prevent a
change in ownership of the lock. However, since the first
flag setting operation at Step (106) is a non-atomic instruc
tion, it is possible that a change in ownership of the lock can
occur between the initial verification of ownership at step
(104) and setting of the first flag at step (106). As such, a
second test is conducted to confirm ownership of the lock
prior to maintaining ownership of the lock with the thread
(108). The second test (108) includes loading the thread
identifier of the owner of the last thread to own the lock and
comparing this thread identifier with the thread identifier
associated with instruction at step (102) to determine if the
identifier of the thread of the instruction matches the iden
tifier of the thread owning the lock. A positive response to
the test at step (108) will result in setting a second flag (110)
for the lock to show that ownership of the lock has been
verified. The thread queried at steps (104) and (108) acquires
the lock (112), or in this case retains ownership of the lock.
When the thread retains lock ownership, both the first and
second flags of the lock are set. The process outlined in steps
(104)-(110) is executed with non-atomic operations effi
ciently with a high frequency in which owner locality is
established. However, since these operations are imple

Apr. 27, 2006

mented with non-atomic instructions, it is possible that the
querying processor thread may be denied ownership of the
lock by another thread requesting ownership of the lock
during the period between the verification of ownership at
steps (104) or (108) and setting of the respective flag for the
lock at steps (106) or (110). Accordingly, confirmation of
ownership is performed with only two queries and without
a collision flag to ensure that the lock ownership has not
changed prior to a thread acquiring the lock.
0021 A positive response to each of the tests (104) and
(108) will result in the inquiring thread retaining ownership
of the lock. However, a negative response to either the test
at step (104) or at (108) is an indication that lock ownership
may have changed. If the response to the test at step (104)
is negative, a first initial compare-and-Swap operation (120)
is initiated to determine if the lock has been reset, i.e. the
lock is not acquired by any thread. The first step in the first
compare-and-Swap operation (120) is a test to determine if
the two flags associated with thread ownership are cleared
(122). A positive response to the test at step (122) is an
indication that no thread currently owns the lock as the two
flags function as indicators of lock ownership. An atomic
modification to the memory location identifying ownership
of the lock and assigning ownership of the lock to the thread
executing the compare-and-Swap operation is conducted
(124), followed by acquisition of the lock (112) by the thread
initiating the compare-and-Swap operation (120). The pro
cess of assigning the lock to the thread includes setting a bit
in each of two flags to indicate lock ownership. However, if
the compare-and-swap operation (120) at steps (122) and
(124) fails, this is an indication that the lock as not been reset
and the process returns to step (102). Accordingly, the initial
compare-and-Swap operation is executed and Succeeds if it
is determined that ownership of the lock has been reset.
0022. If the second thread identifier comparison test at
step (108) fails, this is an indication that ownership of the
lock may have changed following the first comparison at
step (104). As shown in FIG. 2b, a test is conducted to
determine if the first flag for the lock is set, as assigned at
step (106), and the second flag for the lock is not set (126).
If 5 the response to the test at step (126) is negative, the
process proceeds to step (150) to return to step (102).
However, if the response to the test at step (126) is positive,
a second compare-and-swap operation (130) is then initiated
by one of the threads to clear the first flag and to enable the
lock to be reset. The lock can only be reset by resetting the
values in each of the two flags. The purpose of clearing the
first flag set at step (106) is to avoid a situation in which no
threads can acquire the lock because the thread owning the
lock has abandoned the efficient ownership confirmation
path shown at steps (104)-(110).
0023 The compare-and-swap operation (130) supports
the thread that originally owned the lock at step (102)
performing a spin lock to ensure that a single thread resets
the lock. The first step in the compare-and-swap operation
(130) is to determine if one of the threads is spinning on the
lock (132). A negative response to the test at step (132) will
result in a return to the first step (132) in the compare-and
swap operation (130). However, a positive response to the
test at step (132) will result in assigning the lock to the
thread that initiated the compare-and-swap operation (134)
to enable this thread to clear the flag set at step (106), i.e.
reset lock ownership. The thread assigned the lock at Step

US 2006/0090 168 A1

(134) maintains the thread identifier (136). Thereafter, the
thread holding the lock suspends the thread that had previ
ously set the first flag on the lock (138). The holding process
enables the thread holding the lock to examine which code
of the program the now suspended thread executed. A test is
then conducted to determine if the value of the thread
identifier of the thread holding the lock has changed to the
value of the identifier of the suspended thread (140). If it is
determined at step (140) that the value of the thread iden
tifier is still the same value as the identifier of the suspended
thread, a subsequent test is conducted to determine if the first
flag of the lock is set and the second flag of the lock is
cleared (142). A negative response to the test at step (142)
will result in resuming the suspended thread (148). Simi
larly, a negative response to the test at step (140) will result
in resuming the suspended thread (148). However, a positive
response to the test at Step (142) is an indication that the
Suspended thread is either performing this algorithm or was
the last thread to perform this algorithm for the target lock.
If the Suspended thread is performing this algorithm and is
executing in the critical region, the thread granted the lock
at step (134) modifies the execution context of the sus
pended thread so that the suspended thread can restart the
algorithm (144). Thereafter, the value of the first flag of the
lock is cleared (146), and the suspended thread resumes
operation (148). The thread that acquired the lock at step
(134) releases the lock (149), followed by a return (150) to
step (102). Similarly, a negative response to the test at step
(140) is followed by a release of the lock (149) by the thread
that acquired the lock at step (134), and return (150) to step
(102). Accordingly, the thread that interfered with extended
ownership of the lock at another thread is placed in a
Suspended State in order to properly reset ownership of the
lock.

Advantages Over the Prior Art

0024. The purpose of the algorithms shown herein is to
construct an efficient method for maintaining local owner
ship of a lock by a thread with simple instructions. Memory
requirements are significantly reduced compared to a fast
mutual exclusion technique. For example, the only memory
required is the two bits associated with the first and second
flags and the thread identifiers. In addition, the use of atomic
operations are kept to a minimum by encouraging the use of
non-atomic operations to maintain lock ownership. Atomic
operations are implemented in the event of a collision
between two or more threads requesting a lock, or a reset of
a lock. Accordingly, system resource are efficiently utilized
in the event of extended lock ownership by a thread.

Alternative Embodiments

0025. It will be appreciated that, although specific
embodiments of the invention have been described herein
for purposes of illustration, various modifications may be
made without departing from the spirit and scope of the
invention. In particular, other algorithms may be imple
mented to assign lock ownership to a requesting thread in the
event of a collision between two or more threads requesting
the lock or a reset of the lock by an intervening thread.
Additionally, alternative indicators may be used in place of
the multiple flags to set lock ownership. The invention may
be applied to Java programs, or any other programs Sup
porting multithreaded environments. Accordingly, the scope

Apr. 27, 2006

of protection of this invention is limited only by the follow
ing claims and their equivalents.

We claim:
1. A method for managing a multithreaded computer

system comprising:
determining through a non-atomic operation if ownership

of a lock by a first thread has been discontinued; and
assigning ownership of said lock to a thread executing a

compare-and-Swap operation in response to a determi
nation that said ownership of said lock by said first
thread has been discontinued.

2. The method of claim 1, wherein the step of determining
discontinuity of a lock operation includes comparison of
thread identifiers of said first thread with a thread identifier
of a second thread.

3. The method of claim 2, further comprising setting a first
flag in response to a positive comparison of said thread
identifiers.

4. The method of claim 3, further comprising setting a
second flag in response to confirmation of continuity of said
lock operation by said first thread.

5. The method of claim 1, further comprising detecting
collision of execution of said lock operation by two or more
threads in response to a determination of discontinuity of a
lock operation by said first thread.

6. The method of claim 5, further comprising resetting
lock ownership with a compare-and-swap operation in
response to said collision.

7. A computer system comprising:
a lock manager adapted to determine through a non

atomic operation if ownership of a lock by a first thread
has been discontinued;

said manager adapted to assign ownership of said lock to
a thread executing a compare-and-Swap operation in
response to a determination by said manager of dis
continuation of ownership of said lock by said first
thread.

8. The system of claim 7, further comprising a thread
manager adapted to compare a thread identifier of said first
thread with a thread identifier of a second thread.

9. The system of claim 8, further comprising a first flag
adapted to be set in response to a positive comparison by
said thread manager.

10. The system of claim 9, further comprising a second
flag adapted to be set in response to confirmation of conti
nuity of said lock ownership by said first thread.

11. The system of claim 7, further comprising a thread
manager adapted to detect collision of execution of a lock
operation by two or more threads in response to a determi
nation of discontinuity of a lock operation by said first
thread.

12. The system of claim 11, further comprising a com
pare-and-swap operation adapted to reset lock ownership to
a requesting thread in response to detection of a collision by
said thread manager.

13. An article comprising:
a computer-readable signal-bearing medium;

means in the medium for determining through a non
atomic operation if ownership of a lock by a first thread
has been discontinued; and

US 2006/0090 168 A1

means in the medium for assigning ownership of said lock
to a thread executing a compare-and-Swap operation in
response to a determination that said ownership of said
lock by said first thread has been discontinued.

14. The article of claim 13, wherein said medium is
selected from a group consisting of a recordable data
storage medium, and a modulated carrier signal.

15. The article of claim 13, wherein the means for
determining discontinuity of a lock operation includes com
parison of thread identifiers of said first thread with a thread
identifier of a second thread.

16. The article of claim 15, further comprising means in
the medium for setting a first flag in response to a positive
comparison of said thread identifiers.

Apr. 27, 2006

17. The article of claim 16, further comprising means in
the medium for repeating setting a second flag in response
to confirmation of continuity of said lock operation by said
first thread.

18. The article of claim 13 further comprising means in
the medium for detecting collision of execution of said lock
operation by two or more threads in response to a determi
nation of discontinuity of a lock operation by said first
thread.

19. The article of claim 18, further comprising means in
the medium for resetting lock ownership with a compare
and-swap operation in response to said collision.

k k k k k

