(发明名称)
胆固醇液晶显示器及胆固醇液晶显示器的显示方法

(摘要)
本发明公开一种胆固醇液晶显示器及胆固醇液晶显示器的显示方法。胆固醇液晶显示器包括一基板；第一电极层和第二液晶层，位于基板上；及一液晶层，位于第一电极层上。其中液晶层包含一种液晶物质，其对驱动频率敏感程度不同的至少两种液晶混合，且初始所需供给的转态温度较高的液晶，对驱动频率敏感的程度越大。
1. 一种胆固醇液晶显示器，其特征在于，包括：
 一基板；
 一第一电极层，位于该基板上；
 一液晶层，位于该第一电极层上，其中该液晶层包括对驱动频率敏感程度不同的至少两种液晶互混，且初始所需供给的转态温度越高的液晶，对驱动频率敏感的程度越大，其中，所述对驱动频率敏感是指当对液晶施加一驱动频率时，液晶转态温度受改变的范围，对驱动频率敏感程度大者，表示该液晶转态温度受驱动频率的改变范围较大。

2. 根据权利要求1所述的胆固醇液晶显示器，其特征在于，尚包括一吸光层。

3. 根据权利要求2所述的胆固醇液晶显示器，其特征在于，该吸光层的吸收波段为可见光区、紫外光区或红外光区。

4. 根据权利要求2所述的胆固醇液晶显示器，其特征在于，尚包括一第二电极层，该第二电极层为透明电极或不透光电极。

5. 根据权利要求4所述的胆固醇液晶显示器，其特征在于，该第二电极层位于该吸光层的上方或下方。

6. 根据权利要求1所述的胆固醇液晶显示器，其特征在于，该液晶层包括第一液晶和第二液晶，该第一液晶初始需要的转态温度较该第二液晶高，该第一液晶对驱动频率的敏感度较该第二液晶对驱动频率的敏感度大。

7. 根据权利要求6所述的胆固醇液晶显示器，其特征在于，该第一液晶为反射第一波长，该第二液晶为反射第二波长。

8. 根据权利要求6所述的胆固醇液晶显示器，其特征在于，该液晶层尚包括第三液晶，该第三液晶的转态温度较该第一液晶高，且该第三液晶对驱动频率的敏感程度较该第一液晶大。

9. 一种胆固醇液晶显示器的显示方法，其特征在于，包括：
 一胆固醇液晶显示器，包括第一电极层，位于该基板上；及一液晶层，位于该第一电极层上，其中该液晶层包括对驱动频率敏感程度不同的至少两种液晶互混，且初始所需供给的转态温度越高的液晶，对驱动频率敏感的程度越大，其中，所述对驱动频率敏感是指当对液晶施加一驱动频率时，液晶转态温度受改变的范围，对驱动频率敏感程度大者，表示该液晶转态温度受驱动频率的改变范围较大；及
 利用热和电驱动液晶，将液晶变成亮态或暗态，其中通过改变施加电压或驱动频率，使得不同液晶所需供给的转态温度的变化量具有差异，进而该液晶层中显示出两种以上不同的反射波长。

10. 根据权利要求9所述的胆固醇液晶显示器的显示方法，其特征在于，该液晶层包括第一液晶和第二液晶，该第一液晶初始所需要转态温度较该第二液晶高，该第一液晶对驱动频率的敏感度较该第二液晶对驱动频率的敏感度大。

11. 根据权利要求10所述的胆固醇液晶显示器的显示方法，其特征在于，包括给定一驱动条件，全面点亮该第一液晶和该第二液晶。

12. 根据权利要求10所述的胆固醇液晶显示器的显示方法，其特征在于，包括给定一驱动条件，全面点亮该第一液晶和该第二液晶。

13. 根据权利要求10所述的胆固醇液晶显示器的显示方法，其特征在于，包括施加一
温度，介于该第一液晶和该第二液晶初始所需要的转态温度之间，进而点暗该第二液晶。

14. 根据权利要求 10 所述的胆固醇液晶显示器的显示方法，其特征在于，包括施加一驱动频率，使得该第一液晶和该第二液晶的转态温度降低，且该第一液晶的转态温度变的比该第二液晶的转态温度低。

15. 根据权利要求 14 所述的胆固醇液晶显示器的显示方法，其特征在于，包括施加一温度，介于该第一液晶和该第二液晶施加该驱动频率后的转态温度之间，进而点暗该第一液晶。

16. 根据权利要求 14 所述的胆固醇液晶显示器的显示方法，其特征在于，驱动该液晶的结果会根据施加电压的大小改变。

17. 根据权利要求 14 所述的胆固醇液晶显示器的显示方法，其特征在于，驱动该液晶的结果会根据驱动频率的脉冲时间改变。
胆固醇液晶显示器及胆固醇液晶显示器的显示方法

技术领域
[0001] 本发明是有关于一种胆固醇液晶显示器，特别是有关于一种胆固醇液晶显示器及其显示方法。

背景技术
[0002] 在目前高节能的时代及趋势中，体积轻薄且省电的显示器成为目前显示器领域中的主流，而双稳态液晶显示装置更是受到瞩目，其中，胆固醇液晶显示器（cholesteric liquid crystal display,简称CHLCD）因具有高亮度、高对比、省电、记忆性、广视角、不闪烁等优点，且能在移除电场的情况下，具有持续维持亮态与暗态两种不同的状态，因此，成为目前双稳态显示器的发展重点。
[0003] 此外，胆固醇液晶在平面状態（planar state）时具有反射特定波长的特性，若反射波长位于可见光区，人眼就能感受到颜色。而目前业界较多应用为单色胆固醇液晶显示器，较少有技术开发应用多色胆固醇液晶显示器，故需要一种新穏的多色或具有多种反射波长胆固醇液晶显示器及其显示方法。
[0004] 美国专利第US 4,031,529号系揭示利用热驱动方法，外加不同频率的电场时，能够使液晶具有不同的介电系数，进而得到液晶不同的光学状态。然而，此技术并没有提及可以利用两种或以上的液晶，在不同频率的电场及驱动温度下控制不同液晶的转态，进而达到多色的效果。美国专利第US 5,223,937号提出一个喷墨写入设备，在接收到不同的影像信号频率下，以一个稳定的电流提供高品质的影像，其在不同的信号频率下，驱动的电压、温度皆会有所不同。然而，此技术并没有提及可以利用两种或以上的液晶，在不同频率的电场及驱动温度下，控制不同液晶的转态，进而达到多色或具有多种反射波长的显示效果。

发明内容
[0005] 本发明的目的在于提供一种胆固醇液晶显示器及其显示方法。
[0006] 本发明提供一种胆固醇液晶显示器，包括一基板；一第一电极层，位于基板上；一液晶层，位于第一电极层上，其中液晶层包括对驱动频率敏感度不同的至少两种液晶互混，且初始所需供给的转态温度越高的液晶，对驱动频率敏感度的成度越大。
[0007] 本发明提供一种胆固醇液晶显示器的显示方法，胆固醇液晶显示器，包括第一电极层，位于基板上；及一液晶层，位于第一电极层上，其中液晶层包括对驱动频率敏感度不同的至少两种液晶互混，且初始所需供给的转态温度越高的液晶，对驱动频率敏感度的程度越大；及利用热和电驱动液晶，将液晶变成亮态或暗态，其中通过改变施加电压或驱动频率，使得不同液晶所需供给的转态温度的变化量具有差异，进而再液晶层中显示出具有两种以上不同的反射波长。
[0008] 在本发明一实施例中，驱动液晶的结果会根据施加电压的大小或驱动频率的脉冲时间改变。
[0009] 本发明可根据以上具有不同转态温度的液晶，在热驱动下，同时施加一高频电压，
依据两种液晶对驱动频率敏感程度的差异，控制单一液晶层内各个波长反射的变化，进而达到固态液晶显示器显示多种反射波长的效果。

【0010】为让本发明的特征更明显易懂，下文特例实施例并配合所附附图，作详细说明如下：

附图说明
【0011】图1显示本发明一实施例固态液晶显示器的剖面图；
【0012】图2显示液晶的温度反射率曲线图。
【0013】【主要组件符号说明】
【0014】102～基板；
【0015】104～第一电极层；
【0016】106～液晶层；
【0017】108～吸光层；
【0018】110～第二电极层。

具体实施方式
【0019】以下详细讨论揭示实施例的实施。然而，可以理解的是，实施例提供许多可应用的发明概念，其可以较广的变化实施。所讨论的特定实施例仅用来揭示使用实施例的特定方法，而不用来限定揭示的范畴。
【0020】图1显示本揭露一实施例固态液晶显示器的剖面图。请参照图1，提供一基板102，在一实施例中，基板102为透明基板，例如玻璃或聚对苯二甲酸乙二酯（Poyethyleneterephthalate，简称PET）。接着，形成一第一电极层104于基板102上。在一实施例中，第一电极层104为透明电极层，例如为铟锡氧化物（Indium tin oxide，简称ITO）或铟锌氧化物（Indium zinc oxide，简称IZO）。后续，形成一液晶层106于第一电极层104上。在一实施例中，液晶层106包括至少两种对驱动频率敏感程度不同的液晶互混，其中初始所需供给的转态温度更高的液晶，驱动频率对其的影响越大。换言之，初始所需供给的转态温度较高的液晶，驱动频率对该液晶的影响大于初始所需供给的转态温度较低的液晶。于液晶层106上形成一吸光层108，在一实施例中，吸光层108的颜色为黑色。再者，该吸光层的吸收波段可因产品设计考量而选择是可见光区，紫外光区或红外观区。在吸光层108上形成一第二电极层110，其可为透明电极或不透光电极，且可位于吸光层上方或下方，在一实施例中，第二电极层110例如为银等具有高反射率的金属组成。虽然本实施例中吸光层108位于液晶层106上，但不限于此，吸光层108亦可位于液晶层106和基板102之间。
【0021】以下根据图2详细说明液晶层中液晶的特性。请参照图2，其显示液晶的温度反射率曲线图，包括第一液晶的温度反射率曲线，第一液晶施加高频电压后的温度反射率曲线，第二液晶的温度反射率曲线，及第二液晶施加高频电压后的温度反射率曲线。如图2所示，第一液晶一开始需要的转态温度较高，第二液晶一开始需要的转态温度较低，但第一液晶对高频电压的敏感度较大液晶高。因此，如图2所示，第一液晶在施加高频电压（例如10kHz，10V）后，所需的转态温度反而较第二液晶在施加高频电压后所需的转态温度低。本发明即可根据以上具有不同转态温度的液晶，在热驱动下，同时施加一高频电压，依据两种
液对驱动频率敏感程度的差异，控制单一液晶层内各个波长反射的变化，进而达到胆固醇液晶显示器显示多种反射波长的效果。值得注意的是，在本发明一实施例中，驱动该液晶的结果会根据施加电压的大小或驱动频率的脉冲时间而有所改变。

【实施例】

以下以第一液晶反射波长为蓝色，且其对驱动频率敏感程度大，第二液晶反射波长为红色，且相对下其对驱动频率敏感程度小，说明实施例根据以上图2的液晶特性的多色胆固醇液晶显示器的显示方法。

上述所指液晶对驱动频率敏感，是指当对液晶施加一驱动频率时，液晶转态温度受改变的范围，对驱动频率敏感程度大者，表示该液晶转态温度受驱动频率的改变范围较大。

蓝色液晶原本的转态温度为75°C，红色液晶原本的转态温度为65°C，在施加一高频电压（10kHz，10V）后，蓝色液晶的转态温度降为55°C，红色液晶的转态温度降为60°C。

本实施例即可根据以上液晶的特性，呈现多色胆固醇液晶显示器的显示方法。请参照以下表1：

<table>
<thead>
<tr>
<th>状态</th>
<th>驱动条件</th>
<th>蓝</th>
<th>红</th>
</tr>
</thead>
<tbody>
<tr>
<td>全面点亮</td>
<td>100V</td>
<td>圆</td>
<td>圆</td>
</tr>
<tr>
<td>全面点暗</td>
<td>80°C</td>
<td>圆</td>
<td>圆</td>
</tr>
<tr>
<td>红色点暗</td>
<td>70°C</td>
<td>圆</td>
<td>圆</td>
</tr>
<tr>
<td>蓝色点暗</td>
<td>10V、10kHz、55°C</td>
<td>圆</td>
<td>圆</td>
</tr>
</tbody>
</table>

[0028] 圆：亮/圆：暗

【实施例例】本实施例范例可施加100V的电压使蓝色液晶和红色液晶全面点亮。如此，两个液晶皆变为反射态（planar state），此时胆固醇液晶显示器显示为蓝色和红色混和的颜色。另外，可施加80°C的温度（即高于蓝色和红色液晶原本转态温度条件），使蓝色液晶和红色液晶全面点暗。如此，两个液晶皆变为穿透态，此时胆固醇液晶显示器显示吸光层的颜色（例如为黑色）。可施加70°C的温度（即高于红色液晶原本的转态温度，但低于蓝色液晶原本的转态温度），使得红色液晶点暗，此时胆固醇液晶显示器显示为蓝色液晶反射的颜色。可施加55°C的温度和一高频电压（例如10kHz10V），此时施加高频电压后，蓝色液晶的转态温度变的比红色液晶的转态温度低，因此，施加温度55°C可将蓝色液晶点暗，而红色液晶仍保持点亮的状态。此时胆固醇液晶显示器显示为红色液晶反射的颜色。

【实施例】根据上述，本实施例例可在单一液晶层内，通过调整施加温度和电压频率的方式，达到在单层显示层中，自由控制两种反射波长的显示。

【实施例】虽然本发明以上实施例仅揭示使用根据两种液晶的胆固醇液晶显示器及其显示方法，然而，本发明可进一步于液晶层中掺入原本的转态温度较第一液晶高，但对高频电压的敏感程度较第一液晶大的第三液晶（例如反射波长为绿色），根据具有不同转态温度的
液晶，在热驱动下，同时施加一高频电压，依三种液晶对驱动频率敏感程度的差异，控制单一液晶层内各个反射波长的变化，进而达到胆固醇液晶显示器显示多种反射波长的效果。

[0032] 虽然本发明已揭露较佳实施例如上，然其任何熟悉此项技艺者，在不脱离本发明的精神和范围内，当可做些许更动与润饰。另外，本发明不特别限定于特定说明书中描述的实施例的工艺、装置、制造方法、组成和步骤。熟悉本领域的人士可根据说明书的揭示，进一步发展出与本发明大体上具有相同功能或大体上可达成相同结果的工艺、装置、制造方法、组成和步骤。因此本发明的保护范围当视所附的权利要求书所界定的范围为准。