PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 98/59300
GOG6F 15/00 A2

(43) International Publication Date: 30 December 1998 (30.12.98)

(21) International Application Number: PCT/US98/13008 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, Fl, GB, GE,

(22) International Filing Date: 23 June 1998 (23.06.98) GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,

LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, ST, SK, SL, TJ,
(30) Priority Data: ™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent

08/881,874 23 June 1997 (23.06.97) US (GH, GM, KE, LS, , SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent

(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,

(71) Applicant: REAL-TIME GEOMETRY CORPORATION LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,

[US/US]; Suite 303, 51 JFK Parkway, Short Hills, NJ CM, GA, GN, ML, MR, NE, SN, TD, TG).

07087 (US).
(72) Inventors: MIGDAL, Alexander, A.; 84 Maclean Circle, Published

Princeton, NJ 08540 (US). AGUERA-ARCAS, Blaise; Without international search report and to be republished

Apartment 5, 39 Wiggins Street, Princeton, NJ 08540 (US). upon receipt of that report.

LEBEDEYV, Alexei; 685 Cherry Valley Road, Princeton, NJ

08540 (US).

(74) Agents: FLOCK, John et al; Kenyon & Kenyon, One
Broadway, New York, NY 10004 (US).

(54) Title: SYSTEM AND METHOD FOR COMPUTER MODELING OF 3D OBJECTS AND 2D IMAGES BY MESH CONSTRUC-
TIONS THAT INCORPORATE NON-SPATIAL DATA SUCH AS COLOR OR TEXTURE

(57) Abstract

A system and method for modeling 3D objects and 2D images by wireframe mesh constructions having data points that combine
both spatial data and surface information such as color or texture data. The use of the complex data points (e.g., X, Y, Z, R, G, B in 3D
and x, v, R, G, B in 2D) allows the modeling system to incorporate both the spatial features of the object or image as well as its color or
other surface features into the wireframe mesh. The present invention’s 3D object models (such as those created by laser scanning systems)
do not require a separate texture map file for generating display or other object manipulations. In an exemplary embodiment, the mesh
constructions of the present invention contain sufficient color information such that the triangles of the meshes can be rendered by any
processor supporting linear or bilinear interpolation such as Gouraud shading (available in many 3D and 21/2D systems). For 2D systems
(such as digjtized photographs, films frames, video frames and other bitmap images) the 2D mesh models created from the teachings of the
present invention replace bitmap files and present a greater level of data compression and flexibility in image manipulation than is currently
available in compressing systems such as JPEG. In addition, the presented modeling system has dynamic resolution capability, such that
surface details like color or texture can be rapidly added or subtracted from the model.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
M
CN
CU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania ES Spain LS Lesotho S Slovenia
Armenia FI Finland LT Lithuania SK Slovakia
Austria FR France LU Luxembourg SN Senegal
Australia GA Gabon LV Latvia SZ Swaziland
Azerbaijan GB United Kingdom MC Monaco TD Chad

Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo
Barbados GH Ghana MG Madagascar TJ Tajikistan
Belgium GN Guinea MK The former Yugoslav ™ Turkmenistan
Burkina Faso GR Greece Republic of Macedonia TR Turkey
Bulgaria HU Hungary ML Mali TT Trinidad and Tobago
Benin 1IE Ireland MN Mongolia UA Ukraine
Brazil IL Israel MR Mauritania uG Uganda
Belarus IS Iceland MW Malawi Us United States of America
Canada IT Italy MX Mexico Uz Uzbekistan
Central African Republic JP Japan NE Niger VN Viet Nam
Congo KE Kenya NL Netherlands YU Yugoslavia
Switzerland KG Kyrgyzstan NO Norway YAYS Zimbabwe
Cbéte d’Ivoire KP Democratic People’s NZ New Zealand

Cameroon Republic of Korea PL Poland

China KR Republic of Korea PT Portugal

Cuba KZ Kazakstan RO Romania

Czech Republic LC Saint Lucia RU Russian Federation

Germany LI Liechtenstein SD Sudan

Denmark LK Sri Lanka SE Sweden

Estonia LR Liberia SG Singapore

10

20

25

WO 98/59300 PCT/US98/13008

SYSTEM AND METHOD FOR COMPUTER MODELING
OF 3D OBJECTS AND 2D IMAGES BY MESH CONSTRUCTIONS
THAT INCORPORATE NON-SPATIAL DATA
SUCH AS COLOR OR TEXTURE

ross-Referen Related Applicati

This application is related to:

L Co-pending United States Patent Application entitled “System and Method for

Asynchronous Compression and Decompression of Graphic Images Based on

2D and 3D Data” filed on even date herewith;

° Pending United States Patent Application No. 08/730,980, entitled “System
and Method for Rapidly Generating an Optimal Mesh Model of a 3D Object or
Surface” filed on October 16, 1996; and

° Pending United States Patent Application No. 08/730,979, entitied “System
and Method for Computer Modeling of 3D Objects or Surfaces by Mesh
Constructions Having Optimal Characteristics and Dynamic Resolution

Capabilities” filed on October 16, 1996.
Each application referenced above is expressly incorporated herein by reference.
Field of the Invention

The present invention relates to the field of computer-aided object, surface and image
modeling, with relevant applications in other fields, including without limitation
computer graphics, animation, surface mensuration and mapping, security and
identification systems, medical imaging and other imaging fields. In particular, the
present invention relates to computer systems for mesh constructions that model three-

dimensional (“3D”) objects and two-dimensional (“2D”) images.

10

15

20

25

WO 98/59300 PCT/US98/13008

2

For 3D objects, the present invention permits construction of mesh models that
represent 3D objects, terrains and other surfaces. The models have "dynamic
resolution" capabilities such that the system of the present invention can incrementally
add and remove points of detail from the mesh construction to create meshes that
display the object in varying levels of detail. To create 3D mesh constructions, the
present invention merges the spatial detail values (X, Y, Z -- in 3D) of ordinary mesh
data points with other detail values (such as color (R,G,B) or other non-spacial details)
to build complex, spatial/texture "trixel map" data points such as a set of 6D (X, Y, Z,
R, G, B) data points. The conglomerate or combined data points enable the system of
the present invention to generate “trixel map” meshes which take into account both the

spatial and color details of the object.

In addition to creating meshes to model 3D objects, the present invention can also be
used to create mesh constructions which represent 2D images (photographs, film
frames, video images and other images) which have been digitized to bit map or other
formats. For 2D mesh constructions, the present invention combines the 2D spatial
coordinate locations of the data (such as the x, y locations of the bitmap pixel
coordinates with the associated color values, such as the R,G,B color assignments) to
create a set of combined 5D (x,y,R,G,B) “tricture” data points. The present invention
uses the 5D data point values to build a “trixel map” mesh which models the 2D image
through its geometric mesh construction. Like the 3D object model described above,

the 2D image models of the present invention have "dynamic resolution" capabilities.

Through its simplification techniques, the present modeling system is reductive both in
its 2D and 3D applications. The simplification techniques reduce the number of data
points needed to create quality images. The resulting mesh describes an object or
image with good accuracy using far fewer data points than normally required by
graphic systems using other techniques. Although the system stores information
during simplification so that the system can make "lossless" transitions from a low to a
high resolution mesh, it is noted that each instance of a simplified mesh model

represents a "lossy" approximation of the original data which can be stored as a

(V4]

10

15

20

WO 98/59300 PCT/US98/13008

3

compression of the original object or image and transmitted by itself. Thus, in addition
to the fields identified above, and without limitation, the present invention also relates

to the field of data compression and decompression for graphic images.

The teachings of the presented system and method for incorporating non-spatial
coordinates into mesh structures and using those combined values for building dynamic
resolution mesh constructions can be applied generally. In addition to color and
texture data, the present invention can be used to create mesh structure which
incorporates other types of data which describe the surface of an object or terrain, for
example, temperature data, energy absorption, or information concerning the object’s

structural or molecular properties.

Background of the Invention

There is great interest in the improvement of computer graphic systems that use 3D
and 2D data to create images. Current uses for visual images in graphic applications
demand systems that store extensive image data more compactly, build images with
greater control in detail resolution and process images with increased speed and
efficiency. Although 3D and 2D graphic systems have different underlying methods
for image generation, both have common difficulty in processing the massive amount
of data necessary to generate still images and animated sequences with computational
efficiency and convincing realism. Background on both 3D and 2D systems is

presented as follows.

3D Data Systems

A 3D object modeling system typically generates a model of an object, terrain or other
surface (hereinafter an “object”) from input data and uses that model to create a
display or reproduction of the object (such as a monitor display or printout). When a
3D object model replicates the entire surface of the object, a 3D graphics system

allows a user to output or display images showing any side or face of the object from

10

15

20

25

WO 98/59300 PCT/US98/13008

4

any vantage point. A user of a 3D graphics system can load a 3D object model into a
viewer program and change his or her view of the object by commands to rotate the
viewing window around the object or “zoom” close to or away from the object. A 3D
graphics system builds more complex scenes by grouping different object models and
viewing them together. For example, 3D object models for a chair, a boy, a lamp, and
a book can be loaded into a viewer to show a boy sitting in a chair reading a book. As
the 3D models contain information to show all sides of the objects in the scene, the

user can rotate the viewing window and view the scene from all angles.

Because 3D object modeling systems can access complete three-dimensional
information about each object depicted, they facilitate the construction of complex,
interactive animated displays, such as those created by simulators and other user
choice-based programs. Although 2D image generation systems currently predominate
in the display and manipulation of graphic images, the use of 3D modeling systems 1s
perceived as a more efficient way to present graphic information for interactive
graphics, animated special effects and other applications and the use of such systems 1s

growing.

3D systems construct object models from 3D spatial data and then use color or other
data (called “texture data”) to render displays or images of those objects. Spatial data
includes 3D X, Y, Z coordinates that describe the physical dimensions, contours and
features of the object. The current effort in computer graphics to incorporate more
images of real-life objects into applications has fostered improvements in collecting 3D
spatial data such as through the use of scanning systems. A scanning system uses a
light source (such as a laser) to scan a real-world object and a data collection device
(such as a camera) to collect images of the scanning light as it reflects from the object.
The scanning system processes the captured scan information to determine a set of
measured 3D X, Y, Z coordinate values that describe the object in question. Some
scanning systems can easily gather enough raw data to generate several hundred
thousand 3D data point coordinates for a full wraparound view of an object. A typical

3D object modeling system processes the 3D point data to create a “wire-frame”

10

15

WO 98/59300 PCT/US98/13008

5

mode] that describes the surface of the object and represents it as a set of
interconnected geometric shapes (sometimes called “geometric primitives”), such as a
mesh of triangles, quadrangles or more complex polygons. The points can come to a
3D object modeling system either as a set of random points (i.e., a "cloud of points")
with no information concerning shape (known as connectivity information) or the
points can come with some connectivity information such as information indicating a

“hole,” for example, the space bounded by the handle of a tea cup.

Typical mesh modeling systems use the spatial data -- the 3D X, Y, Z coordinates --
either indirectly, in gridded mesh models, or directly, in irregular mesh models.
Gridded mesh models superimpose a grid structure as the basic framework for the
model surface. The computer connects the grid points to form even-sized geometric
shapes that fit within the overall grid structure, determining the X, Y, Z locations for
the grid points by interpolating them from collected spatial data points. There are
various ways of creating gridded mesh representations, such as those shown in U.S.
Patent 4,888,713 to Falk and U.S. Patent 5,257,346 to Hanson. While gridded models
provide regular, predictable structures, they are not well-suited for mesh constructions
based on an irregular set of data points, such as those generated through laser
scanning. The need to interpolate an irregular set of data points into a regular grid
structure increases computation time and decreases the overall accuracy of the model.
Hence, modeling systems typically create an irregular mesh model, such as an irregular

triangulated mesh, to represent a reai-world object.

In addition to using spatial data, 3D mesh modeling systems also use texture data to
display and reproduce an object. Texture data is color and pattern information that
replicates an object’s surface features. Typically, 3D object modeling systems maintain
texture data separately from the “wire-frame” mesh and apply the texture data when
rendering the surface features. Thus, object modeling systems typically include two
distinct and separate processes: first, in a building phase, the system constructs a “wire
frame” mesh to represent the object’s spatial structure using only 3D X, Y, Z values

and, second, during a rendering phase, the system applies the texture data to output a

10

15

20

25

WO 98/59300 PCT/US98/13008

6

display or reproduction. “Texture mapping” or “texturing” is the part of the rendering
phase process that overlays texture data on the geometric faces of a mesh model. The
rough face of a brick, the smooth and reflective surface of a mirror and the details of a
product label can all be overlaid onto a mesh wire frame model using texture mapping

principles.

For models of real-world objects, texture data typically comes from 2D photographic
images. The laser scanning systems described above can collect texture data by taking
one or more 2D photographic images of the object in an ordinary light setting as they
collect laser scan data. Thus, 3D scanning systems both scan an object with a laser to
collect spatial data and photograph it to collect color and other surface characteristic
information.. The laser-collected 3D X, Y, Z coordinate values can be related and
linked to specific points (i.e. pixel locations) in the digitized versions of the collected
photo images. Commercially available video cameras output frames that can be
digitized into a 2D matrix of pixels (e.g. 640 x 480 pixels in dimension), with each
pixel having, for example, a three-byte (24 bit) red, green and blue (R, G, B) color
assignment. Storage for each such video frame view then requires approximately 900
K (kilobytes) and the frame will typically be stored as a “bitmap” (such as in TIFF
format). A 3D object modeling system will link each mesh face in the generated 3D
mesh model to a specific area in the bitmap. The image can be stored as a texture map
file and relevant areas of the image can be clipped as texture map elements for use in

texture map overlays.

To output a fully-rendered view of the mesh model from a desired perspective, the
currently available 3D graphics systems typically overlay corresponding texture map
elements on the geometric mesh faces in view. This overlaying procedure presents
some complications as the system must rotate and scale each texture map element to fit
the image of the wire frame mesh as it appears to the viewer. The widely-followed
OpenGL standard, for example, supports the scaling of texture map elements through a

technique called “mipmapping”. Mipmapping allows the texture map file to contain

10

15

25

WO 98/59300 PCT/US98/13008

7

different-sized versions of each texture map element which the system uses as overlays

for different-scaled views of the object.

In addition to the complications presented by the use of the texture data, the use of and
demand for 3D modeling is hindered by large storage requirements. Most current
systems continue to store both a file of mesh model data and a separate file of bitmap
texture map data. Such a configuration imposes a high overhead on the system in
terms of the memory needed to access and manipulate the object model. Texturing
necessitates that the entire texture map file be loaded into a designated RAM cache,
placing great strain on limited RAM resources. For example, a texture map file for a
person’s head might comprise texture elements from six photographic views of the
head--one view for front, back and each side of the head plus a top and bottom view-- -
as well as data necessary to partition the various texture elements and mipmaps. Also,
texture has projectability problems. It may be necessary to use multiple textures of the

same subject, either for topological reasons or to address projective distortions.

As the photographic images for each view require roughly 900 K of storage, a texture
map comprising six views might require on the order of 5 Mb (megabytes). Even
when the texture map data is stored in a compressed format, it still must be fully
expanded when loaded into RAM for use. When several 3D object models are used
for a complex display (such as a figure with background objects--trees and birds, for
example), the amount of storage necessary for outputting all the objects in the display
can be prohibitively large. The structure and size of the texture map file has also
precluded or limited use of 3D applications on communication systems like the
Internet, where bandwidth is limited and does not readily facilitate transfer and

communication of such substantial object information files.

The use of the texture map file also creates time delays in processing images. Most
systems require special graphics hardware for real-time performance. The extra
hardware needed increases the cost of the system and, for the Internet, where most

users access the system with more limited PC-type computers, such a hardware

10

15

20

25

30

WO 98/59300 PCT/US98/13008

8

solution is not currently a viable option. Typically, a PC contains a graphics
acceleration device such as a video graphics array (VGA) standard card which assists
in “displaying” each image (i.e., rapidly outputting a set of pixel assignments from a
window frame buffer to a display monitor). However, on the PC, the tasks of
“transformation,” (transforming the 3D X, Y, Z coordinates of the object model to
“eye-space” coordinates for a particular view, lighting the object accordingly and
projecting the image onto a “window space”) and “rasterization,” (the process of
rendering “window-space primitives” such as points, lines and polygons for the
particular view and designating detailed pixel color setting information such as texture
map information and depth of field calculations), are typically performed by the PC’s
general-purpose “host” processor. For real-time speed, the correct object modeling
systems typically need more advanced and more expensive computers employing
special graphics hardware to perform the “transformation,” “rasterization” and other

processes.

In addition to problems with size requirements and processing delays, current 3D
object modeling systems are also hampered by a lack of flexibility in controlling image
detail or resolution. Current scanning systems can provide an abundance of data about
an object, 3D object modeling systems typically use all of the data to create a single,
very detailed 3D object model. However, in some applications, such as computer
games and animated sequences, it is desirable that an object be represented in many
different resolutions. For example, an object depicted from a distant viewpoint does
not require the same level of detail as an object seen close-up. Moreover, as the
available transmission bandwidth of the Internet places limitations on the amount of
image detail any one image can carry, it would be desirable for a 3D object modeling
system to have the capability to vary the level of resolution in the model and
correspondingly, vary the texture map information. Such a system would have a
modeling system which could display a mesh at many levels of resolution, from low to
high, depending on the constraints of the system and the application. There are other
systems for meshing which have the ability to optimize and incrementally add and

remove points or edges from a mesh construction, such as shown by Hoppe (see, e.g.,

10

15

20

25

WO 98/59300 PCT/US98/13008

9

“Progressive Meshes” (SIGGRAPH 96) and “View-Dependent Refinement of
Progressive Meshes” (SIGGRAPH 97) and others. While such systems can optimize
and change resolution, inter alia, they typically require large amounts of processing
time to prepare the mesh or do not provide a reliable visual representation of the object

when the mesh contains few polygons.

Real limitations in the use of 3D graphics systems arise in part from the use of texture
map files and the subsequent coordination of texture data with the spatial data in the
mesh model. Therefore, it would be preferable to make such coordination more
efficient or to incorporate the texture map data into the mesh model and thus eliminate
texture map data as a separate element altogether. A new system and method for
modeling 3D objects that eliminates the need for the texture map file, permits more
compact storage of the 3D object model and provides a rapid, flexible system to create
and vary the resolution of the object model would represent an advance in the art. The
reduced storage needs of such a system and its flexibility in specifying resolution would
enable the object model to be easily transmitted across a communication system like
the Internet and would allow for faster image display and manipulation without

advanced hardware.

2D Data Application

Although 3D object modeling and display systems represent the future in many
interactive applications, 2D image display systems continue to have great utility for
graphic representations. It would be an advantage to improve the efficiency of such
systems, especially in the way they process picture data such as bitmap data. As
described above, a bitmap is a 2D array of pixel assignments that when output creates
an image or display. The computer “reads” photographs, film and video frame images

in bitmap format, and such 2D bitmap images constitute very large data structures.

2D image display systems share with 3D object modeling systems the fundamental

problem of data storage. It is not uncommon for a single 2D image to comprise a

10

15

20

WO 98/59300 PCT/US98/13008

10

bitmap matrix of 1,280 x 1,024 pixels where each pixel has a 3 byte (24 bit) R, G, B
color depth. Such an image requires approximately 4 Mb of storage . A typical frame
of raw video data digitizes to a computer image 640 x 480 pixels in dimension. As
stated above, if each pixel has a 3 byte color assignment, that single frame requires
approximately 900 K of storage memory. As film and video typically operate at 24 -
30 frames per second to give the impression of movement to the human eye, an
animated video sequence operating at 30 frames per second requires roughly 26 Mb of
pixel assignment information per second, or 1.6 Gb (gigabytes) per minute. Even with
enhanced RAM memory capabilities, the storage requirements of such 2D images can
impede the operating capacity of the common PC; processing a single image can be
difficult and processing an animated sequence is impossible without special video
hardware. The size of these image files makes them unwieldy to manipulate and
difficult to transport. For example, a user wishing to download a 2D image from an
Internet or other communication system site to a PC typically finds the process slow
and cumbersome. Such a constraint limits the use of 2D images in many applications,

including the new, interactive Internet web applications.

Currently, graphic data compression techniques provide some answer to the
impediments posed by 2D bitmap data storage requirements. Such procedures replace
raw bitmap data with an encoded replica of the image. Compression techniques are
known as either “lossless,” meaning that they lose no data in the encoding process or
“lossy,” meaning that they discard or lose some of the original bitmap data to achieve a
high compression factor. One widely used “lossy” compression standards for still 2D
images is the JPEG (Joint Photographic Experts Group) standard. JPEG compresses
individual photographs or video frame images following a technique that takes
advantage of the image’s specific spatial structure. Within the image’s color area,
JPEG will disregard or homogenize certain pixel information to remove redundant
information and thus reduce the overall size of the digitized image for storage and
transport. However to display an image, a compressed JPEG file must be

decompressed.

10

15

20

25

WO 98/59300 PCT/US98/13008

11

JPEG and other similar currently available compression systems possess real
advantages for the compression and decompression of image data in certain
circumstances. However, there are also drawbacks to these systems. JPEG represents
only a method for data reduction; it is a compression process used mainly for storage.
Its compression, which occurs on a pixel by pixel basis, goes far in reducing the overall
size of the data chunk needed to store an image but at low resolutions the image
quality becomes unacceptable. Moreover, the compression is not continuously
dynamic such that details cannot be easily added or removed from an image. For small
memory spaces, (such as those needed to send and transmit files via the Internet in
real-time) the quality of the image can deteriorate sharply. Further, when a JPEG file
is loaded into RAM it must be decoded and expanded before it can be used thus
limiting for real time applications some of the compression benefit. (JPEG’s
“progressive buildup” extension, which outputs a rendering of an image in detail
layers, offers some relief for systems which display JPEG files on the fly, but
progressive JPEG is time consuming and, ultimately a quality resolution image requires
a substantial block of RAM space, and the resolution of the image cannot be
dynamically changed.) In addition, although JPEG standard users have some choice in
determining the level of compression and the amount of “lossiness,” JPEG’s flexibility

is limited by the way in which it reads and modifies the graphic image.

A system for modeling 2D images that lent an overall structure or model to the image
and subsequently compressed data based on structure rather than on individual pixel
values would allow greater compaction and more flexibility of use. Such a system
would not only reduce the amount of data necessary to store and transmit a 2D image
but would also provide other capabilities, such as the ability to vary the resolution
quality of the model rapidly and dynamically . Such a system would also permit the
data to remain compressed at runtime, thereby facilitating its use in real time

apr ‘ications.

10

15

20

25

WO 98/59300 PCT/US98/13008

12

Summary of the Invention

The present invention provides a system and method for modeling 3D objects and 2D
images by specialized wire frame mesh constructions built from data points that
combine both spatial data and other information such as color or texture data. The use
of the complex data points allows the modeling system to incorporate into the wire
frame mesh both the spatial features of the object or image as well as its color or other

features.

As the mesh constructions of the present invention combine spatial data with color,
texture map and other information, the invention can render objects and images using
only the data contained in the new, wire frame mesh structure. For a 3D object model,
the modeling system and method of the present invention eliminates the texture map
from the model, thereby providing substantial space savings by its removal while
retaining the ability to generate images of clarity and precision. This ability to render
using only the mesh data points means that the 3D model for an object does not need
to carry a texture map file, which in prior art systems was used to render depictions.
For 2D images, the large matrix of pixel values can be replaced with a much smaller

mesh, providing substantial compression of the data needed to replicate the image.

With the mesh modeling system and method of the present invention, any rendering
engine that supports linear or bilinear interpolation, such as “Gouraud Shading”
(available in many 3D and 2 %D graphic systems), will accept the mesh data points of
the present invention and output a high-quality depiction or reproduction of the object
or image. The rasterization needed for generating the display can be done on the host

processor (or for greater speed on special 3D hardware).

To create the complex points for 3D object modeling, the system of the present
invention accepts as input the 3D spatial data concerning the contours and shape of the
object (X, Y, Z object coordinates) and a texture map file containing photographic,

color or other texture data. If an initial spatial mesh does not aiready exist, the system

10

15

20

25

WO 98/59300 PCT/US98/13008

13

puilds an initial spatial model of the object. The system then “wraps” the pixel values
of the texture map file onto the spatial construction of the model to create a unified set
of multi-dimensional/ multi-axis coordinates. In an exemplary embodiment, the system
creates a set of 6D (X, Y, Z, R, G, B) coordinates to represent the object. Where an
X, Y, Z coordinate links to a point in the texture map file, the system creates the 6D
coordinate from that link through a process described below. For many of the R, G, B
coordinates in the texture map file, there will be no corresponding X, Y, Z value. For
those R. G, B, values, the system and method of the present invention will create an X,

Y, Z coordinate by a “rasterization” process described below.

For data points in the 2D image model, data comes to a computer of the present
invention as a bitmap file of 2D pixel assignments. The bitmap represents a 2D matrix -
of pixels such as a 1,280 x 1,024 matrix. Thex,y matrix locations represent spatial
values, much like X, Y, Z coordinates in 3D object model. Aseachx,y coordinate in
the bitmap will already have a corresponding R, G, B color assignment, it is possible to
create a set of 5D (x, ¥, R, G, B) coordinates and create a mesh model of the image
from those points. The meshes will include aspects of the images' spatial and color

detail.

Using the data points that combine spatial and texture attributes, the present invention
constructs meshes (for 3D objects and 2D images) that have dynamic resolution
capabilities, where data points provide surface shape and color details that can be
quickly added or subtracted from the meshes. In constructing dynamic resolution
meshes, (2D or 3D), the system and method of the present invention works in either
"down resolution” fashion (beginning from an initial dense mesh and removing points
from it) or in "up resolution" fashion (beginning with an initial mesh structure of only

two or three points) into which the system adds data points to build an object.

For both down and up resolution mesh constructions, the system and method of the
present invention uses an optimization technique for selecting which point to add or

remove from the mesh next. When building a mesh in an “up resolution” format, the

10

15

20

25

WO 98/59300 PCT/US98/13008

14

present invention executes a selection process which adds the most significant points
into the mesh first. For each point insertion process, the system determines the next
most significant point to add from the remaining unmeshed points and adds that point
into the mesh. In constructing the mesh in “down resolution” format, the system
removes the point which is "least" significant to the mesh in terms of adding color or
spatial detail. The goal in both up resolution and down resolution process is to keep

the points of most significant detail in the mesh at all times.

Either up resolution or down resolution formats can be used to construct 3D or 2D
meshes with dynamic resolution capabilities. It is an aspect of the present invention
that, as the meshes are constructed (in either a up resolution or down resolution
construction format), the system stores the history and sequence of point insertions or -
point deletions and the related mesh alterations required thereby in a "history list"
(such as the insertion list and history list described heretn). With the history list
created, mesh details can be immediately added or removed simply by following the set
of instructions stored in the history list. The system of the present invention enables
the user to toggle back and forth through the history list to add and remove points of
detail.

The modeling system and method of the present invention presents substantial
advantages over previously existing systems. A 2D image mesh can replace a 1,280 x
1,024 image bitmap comprising 1,290,720 pixel assignments (8 bit or 24 bit), for
example. The mesh model will contain only a few hundred points (for simple scenes)
or a few thousand data points (for more complex scenes). Further, when more detail is
needed the model can be easily adjusted. In 3D applications, the system’s ability to
create object renderings based on the mesh data alone eliminates the need to store and
maintain texture map images. Elimination of the texture map file creates a substantial
storage saving, as the typically large texture map files no longer need to be saved in a
RAM location for rendering. In addition, the system and method of the present

invention speeds processing time in rendering as the associated look ups between mesh

and texture map are also eliminated.

10

20

25

WO 98/59300 PCT/US98/13008

15

It should also be noted that the present system and method maintains an optimal
structure at all times during “up resolution” or “down resolution” mesh construction
and in dynamic resolution toggling. Optimal construction refers to the "connectivity"
of the mesh or the interconnection of the edges that join the data points and define the
geometric primitives of the mesh (e.g., the triangular mesh faces). While there are
many techniques which can be implemented to optimize connectivity in up and down
resolution construction processes, the present invention, in exemplary embodiments,

presents techniques which optimize connectivity by:

> Delaunay Triangulation principles, or

> Data Dependent Principles

Delaunay triangulation optimality principles help to insure that the irregular
triangulated mesh maintains a construction of evenly sized and angled triangles.
Delaunay triangulation is recognized as one type of optimization for mesh
construction. When a triangulation follows Delaunay principles, a circumcircle defined

by the vertices of a triangle will not contain another data point of the mesh.

Data dependent optimization techniques make edge connections which follow the
contour lines of the object or image being modeled. Data dependent techniques use
normal vectors for the data points and the triangular faces. As normal vectors give
indications of the shape or contours of the object, a normal comparison provides a

method to consider the shape of the object when making connectivity choices.

However, Delaunayian optimization and data dependent optimization have different
advantages. Delaunayian optimization is useful for example in meshing situations
where good stability is needed in the structure such as in situations where data points
are constantly being inserted or removed from a mesh. An unstable mesh can create
problems such as triangles that are extremely narrow and triangles with extremely
sharp angles. Such unstable mesh configuration can prevent or hinder smooth

rendering. In such situations, it would be advantageous to use a Delaunayian check for

10

15

20

25

WO 98/59300 PCT/US98/13008

16

optimality because Delaunayian principles foster the construction of a mesh with stable
triangles, which move in the direction of being equilateral. Delaunay checking
procedures also function in situations where it is not possible or not easily feasible to
perform a data dependent check. Where there is no information concerning the
contour of the mesh, such as normal data, or no reference object for comparison,

Delaunayian checking can be used to create a quality mesh.

Data dependent optimality checking is useful for making sure that the characteristics of
the mesh best match the shape and contours of the object being depicted. Data
concerning the surface of the object, such as normal data, enable the computer to make
edge flips so that the mesh structure can better conform to the object's shape. As
Delaunayian checking is not directly tied to the contours of the object itself, data
dependent checking can, in some circumstances, provide a mesh which more

accurately describes the object.

In the present invention, optimality checking for mesh construction occurs at each
instance when a point is being added or removed from the mesh. Adding or removing
data points causes changes to the mesh structure. A point addition adds additional
triangles. A point deletion removes triangles. The addition or removal of the data
point may also necessitate alterations to the structure of the remaining triangles to
preserve optimality such as by Delaunay or data dependent principles. To maintain

optimality the system executes a checking routine at each point insertion and deletion.

For speed in adding or deleting points and in performing the checking necessary to
maintain connectivity optimality, the system provides a mesh navigation system by
rigidly ordering the vertices of each triangular face in the mesh. In an exemplary
embodiment, the vertices of the triangles are ordered in counterclockwise fashion.
However, a clockwise or other rigid ordering system is also suitable. The edges of the
newly created triangles and the neighboring triangles related to those edges are also
ordered in relation to the counterclockwise or other ordering of the vertices of each

face. The order of vertices and neighbors for example allows the system to perform

10

15

WO 98/59300 PCT/US98/13008

17

optimality checks in a systematic way, moving in a single direction following the
ordering of the points, such as proceeding counterclockwise around the insertion
point. The regularized indexing of the vertices enables the checking procedure to
easily orient itself within the mesh and quickly maneuver to check for optimized
quality. The rigid ordering of triangle vertices and neighbors also provides other speed

advantages in processing mesh data.

As each face is checked, the present invention provides that the results of each check
be stored in the history files. The system and method of vertex indexing and the
system and method of regularized checking enables the present invention to minimize
into storage information about the checking in the history files. The system later uses
the history files to reverse the mesh construction steps that occurred when the data
point was inserted or deleted. In the present invention, data points are added to the
mesh in LIFO (last in first out) order in up resolution construction and in FIFO (first in
first out) order in down resolution construction, thereby keeping the points of most

significant detail in the mesh at all times.

The system and method of the present invention comprises computer hardware,
programmed elements and data structures. All the elements set forth are described in

more detail below.

Brief Description of the Drawings and Appendi

Fig. 1 Depicts a plurality of 3D data points (a cloud of points) and a texture
map file which the computer system of the present invention uses to

generate meshes of different resolutions and object displays.

Fig. 2a ‘Depicts a plurality of data points which comprises a set of 3D X, Y, Z

coordinates that describe the object.

Fig. 2b Depicts exemplary texture map data.

10

15

20

WO 98/59300

Fig. 2¢c

Fig. 2d

Fig. 2e

Fig. 2f

Fig. 2g

Fig. 2h

Fig. 2i-j

Fig. 3

Fig. 4

PCT/US98/13008

18

Depicts a mesh model of comparatively low resolution created
according to the teachings of the present invention (depicted for

exemplary purposes in gray scale).

Depicts a middle resolution mesh model of a 3D object created
according to the teachings of the present invention (depicted for

exemplary purposes in gray scale).

Depicts a high resolution mesh model of a 3D object created according
to the teachings of the present invention (depicted for exemplary

purposes in gray scale).

Depicts a mesh of lower resolution than Fig. 2e created through a down

resolution process.

Depicts a mesh of lower resolution than Fig. 2f created through a down

resolution process.

Depicts an image of the object rendered from the information of the low

resolution mesh model of Fig. 2c.

Depicts images of the object rendered from information of the mesh

models of Figs. 2d and 2e.

Depicts an overview of basic programmed elements and data structures
used to implement an exemplary meshing system with up

resolution/down resolution capabilities.

Depicts a normal calculation for a data point inserted into a mesh

structure.

10

20

WO 98/59300

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

10a

10b

10c

10d

11

PCT/US98/13008

19

Depicts an exemplary ordering of points of a2 mesh face and shows the
relationship of those points to neighboring faces according to the

present invention.

Depicts an exemplary process flow for an exemplary build and wrap
function which creates a set of space and texture coordinate values
according to the present invention.

Depicts an exemplary mesh triangle overlaid on a set of texture map
pixel values and shows how a 3D X, Y, Z value is created for a pixel by

interpolation.

Depicts an exemplary process flow for the process of rasterization,

which creates X,Y,Z values for provided texture map coordinates.

Depicts the basic process steps of the up resolution function of the

present invention.

Depicts a cloud of data points fitted to a sphere.

Depicts a second cloud of data points fitted to a plane.

Depicts a tetrahedron constructed for a cloud of data points where the

initial reference object is a sphere.

Depicts an initial mesh constructed from Steiner points where the initial

reference object is a plane.

Depicts a mesh triangle and an associated mesh point for purposes of

distance calculations.

10

—
n

20

WO 98/59300

Fig. 12

Fig. 13

Fig. 14a

Fig. 14b

Fig. 15

Fig. 16

Fig, 17

Fig. 18

Fig. 19

Fig. 20

Fig. 21

PCT/US98/13008

20

Depicts an incremental insert procedure for the up resolution function

of the present invention.

Depicts a data point being inserted into a mesh triangle.

Depicts two triangles which will be evaluated for flipping by data

dependent principles.

Depicts the triangle of Fig. 14a after the flip.

Depicts an exemplary process flow for a data dependent edge check.

Depicts a sequence of flips which might be taken to transform a mesh

into a configuration for data point removal.

Depicts a hypothetical point removal in which a distance value for the

point is computed using a normal vector.

Depicts a hypothetical point removal in which a distance value for the
point is computed using normal vectors of the point to be deleted and

the points that have previously been deleted.

Depicts an exemplary process flow for a point removal flipping

procedure which minimizes structural deviations in the mesh.

Depicts the calculation of the error value for a point removal flipping

procedure which preserves Delaunayian optimality.

Depicts the calculation of the error value for a point removal flipping

procedure which preserves data dependent optimality using normals.

10

15

20

WO 98/59300 PCT/US98/13008

21
Fig. 22 Depicts an exemplary process flow for a down resolution mesh
construction process.
Fig. 23a Depicts a digitized photographic image.
Fig. 23b Depicts a mesh model of a photographic image.
Figs. 24 Depicts an exemplary process flow for creating mesh models from a 2D

bitmap.

Appendix I Contains color copies of the meshes depicted in Figs. 2a-j.

Detailed Description

Mesh Construction for 3D Object Modeling

i. Overview

For 3D mesh constructions, Fig. 1 depicts a plurality of data points 2a (which can be a
“cloud of points” or a mesh with some connectivity information) and a texture map file
2b, which the computer system 3 of the present invention uses to build a series of
meshes (e.g., meshes 2c-2g). The plurality of data points 2a are spatial X, Y, Z 3D
coordinates that describe the physical contours of the object. The texture map file 2b
is a set of one or more bitmaps or 2D arrangements of pixel elements which represent
digitized 2D “snapshots” of the object. The X, Y, Z Coordinates in the plurality of
data points link to a specific coordinate in the texture map file through a reference to a
texture space u, v position. In some cases, the plurality of data points 2a will also have
connectivity or other additional data associated with it such as normal data as

described below.

The plurality of data points 2a and the texture map file 2b can be collected in any

number of ways, such as by user input or laser scanning. A system and method for

10

15

20

25

WO 98/59300 PCT/US98/13008

22

collecting data points and texture map data through scanning is described in pending
U.S. Patent Application Serial No. 08/620,684, filed on March 21, 1996 and entitled
“System and Method for Rapid Shape Digitization and Adaptive Mesh Generation,”
and in pending U.S. Patent Application Serial No. 08/679,498 filed on July 12, 1996
and entitled, “Portable 3D Scanning System and Method for Rapid Shape Digitizing
and Adaptive Shape Generation.” Those applications are expressly incorporated
herein by reference. The applications describe systems for scanning an object with a
laser light, recording the reflections of the light with a device such as a video camera
and processing the information to deliver 3D spatial coordinates. The applications also
describe systems and methods for collecting several color or black and white images of
the scanned object and processing those images to create texture map files. Fig. 2a
shows an exemplary plurality of data points 2a which comprise a set of 3D X, Y, Z
coordinates that describe an object. Fig. 2b depicts exemplary texture data from the
texture map file 2b (which could be in color but is shown in gray scale) which contains
bitmap images of the object with each pixel having a color arrangement such as a 3

byte (24 bit) R, G, B color assignment.

In a pre-runtime process, the computer system 3 processes the incoming spatial (X, Y,
Z) and texture map data by first creating an initial spatial model of the object (not
shown) and then in a "rasterization" process, combining the spatial and texture map
data by “wrapping” the texture map data onto the initial spatial model to form a set of
multi-dimensional/multi-axis coordinates. In the exemplary embodiment, those
complex data points are the 6D (X, Y, Z, R, G, B) coordinates mentioned above. The
computer system 3 then constructs a mesh model having dynamic resolution
capabilities from the 6D data points created above. For these constructions, the
system executes either a "down resolution" construction process (which first creates an
initial dense mesh which is simplified through data point removals) or an "up
resolution" construction process (which starts from basic simple mesh and adds points

to increase the mesh’s detail).

10

15

20

WO 98/59300 PCT/US98/13008

23

The computer system 3 outputs the mesh data structures in different resolutions
(represented by meshes 2c-2g) which can be displayed and manipulated. Using the "up
resolution” construction process as an example of the system’s functioning, the system
of the present invention can build meshes having different resolutions of mesh,
beginning with 2c. Fig. 2c depicts mesh 2c, a mesh of comparatively low resolution
illustrating mesh construction after the addition of just a few hundred 6D data points.
Fig. 2d depicts mesh 2d, a mesh of middle resolution after the addition of more 6D
data points. Fig. 2e depicts mesh 2e, a mesh of highest resolution. From mesh 2c to
2e, the system adds detail to the mesh incrementally through the insertion of points.
Each mesh incrementally generated from 2c-2e has more and more data points, until,
as shown in mesh 2e (Fig. 2€) all but a few data points of insignificant detail have been
added to the mesh. In the selection process for adding points by "up resolution”
construction, the computer system 3 selects 6D data points to add to the mesh
according to a technique which determines the point’s significance in terms of both
spatial and color data. Ifa 6D data point is significant because it adds spatial
characteristics, the system will add it to the mesh. In addition, if a data point adds
significant texture, such as important color details, the system will add it to the mesh as

well.

As 6D data points are added to the mesh in the “up resolution” mesh construction
process, the computer system 3 stores the order of point insertions and a list of
changes executed during the insertion process. At run-time, this history can be used to
remove points rapidly and decrease the mesh and then rapidly restore the points to "up
resolution" the mesh again. In Fig. 1, mesh 2f depicts a mesh of lower resolution than
mesh 2e. Mesh 2g returns the mesh to the low resolution quality, similar to mesh 2c.
Figs. 2f-2g show exemplary depictions of such meshes. Because the present invention
maintains a specific history of the additions and subtractions of points to and from the
mesh, the deletion and addition of the sequence of points can be monitored by the
system and that history can be stored in a compact, coded sequence for rapid up and

down resolution mesh construction at runtime.

10

15

20

25

WO 98/59300 PCT/US98/13008

24

In addition to the "up resolution" mesh construction format, the present invention also
provides a "down resolution" construction format, where all 6D points are combined
into a single dense mesh which is then simplified through data point removals. The
system stores the sequence of point removals so that at runtime the resulting simplified
mesh can be rapidly "up resolutioned" and "down resolutioned" like the meshes created

by the "up resolution" construction format.

In the exemplary up and down resolution mesh construction processes, the system
creates an irregular triangulated mesh as shown in insert 2k in Fig. 1. The edges of the
mesh faces, e.g., edges 4, 6 and 8 in mesh 2k create geometrically shaped, planar faces,
such as triangle 10. The vertices of any triangle, e.g., points 12, 14 and 16, are 6D
data points which the system adds through incremental input in the "up resolution"
construction process or deletes in the "down resolution" construction process. Each
triangle in the mesh, e.g., triangle 10, has a set of neighboring triangles, €.g., neighbors
18, 20 and 22. The faces, edges and vertices can be associated with other information
concerning the object such as normal data and color/texture information. In this way,
a mesh model structure contains spatial and texture information to output

photorealistic displays of the object.

Each model generated by the system can be used to output depictions or reproductions
of the object, with the resolution of the depiction varying according to the resolution
of the mesh. Fig. 2h depicts in gray scale an image generated with the relatively low
resolution mesh of Fig. 2c. Fig. 2i depicts an image generated with the middle
resolution mesh 2d and Fig. 2j depicts an image generated with the high resolution
mesh of Fig. 2e. As each of the data points in the mesh carry color as well as spatial
information, it is possible to generate an image of the object using only the mesh
model. Algorithms for rendering, such as rasterization processes using Gouraud or
Phong shading techniques, render mesh triangles in gradient color based on the color
values contained in the 6D vertex coordinates of each face, so that a very life-like

image of the object can be generated.

10

15

20

WO 98/59300 PCT/US98/13008

25

In an_exemplary embodiment, the computer system 3 employs a computer (not shown)
comprising a central processing unit (“CPU” or “processor”) to accept input data,
manipulate the data and create data structures related to the model building. The
processor is coupled to one or more memories which store the data, data structures
and programmed elements. In addition, the processor is coupled to graphics hardware
such as a VGA card and could be coupled to more specialized graphics hardware (such
as a rendering engine which can execute polygonal shading by linear or bilinear
interpolation such as Gouraud shading). The computer system 3 also comprises a
display device and input devices like a keyboard and a mouse which are coupled to the
processor. In an exemplary embodiment, the computer manufactured by Silicon
Graphics Incorporated and sold under the product name Indigo2™ is suitable to
impliement the system of the present invention. The Indigo2™ computer has a R4400,
250 MHZ processor, 32 Mb of primary RAM storage and includes hardware capable
of performing the needed rendering. In addition, more powerful computers such as the
OCTANE™ or O,™ computers using single or dual MIPS R5000 and R10000 CPU’s,
which are also manufactured by Silicon Graphics, can also be used. Further, generic
PC computers that have an Intel Pentium host processor having a graphics operating
system (such as Microsoft Windows), of approximately 16 Mb of RAM, and graphics
processing capabilities that support rendering such as Gouraud shading, are suitable for
storing mesh constructions and outputting displays. For more information concerning
the Silicon Graphics’ Indigo2™ , OCTANE™ and O,™ computer systems, the reader
is referred to information and references listed at the following websites:

http://www sgi.com/Products/hardware/Indigo2/tech.html and

http://www.sgi.com/Products/hardware/desktop/tech.html

A set of programmed elements stored in memory provides instructions that the
processor executes to perform the operations of the computer system 3. In the
exemplary embodiment, programmed elements are written in the C++ programming
language. For more information on the C++ programming language the reader is

referred to the following publications which are expressly incorporated herein by

10

15

25

WO 98/59300 PCT/US98/13008

26

reference: The C++ Programming L anguage, Bjarne Stroustrup, Addison Wesley
Publishing Co., 1991; C++ Inside & Out, Bruce Eckel, Osborne McGraw-Hill, 1993.

ii. Process Flows and Data Structures

Fig. 3 depicts an overview of the basic program elements and data structures used to
implement the exemplary meshing functions for the computer system 3. A build and
wrap function 130 merges the 3D X, Y, Z plurality of data points 2a (the cloud of
points) and the texture map file 2b to create the set of 6D (X, Y, Z, R, G, B,) values in
a two-step process. The processor uses the build and wrap function 130 to construct
an initial spatial mesh (if one has not been provided) and then, in a "rasterization"
process, wraps the set of points from the texture map file around the mesh to create a

set of 6D coordinates.

Once the 6D coordinates have been constructed, the computer system 3 will use the
points in a pre-runtime process to build a mesh structure that has dynamic resolution
capabilities following either an "up resolution" construction process 131 or a "down

resolution” construction process 132:

° In the “up resolution” construction process 131 the system begins with an
initial mesh of just a few points and then builds a more complex 6D wireframe
mesh point by point through a selection process where it chooses the order of
points to insert. In the selection process procedure which is described in
further detail below, the system chooses from all the available unmeshed points
the next most significant point to add in terms of color or spatial detail. At any
point during the mesh building process, the computer system 3 can output or
save the mesh, or display a depiction of the object by sending information from
the mesh to a rendering function 134. The rendering function 134 prepares the

mesh for display.

10

15

25

WO 98/59300 PCT/US98/13008

27

e _ Inthe "down resolution" construction process 132, the system first builds a
mesh to its fullest density using all the created 6D points and then simplifies it
by removing points in successive point deletion steps. In determining which
next point to remove from the mesh, the down resolution processing function
132 evaluates the remaining points to locate the data point which adds the least
amount of detail to the mesh in terms of color or spatial detail. The procedure
for point selection is described in further detail below. Just as the meshes
created through the up resolution construction process 131 could be output
and rendered at any point during the point insertion process, the meshes
created through the sequence of point removal processes in down resolution
construction can also be output or saved; in addition, the system can display
images of objects using meshes of various "down resolution" detail. The

rendering function 134 prepares these meshes for display.

CALCULATING THE SIGNIFICANCE OF DATA POINTS: In both the up
resolution construction process 131 and the down resolution construction process 132,
the present invention uses a selection process to choose what next data point to add or
remove. In the up resolution process, the decision to add any 6D data point into the
mesh is based on a determination of whether that point, of all the remaining unmeshed
points, is the “most significant” to the mesh structure in terms of adding spatial, color
or other detail. In the down resolution process, the decision to remove any 6D data
point from the mesh is based on a determination of whether that point of all the
remaining points in the mesh is the “least significant” to the mesh structure in terms of

adding spatial, color or other detail.

To find the “most significant” or “least significant” point in any given mesh
construction, the system and method of the present invention performs a series of steps
(as will be described in further detail below) to calculate a “distance” value which
represents significance. In the exemplary embodiment, the present invention can

calculate significance by two possible methods:

10

15

25

WO 98/59300 PCT/US98/13008

28

1) “geometric/color distance” or

2) normal distance

GEOMETRIC/COLOR DISTANCE: Functions for calculating “geometric/color
distance” and the color distance, using 6D (X, Y, Z, R, G, B) data point values,

incorporate both the spatial distance and the color distance that a data point has from
an associated mesh face when the data point has been removed from the mesh. In the
up resolution construction process 131, the unmeshed point that has the highest
distance value will be the next most significant point. The exact specifications for
distance calculations in exemplary embodiments are set forth below. In the down
resolution process 132, the calculation of geometric/color distance requires that the
system “hypothetically” remove the point from the mesh and then calculate a distance
for the point against a triangle in the mesh that could be associated with the removed
point. In contrast to the geometric/color distance calculation in up resolution
construction which seeks to locate the unmeshed point with the largest distance. The
geometric/color calculation procedure in the down resolution construction process
searches for the point of “least” significance and the meshed point that has the lowest

distance value will be the “least significant point.”

NORMAL DISTANCE: It is known that when a point has been inserted into a mesh
structure, the system can associate with that point a normal vector which gives an
indication of the topology of the mesh structure at that point. A vector that is normal
to a plane is perpendicular to all the vectors contained in that plane. In the exemplary
embodiment, the normal for a point is calculated to represent an average of the sum of
the normals for all triangular faces that are connected to the data point and use it as a
vertex. Fig. 4 depicts a normal 155 for the point 156 which has been constructed from

the normals 157-161 of the triangles 162-166.

In an up resolution construction process, the use of normals for the determination of
significance would be most practical if the data points came to the system with their

normal vectors already associated. When the initial set of points consists of a random

10

15

25

WO 98/59300

PCT/US98/13008

29

“cloud of points” with no associated connectivity information and no normal data
associated with them, it may be too time consuming to execute a point insertion
process in up resolution construction using the normal distance calculation as the
determinant of significance. However, if the initial plurality of data points 2a came to
the present invention with some connectivity information, including normal
information, or if normal vectors were derived from the connectivity information
available, then the processor could use the normal distance calculation procedures
outlined below to create an up resolution procedure that determines significance by

normal distance.

In a down resolution construction process, calculating normals can be more practical
and in the present invention, a system for calculating normals is presented as part of its’
process of preparing a mesh for down resolution construction. During the down
resolution construction process, the processor can (before down resolution point
removal begins) calculate a normal vector for each data point in this dense mesh.
Because the mesh is in its most dense and detailed state at the beginning of the down
resolution process, the normal vectors provide a good indication of the surface
topology for the mesh. Thus, in a down resolution process, normals can be used

easily in the selection process that determines what next point to remove.

When considering the effect of any point removal on the mesh structure in a down
resolution point removal process, the system can compare the normal of the remaining
face at the location of the point removal against both: 1) the normal for the data point
removed and/or 2) the normals for all of the previous points removed that are
projected into the mesh triangle being compared. Using the set of originally computed
normals for comparison, the present invention enables the determination of significance
to be based upon the topology of the original dense mesh -- i.e. the reference which
most closely approximates the original object. In the exemplary embodiment this

procedure is described in detail below.

10

15

25

WO 98/59300 PCT/US98/13008

30

The present invention can also be configured to recompute normal vectors for each
data point remaining in the mesh as the mesh changes in the down resolution mesh
construction process 132. Thus, as points are removed from the mesh and the
topology of the mesh changes, the system can recompute the normal vectors for each
remaining point. In such an embodiment, using “dynamic normal calculations,” the
system evaluates both the current normal vector for the point under consideration as
well as normals for points that have been removed from the mesh that were associated
with the triangle in question. This determination of significance allows the system to

create a smooth transition between point removals in the mesh.

CHECKING THE MESH CONSTRUCTION FOR OPTIMALITY: As points are

added to a mesh in up resolution construction or removed from a mesh in down
resolution construction, each of those processes (131 and 132) execute a checking
procedure which examines the connectivity of the mesh and insures that the mesh
maintains an optimal structure. In the exemplary embodiment, checking of the mesh
structure in the up resolution process can be accomplished by a number of checking
procedures which optimizes by:

. Delaunayian optimization principles; or

. Data dependent principles
The Delaunayian and data dependent checking procedures flip edges to change the
connectivity of the edges and data points as necessary to achieve better structural
quality for each mesh. Delaunay triangulation optimality principles help to insure that
the irregular triangulated mesh maintains a construction of evenly proportioned
triangles. As stated above, Delaunayian triangulation principles teach that a
circumcircle defined by the vertices of a triangle will not contain another data point of
the mesh. Delaunay triangulation is recognized as one type of optimization for mesh

construction which insures homogeneous, regular triangles.

Data dependent optimization techniques use the information available about the shape

of the object and will adjust the edges of the mesh so that they are aligned with the

10

15

20

WO 98/59300 PCT/US98/13008

31

contaurs of the object. Data dependent optimization techniques evaluate object related
data such as:

. Geometric and color distances; and

. Normal distances
when attempting to optimize mesh connectivity. Data dependent edge checking
routines can be used in both the up resolution construction process 131 and the down
resolution construction process 132. Again, as normal vectors are more easily and
readily compatible in a down resolution construction process, data dependent checking
would more ordinarily be performed in a down resolution construction process.
However, normal-based data dependent checking could be used in up resolution mesh
construction, especially if the data points came to the mesh construction system with

associated normal information.

CREATING HISTORY LIST DATA: As the system either adds or removes selected
points in the up resolution construction process 131 and the down resolution
construction process 132, the system also tracks the history of steps taken for those
point insertions or removals, including the checking steps taken to achieve the optimal
quality characteristics (such as by Delaunay or data dependent optimality principles).
Both the up resolution construction process 131 and the down resolution construction

process 132 store information concerning those steps -- the history data.

The history data permit the up resolution and down resolution construction procedures
131 and 132 to create meshes with dynamic resolution capabilities. The processor
uses the history data to undo or reverse a point insertion by deleting the point or
reversing a point deletion by inserting the point. To take advantage of those dynamic
resolution qualities, the system of the present invention provides in Fig. 3 an up/down
resolution toggle function 136 to dynamically adjust the resolution quality of any mesh
using the values stored in mesh’s history list data. The up/down resolution toggle
function 136 follows back and forth over the list of inserted or deleted points and the
information in the history list (described below) to execute rapid resolution

adjustments. The up/down resolution toggle function 136 in the exemplary

10

20

25

WO 98/59300 PCT/US98/13008

32

embodiment also functions with the rendering function 134 to output displays of
meshes at any given resolution. In addition, an interface 138, provides a user or
application interface for the mesh construction, toggle and display functions

(131,132,134 and 136).

To perform their functions, each of the programmed elements for up resolution or
down resolution processing 130-136 will access a number of data structures 140.
Although many different data structures are suitable, the following are exemplary for

the data structures 140:

6D DATA POINT LIST 142: Inthe exemplary embodiment, the data structure for the

6D data point list 142 contains two arrays: an X,Y,Z array (141), which contains
spatial coordinates, and an R,G,B array (143) which contains color coordinates. Each
array (141 and 143) is dynamically allocated and sized to the number of data points
created through the wrapping process (build and wrap 130). In the exemplary
embodiment each X, Y, Z array slot has three floating point numbers (e.g., 32 bits
each) allocated to it. The R, G, B array has 24 bit locations in each slot (8 bits per
color). Each X, Y, Z value is combined or linked to a specific R, G, B value. At each
entry in the X, Y, Z array 141 in the exemplary embodiment there will be aR, G, B
color value corresponding to that point at the same location in the R, G, B array 143.
For the three color values, red, green and blue (R, G and B), it is understood that color
or texture values can be represented in other ways, such as by black/white/gray, cyan-
magenta-yellow (CMY), hue/saturation/intensity (HSI), y-signal, u-signal and v-signal
(YUV) or other color space systems, and the R, G, B array 143 in the 6D data point

list 142 would contain data slots for such other representations.

In an alternative embodiment, the 6D data point lists could also be stored using a tree
structure in which the X, Y, Z and R, G, B, arrays are created not as corresponding
lists but as two corresponding trees, where for each node in the X, Y, Z array 141

there is a corresponding node in the R, G, B array 143.

10

15

WO 98/59300

PCT/US98/13008

33

NORMAL LIST 149: In addition to the spatial and color data maintained for each
point in the data point list 142, the present invention also provides a data structure to
store other "per-vertex" information, such as normal information. As stated above
when a vertex has been placed in a mesh configuration, it is possible to calculate for
that point a normal vector which gives an indication of the curvature or topology of
the mesh. Also, in some situations, normal information can either be included with the
data point information or derived from connectivity information. When such normals
are available, such as in the exemplary down resolution process 132, the system stores
the normal vectors associated with each set of X, Y, Z, R, G, B coordinates in a
normal list 149. Like the X, Y, Z and R, G, B arrays 141 and 143, the normal list 149
is a dynamically allocated array corresponding to the number of available 6D data
points. For each entry in the X, Y, Z array 141 there will be a corresponding entry in
the normat list 149 into which the system can write computed normal values, such as

three 32 bit floating point numbers.

MESH DATA STRUCTURE 144: As the initial mesh is constructed and points are
either inserted or removed by the up resolution construction process 131 or the down
resolution construction process 132 (and the up/down resolution toggle function 136),
the system will access and alter a mesh data structure 144. The mesh data structure
144 maintains information for each mesh face, its vertices, edges and neighboring
faces. The mesh data structure 144 contains a plurality of face records (e.g., 145)
(such as a linked list) each of which contains information concerning a particular
geometric mesh face. The set of face records together form the data structure for the
mesh model. In an exemplary embodiment, the system represents a face record in an

irregular, triangulated mesh as follows:

10

15

20

WO 98/59300 PCT/US98/13008

34
Record: “FACE”
NEIGHBORS: Neighbor #0, Neighbor #1, Neighbor #2
(Array of 3 pointers to other FACE records)
VERTICES: Vertex #0, Vertex #1, Vertex #2

(An index array containing the slot location references
to each of the three 6D (X, Y, Z, R, G, B) coordinates
on the data point list 142)

FLAGS Indicators specifying properties of a face, such as its
position on a triangulation

ASSOCIATED POINT Index references to locations on the 6D data point lists
INDICES for each data point that is “associated with the face of
any given construction” (e.g., an index to the first
element in a linked list of indices of vertices associated
with a face)

FACE INDEX Unique ID of the face

The data element NEIGHBORS consists of an array of three pointers, each pointing to
a FACE record for a neighboring (adjacent) face in the mesh. The data element
VERTICES is an index array that references a location on the 6D data point list 142
(and the 6D (X, Y, Z, R, G, B) , point information) for each of the triangles’ vertices.

The system stores data concerning each vertex and neighbor in the face records of the
mesh data structure 144 according to a rigid ordering system. In an exemplary
embodiment, as shown by the triangle in Fig. 5, the system orders the points of a
triangle in a counterclockwise sequence: 0, 1 and 2. It is understood that the vertices
could also be numbered in clockwise order or ordered by another fixed ordering
system. The system orders the neighboring triangles in the same counterclockwise
order to relate them to the vertices. The system indexes neighbor #0 to be directly
opposite vertex 0. Neighbor #1 is directly opposite vertex #1. Neighbor #2 is directly
opposite vertex #2. As is described below, the present invention provides a system to
maintain this ordering during point insertion and deletion and during any checking
procedure to insure the optimality of the mesh such as a check to maintain Delaunayian

or data dependent optimality. This system uses the ordering of the vertices and

10

25

WO 98/59300 PCT/US98/13008

35

neighbors (as is described in further detail below) to complete the needed mesh

reconfigurations.

The associated point indices of the face records contain the 6D data point array
locations for each 6D data point that must be associated with the triangle, for purposes
of calculating distance values -- based on geometric distance or normal distance -- or
for optimal construction checking. When the faces are altered, such as by point
insertions or point deletions, the data points associated with a particular face change.
As changes to the faces occur, the system of the present invention will rearrange the

set of associated data points for each altered face.

FACE LIST 148: The vertex list records in the face records (e.g. 145) of the mesh

data structure 144 provide a link from face to data point for each of the vertices in the
mesh. To build a link from any data point to the mesh, the presented invention
provides in the exemplary embodiment a fact list 148. The face list is an array
structure containing points whose index entries correspond to the entries in the 6D
data point list 142. When a point is inserted into the mesh, the process will associate a
point reference to the face in which the point has inserted. The reference to this one
initial face permits the system to rapidly access the mesh at the location of that data

point.

DISTANCE LIST 146 As stated above, the present invention uses a selection process
to choose what next data point to add in the up resolution construction process 131 or
remove in the down resolution construction process 132. The decision to add any 6D
data point to the mesh in up resolution construction is based on a determination of
whether that point, of all the remaining unmeshed points, is the “most significant” to
the mesh structure in terms of adding spatial, color or other detail. The decision to
remove any 6D data point from any mesh in down resolution construction is based on
a determination of whether that point of all the remaining points in the mesh is the
“least significant” to the mesh structure in terms of adding spatial, color or other detail.

To find the “most significant” or “least significant” point in any given mesh

10

20

WO 98/59300 PCT/US98/13008

36

construction, the system and method of the present invention performs a series of steps
(as will be described in further detail below) to calculate either: “geometric/color

distance” or the normal distance.

When a distance is calculated for a given point in up or down resolution constructions,
the distance value is added to a distance list 146. (Fig. 3) In an up resolution
construction format, the distance list 146 contains the calculated distance of each
unmeshed data point as it exists in from the relevant face on the existing mesh. Ina
down resolution construction format, the distance list 146 contains the calculated
distance value for each meshed point remaining in the mesh. As the processor
calculates a distance value for a given 6D data point, in either the up or down
resolution constructions, the processor makes the calculation with reference to a
particular face and thus, for distance calculation, a point will be “associated” with a
particular face. The processor will then store on the distance list 146 information
including: (i) the calculated distance value; (ii) an index reference to the location on
the 6D data point list containing the 6D (X, Y, Z, R, G, B) coordinates for the point;
and (iii) a pointer reference to the particular face record in the mesh data structure 144

for the associated face.

When a point is entered into the mesh in up resolution 131 or removed from the mesh
in down resolution 132, the distance value for the point is set to 0 (or its entry can be
deleted from the list). As the system of the present invention adds or removes points
according to the distance selection process, the computer system 3 organizes the
entries in the distance list 146 by a technique that always returns the 6D data point
having the largest distance from its associated face in an up resolution construction or
the point having the smallest distance in down resolution construction. The computer
science technique of “heaping” is one organizational system suitable for storing
distance values on the distance list 146 and quickly returning either the largest or
smallest distance value. A heap organizes a list into a tree structure where each parent
node has a distance value that is larger than each of its children. In the up resolution

construction, the processor maintains the largest distance value at the top of the tree

10

15

20

25

WO 98/59300 PCT/US98/13008

37

structure (e.g., position 147) along with a pointer to its vertex in 6D data point list
142. In the down resolution construction format, the smallest distance value remains
at the top of the heap. A set of heap manager functions 147 enable the processor to

add and delete values from the heap.

INSERT LIST 150 AND HISTORY LIST 152: When the computer system 3 adds a

6D data point to the mesh in the up resolution construction 131 or removes a point in
down resolution construction 132, it will also write indications of the insertion process
on an insert list 150 and a history list 152. The insert list 150 and the history list 152
are data structures that permit the system of the present invention to perform rapid
up/down resolution toggling at run-time. These lists provide data structures used to
track the sequence of point additions and other changes that occur so that the up
resolution and down resolution construction processes can be rapidly reversed and

replicated.

The insert list 150 contains locations which store a copy of the 6D X, Y, Zand R, G,
B coordinates of the point which the processor has deleted or inserted. These values
have been copied from the arrays in the 6D data point list 142. In the exemplary
embodiment, the insert list 150 also contains a reference to a face record in the mesh
data structure into which the data point was inserted or from which it was removed.
For each entry in the insert list 150, the history list 152 contains a sequence of compact
indicators which provide information so that the system can reverse steps of the

optimality checking that occurred during point insertion or point removal.

In the exemplary embodiment, both the insert list 150 and the history list 152 comprise
stack structures where the processor enters data in an order which can be quickly
reversed. The insert list and history list can be maintained as separate lists or they can

be compared as one single list.

In the up resolution construction process 131, the processor loads the insert list 150

and history list 152 in LIFO (last in first out) order. As the point inserted earlier in up

10

15

25

WO 98/59300 PCT/US98/13008

38

resolution construction are more significant than the points added later, the earlier
points should be removed last in any down resolution toggling. In the down resolution
construction process, the system constructs the insert list 150 and the history list 152
in the opposite way. As points are removed from the mesh during down resolution the
processor loads the insert list 150 and history list 152 stacks in FIFO (first in first out)
order. Because the deletion processor removes points of less significance earlier and
more significance later, in rapid up resolution toggling the processor will seek to

reinsert the most important points first.

In an alternative embodiment, the information contained in the insert list 150 and
history list 152 could be maintained in a vertex tree structure instead of a stack

structure. The vertex tree structures would support view-dependent multi-resolution.

Once the insert list 150 and history list 152 have been built by either up resolution or
down resolution, the system of the present invention can rapidly increase or decrease

detail (and provide "dynamic resolution" capabilities using those lists).

The system can then increase or decrease resolution from the mesh simply by following
in reverse order the stacks of the insert/delete list 150 and the history list 152. The
computer system 3 can also regenerate meshes to specific levels of detail by following
the sequences of point removals and reconfiguration already indicated on the insert list
150 and the history list 152. To perform extremely rapid mesh generations, the
computer system 3 will first build the insert list 150 and history list 152 in a pre-routine
time process following either the up resolution or down resolution process, adding or
deleting points in a first pass to the full capacity of the mesh and then, in subsequent
mesh model generation processes, simply follow those lists to rapidly regenerate

meshes to any level of detail, such as to a user-specified tolerance.

RECALCULATE LIST 154: As stated above, as 6D data points are added to or
removed from the mesh, the faces of the mesh change. When those faces are changed,

values calculated for any 6D data points associated with the face can change. In

10

15

20

25

WO 98/59300 PCT/US98/13008

39

addition, some of the 6D data points which are associated with the mesh face can no
longer be associated with the face after the insertion or deletion. When such
alterations occur, the computer system 3 must calculate new values for the affected 6D
data points or rearrange their associations with particular mesh faces. To streamline
the recalculation process, the computer system 3 employs a recalculate list 154 to list
face records whose 6D data point values will need reevaluation. In an exemplary
embodiment, the recalculate list 154 operates as a stack (maintained in LIFO order)

containing pointers to entries in the 6D data point list 142.

The data structures 140 described above are used with the basic program elements to
perform system functions. It is understood that the data structures 140 are exemplary;
the teachings of the present invention can also be implemented using other data
structure configurations. In addition to the elements described above, there are also a
number of task performing subroutines and functions which are further described

below.

iii. 6D Mesh Construction

a. building and wrapping

As stated above, the computer system 3 uses the build and wrap function 130 in an
exemplary embodiment to construct a set of 6D (X, Y, Z, R, G, B) data points. The
process as depicted in Fig. 6 consists of two steps: first is a step (step 170) of building
(if necessary) an initial wire frame mesh (which can be one which uses only the 3D
spatial coordinates); second is a step (Step 172) of “wrapping” the pixel coordinates of
the texture map around the 3D wire frame mesh and constructing 6D X Y,Z R, G,

B) coordinates for each of the available pixels through a rasterization process.

Step 170, the step of generating an initial spatial mesh, requires the processor to create
a wire frame mesh using only the 3D X, Y, Z spatial values. Many different techniques
currently exist for creating a wire mesh of 3D object coordinates. Pending U.S. Patent

Application No. 08/730,980, expressly incorporated by reference herein, describes a

10

15

20

25

WO 98/59300 PCT/US98/13008

40

system and method which is suitable for rapidly building the initial triangulated mesh

using spatial values in step 170.

Each X, Y, Z data point in the plurality of data points 2a comes with a reference (-a
u, v reference) to a corresponding pixel point in the texture map file 2b. The X, Y,Z
and R, G, B values for these data points can also be loaded into the 6D data point list.

Alternatively, the initial spatial mesh can be stored in a temporary data structure.

In step 172, the rasterization process can be configured in the exemplary embodiment
to generate either a full compliment of X, Y, Z coordinates for every R, G, B texture
map coordinate. Alternatively, the rasterization process can be configured to make a
more selective pass through the texture map coordinates and create X, Y, Z,
coordinates only for certain R, G, B texture map values. Because full rasterizations
can potentially generate hundreds of thousands of new 6D data points, it may not be
advantageous to introduce them all into the mesh construction. In the up resolution
construction process 131, it may not pose a problem to first generate a full compliment
of X, Y, Z values for each R, G, B value because the up resolution mesh construction
process itself can serve to discriminate and select which points it would choose to add
into the mesh. However, it may not be advantageous to first build an extremely dense
mesh with a 6D data point to represent each texture map coordinate which would then
have to be simplified in a time-consuming down resolution process 132. In such
situations, it may be more advantageous to be discriminating when generating the 6D
points in the rasterization process. However, if the processing hardware is available,
the full complement of point values could be generated even for a down resolution

process.

There are many techniques currently available which would be suitable for rasterizing

X. Y, Z coordinates from texture map coordinates according to the present invention.

The rasterization process creates 3D X, Y, Z coordinates by interpolation. Fig. 7

depicts an exemplary pixel 250 from an area in a texture map file which is limited to a

10

15

WO 98/59300 PCT/US98/13008

41

mesh triangle and shows how the processor can determine a 3D X, Y, Z value for the
pixel. Pixel 250 is bounded by vertices of a triangle having known X, Y, Z values: Le,
point A (point 252); B (point 254); and C (point 256). Pixel point 250 falls along a
scan line of pixels, identified as line P 258. Line P 258 intersects two edges of the
triangle edge AB 260 and edge AC 262. The processor can determine 3D equzitions
for edges AB 260 and AC 262 and correspondingly, an equation for line P 258 based
on intersections with the AB/AC edges. From those determinations, the processor can

calculate 3D X, Y, Z values for pixel 250.

Fig. 8 depicts an exemplary process flow for generating points according to a
rasterization process. The process of Fig. 8 generates a full set of 6D (X, Y, Z, R, G,
B) values from the available spatial and texture data. In step 200, the processor
begins a loop that will rasterize X, Y, Z coordinate values for the associated texture
map pixels with a mesh triangle. The processor accesses the triangle information from
an initial mesh data structure created by the process in step 170. In step 202, the

processor gets the next available triangle.

In step 204, the processor locates the u, v links that each vertex in the mesh triangle
has as a reference to a corresponding point in the texture map file. As noted above, to
locate the texture map pixels, the processor uses the (u, v) links that each vertex in the
mesh triangle has to a pixel value in the texture map file. If the spatial and object
modeling data has been obtained from a scanning system, that data was obtained
simultaneously from the same camera and the X,Y values of the 3D spatial coordinates
of each vertex will match the u, v 2D coordinates of a designated bitmap image in the

texture map file 2b.

In step 206, the processor determines from the u, v texture map coordinate values the
minimum and maximum texture map coordinates vmax and vmin for the three triangle
vertices. As the pixels in the texture map are arranged in “scan line” rows

corresponding to v, each v scan line will contain R, G, B coordinate values for each u.

The rasterization process will loop through each v scan line creating X, Y, Z values for

10

15

25

WO 98/59300 PCT/US98/13008

42

the corresponding R, G, B values. The umin and umax values are used for rasterizing

those values determined for later processing.

In step 208, the processor loops to calculate, for each edge of the texture map triangle
found by the three u, v coordinate values, the change in X, Y, Z for each change in the
v value and the change in X, Y, Z for each change in the u value. For each edge, the

processor, in step 210, computes:

dv du

dXdv dXdu
dYdv dYdu
dZdv dZdu

In this step, the processor also arranges the edges to identify the two edges that have
the vmin value. It is from that part of the triangle that the rasterization process will

begin.

In step 212, the processor begins a set of processes to set the edge values between
which the processor will compare the X, Y, Z values. For each v line of pixels, the
processor will need to establish a right and left u position and a corresponding X, Y, Z
value. As the v scan lines change the X, Y, Z values will change following the dv
values. Along each u scan line the X, Y, Z values will change along the du values. In
step 212, the processor sets the right and left edge points at the outset to be the shared
endpoint of the edges (right and left) which share the vmin value. Next, the processor
proceeds to step 214 to establish a stepping factor for each of the variables based on
the delta values, dXdv, dYdv, dZdv and dudv for each scan line step through the pixel

values.

In step 216, the processor begins a loop to process the pixels in the scan line. The
loop processes each scan line from vmin to vmax. The first step is to begin a check on
the edges which use the vmin value to see if they have not run out. If either the right
or left edge has run its length, and the v scan line is beyond it, the processor will swap

the third edge with that edge.

10

15

25

WO 98/59300 PCT/US98/13008

43

In step 220, the processor establishes the boundary of right and left edges along the v
scan line and the X, Y, Z values that are associated with it. The step uses the dv
values to establish a left edge u point and a right edge u point and the associated X, Y,
Z values. With the right and left edge of the scan line established, the processor can

now generate in X, Y, Z value for each texture map coordinate R, G, B value.

There are functions available to generate their point values through rasterization, such
as the “draw scan line” left functions. In addition, Fig. 8 presents a loop which
processes X, Y, Z values for each u position moving from the left to the right along the
scan line. For each u increment, the processor creates X, Y, Z values and loads them

into the 6D data point list 142 using the dXdu, dYdu and dZdu delta values.

In step 226, the processor loops to step 222 and continues processing X, Y, Z values
for each u position in the current scan line. The processor loops in step 228 to step
216 to process another scan line. When each scan line for the triangle has been
processed, the processor loops in step 230 to step 200 and processes the next triangle

until all triangles have been processed.

The rasterization process described in Fig. 8 generates one X, Y, Z spatial coordinate
for each texture map coordinate. As stated above, there are situations when it would
not be advantageous to generate for each texture map coordinate a corresponding X,
Y, Z value. For these situations the present invention provides a system and method of
generating 6D data points with some discrimination. The procedure functions very
much like the procedure outlined in Fig. 8, except that in addition to processing delta
values for dX, dY and dZ, the process would also process delta values for dR, dG and
dB using the R, G, B values from the texture map that were associated with the
original three mesh data points. The rasterized R, G, B could be compared against the
actual R, G, B values in the texture map. If the difference between these points was
greater than a threshold (as determined in a comparison step (before step 224 in Fig. 8
for example) then the processor would generate a X, Y, Z value and create a 6D data

point. If the difference fell below a threshold, it would not.

10

15

20

25

WO 98/59300 PCT/US98/13008

44

iv. Mesh Building in 6D with Multi-Dimensional/Multi-Axis Coordinates

As stated above, a mesh with dynamic resolution capabilities can be created with the
above-generated 6D data points using either an up resolution construction process 131

or a down resolution construction process 132.

a. Dynamic Mesh Construction Using the Up Resolution process

In the exemplary embodiment, the processor executes the up resolution construction
process 131 (Fig. 3) to build a mesh model point by point with ever increasing
resolution of detail. The up resolution function 131 has two basic steps as set forth in
Fig. 9. First, the processor creates an initial mesh structure (in step 270) and second,
the processor incrementally adds 6D data points to that mesh structure following a
selection process that assesses the significance of each unmeshed data point (in step

272).

The processor in the up resolution construction process builds an initial mesh structure
with reference to an initial object, such as a plane or sphere, which is selected in the
exemplary embodiment by user-specification. (For topologically complex surfaces
whose connectivity is given before up resolution construction, the highest resolution
mesh itself may be used as the reference object.) In the down resolution process, it is
possible to use the original mesh (vertices, connectivity and normals) as the reference

object, against which error is measured.

In step 270, the processor provides functions to assist in the selection of the initial
reference object. For a planar reference object, a user can select an equation for a
plane that exists above, below or within the set of 6D data points, depending on user
preference. For a spherical reference object, the user typically will select an equation
for a unit sphere at a center point location within the mass of the 6D data points thus

providing separation between back, front, left, right, top and bottom. Many different

10

15

25

WO 98/59300 PCT/US98/13008

45

techniques are currently available and can be used to determine “proximity to” the
initial reference object. For example, the processor could determine an equation
distance from an initial reference plane by a minimum sum of squares method. For a
spherical reference object, the processor can determine the sphere’s equation by a
fitting function which determines center of mass. Fig. 10a depicts a sphere fitted to a
cloud of data points fitted to a sphere. Fig. 10b depicts a plane fitted to a cloud of
data points. In the exemplary embodiment, the processor uses the 3D X, Y, Z values
of the 6D coordinates in the fitting equations. Although it would be possible to
include color data as a factor in determining the initial reference object, the exemplary

system does not include such calculations.

The processor, step 270 (Fig. 9), constructs an initial mesh, the structure of which
depends on whether a sphere, plane, or other object was chosen as the initial reference
object. If a sphere is selected as the initial reference object, the processor constructs
the initial mesh in the form of a tetrahedron. Such a tetrahedron is depicted in Fig.
10c. The processor builds mesh faces and adds them to the mesh data structure based
on the selection of four data points from the cloud of 6D data points. In an exemplary
embodiment, the processor executes a procedure to select four points from the group
which most closely determine a tetrahedron of equilateral triangles. However, in
alternative embodiments any initial 3 or 4 points from the set of 6D data points, even
randomly selected points, will be sufficient for the initial mesh. The processor uses

these points to build face records and places the face records in the mesh data structure
144,

If the initial reference object is a plane, the processor creates an initial mesh in the form
of either a single triangle or a quadrilateral (constructed from two triangles). In the
exemplary embodiment, the points for this initial mesh will be points that exist on the
reference plane itself as “Steiner” points. The processor selects the initial points so
that the area bounded by the initial mesh on the initial reference plane includes all of

the 6D data points as projected on that plane. A representation of such an initial mesh

face is set forth in Fig. 10d.

10

15

20

25

WO 98/59300 PCT/US98/13008

46

In selecting the points of the initial mesh faces in the planar example, the processor
must also designate a color value for each initial vertex selected, as the present
invention incorporates both spatial and texture data into the construction. As initial
6D values are added to the mesh, the selection criteria incorporate color values as one
selection determinant. In the exemplary embodiment, the processor will select black as
the initial color for the mesh construction, and 6D points of light color will contrast
and will be added by the selection procedure (as will be described below). However,
other colors can be used in the initial color setting, such as white, neutral colors such
as a gray (when the 6D pixel values have both light and dark settings), and vibrant
colors such as red. When the processor has completed the procedure to build the

initial mesh in step 270, it proceeds in step 272 to add points to the mesh.

Finally, the highest resolution mesh itself, or some topological equivalent thereto, may
be used as the reference object. This approach is most appropriate for surfaces that
are too complex to be projected onto a plane or sphere and whose connectivity is

given before up resolution construction.

V. Incremental Addition of Multi-Dimensional/Multi-Axis (6D) Coordinates

The selection process of step 272 follows the principle that mesh points can be ordered
according to their significance in describing the basic shape and color features of the
object. By selecting those points which are most descriptive in terms of color and
shape from the list of points, the computer system 3 of the present invention can fully
approximate, describe and reproduce both the basic shape contours and color details of
an object with relatively few selected points. As more detail is required, a system
following the up resolution selection principle can add more details by simply adding
the next most significant points. Using the selection process of the present invention,
it is possible to generate a very low resolution mesh model of an object which contains
enough detail to create an acceptable image of the object on most displays. For
example, a set of 6D data points obtained from a laser scan of a person’s face can be

typically simplified from an initial set of 100,000 data points to a mesh of a few

10

15

25

WO 98/59300 PCT/US98/13008

47

thousand data points which describe the contours and color details with good

resolution.

In the exemplary embodiment, the procedure operates by up resolution -- incrementally
adding 6D points of detail from the mesh until the mesh meets the resolution set by the
user’s specification, or until the mesh is created to the highest density of resolution.
When the system adds a point to the mesh, a reference to the point is added to the
insert list 150 (Fig. 3) -- the LIFO-ordered stack which tracks the sequence of point
additions. (As stated above, the insert list may also be structured as a tree to provide
“view-dependent” multi-resolution). The addition of a point also causes changes to

the mesh structure as is described below. The sequence of changes that occurs due to
point addition is maintained in the history list 152 (Fig. 3, which is also maintained as a-
LIFO stack or tree). When the insertion and history lists (150 and 152) contain the full
sequence of point additions from initial mesh to highest resolution mesh, it is possible,
as is described below, to follow the insert list 150 and the history list 152 to rapidly

generate a mesh model of the object to any level of detail.

vi. The Up Resolution Selection Process

As stated above, determination of a 6D data point’s significance in the up resolution
construction process depends upon how much spatial or color detail a 6D data point
would add to the mesh’s current configuration. Initially, the mesh is in the form of a
plane or a tetrahedron. The selection procedure seeks to add, at the earliest stage, the
points which are the most significant in describing the basic shape and color details of
the object and, thereafter to continue adding points where each next point is the most
significant point from the remaining unmeshed points in terms of adding spatial or

color significance.

To make the determination of what next data point to add to the mesh, the processor 3
in step 272 (Fig. 9) calculates a “distance” value for each unmeshed 6D data point and

selects the next point to add based on this “distance” value. Pending U.S. Patent

10

15

20

25

WO 98/59300 PCT/US98/13008

48

Application No. 08/730,980 and pending U.S. Patent Application No. 08/730,979,
both referenced above and incorporated by reference herein, describe systems and
methods for calculating a distance value that a data point value would have in relation
to a mesh using 3D spatial coordinates. The present invention goes beyond that basic
teaching and permits a distance value to be calculated based on 6D coordinates, using

both the X, Y, Z and R, G, B values of each unmeshed data point.

Fig. 11 depicts triangle 300 formed as part of a mesh construction and a 6D data point
302 which has yet to be incorporated into the mesh. In this depicted example, the
initial reference object for the mesh is sphere 303. A projection of triangle 300
(triangle 304) appears on sphere 303. 6D data point 302 can be associated with
triangle 300 when the point lies within the bounds of the triangle. To prove that
condition, a line 308 can be drawn from the center point of triangle 300 (point 310) to
6D data point 302 and it can be shown that the projection of that line segment
(projection 312) on sphere 303 does not intersect any edge of the projected triangle

304.

Using ordinary 3D geometric principles, the system of the present invention can
calculate the spatial distance 6D data point 302 has in relation to triangle 300. The
three vertices A, B, and C of triangle 300 form a plane, and the distance of point 302
from that plane can be defined Euclideanly in terms of unit vector n (314) normal to

the plane as follows:

d=k - (point 302) 'n

wherek=n"A.

Distance may also be defined in a non-Euclidean way. In the down resolution process,
each point removed is associated to a face which remains after the removal. Distance
may therefore be defined as:

[¥ (- n)?

i=1

10

15

20

25

WO 98/59300 PCT/US98/13008

49

where n, through n,, are the respective normals of the points associated with the face,
whether because the point is a vertex of the face or because the point was associated

to the face in the down resolution process.

Color deviation may be measured non-Euclideanly. In the exemplary embodiment, for
example, the deviation is set at:
Ly [Ryz - Ry| + L |Goz - Gy| + Ly [Bacz - By

where L, for example, is the luminance or phosphor value of the color red.

The spatial metric and the color metric, whatever those respective metrics may be, can
be fused into a combined metric incorporating both spatial features and color features
as significance determinants. For example, the variables of space and color can be
related through the use of a factor value (alpha). Alpha could relate color to space by
providing a weighing factor indicating the relative significance of color and space.
Thus, to incorporate color and space for the determination of significance as an
expression of the distance a point will have from a mesh face, the equation in 6D can
be written as follows:

-—

(pOint 302) - p = d = (dX7 dY’ dZ9 dRa dG’ dB)

distance = dez'*'de“*’dzz + o (Ly | dg] +LG‘dG' + Lglds))

During the incremental insertion procedure of step 272, the processor 3 calculates a
6D distance value for each unmeshed 6D data point and compares those distance
values (through the heaping procedure) to identify the point having the largest distance
value. The point with the greatest distance value is determined to be the “most

significant” and will be added to the mesh.
vii. Up Resolution Incremental Insertion of Points

Using the selection process describe above, the processor 3 in step 272 executes a

procedure to incrementally add 6D data points into the mesh. An exemplary process

10

15

25

WO 98/59300 PCT/US98/13008

50

flow for an incremental insertion process is set forth in Fig. 12 is and described in what

follows.

In step 400, the processor 3 performs the initial calculation of 6D distance values for
each unmeshed data point. Initially, that calculation will be for all of the data points on
the 6D data point list 142. To find these distance values, the processor 3 executes
some combination of distance calculations described above for each data point. In this
step 400, the processor: i) locates the relevant face with which the 6D data point can
be associated; ii) makes the distance calculation described above; and iii) adds the
distance calculation and a reference to the 6D data point to the associated face in the

distance list 146.

In the exemplary embodiment, the processor 3 locates the proper mesh face to make a
distance calculation for a particular 6D data point by executing a locate function 401.
The locate function 401 identifies the triangle in the current mesh configuration which
is spatially closest to the 6D data point and can be used when calculating a distance
value for the unmeshed data point. As stated above, a data point can be associated
with a particular triangle when the projection of the data point on the reference object
falls within the bounds of the projection of the triangle (see Fig. 11 above). If the
projection of a line from the unmeshed point in question to the center point of the
triangle in question does not intersect any edge of the triangle’s projection, the triangle
can be associated with the data point and the processor can calculate the distance
based on this triangle. Pending U.S. Patent Application No. 08/730,980 and pending
U.S. Patent Application No. 08/730,979, both referenced above and incorporated by
reference herein, describe systems and methods for locate functions which are suitable

for locate function 401 of the present invention.

When the processor 3 locates a triangular face for a particular data point, the data
point and the face will be associated. The processor will place a reference to this
association on the face record for the particular face in question in the mesh data

structure 144. The face record will carry in its association indices an index reference

10

20

25

WO 98/59300 PCT/US98/13008

51

to the location of the data points coordinates or the 6D data point list 142. Then the
processor 3 (executing a distance function 403) calculates a distance value for the data
point, using the equations outlined above. The processor then places the calculated
distance value (along with a reference to the 6D data point) onto the distance list 146,
using the set of heap manager functions 147 described above. When distance values
for all the unmeshed data points have been calculated, the processor then begins the

incremental addition of data points.

Referring again to Fig. 12, in step 402 the processor begins a loop for incremental
addition of data points into the mesh. The loop permits processing of, for example,
one data point, all of the remaining unmeshed data points, or a set of unmeshed data
points up to a user set distance tolerance (such as when the largest distance value falls
below a user defined tolerance). The incremental addition process creates a mesh that

has “dynamic resolution” capabilities.

In step 404, processing begins by obtaining the 6D data point with the largest distance.
As seen above, the system maintains distance list in a heap structure, so that the node
at the top of the heap contains i) a distance value for the point that is the “most
significant” in terms of adding spatial or color detail, ii) reference in the 6D data point
list 142 to the 6D (X, Y, Z, R, G, B) coordinate values for that data point; and (iii) a
reference to the face that is associated with the point. In the exemplary embodiment,
the processor reads the value from the 6D data point list 142, removes the point’s
distance value from the heap (or nullifies it to' zero) and reconfigures the heap (using
the heap manager 147). The point will be inserted into the face, and that insertion

causes the processor to make a number of adjustments to the mesh.

For one adjustment, insertion of a point into a face necessitates readjustment of all
other unmeshed points that are associated with the face. Their distance to the mesh
face must be recalculated. In step 408, the processor places pointers to those points
on the recalculation list 154. (Later, if additional adjustments must be made in

checking for optimization, the unmeshed points related to those other faces are also

10

15

20

25

WO 98/59300 PCT/US98/13008

52

added to the recalculation list 154.) Once the processor identifies the face for point
insertion and provides for the unmeshed points related to it, the processor proceeds in
step 409 to place a reference to the 6D data point on the insert list 150 and moves in
step 410 to insert the next point into the mesh. The addition of the new point splits the
current triangle into three new triangles. An insert function 412 splits the selected
mesh face and reorganizes the points and edges to create new face records. As stated
above, the system orders the vertices and neighbor of the newly created and

reorganized triangles by a specific and rigid ordering system.

Fig. 13 depicts an addition of point 360 to triangular face 362 (“FACE”) and shows
the alteration of the face, vertices and neighbor relationships that the addition requires.
Before the addition of point 360, triangle 362 with vertex points A, B and C (points
350, 351 and 352 ordered counterclockwise) carried the following relationships in its

face data structure record:

Record: “FACE” (Triangle 362)

NEIGHBORS: Neighbor 0 (Triangle 364), Neighbor 1 (Triangle 366),
Neighbor 2 (Triangle 368)

VERTICES: VO(point 350), V1 (point 351), V2 (point 352)

Adding point 360 requires changes to the data structure links. The addition creates
two addition faces: a RIGHT face (with vertices 360, 350, 352) and a LEFT face (with
vertices 360, 350 and 351).

The original triangle “FACE” no longer has its Vertex 0 at point 350. The processor
sets Vertex O for FACE to point 360. The new, smaller triangle has as vertices points
360, 351 and 352. The links to Neighbor 1 (triangle 366) and Neighbor 2 (triangle
368) also must be changed, because these triangles are no longer neighbors of FACE.
The process will first change FACE'’s neighbor link from “Neighbor 2" to “LEFT”.
The processor will also change FACE’s neighbor from “Neighbor 1" to “RIGHT”.
The data structure for the revised FACE will appear as follows:

10

15

20

WO 98/59300 PCT/US98/13008

53
Record: “FACE”
NEIGHBORS: Neighbor 0, RIGHT, LEFT
VERTICES: VO (new point 360), V1 (point 351), V2 (point 352)

The processor creates new face records, RIGHT and LEFT, as follows:

Record: “RIGHT”
NEIGHBORS: Neighbor 1, LEFT, FACE
VERTICES: VO (new point 360), V1 (point 352), V2 (point 350)

Record: “LEFT”

NEIGHBORS: Neighbor 2, FACE, RIGHT

VERTICES: VO (new point 360), V1 (point 350), V2 (point 351)

The processor also replaces Neighbor 1 (triangle 366)’s neighbor link to FACE with a
link to RIGHT. The processor finds the link to FACE by searching each of Neighbor
1's neighbor links until it finds the one that points to FACE. The processor replaces

Neighbor 2 (triangle 368)’s neighbor link to FACE with a link to LEFT in the same

manner.

This configuration has particular advantages, because it guarantees that the new vertex
is always VO for each face. Also, since each vertex corresponds to an opposite edge
and neighbor, the ordering creates a way to check the configuration for optimality in a
regularized way. First, the neighbor that will be checked for optimality will always be
the side involving neighbor 0. Further, the indexing system guarantees that, by
repeatedly moving toward “Neighbor 1" of each face, the system will circle around all
the faces containing the new point and will eventually get back to the original face.

Thus, the indexing creates a way to make a complete optimality check. To complete

10

15

20

25

WO 98/59300 PCT/US98/13008

54

the indexing process, the system will place a reference to the record face on the face
list 148 at a location that corresponds to the newly inserted point. That reference

permits a quick reference from data point to mesh.

Referring again to Fig. 12, incremental mesh building proceeds to step 414 and checks
the new point addition for optimality, re-organizing the mesh if the configuration
created with the new point is not optimal in quality. All triangles changes are pushed

into the recalculation heap.

The basic procedure of the checking procedure of step 414 is to check the triangles
either by the Delaunay or other data dependent methods as necessary to determine
whether they should be flipped. For each triangle tested, the processor in step 414
makes a call to a basic flip function 416 which tests a triangle, executes a flip of
necessary and returns a yes/no flag showing whether it executed a flip. The checking
procedure stores an indication of the flip function on the history list 152. Pending
Application U.S. 08/730,980 and Pending U.S. Patent Application No. 08/730,979
both referenced above and incorporated by reference herein, describe systems and
methods for moving about the mesh using the adjacency relationship of triangles to
rapidly complete a check of the triangles in the local area around the insertion of a data
point. Such a system and method would be suitable for navigating the mesh structure

to execute a checking procedure according to the present invention.

There are a number of different methods and techniques to check the optimality of a
mesh structure after the insertion of a data point. In the exemplary embodiment, one
method for optimality checking follows the principals of Delaunay Triangulation. In an
alternative embodiment, the system can check the mesh structure based on data
dependent considerations, such as by a test which uses calculated distance values for

the unmeshed points. Exemplary procedures for Delaunay and data dependent

checking are set forth below.

10

15

WO 98/59300 PCT/US98/13008

55

a. Delaunayian Triangulation Check

To implement a Delaunay triangulation check, the present invention projects the data
point values in the 3D mesh configuration onto the reference object. Delaunay
principles hold that a circumcircle described by the three vertices of the triangle will
not contain any other points of the mesh. When a triangle does not conform to the
principle, it is not optimal and requires “flipping”. In such a case, Delaunay principles
hold that the edge that exists between the triangle examined and the triangle which
contains the extra point must be flipped to create a new edge between those two
triangles. In creating the new configuration after point insertion, it may be necessary
to make many flips while checking the resulting triangles for optimality. Pending U.S.
Patent Application No. 08/730,980 and pending U.S. Patent Application No.
08/730,979, both referenced above and incorporated by reference herein, describe
systems and methods for Delaunayian optimality checking and flipping procedures
which are suitable for the checking and flipping procedures of the present invention. If
a triangle must be flipped the processor places a reference to all of the unmeshed data
points plus a reference to their formerly associated triangle onto the recalculate list

154.

b. Data Dependent Checking based on Distance values

It is also possible in the up resolution construction process 131 to perform a data
dependent check using the distance calculations for the unmeshed data points which
are associated with each face. The basic procedure for this data dependent check is to
examine the edge that exists between the two triangles being checked and determine
whether the edge should be flipped based on the data that is available concerning the

shape of the object.

Figs. 14a and b depict a representation of a two triangle configuration which the
system evaluates by a data dependent principle which considers normals. Fig. 14a

depicts two triangles 370 and 372. For each of those triangles there are a number of

10

15

20

25

WO 98/59300 PCT/US98/13008

56

unmeshed points (points 374 to 378 for triangle 370) (points 380 to 384 for triangle
372). The two triangles share edge 371. Fig. 14b depicts the same two triangles with
their shared edge flipped. The unmeshed points associated with the two triangles are
now different. A data dependent checking algorithm will use the distance values
calculated for the unmeshed points as they relate to each triangle configuration to
determine which triangle configuration is better. In the calculation, the configuration

with the least overall “distance” is considered to be better.

Fig. 15 depicts an exemplary process flow for executing an edge check based on data
dependent distance criteria. The checking procedure would operate just as the
checking procedure for Delaunayian optimality, except that in the flip procedure
instead of calculating a circumcircle and making the Delaunayian check, the data
dependent procedure would operate as follows: first, for both of the triangles in
question the data dependent checking algorithm would calculate a value for all of the
unmeshed points that are associated with the mesh equal to the distance of the square
root of the sum of their squared distances. In step 390, the processor receives pointers
to two mesh faces and begins in step 392 to process the distance values that are
associated with each face. References to those points can be found by searching the
associated data point indices that are part of each face record (e.g. 145 in the mesh
data structure 144). For the two triangles, the processor in step 392 calculates the
distance value as by taking the square root of the square distances all of the associated
unmeshed data points in both triangles. This value is used for comparing the second

configuration.

In step 394, the processor executes a hypothetical flip of the shared edge between the
triangles (e.g., flipping the edge as depicted in Figs. 14a and b). The flip causes a
rearrangement of the associations of the unmeshed data points and their corresponding
triangular faces. In step 396, the processor begins a loop to determine the associated
triangle for each unmeshed data point, incorporating its distance in the comparison
value computation. In step 396, the process loops until new distances for all of the

associated points are calculated. In step 397, the processor then compares the distance

10

15

20

25

WO 98/59300 PCT/US98/13008

57

value calculated for the first triangle configuration against the distance value calculated
for the second configuration. If the second distance value is lower then the first, the
procedure will execute a flip of the edge in step 398, make the new associations for the

data point and then heap the new distance values.

Referring again to Fig. 12 the processor will execute a checking procedure using either
a Delaunayian or data dependent checking algorithm. After the checking procedure,
the processor moves in step 416 to reset the heap distances for additional up resolution
insertions. In step 416, the processor executes a loop to recalculate distances for all
unmeshed points referenced on the recalculation list 154. For each data point on that
list, the processor must first locate a new face for distance calculations using the locate
function 401 described above. The processor then calculates a distance value for the
data point using the distance function 403 and it adds that new distance to the distance
list 146, reheaping as necessary. When these points are processed, the system is again
ready to insert additional points of increasing detail. In step 420, the processor loops
to step 402 and continues inserting points adding references to each inserted point on
the insert list 150 and history list 152. The procedure is complete when points are

inserted to the user-specified amount.

viii. Down Resolution Removal of Points Using the Insertion and History Lists

After the processor has built the mesh to a desired level of detail, and has created a
point insertion list 150 and a history list 152 that tracks the sequence of point
insertions, the present invention can perform functions which require “Dynamic
resolution” -- functions which rapidly vary the resolution of the mesh. The Up/Down
resolution toggle function 136 enables the dynamic resolution capability. Starting from
a mesh of relatively high resolution, the insert list 150 provides an ordered list of data
points ready for removal if the user requires that the mesh be more streamlined. When
the up/resolution toggle function 136 removes a point from the mesh, it uses the
history list 152 to play back all the flips in reverse order for that point insertion until

the data point sits again within the triangle into which it was inserted (see Fig. 12).

10

15

20

WO 98/59300 PCT/US98/13008

58

After the processor plays back the flips to reach an initial insertion configuration (such
as that depicted in Fig. 12), the data point can be removed from the mesh and the
LEFT and RIGHT faces deleted. The system removes points in last-in-first-out
(LIFO) order, such that the finer details are removed first, keeping points of most
significant detail in the mesh. The up/down resolution function can remove as many
points as the user or application requires and then rebuild the mesh following the
sequence of point insertions in the history list in reverse order. The mesh can be
continuously up resolutioned and down resolutioned as needed to the extent that the

point additions are specified.

ix. Additional Uses of the History List

The complete history of data point insertions from the initial mesh to full resolution
can be computed in advance and then later used for even more rapid mesh generation.
Such a use has advantages in applications such as computer games and other graphic
applications, where the generation of objects and surfaces must occur at a rapid pace.
For those applications, the computer system 3 of the present invention would be
further configured to generate a complete, full detail insert list 150 and history list 152
for the object in question, before the object is used. Then to create an object model
having only a certain number of points the computer system 3 would save in an object
model file a set of data points (following the insert list 150 to the desired number of
points), the history list 152 (showing the sequence of insertions up to that point) and
the mesh data structure 144 of the mesh at that resolution. That file can be used in a
graphics application and during execution of the application, the computer can output
images using that mesh and also further manipulate the mesh through down resolution
and up resolution, following the order of the insertion list and the history list. This
model saves much data space in the application as no texture map file need be included
in the object model file. Further, the use of the history list saves computation time in
application. First as new points are added or removed from the mesh, distance values
for the altered points would not have to be calculated. Second, use of the history list

would save additional processing time because the computations in the sequence of

10

15

WO 98/59300 PCT/US98/13008

59

checking steps to insure Delaunayian or data dependent optimization would not have

to be repeated.

X. Alternative Embodiment for 3D Mesh Building

Like the up resolution construction process 131, the down resolution construction
process 132 also builds meshes with dynamic resolution capabilities. In down
resolution construction, the system executes the general steps of: 1) generating an
initial dense mesh of 6D data point coordinates and 2) “down resolutioning” the mesh
through successive data point removals to build the insertion list 150 and the history
list 152. The insertion list 150 and the history list 152 permit the present invention to
provide the dynamic resolution capability and allow functions, such as the up/down
resolution toggle function 136 to rapidly add or delete point of resolution from the

mesh. Each of these steps is further described in the following sections.

a. Generating an initial dense mesh of 6D data points

Down resolution requires at the outset an initial dense mesh of 6D data points from
which the processor can remove points and simplify. This initial mesh can have an
optimal connectivity, such as one that follows Delaunayian construction principles.
However, an optimal structure is not necessary in this initial mesh. Many different

mesh construction techniques are suitable.

One construction technique of the present invention builds an initial 6D triangular
mesh through a rapid insertion of points. The system described in Pending U.S. Patent
Application No. 08/730,980, which is expressly incorporated by reference herein,
describes such a system and method for rapid mesh generation. That procedure
accepts a random set of points, orders the points and builds a desired mesh through
point insertions. Such a system and method could be applied using the teachings herein

to build a 6D data point mesh. After the system generates the 6D data point by the

10

15

20

25

WO 98/59300 PCT/US98/13008

60

build_and wrap function described above (see Fig. 8), the system of the present

invention could then generate an initial 6D mesh using such a technique.

During the execution of the build and wrap function 130, the present invention can

also build a 6D mesh for down resolution construction as follows:

When the build up and wrap function 130 functions, it takes each triangular face from
that 3D mesh and views the texture map coordinates for the face to create 6D (X, Y,
Z. R, G, B) coordinates. To further build a 6D mesh, the processor when following
the build and wrap process, will take steps to transform that mesh in addition to
generating 6D point values. First, for each of the mesh triangles and 3D vertices, the
build and wrap function can locate the corresponding R, G, B values for each point
and associate X, Y, Z with R, G, B thus, creating a 6D value for each point in the
mesh. Second, after the processor generates each X, Y, Z value and associates that
value with a texture map R, G, B value, the processor will take a further step of
inserting that new point into the mesh. The processor can insert the point without
performing any edge check or edge alteration so that the original edges of the mesh
processed by the build and wrap function 130 are not changed. Such a meshing
technique allows the build and wrap function 130 to process uninterrupted while at the
same time the processor can hold a 6D mesh suitable for down resolution mesh

construction.

After the processor transforms the initial mesh into a device 6D mesh, the processor
can then calculate a normal vector for each 6D data point. As stated above, a normal
vector gives an indication of the object’s surface topology. (See Fig. 4) For each data
point in the mesh, there will be a number of faces which use that data as one of its
vertices. To compute a normal vector for a particular data point in the mesh, the
system calculates a normal vector for each face that uses the data point as a vertex and
then compiles an average normal for that vertex through a summation process (such as
the square root of the sum of squares method). The system of the present invention

then stores this normal vector for the 6D value in an indexed location in the normal list

10

15

20

25

WO 98/59300 PCT/US98/13008

61

149. (See Fig. 3) In the exemplary embodiment, the system can store the normals for
the faces in the mesh data structure face records. The index number for the normal list
matches the 6D data points index number for the coordinates on the 5D data point list.
To calculate a normal vector the system of the present invention loops through the list
of 6D data points on the 6D data point list. For each point the processor locates
(using the corresponding reference found in the face list 148 (Fig. 3)) a pointer to one
of the mesh faces which used that data point or a vertex. The processor calculates a
normal for that face (if one is not found in the face record) and uses that vector in the
summation function. Because the system and method of the present invention follows
a rigid counter-clockwise ordering system of vertices and neighbors, the processor can
quickly traverse the mesh structure to locate each face which uses the data point. The
processor calculates a normal for the first triangle and then moves in a counter-
clockwise direction to the next neighboring triangle. (In the face record, the neighbor
reference associated with the vertex one counter-clockwise moves away from the data
point in question will provide the next counter-clockwise triangle.) The system will
process the mesh until all normal vectors are calculated and loaded into the normal list
149. Having now prepared a 6D dense mesh, the present invention can now create a
mesh with “dynamic resolution” capabilities through the down resolution construction

process.

b. Dynamic Mesh Construction Using the Down Resolution Construction Process

The processor executes the down resolution mesh construction process 132 (Fig. 3) to
incrementally remove points of detail from the dense 6D mesh construction above.
Integral to this process of point removal are the steps of (i) evaluating the significance
of the data point in terms of adding spatial or color detail, (ii) ‘removing from the given
mesh configuration that point which has the least significance in terms of adding spatial
and color detail, and (iii) storing this information on the insert list 150 and history list
152.

10

15

25

30

WO 98/59300 PCT/US98/13008

62

To remove data points from the mesh in simplification, the present invention uses a
selection process which accesses the data point's significance in terms of adding color
or spatial detail into the mesh. In the down resolution construction process 132, the
decision to remove any 6D data point from the mesh is based on a determination of
whether the point considered as compared to the other points remaining in the mesh is
the “least significant” in terms of adding color, spatial or other detail. To find the least
significant point, the system of the present invention calculates a distance value for
each point which represents significance such as by a geometric/color distance or
normal distance calculation technique. In the up resolution construction process
described above, the present invention provides geometric and color distance values
for each unmeshed data point. These calculations are also suitable in down resolution
mesh construction; however, an additional step must be taken in down resolution
construction: in down resolution construction, before the geometric distance can be
calculated, the point must be “hypothetically removed” from the mesh before the
processor can calculate its geometric and color distance from the mesh. This
hypothetical process can actually remove the point and immediately reinsert it, or
simulate the point removal using temporary data structures. The process of removing
the point entails executing a series of (actual or hypothetical) edge flips so that the
point in the mesh is in a configuration that permits removal. When the processor
makes that determination, it calculates a distance value for the point using the mesh

structure that exists after its hypothetical removal.

Fig. 16 depicts a sequence of flips which transform a mesh area from 602a to 602e so
that a point (point 600) can be readied for removal. In the exemplary embodiment of
the system and method of the present invention, data points are always inserted into an
existing triangle. This configuration is described above with reference to Fig. 13. The
flipping procedure in down resolution point deletion seeks to place the data point
under consideration back into that original configuration so it can be disconnected
from the mesh in a reversal of its insertion process. A point is always connected within
a triangle using a minimum of three edge connections. When a data point again has

three edge connections, it can be easily disconnected from the mesh without

10

15

20

25

WO 98/59300 PCT/US98/13008

63

interrupting the mesh optimal construction. In the mesh transformation depicted in Fig.
16, a comparison of mesh configuration 602a to 602b reveals the transformation
process flipped edge 604 to edge 604a. Comparing mesh configuration 602b to 602¢
reveals that the transformation process flipped edge 608 to 608a. Comparing mesh
configuration 602¢ to 602d reveals that the transformation process has flipped edge
606 to 606a. Mesh configuration 602d now contains point 600. Point 600 could now
be removed from the mesh (as shown in mesh configuration 602e). During the process
of transforming the mesh, the determination of which edge to flip (e.g., determining the
flip from edge 604 to 604a, then from edge 606 to 606a) is determined in the present
invention using deterministic means which preserve the structural optimality of the
mesh construction. In the mesh transformation for hypothetical or actual point
removal, the present invention can execute flips which seek to preserve the mesh’s
Delaunayian or data dependent construction. Examples of such checking are set forth

in the point removal process described below.

For determining the significance of any data point in relation to the mesh, the system
and method of the present invention shall perform a transformation as described above
to hypothetically remove the point from the mesh. Then the system will calculate a
distance for the point, such as by the geometric/color distance calculation technique
described above. In Fig. 16, mesh configuration 602f shows a representation of point
600 as hypothetically removed form the mesh and in a position for distance calculation
by the geometric/color distance formula. The processor will then heap the calculated
distance value on the distance list 146. In contrast to the up resolution process (where
the data point with the largest distance value was placed at the top of the heap) down
resolution process loads the heap so that the data point having the smallest distance

bubbles to the top of the heap. That data point has the least significance to the mesh

and shall be removed.

In calculating distance values for down resolution point removals, the present
invention provides for both Euclidean and non-Euclidean calculations. One non-

Euclidean method is to calculate distance using the normal vectors.

10

15

20

25

30

WO 98/59300 PCT/US98/13008

64

Fig. 17 depicts a hypothetical point removal in which a distance value for the point is
computed using normal vectors. In Fig. 17, mesh configuration 610 contains a point
612. Point 612 has a normal vector 614 (normal p) associated with it. The system of
the present invention may calculate this normal vector during the process which
created the initial dense mesh. Thus, the normal vector could give an indication of the

original topology of the most detailed mesh.

To calculate a distance value which measures the significance of the point using a
normal vector, the system must execute a mesh transformation process as described
above in Fig. 16 to hypothetically remove the point. Referring to Fig. 17, mesh
configuration 610a shows the final result of a transformation process that the system
executed on mesh 610. Mesh configuration 610a shows that point 612 would lie
within triangle 616 and could be removed from it if it were to be deleted. Triangle 616
has a normal vector which can be computed using the vertices. That normal vector
(normal t) is depicted at 618. To compute a distance value for the point 612 in
determining whether it should be removed, the system of the present invention
calculates the angular distance that exists between the two normal vectors through the

metric:

‘/g(l-m'np)2

That distance value is heaped to compare it with the distance value of other points as

described above.

In a more advanced calculation of the distance function, the present invention can
incorporate the normal vectors from previously removed points in addition to the
normal of the point in question. Fig. 18 shows the mesh 610 from Fig. 17 but in the
example of Fig. 18 it is understood that there have been a number of point removals
before the processor makes the determination of whether to remove point 612. These
points and their normal vectors are depicted by vectors 621 and 623. As indicated, the
system and method of the present invention can continue to associate a particular data

point with a mesh triangle even after its removal from the mesh.

10

20

25

WO 98/59300 PCT/US98/13008

65

Fig. 18 also shows mesh construction 610a, the mesh construction which results from
the flipping transformation. The transformation allows for the removal of point 612.
The transformation causes changes to the connectivity of the mesh triangles. The
transformation also causes a rearrangement of the associations that existed between
the previously deleted data points and the mesh faces. For example, in Fig. 18, it can
be seen that data point 622 (and its vector) is now associated with triangle 616 in mesh

configuration 610a.

In the calculation of distance using normals discussed above, the processor compared
the normal of triangle 616 (normal 618) against the normal for point 612 (normal 614).
In the more advanced normal calculations, the normal vectors for the data points
previously removed from the mesh can be incorporated into the process as follows. In
triangle 616 in Fig. 18, it can be seen that there are a number of normal vectors from
former data points which are now associated with triangle 616. These normal vectors
can be averaged with the normal vector for point 612 (normal 614) to create a
weighted average normal vector representing a vector to which the triangle 616 should
correspond. In the exemplary embodiment, the processor averages the normal for
point 612 with the normals of the previously removed points using the square root of
the sum of the squares method and compares the resultant vector to the normal for the
associated triangle (e.g., through 616). The angular distance between the normal of
the triangle and the average normal for the data points is the distance value for the
point. That distance is the measure of significance that point has to the mesh. The
processor stores that distance value on the distance list, comparing its value to values

created in this manner.

c. Flipping edges for data point removal

After the processor has calculated the distance values for the points as necessary (i.e.,
in an initial pass for all the points and in subsequent passes only for the points related
to these faces that were altered in the previous point removal sequence), the processor

will then actually remove the point from the mesh (or allow a hypothetical removal to

10

15

WO 98/59300 PCT/US98/13008

66

stand), store a reference to the point on the insert list 150 and store information

concerning the flips necessary to remove the point on the inserting list 152.

The procedure for actual flipping is the same as the procedure for any hypothetical
flipping. Thus, the function to remove a point proceeds as depicted as in Fig. 16.
However, as stated above, when deciding to make an edge flip, the processor of the
present invention can use one of a number of deterministic algorithms to make
intelligent flips which preserve the quality or structure of the mesh. In exemplary
embodiments, such deterministic algorithms can preserve mesh qualities such as

Delaunayian structure or data dependent structures.

Fig. 19 depicts an exemplary process flow for a point removal flipping procedure
which minimizes the structure deviations. In step 650, the processor receives as
arguments the index reference for the data point to be removed. In step 652, the
processor proceeds to get from the face list 148 (Fig. 3) a reference to a face record in
the mesh data structure 144. That reference provides a pointer to one of the faces
which uses the data point as a vertex. From that face reference it is possible to count
all of the triangles (and their edges) which share the data point and use it as one of the
vertices. In step 654, the processor executes a proceeding to count the faces (or
edges) sharing the point. The process in step 654 uses the rigid ordering of the face
records to traverse the faces which share the data point. Because the vertices of each
face are numbered in a rigid order (such as the counter-clockwise order) it is possible
to move in a circular direction around the data point and count the connected faces. In
the exemplary embodiment, the present invention uses a rigid counter-clockwise
ordering system and the neighbor triangle associated with the first counter-clockwise
vertex from the data point in any triangle always yields the next counter-clockwise face
to check. In step 654, the processor loops in a counter-clockwise direction using the

references to vertices and neighbors in the mesh data structure until it counts up all of

the links to the data point.

10

15

25

30

WO 98/59300 PCT/US98/13008

67

When there are more than three links, the processor must make flips to transform the
mesh and bring it into a configuration that allows for point removal. If there are 5
edge links to the data points in the mesh for example, the loop of step 656 will make 2
flips to bring the number of links to 3. In step 656, the processor begins a loop to
determine the one flip that has the least amount of error in terms of moving the mesh
away from an optimal structure. In step 658, the processor begins a second loop to
examine each link and determine the “error” that would be incurred if the processor
flipped that link. The system of the present invention permits many different types of
error evaluation techniques. For purposes of an exemplary embodiment, the present
invention presents two different types of flip evaluation techniques. When the down
resolution construction process seeks to build a mesh with Delaunayian optimality
characteristics, the system will evaluate an effort for a flip in point removal using a
Delaunay error evaluation technique. When the down resolution construction process
seeks to optimize the mesh construction according to data dependent criteria (such as
by normal distance) the system will evaluate an error for a flip using data dependent

techniques. Examples for each of these processes are as follows.

Delaunayian checking insures regularity in the mesh triangles by following the rule that
for any triangle in the mesh, there is no other mesh point that will fall within a
circumcircle defined by the triangle’s points. Fig. 20 depicts a data point 670 to be
removed from a mesh configuration 800. There are 6 edges (edges 672-677)
connected to point 670; three must be flipped to remove the point. For each edge the
process determines, using a Delaunayian error evaluation algorithm, how far an edge
flip will take the configuration away from Delaunayian optimality. In Fig. 20, mesh
configuration 800 begins the comparison at edge 672. The two triangles (triangles 671
and its neighbor) which share edge 672 are Delaunayian in this configuration as their
circumcircles include no other points. However, flipping edge 672 to edge 672a
creates a configuration that is not optimal by Delaunayian principles. As shown in
mesh configuration 800a, the revised triangles 671 and its neighbor are not
Delaunayian. The circumcircle for revised triangle 671a now includes point 801 from

its neighbor. The distance into which the point 801 falls into the circumcircle is

10

15

20

25

WO 98/59300 PCT/US98/13008

68

indicated by the distance value d (678). The distance value d represents the error value
for the edge in the Delaunayian checking procedure. During the checking procedure,
the system will compute a d value for each edge (e.g., edges 672-677). The processor
will then flip the edge with the smallest value. That flip will add the smallest amount of

error to the system.

In addition to the procedure to check for edge error by Delaunayian optimality
principles, the system of the present invention also permits the checking for error by
using data dependent criteria such as normal information. Fig. 21 depicts an exemplary
data point 680 which is linked to six edges and six triangles in a mesh configuration
679. Associated with each triangle are a number of points which have been deleted
from the mesh whose normals are indicated on the figure. In determining which of the
six edges to flip, the processor begins comparing the normals of the triangles against
the normals of the data points associated with the triangles. For each triangle the
processor computes a distance value representing the angular distance that exists
between the normal for the triangle and the averaged normal for the data points. For
example, in Fig. 21 triangle normal 681 will be compared against the average of all of
the normals associated with triangle 682 (see set of normals 683) and, further, normal
684 will be compared against the averaged value of all the normals associated with
triangle 686. The present invention then combines the two distance values for the two
triangles into a single value for comparison against the mesh configuration when the
processor flips edges between the triangles in Fig. 21. Mesh configuration 679a
depicts the triangles 682 and 686 after the processor flips the shared edge. The
processor must execute the same normal comparison process for these two new
triangles and sum the value for each triangle together. The processor will then subtract
the value of the new triangle configuration from the value of the old triangle
configuration. That value represents the error that shall be incurred for that edge flip.
The processor will calculate a similar error value for each other edge connected to the

data point to be removed. The edge with the lowest error value is the edge the process

will flip.

10

15

20

25

WO 98/59300 PCT/US98/13008

69

Referring again to Fig. 19, the processor uses the error calculation functions described
above to determine an error value for each error examined in the loop 656. As each
edge is evaluated, if the error value calculated for the error is the lowest, the processor
will allow the edge to be the edge with the least error (see step 662). The process
loops in step 664 until the computer processes all the edges connected to the data

point.

Moving out of that loop in step 667, the processor executes a flip for the link with the
lowest error. The flip function executes a set of changes in the data structure replacing
an edge shared by two triangles with an edge connecting the unshared vertices of the
two triangles. ‘An exemplary flip function which is suitable for the flip function of the
present invention was described in U.S. Patent Application Nos. 08/730,980 and
08/730,979 which are expressly incorporated herein by reference. After executing the

flip, the present invention will place an indication of the flip on the history list.

It is noted that when removing points in the down resolution construction process, the
present invention stores information concerning the removed data point and the history
of flips on the insert list 150 and the history list 152 in an order that is the reverse of
the order by which the up resolution process 131 added data to these lists. Inan
exemplary embodiment, the down resolution process builds the insert list 150 and

history list 152 so that the important details will always be inserted first.

In step 668, the processor loops to step 654 to continue flipping links until the mesh
can be transformed into a state which will all other data point removal. The processor
may make one, two or more flips until only three edges remain connected to the data

point in question.

However, after that flipping procedure, there still may be some clean-up work to do.
After flipping to transform the mesh for point removal, the processor moves to step
669 to execute a second loop which will determine if the flips just taken will require

any further adjustments to the mesh. As noted, a flip to remove a point may take the

10

15

20

25

WO 98/59300 PCT/US98/13008

70

mesh out of an optimal state. In making flips to remove a point from the mesh, it will
also be necessary to check the triangles in the area around the flips to determine if the
mesh needs adjustment to maintain its optimal construction. When an edge is flipped
in the process described above, the flip will disconnect one data point from its edge
relationship with the point to be removed (e.g., in Fig. 20 point 656 is now
disconnected from point 640). For each disconnected point 668, the processor will
execute a flip propagation loop after the flip, moving each disconnected point to this
point to perform the evaluation of error similar to steps 656-667 above. For each edge
that is connected to the disconnected point, the procedure first performs the error
calculation either by Delaunayian or normals and then executes a hypothetical flip for
that edge and computes the error value. If the error is less after the flip, the processor
will leave the edge flipped (or actually flip the edge) and then go on to repeat the
procedure for the newly disconnected point. The procedure at step 669 continues this
way until each newly disconnected edge has been flipped. The processor places

indications of all flips on the history list 152.

As an overall process, the down resolution construction operates in a way similar to
the up resolution construction process -- removing points until a desired resolution is
achieved, and building a history file that permits dynamic resolution. Fig. 22 depicts an

exemplary process flow for the for the down resolution construction process.

Mesh Construction Using 2D Data

In addition to its use with 3D spatial and texture map data, the teachings of the present
invention can also be used with 2D data to create mesh constructions from 2D bitmap

images such as digitized photographs, film frames and other images.

Fig. 23a depicts a digitized photographic image. As stated above a digitized
photographic image is typically stored in bitmap format and consists of a 2D array of
pixels with each pixel having a color value such as a 3 byte (24 bit) or 1 byte (8 bit)

R, G, B color assignment. The computer system 3 of the present invention can

10

15

25

WO 98/59300 PCT/US98/13008

71

transform the bitmap pixel assignments of a 2D photographic image into a mesh model
construction with a resolution of detail which can be dynamically increased or

decreased. Fig. 23b depicts a mesh model constructed using the system of the present
invention from the bitmap of 23a. Using the insertion list and history list (as described

above) down resolution can also be supported in the meshing of 2D images.

The technique above for constructing a 6D mesh can also be used to construct a mesh
using 5D data points. The processor can combine the X, Y and R, G, B values of the
bitmap image and these values can be used to create meshes using the up resolution
and down resolution construction processes described above. The meshes created by
these processes will have dynamic resolution capabilities, and detail can be added to
and removed from the mesh using the up/down resolution toggle function 136. In
addition to the processes described above, it is also possible to build a mesh
construction of an image with dynamic resolution capabilities using the exemplary
algorithm of Fig. 24, using a rasterization process to compare the pixel values of the
triangle against the color values which would be generated by the triangles of the mesh
rather than a geometric/color distance function or a normal distance function to
determine points of significance. As can be seen above in reference to the rasterization
process set forth above in Fig. 8, the rasterization process can generate color or other

values interpolating them from the known values of triangle points.

Referring to Fig. 24, the processor creates an initial mesh into which it will insert data
points from the bitmap image to create the mesh. In the exemplary embodiment, the
initial mesh will have a two triangle configuration made from four points which match
or exceed the bounds of the image. For example, if a bitmap image is of size 640 x
480 in dimension, the X, Y coordinates of the initial mesh (stored in a data structure
equivalent to the 6D data point list above) will be sized to contain that image. The
four selected points will create a flat, rectangular plane consisting of two triangles.
Additionally, the mesh structure can include one or more Steiner points outside of the
bounds of those four points to speed processing. For each of the initial four points of

the plane mesh, the processor will also select R, G, B coordinates for the initial mesh

10

15

20

25

WO 98/59300 PCT/US98/13008

72

data points so that the mesh has an initial color which will serve as the point of

comparison when determining whether to add R, G, B values from the bitmap image.

In step 702, the processor begins a loop to incrementally insert points and construct a
5D data point mesh for a 2D bitmap image. In step 702, the processor will
incrementally insert data points according to any user-defined threshold. For example,
the processor may insert points until the mesh contains the desired number, or until the
comparison distance between any bitmap pixel point and its counterpart in the mesh
fall below a given threshold, the “comparison distance” being the distance between the
colors of the pixels of the bitmap image and the area of the mesh triangle which
corresponds to that pixel. The rasterization process uses the R, G, B values of the
mesh triangle to generate, a la Gouraud, a set of color values that correspond to each
pixel in the bitmap image which would be bounded by the mesh triangle, pixel by pixel,
within the bounds of the triangle. The process compares the R, G, B values of the
bitmap pixel against the corresponding R, G, B value rasterized from the coordinates
of the mesh triangle. The difference between the bitmap and rasterized R, G, B values

can be measured by many difference functions such as by:

difference =\ de 2+ dg 2+ dg?

or

difference = Ly |dg | +Lg |dg| +Ls |dg|

Where dg, for example, denotes the difference in red coloring between the actual pixel
and the Gouraud approximation, and where Ly, for example, denotes the luminescence

value of the color red.

In the rasterization step 708, the process compares each pixel value in the bitmap with
a corresponding rasterized value until for that triangle the processor finds the pixel
with the largest distance value. In step 710, the processor inserts the bitmap data point
into the mesh triangle using the process described above with regard to the incremental

insert function. The insertion of the new point alters the mesh face into which a bitmap

10

20

25

WO 98/59300 PCT/US98/13008

73

point was inserted. The insertion also creates two new faces. The process in step 711
places references to each altered point and the associated face and new faces are
placed in the recalculation list (712). The recalculation list for this process is
constructed as a stack for later processing. This allows faces where there have been
substantial insertion activity to be processed first. After the point insertion, the
processor proceeds to step 714 to check the mesh structure for optimal construction
using, e.g., Delaunayian checking routines as described above. For each flip made
during the checking procedure, the processor places an indication of that change on
the history list 152. In addition, if the flipping process changes any face, the processor

will place a reference to that face on the recalculation list.

In step 718, the processor loops to step 704 where it will process each face inserted on
the recalculation list stack. The process continues until the process has inserted the
desired number of points or until the resolution of the mesh has increased until the
distance between any bitmap data point and its rasterized mesh counterpart does not

surpass a set threshold.

Rendering Images From the Meshes Using Triangle Strips

To display a triangulation, the faces of the mesh must be “walked” to read each and
every triangle exactly once for display. In the exemplary embodiment, there are two
“iterators” for walking across the mesh in the aforementioned fashion: face iterators

and strip iterators.

Face iterators use the same algorithm as that promulgated in U.S. Patent Application
08/730,980 to order the data points for rapid mesh generation and to visit each triangle
in a mesh at a given mesh resolution once and only once. Each triangle is then sent to
the display system as a display structure or command without regard to its position or
connectivity in the overall mesh. The shared per-vertex information (position, color,

normals, etc.) and the use of a standard graphics techniques such as like Gouraud

10

15

20

25

WO 98/59300 PCT/US98/13008

74

shading allow the display to seem smooth and continuous even though the faces are

being sent individually.

Strip iterators, on the other hand, send continuously connected “strips,” called
“tristrips” in standard computer graphics, to the display engine. The strips are a series
of connected triangles, where the first one is specified by three vertices, and each
successive one is specified by an additional vertex in an alternating left and right

manner, such that a tristrip of n vertices describes n-2 triangles.

Tristrips are more efficient than triangles, because they use less bandwidth, and hence
less rendering time, for the same number of faces. In the exemplary embodiment,
tristrips have a range of 1-50 triangles, with a median of 5 (though results can vary

widely depending on the initial data and connectivity).

Multiresolution modeling may employ the stripification process in realtime as follows.
First, the processor generates a linked list of tristrips using the ordering algorithm
above, terminating one strip and starting a new one whenever the algorithm’s traversal
from one triangle to the next (at the highest resolution of the mesh) violates the
ordering required for tristrips. Subsequently, the processor maintains strips and
maximizes strip length by performing edge flips and by reconnecting severed links

between strips when points are added or removed.

In the exemplary embodiment, it is also possible to use tristrips and trifans in
conjunction with a slightly modified initial construction. Trifans are similar to tristrips,

except that the first vertex is always used by every triangle in the fan.

The invention continues as described above. The above described embodiment of the
invention is meant to be representative only, as certain changes may be made therein
without departing from the clear teachings of the invention. Accordingly, reference

should be made to the following claims which alone define the invention.

WO 98/59300 PCT/US98/13008

75

We claim:

1. A computer-based system for generating a dynamic mesh model of a three-

dimensional surface, the system comprising:

(a) an initial mesh construction element for creating an initial mesh model

using a set of input spatial coordinate data points that describe the surface;

(b) a data combination element for combining the spatial coordinate data
points of the initial mesh model with a set of input surface texture data that describes
texture details concerning the surface and forming from the combination a set of

resultant data points containing both spatial and color data; and

(c) a second mesh construction element adapted to create from the
resultant data points a texture map mesh model to describe the surface comprising

geometric primitives that describe spatial and color details.

2. The system of claim 1 further comprising:

(a) an increasing resolution element to insert data points into the color
mesh based on their significance in describing details of the object to be depicted and
storing the sequence of point additions and changes that occur to the mesh due to the

point insertions;

(b) a history list to store the sequence of point additions and changes that

occur to the color mesh due to the point insertions; and

(c) a decreasing resolution element to locate the reference to the last

inserted data point on the history list and deleting that data point from the color mesh.

WO 98/59300 PCT/US98/13008

76

-

3. _ A computer-based system for generation of a color mesh model of a three-
dimensional object or surface, the mesh model having increasing and decreasing
resolution of detail, the computer including a processor coupled to a memory and
program elements adapted to accept as input a plurality of data points, each data point
being a spatial coordinate describing the object or surface to be modeled, color data

describing the object or surface to be modeled, the system comprising:

(a) the mesh construction element for constructing an initial mesh model
using the data points containing spatial coordinate data points and organizing the
points into a set of connected faces, each face having a geometric shape with a
predetermined number of vertices, the boundary connection between any two adjacent
vertices of a face comprising an edge of the face, with a face being connected to
another adjacent face in the mesh through a shared edge and shared vertices creating

that shared edge;

(b) the data combination element to combine the color data with the spatial
data for each data point representing a vertex in the initial mesh model to form a set of

resultant data points containing both spatial and color data,

(©) the data combination element further adapted to combine the spatial
coordinate data with the color data for all data points contained within the initial mesh

model;

(d) a spatial and color mesh construction element to determine the distance
that each resultant data point has in relation to a preselected reference object, using the
spatial aspects of the data point, and to select according to the distance values a set of

points for the creation of the color mesh;

(e) the spatial and color mesh construction element further adapted to
construct a color mesh using the resultant data points by organizing the points into a

set of connected faces, each face being a geometric shape with a predetermined

WO 98/59300 PCT/US98/13008

77

number of vertices, the boundary connection between any two adjacent vertices of a
face comprising an edge of the face, with a face being connected to another adjacent

face in the mesh through a shared edge and shared vertices creating that shared edge;

$3) a data point detail ordering element to determine which of the
remaining unmeshed resultant data points is the most significant data point to the

mesh, using both the spatial and color and normal aspects of the data point;

() a point insertion element to insert the most significant unmeshed
resultant data point into the mesh face that is closest to that resultant data point by
reorganizing the arrangement of vertices of the face for insertion and including the
resultant data point for insertion in that rearrangement to create a new set of faces,
each new face having the predetermined number of vertices and the new faces sharing

edges with neighboring faces to create a surface with the other faces of the mesh;

(h) the point insertion element further adapted to create a reference on an
insertion list to the resultant data point for insertion in a sequence as the last point

inserted;

(1) an optimality checking element to determine whether the construction

of newly created faces meets a predetermined optimality criteria,

)] a rearranging element to redefine in a sequenced order the boundaries
of the newly created faces when one of the newly created faces does not meet the
predetermined optimality criteria, the rearranging element further adapted to place an
indication on a history list in sequence for each check or redefinition made for a

particular face; and

(k) the data point detail ordering element further comprised to redetermine
the significance, using both the color and spatial aspects, of any unmeshed resultant

data point whose closest face was altered either by data point insertion or

WO 98/59300 PCT/US98/13008

78

rearrangement and comparing the newly determined significance with the previously

determined significance to identify the next point for insertion.

4. The system of claim 3 configured for downward resolution removal of resultant
data points and further comprising a data point removal element to locate the reference
to the last inserted resultant data point on the insertion list and delete that resuitant
data point from the mesh by removing the resultant data point as a vertex from any
face and rearranging the vertices of the remaining faces following, in reverse order, the
sequence of information stored on the history list to return the mesh to a state of

optimal configuration without the removed resultant data point.

5. The system of claim 3 where the initial reference object is a sphere.
6. The system of claim 3 where the initial reference object is a plane.
7. The system of claim 3 where the initial reference object is high resolution mesh

of a given object.

8. The system of claim 3 where the initial reference object is any topological

equivalent to a high resolution mesh of a given object.

9. A computer based system for generation of a color mesh model of a three-
dimensional object or surface, the color mesh model having increasing and decreasing
resolution of detail, the computer, including a processor coupled to a memory, the
system comprising:

(a) the computer adapted to accept as input a plurality of data points, each
one of the data points being a three dimensional spatial coordinate describing the
object or surface to be modeled,;

(b) the computer further adapted to construct a mesh from three
dimensional data points and comprising a set of connected faces creating a surface

approximating the object or surface, with each face being a triangle determined by

WO 98/59300 PCT/US98/13008

79

inserted data points, the data points for each face comprising the vertices of that face
with a boundary connection between any two adjacent vertices of a face comprising an
edge of the face and each face being connected to another adjacent, neighboring face
through a shared edge and the pair of shared vertices creating that shared edge;

(c) the computer further adapted to accept as input a texture map of the
object or surface to be modeled, comprising three dimensional color data for each pixel
of the texture map,

(d) the computer further adapted to select a triangle from the initial mesh,
determine the set of pixel values corresponding to the selected triangle, and access the
three dimensional color data for the set of pixels;

(e) the computer further adapted to combine the three dimensional spatial
coordinate data for each triangle vertex with the three dimensional color data for the
pixel associated with the triangle vertex, resulting in a six dimensional data point, with
each data point containing three spatial coordinates describing the object or surface on
a spatial axis system and three color values describing the object or surface on a color
axis system,;

® the computer further adapted to calibrate the three dimensional spatial
coordinates associated with each of the remaining pixels contained in the selected
triangle by using equations associated with the scan line of the pixel and of the selected
triangle, and combine the newly determined three dimensional spatial coordinate data
with the three dimensional color data to result in six dimensional data points for all
pixels in the selected triangle;

(g) the computer further adapted to determine six dimensional data points
for each pixel contained in every triangle of the initial mesh;

(h) the computer further adapted to reconstruct the mesh from six
dimensional data points and comprising a set of connected faces creating a surface
approximating the object or surface, with each face being a triangle determined by
inserted data points, the data points for each face comprising the vertices of that face
with a boundary connection between any two adjacent vertices of a face comprising an
edge of the face and each face being connected to another adjacent, neighboring face

through a shared edge and the pair of shared vertices creating that shared edge;

WO 98/59300 PCT/US98/13008

80

_® the computer further adapted to determine which one of the unmeshed
data points lies farthest from the mesh by calculating a combined distance in terms of
both spatial coordinates and color values, by locating for each unmeshed data point the
mesh face which is closest in distance to that data point and comparing that distance
with the distances obtained for the other unmeshed points and identifying that point as
a point for insertion;

) the computer further adapted to insert the data point into the mesh by
creating a new set of edges and a new set of faces by connecting the point for insertion
to each of the vertices of the face that is closest to the point for insertion, arranging the
vertices of the face that is closest in distance to the point for insertion (the insertion
face) to create a set of new faces with the data point for insertion being shared in each
new face, the new faces being connected to other faces in the mesh through vertices
and edges as were previously established in the insertion face, the processor
establishing neighbor relationships for each new face;

(k) the computer further adapted to place a reference to the data point for
insertion on an insertion list sequenced as the last point inserted,

()] the computer further adapted to enable the processor to check one of
the newly created faces to determine whether its construction meets optimality
criteria, the checking procedure checking a new face and one of its neighbor faces to
evaluate its vertex and edge configuration for optimality;

(m) the computer further adapted to reconfigure the triangle being checked
and the neighbor to redefine their boundaries when one of the newly created faces does
not meet the predetermined optimality critenia,

(n) the computer further adapted to place an indication of either a
successful check of optimality or an indication of the rearrangement on a history list as
the next action;

(0) the computer further adapted to check all the newly created faces;

(p) the computer further adapted to redetermine the distance between any
unmeshed data point whose closest face was altered either by data point insertion or
rearrangement and comparing those redetermined distances with the previously

determined distances to identify the next point for insertion; and

WO 98/59300 PCT/US98/13008

81

(@) the computer further adapted to locate the reference to the last inserted
data ;oint on the insertion list and delete that data point from the mesh by removing
the data point as a vertex from any face and rearranging the vertices of the remaining
faces following, in reverse order, the sequence of information stored on the history list

to return the mesh to a state of optimal configuration without the removed data point.

10. The system of claim 7 wherein the computer accepts as input the initial mesh
model, comprising a set of connected faces creating a surface approximating the object
or surface, with each face being a triangle determined by inserted data points, the data
points for each face comprising the vertices of that face with a boundary connection
between any two adjacent vertices of a face comprising an edge of the face and each
face being connected to another adjacent, neighboring face through a shared edge and

the pair of shared vertices creating that shared edge.

11. A computer based system for combining a set of spatial coordinate data points
from a mesh model describing a three dimensional object or surface and a two
dimensional color map of the same object or surface into a set of data points
containing both spatial and color data, the system comprising:

(a) the spatial mesh generation element to generate a mesh model using a
set of data points containing the spatial coordinate data of the object or surface;

(b) a linking element to link the three dimensional spatial data points to the
corresponding color data in the texture map to create a set of data points containing
both color and spatial data for those data points contained in the original spatial mesh
model; and

(c) an interpolation element to assign spatial coordinates to the remaining
texture map data points resulting in a set of data points containing both spatial and

color data of the object or surface to be modeled.

12. A computer based system for ordering a plurality of data points containing both
three dimensional spatial data and three dimensional color data, to be inserted into a

mesh model of an object or surface, the computer comprising a processor and a

WO 98/59300 PCT/US98/13008

82

memory, the mesh model comprising a set of connected faces, each face being a
geometric shape with a predetermined number of vertices, with each face being
connected to another adjacent, neighboring face through a shared edge of adjacent
vertices, the system comprising:

(a) the computer adopted to locate the closest mesh face to each data
point, if the data point was not contained in the mesh, by drawing a line
from the center point of a current face to the data point, and
determining if a projection of that line intersects with the edge of the
current face;

(b) the computer adopted to determine if an intersection between a data
point and its associated triangle when both are projected,;

(c) . the computer further comprised to move from the current face, if there
is an intersection with an edge, to the face which shares the edge of
intersection with the original face and perform the same check
recursively until the closest mesh face;

(d) the computer further adopted to determine the distance from each data
point to its closest face;

(¢) the computer further adopted to order the data points based on the
distances to locate the data point that is farthest from the mesh; and

® the computer further adopted to re-execute the locate and distance

determination procedures after each data point insertion.

13. A computer-based system for generation of a mesh model of a two dimensional
image, the computer, including a processor coupled to a memory and program
elements adapted to accept as input the spatial pixel values of the image and the color
data for each of these pixels, and constructing a color mesh to model the image, the
system comprising:

(a) acombination element for combining the spatial value of each pixel in
the image with the color data for each pixel in the image to create data points

comprising of both spatial and color data;

WO 98/59300 PCT/US98/13008

83

_ (b) amesh construction element to create an initial mesh from a reference

plane using the spatial extent of the data points; and

(c) an incfeasing resolution element to insert data points into the mesh
based on the color significance of the data point in describing details of the image to be
depicted and storing the sequence of point additions and changes that occur to the
mesh due to the point insertions;

(d) a history list to store the sequence of point additions and changes that
occur to the color mesh due to the point insertions; and

(e) a decreasing resolution element to locate the reference to the last

inserted data point on the history list and deleting that data point from the mesh.

14. A computer-based system for generation of a mesh model of a two dimensional-
image, the computer, including a processor coupled to a memory and program
elements adapted to accept as input the two dimensional spatial pixel values of the
image and three dimensional color data for each of these pixels, and construct a color

mesh to model the image, the system comprising:

(a) a spatial assignment element to determine a three dimensional spatial
coordinate data point for each pixel value in the image, with two dimensions
corresponding to the two dimensional pixel value and the third dimensional coordinate
being set to a uniform value for all the data points;

(b) a combination element for combining the three dimensional spatial value
of data point associated each pixel in the image with the color data for each pixel in the
image to create a set of six dimensional data points comprising of both spatial and
color data to represent the image;

(© a mesh construction element to create an initial triangular mesh
containing two triangular faces created from four data points, the two faces having two
shared vertices and one shared edge, the four data points being the bounding pixel

values of the image in the original two dimensions;

WO 98/59300 PCT/US98/13008

84

- (d) a data point detail ordering element to determine which of the
remaining unmeshed data points is the most significant data point to the mesh, using
the color aspect of the data point;

(e) a point insertion element to insert the most significant unmeshed data
point into the mesh face in which the unmeshed data point is contained by reorganizing
the arrangement of vertices of the face for insertion and including the data point for
insertion in that rearrangement to create a new set of triangular faces, the new faces
sharing edges with neighboring faces to create a surface with the other faces of the
mesh;

® the point insertion element further adapted to create a reference on an
insertion list to the resultant data point for insertion in a sequence as the last point
inserted;

() an optimality checking element to determine whether the construction
of newly created faces meets a predetermined optimality criteria;

(h) a rearranging element to redefine in a sequenced order the boundaries
of the newly created faces when one of the newly created faces does not meet the
predetermined optimality criteria, the rearranging element further adapted to place an
indication on a history list in sequence for each check or redefinition made for a
particular face; and

@) the data point detail ordering element further adopted to redetermine
the significance, using the color aspects, of any unmeshed resultant data point
contained in a face that was altered either by data point insertion or rearrangement and
comparing the newly determined significance with the previously determined

significance to identify the next point for insertion.

15. The system of claim 12 configured for downward resolution removal of
resultant data points and further comprising a data point removal element to locate the
reference to the last inserted resultant data point on the insertion list and delete that
resultant data point from the mesh by removing the resultant data point as a vertex

from any face and rearranging the vertices of the remaining faces following, in reverse

WO 98/59300 PCT/US98/13008

85

order, the sequence of information stored on the history list to return the mesh to a

state of optimal configuration without the removed resuitant data point.

PCT/US98/13008

WO 98/59300

1/46

wajshg
13ndwo)

WO 98/59300 PCT/US98/13008
2/46

(PLURALITY OF DATA POINTS)

Fig. 2a

WO 98/59300 PCT/US98/13008
3/46

(TEXTURE)

Fig. 2b

WO 98/59300 PCT/US98/13008
4/46

TEXTURE MAP MESH
(Low Resolution Construction)

Fig. 2¢

WO 98/59300 PCT/US98/13008
5/46

TEXTURE MAP MESH
(Middle Resolution Construction)

Fig. 2d

PCT/US98/13008

WO 98/59300

6/46

TEXTURE MAP MESH
(High Resolution Construction)

Fig. 2e

PCT/US98/13008

7/46

WO 98/59300

TEXTURE MAP MESH
(Return to Middle Resolution Construction)

2f

Fig.

WO 98/59300 PCT/US98/13008
8/46

TEXTURE MAP MESH
(Return to Low Resolution Construction)

Fig. 2¢g

WO 98/59300 PCT/US98/13008
9/46

Low Resolution Image
Generated From Mesh at Fig. 2¢

Fig. 2h

WO 98/59300 PCT/US98/13008
10/46

Image Generated From Mesh of Fig. 2d

Fig. 2i

wO
98/59300 PCT/US98/13008
11/46

Image Generated From Mesh of Fig. 2e

Fig. 2j

PCT/US98/13008

WO 98/59300

12/46

¥S1 Z5k 0S5k 8yl 6¥1
| m
_ “
! _
! |
ISt E s |il= z
ajeinoen | B T I F 3
i »] =} | w
lwm nA — [Iy -
o 72 i L
i 7} (2 o @
! |
' i
!]

lapuay

—PEl

Lyl 9p1

1S
aauejsig

19b6euepn
deaj

Svi 1448

2InoNns
ejeq
yssin

plooay
2oe-

124

£ 'bi14

248

1517189y

ISIT Z°A'X

92—

depy
ainixa)

ez |

sjulod
eleq
jo
Kyjeanid

)
|
|
|
]
]
1
“
|
|
[}
|
|
i
|
|
{
|
]
l
|
|
i
|
{
!

—-1El

o
Bui 660 9w o
uonnjosay @ m o @9
umoqsdn 2% c o

23 23
-~ o G 3
—9¢1| S= AN E
8oBJI8jU| — 8¢l

deim pue
piing

~0€1l

WO 98/59300 PCT/US98/13008

13/46

/r\ 155

!
G 159

166 162

158

Fij. L'I

WO 98/59300 PCT/US98/13008
14/46

Neighbor 2

Neighbor 0

Neighbor 1

g. 5

WO 98/59300

PCT/US98/13008
15/46

Build Initial Mesh
Model

(if one not provided)

170

172

Wrap Texture Map
data around model
and create 6D
values

WO 98/59300 PCT/US98/13008
16/46

WO 98/59300

17/46

Rasterization for X,Y,Z values in texture space u,v

Do for each triangle in the initial 3D mesh]——200

[Get triangle from mesh data structure 1_202

Use the u,v vaiues associated with each vertex in
the triangie to obtain the set of u,v coordinates in ——204
the texture map that are bounded by the mesh

1
Find vmax and vmin vaiues
Locate vertex which has largest v value
i
Loop to compute the delta values.
For each edge(i) calculate:
i

— 206

—208

Calculate for each edge:
dv du
dXdv dXdu
dYdv dYdu
dZdv dZdu b—210
and optionally:
dRdv dRdu
dGdv dGdu
dBdv dB8du
orient the edges to locate the two which have
a datapoint with the vmin value

|

the beginning of the coordinate(s) of the edges that share the vmin value

|

PCT/US98/13008

Set a Right edge point and a left edge point to be 212

Starting from vmin vailue and using the two edges that share the vmin vaiue 214
A right edge step vaiue that steps u,X,Y,Z (and optionaily R,G,B) for each v and
A left edge step value that steps u,X,Y,Z (and optionally R.G.B) for each v
L
DO FOR vstep 0 to n where n = vmin to vmax (step 1) +—216
|
Check right and left edges t——— 218
T
Set right and left edge points (u,X,Y.Z, opt R,G.B)
of the scan line (vmin + vstep) L 220

Right (u,X.Y,Z opt R,G,B) = Right (u,X,Y,Z opt R,G,B) + Right Step Values*vstep
Left(u,X.Y,Z opt R,G,B) = Left(u,X.Y.Z opt R,G,B) + Left Step Values*vstep

|

1

———{ DO step = 0 to n FOR each of the n u values in the scaniine ‘-——222

Let 6D Data Point List (counter, X) = LeftEdgePoint(X)+step*dXduScan)
Let 6D Data Point Point List (counter, Y) = LeftEdgePoint(Y)+step*dYduScan)
Let 6D Data Point Point List (counter,Z) = LeftEdgePoint(Z)+step"dZduScan)

Let 6D Data Point List (counter R) = Texture Map (R)

Let 6D Data Point List (counter G) = Texture Map (G)

Let 6D Data Point List (counter B) = Texture Map (B)
or draw Scan Line

—224

iMOPi 226
loop 228

;

loop 230

y

WO 98/59300 PCT/US98/13008
18/46

Initiate Mesh Structure

270

Add Points
According to the
Selection Process

WO 98/59300

PCT/US98/13008
19/46

Fig. 10a

PCT/US98/13008

WO 98/59300

20/46

9or o4

WO 98/59300 PCT/US98/13008
21/46

F‘ﬁ~ (Dc

PCT/US98/13008

WO 98/59300

22/46

WO 98/59300

14

20

23/46

108

PCT/US98/13008

300

e\

3la

304

303

PCT/US98/13008

WO 98/59300

24/46

T ZL "bid
7 Fest QLb
S 9Ly dooj
H _ N aouelsi|g
= dooj
- J deaH 0} aoue|SIip ppY
bS1L — aouejsip aje|noje) 212007
: v_wp 20e4 ajed07
: ‘Isi7 aie|nojeoay ay) uo sjulod (je 104
- dij4
aInonIg 1984d el 214 mwv
D _ eleq I
o 2 ysaw J
S m - julod }esuj - 11asu|
= - I oLy
m & N_Z
it N\ 1517 Masu| o
7y [J uo jutod mau Ind
0s!L I
J 1s1 peaubisseun ayj uo aoey
ud ay) o) pajejal sjulod |ie aoe|d -8o¥
) |
J< aoe4 dn yoo1 --g0p
1 _
s m 1abeueyy deop e deay wolj jutad xau 189 Tl.vov
ade4 Py — e 1
y]
m. 30UBJ3|0) paIIS3P {uN
= Zop—— J0 sjutod jje ‘yurod auo Joj oq soueisip |—covr
| 2 1
234" T 00b sjuiod ajeool |—1i0v
Zrt avi- @9 e 10j SaoUe|SIP [BI}IUI 8]|ND|ED

WO 98/59300 PCT/US98/13008

25/46

358

N2
Neighber 2

Frj. 13

WO 98/59300 PCT/US98/13008
26/46

371

<
[©9]
™

384

~ o~
N
o
2 ™
o
o
3 ™
™
-
N~
lap)
2
®
~ \ ™
™
M~
™ <
N~ [en]
™ I~
™
a
© -
3 .
. -::”
Ry o
W ™

WO 98/59300 PCT/US98/13008
27/46

DATA DEPENDENT EDGE CHECK

Begin Edge Check
390 — involving two
mesh faces

Calculate distance value (square

root of sum of squared distances

from associated points to mesh
faces)

392—

394 Execute hypothetical flip

396 —I Loop to calculate distance
value for new configuration

Compare distance vaiues for

397—] the two configurations

If distance value
of second configuration < that
of first, then Flip

398

399

Fig. 15

PCT/US98/13008

WO 98/59300

28/46

4209

oow ~

“4h9J

> 709

WO 98/59300 PCT/US98/13008

29/46
612 614
fJ
610
614
616
d 3518
Ay
610a

Fig. 17

WO 98/59300
30/46

620 621
old

——p 622

\\55623

620

—— 622

\S§623

610a

Fig. 18

PCT/US98/13008

WO 98/59300 PCT/US98/13008
31/46

Point Removal Flipping (data point) =650
|

Get location of t(langle from 652
Face List
T
Loop to count the number of edges attached 654
to datapoints
NUMBER = Number of Links
|
For 0 to Number_of_Links-3 .
Least LINK =10 656
]
Least Error = Highest Error - 657
1
For each LINK attached to the data point — 658

l

Error = Evaluate the Triangles that share the
edge and determine an error if the edge is ~ 660
flipped

If Error< Least Error 662

Let Least Error = Error 663
Let Least Link= LINK
152
Loop 664 |
Call Flip LINK History
Write information on History List List
y 667
Loop 668

Flip Propagation Loop: — 669

For every vertex hypotheticatly disconnected by edge fiip,
Fig 19 try flipping the edges linked to it. If error is reduced after
‘ flip, continue loop with newly disconnected vertex

PCT/US98/13008

WO 98/59300
32/46
(=
~
w
. —— :
(4]
2.9
o
©

678
800a

676

677

800

672

Fig. 20

WO 98/59300

679a

679

33/46
o
w0
w
AN
N
g ~N
(~\-
&
w
o]
[{e}
(=
«©
w
© ~N
N
« g\‘\ ?3
«
<
w
w
-
«©
©

683

Fig. 21

PCT/US98/13008

PCT/US98/13008

WO 98/59300

34/46

d001

doon
S|EWION JO} SUOIEIDOSSY
aoe4 isnipy
aoe{ 8)ed07]
‘1817 8je|nojeoay
ay) uo sjulod (e 104

a}eo07

dij @sianal Aq juiod sroway

}S17 Masu| uo julod mau jnd

I

aoe4 dn 4007

|

s
aouejsig woyj jutod jxau 189

aoue18|0} palIsap j1un
10 ‘sjulod |je ‘jutod auo 104 0Q

|

jeAowal |eanayjodAy
Aq sjyuiod ejep Q9 le
10} saduejsip |eijiul ajejnojen

2z ‘b4

PCT/US98/13008

WO 98/59300

35/46

veT "oy,

ddew] saiydea3ojoyq pazyidiq

qeg 31y

ddew] 0)0YJ (JT JO UOHINIISUO)) YSIJA V

WO 98/59300

700 — Initialize Mesh

36/46

l

Do until mesh has inserted n

702— vertices or until max_error is below

a threshholid

PCT/US98/13008

Do while more faces on recalculation
(or else do for all faces)

706 —— Get next face

Rasterize to find max_error
Compare face to pixel bits

|

Insert point into mesh at max error

l

Put reference to point on
Insert List

Put new faces on recalculation list

|

704 —|
708
Insert 710—
List
150
717 —
712 —t
History
List
152 714—]
716
Fig. 24

Check for optimization
e.g. Delaunayian

I

Put changed faces on recalculation list

718 Loop

720 Loop

WO 98/59300 PCT/US98/13008
37/46

APPENDIX 1

WO 98/59300 PCT/US98/13008
38/46

AKX]

f'.,‘

IR PY

-jna_ Ta C coler)

WO 98/59300 PCT/US98/13008
39/46

Mo 1lb @.\u)

PCT/US98/13008

WO 98/59300

40/46

WO 98/59300

1-1'5 YRS (C&\ol)

41/46

PCT/US98/13008

ON

WO 98/59300

\:Lﬁb 4 (.C&‘ o)

42/46

PCT/US98/13008

WO 98/59300

\1.25 2e LC cled)

43/46

PCT/US98/13008

(L

WO 98/59300

I-NO .2h (Ca\o()

44/46

PCT/US98/13008

WO 98/59300 PCT/US98/13008
45/46

_.\-.'.0 PR (&o\o(}

WO 98/59300 PCT/US98/13008
46/46

‘CTS ;Z\j (co\o/)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

