一种多轴齿轮箱结构，包括齿轮箱、齿轮组件、输出轴及过线筒。所述齿轮箱包括基座及罩设于基座上的密封盖。该基座与密封盖共同围成一中空箱体，所述齿轮组件装配于齿轮箱内。所述基座开设轴安装孔，该密封盖对应该轴安装孔开设过线孔。所述输出轴呈中空圆柱体状，其一端装配于该基座的套轴安装孔内，并与所述齿轮组件相装配。所述过线筒设置于该齿轮箱内，该过线筒的一端与套轴安装孔相接，另一端对准并穿过该密封盖的过线孔与外界相通。上述多轴齿轮箱结构具有结构简单、应用范围广的优点。
1. 一种多轴齿轮箱结构，包括齿轮箱及齿轮组件，所述齿轮箱包括基座及安装于该基座上的密封盖，该基座与密封盖共同构成一一体化箱体，所述齿轮组件对应装配于齿轮箱内，其特征在于：所述基座包括第一侧壁及与该第一侧壁相接的第二侧壁，该第一侧壁上贯通开设有轴安装孔，该套轴安装孔为一由该第一侧壁的外表面凹设且孔径逐级减小的阶梯型内孔，该密封盖具有一与该第一侧壁相对的端壁，该端壁上对应该套轴安装孔贯通开设有轴孔，所述多轴齿轮箱结构还包括输出轴套件及过线筒，所述输出轴套件呈中空的圆柱体状，其一端装配于该基座的轴安装孔内，并与所述齿轮组件相装配；该输出轴套件包括一用于主体及设于该套轴主体一端的轴接轴，该轴接轴对应该套轴安装孔设置在内径沿该套轴主体朝向该套轴末端方向逐级变小的阶梯状，以使得该轴接轴装配于该套轴安装孔内，该套轴主体由直径依次变小的中空的第一输出轴、第二输出轴及第三输出轴依次可旋转地设于一起组成；所述齿轮组件包括第一驱动齿轮、第二驱动齿轮及第三驱动齿轮，并分别与该套轴主体的第一输出轴、第二输出轴及第三输出轴可旋转地装配于一起，所述过线筒装配于该齿轮箱内，该过线筒的一端与套轴安装孔相接，另一端对准并穿过该密封盖的过线孔与外界相通。

2. 如权利要求1所述的多轴齿轮箱结构，其特征在于所述过线孔与所述套轴安装孔同轴设置。

3. 如权利要求1所述的多轴齿轮箱结构，其特征在于所述齿轮组件装配于基座的套轴安装孔内朝向齿轮箱体内的端部，该装配组件与该套接轴可旋转装配于一起，所述第一侧壁的内表面上设有安装部，该多轴齿轮箱结构还包括轴驱动模组，该轴驱动模组对应装配于该安装部上，并与所述齿轮组件相接，以驱动齿轮组件转动进而带动输出轴套件旋转。

4. 如权利要求1所述的多轴齿轮箱结构，其特征在于，该安装部共三个，均呈中空矩形柱状，相互间隔的环绕该套轴安装孔凸设于第一侧壁内表面上，所述轴驱动模组包括三个独立的驱动模块，并分别对应装配于该齿轮箱内的三个安装部上，以分别驱动该齿轮组件的第一驱动齿轮、第二驱动齿轮及第三驱动齿轮。

5. 如权利要求1所述的多轴齿轮箱结构，其特征在于所述第二侧壁上贯通开设有装配孔，该第二侧壁的外表面环绕该装配轴孔向外凸设形成一中空圆柱体状的收纳部，该多轴齿轮箱结构还包括外接件，该外接件装配于该装配轴孔内并收纳于该收纳部内。

6. 如权利要求5所述的多轴齿轮箱结构，其特征在于所述第二侧的内表面上临近该装配孔设有一中空矩形柱状的装配部，该外接件为一外接轴，其可旋转地装配于装配孔内，所述驱动器装配于齿轮箱的装配部内以驱动所述外接轴旋转。

7. 如权利要求1所述的多轴齿轮箱结构，其特征在于所述套接轴的外径尺寸与该套轴安装孔的内径尺寸相当，以使得该套接轴对应可旋转地装配于该齿轮箱的套轴安装孔内。
说明书

多轴齿轮箱结构

技术领域
[0001] 本发明涉及一种齿轮箱结构，尤其涉及一种应用于机器人的多轴齿轮箱结构。

背景技术
[0002] 随着科技的进步与发展，工业机器人被广泛应用于工业生产、制造、维修、检测等各个环节中，以取代传统的人工难以完成的各类高难度、危险、恶劣环境等情况下作业。多轴的这些工业机器人的驱动马达和电线等都分布于机器人手腕末端的关节处且完全暴露于外侧，因此，当这些工业机器人进入到一些相当恶劣的工作环境（例如：易燃、易爆、多粉尘或潮湿等）中去完成如喷涂、打磨等工作时，经常会引起驱动马达报警、电线老化、电路短路甚至爆炸等故障，严重影响了工业机器人的使用寿命及正常工作。

发明内容
[0003] 鉴于上述状况，有必要提供一种结构简单、可提高使用寿命的多轴齿轮箱结构。
[0004] 一种多轴齿轮箱结构，包括齿轮箱及齿轮组件，所述齿轮箱包括基座及罩设于该基座上的密封鼓，该基座与密封鼓共同构成一中空箱体，所述齿轮组件对应装配于齿轮箱内，所述基座包括第一侧壁及与该第一侧壁相接的第二侧壁，该第一侧壁上贯通开设套轴安装孔，该套轴安装孔为一由该第一侧壁的外表面向其内表面凹设且孔径逐级减小的阶梯型内孔，该密封鼓具有一与该第一侧壁相对的端壁，该端壁上相对应该套轴安装孔贯通开设有同轴孔，所述多轴齿轮箱结构还包括输出套轴及过线筒，所述输出套轴呈中空圆柱体状，其一端装配于该基座的套轴安装孔内，并与所述齿轮组件相装配，所述输出套轴包括一输出轴主体及设于该输出轴主体一端的联轴器，该联轴器对应套轴安装孔设置，其外径与该套轴主体中央方向逐级变小的阶梯轴状，以使得该联轴器装配于该套轴安装孔内，该输出轴主体由直径依次变小的中空的第一输出轴、第二输出轴及第三输出轴依次可旋转地套设于一起组成，所述齿轮组件包括第一驱动齿轮、第二驱动齿轮及第三驱动齿轮，并分别与该输出轴主体的第一输出轴、第二输出轴及第三输出轴可旋转地装配于一起，所述过线筒装配于该齿轮箱内，所述过线筒的一端与套轴安装孔相接，另一端对准并穿过该密封鼓的过线孔与外界相通。
[0005] 相较现有技术，上述多轴齿轮箱结构结构简单，可广泛应用于各种电子装置上，以将驱动模组及连接电子装置上各电子器件之间的电线密封收容于由基座与密封盖围成的齿轮箱内，避免了电线直接暴露在恶劣的工作环境中，提高了使用过程中的安全性。所述多轴齿轮箱结构通过在齿轮箱内布设过线筒及将输出轴设计成中空结构，使得所述电线通过该过线孔与外界相连以及使电线和管路从该与齿轮箱相接的输出轴内部穿过，避免了电线和管路直接裸露于外，避免了电线之间的缠绕磨损，延长了电线的使用寿命。

附图说明
[0006] 图1是本发明较佳实施例的多轴齿轮箱结构的立体组装示意图。
图 2 是图 1 所示多轴齿轮箱结构的另一视角下的立体组装示意图。
图 3 是本发明较佳实施例的多轴齿轮箱结构的立体分解示意图。
图 4 是图 3 所示多轴齿轮箱结构的另一视角下的立体分解示意图。
图 5 是本发明较佳实施例的多轴齿轮箱结构的一立体剖示图。

主要元件符号说明

<table>
<thead>
<tr>
<th>元件名称</th>
<th>符号</th>
</tr>
</thead>
<tbody>
<tr>
<td>多轴齿轮箱结构</td>
<td>100</td>
</tr>
<tr>
<td>齿轮箱</td>
<td>10</td>
</tr>
<tr>
<td>基座</td>
<td>11</td>
</tr>
<tr>
<td>第一侧壁</td>
<td>111</td>
</tr>
<tr>
<td>第二侧壁</td>
<td>112</td>
</tr>
<tr>
<td>套轴安装孔</td>
<td>113</td>
</tr>
<tr>
<td>安装部</td>
<td>114</td>
</tr>
<tr>
<td>装配轴孔</td>
<td>115</td>
</tr>
<tr>
<td>收纳部</td>
<td>116</td>
</tr>
<tr>
<td>装配部</td>
<td>117</td>
</tr>
<tr>
<td>密封盖</td>
<td>15</td>
</tr>
<tr>
<td>堵头</td>
<td>151</td>
</tr>
<tr>
<td>过线孔</td>
<td>153</td>
</tr>
<tr>
<td>输出套轴</td>
<td>30</td>
</tr>
<tr>
<td>第一输出轴</td>
<td>31</td>
</tr>
<tr>
<td>第二输出轴</td>
<td>32</td>
</tr>
<tr>
<td>第三输出轴</td>
<td>33</td>
</tr>
<tr>
<td>套轴主体</td>
<td>35</td>
</tr>
<tr>
<td>套接轴</td>
<td>37</td>
</tr>
<tr>
<td>齿轮组件</td>
<td>40</td>
</tr>
<tr>
<td>第一驱动齿轮</td>
<td>41</td>
</tr>
<tr>
<td>第二驱动齿轮</td>
<td>42</td>
</tr>
<tr>
<td>第三驱动齿轮</td>
<td>43</td>
</tr>
<tr>
<td>套轴驱动模块</td>
<td>50</td>
</tr>
<tr>
<td>驱动模块</td>
<td>51</td>
</tr>
<tr>
<td>驱动马达</td>
<td>511</td>
</tr>
<tr>
<td>减速器</td>
<td>513</td>
</tr>
<tr>
<td>外接件</td>
<td>70</td>
</tr>
<tr>
<td>驱动器</td>
<td>80</td>
</tr>
<tr>
<td>过线筒</td>
<td>90</td>
</tr>
</tbody>
</table>

具体实施方式

本发明多轴齿轮箱结构可广泛应用于驱动类电子装置上，下面将结合附图及具体实施方式对本发明较佳实施方式的多轴齿轮箱结构应用于一工业机器人（图未示）的详细说明。

请参阅图 1 及图 2，本发明较佳实施方式的多轴齿轮箱结构 100 与该工业机器人的手腕相连接，用以将驱动该手腕的多轴驱动马达、电线等元件密封收纳于其内，以避免受到工业机器人在进入一些相当恶劣的工作环境（例如：易燃、易爆、多粉尘或蒸汽等）中工作时，周围工作环境对驱动马达、电线等元件造成干扰、损坏，从而影响工业机器人的使用寿命。

请一并参阅图 3 及图 4，本发明较佳实施方式的多轴齿轮箱结构 100 包括齿轮箱
10. 输出套轴 30、齿轮组件 40、套轴驱动模组 50、外接件 70、驱动器 80 及过线筒 90。所述齿轮轴 10 包括基座 11 及罩盖于该基座 11 上的密封盖 15，该基座 11 与密封盖 15 共同围成一中空箱体结构，以将所述套轴驱动模组 50、驱动器 80 及过线筒 90 收容于该齿轮轴 10 内。

【0016】所述基座 11 为一被弯折成大致“L”型的板状体，包括第一侧壁 111 及与该第一侧壁 111 近似垂直相接而成的第二侧壁 112。所述第一侧壁 111 上对应所述输出套轴 30 贯通开设有套轴安装孔 113，该套轴安装孔 113 为一由该第一侧壁 111 的外表面向其内表面凹设，贯通且孔径逐级减小的阶梯型内孔(请参阅图 5)。该套轴安装孔 113 内对应地形成孔径由外表面朝向内表面逐级变小的阶梯形内壁。所述第一侧壁 111 的内表面上临近套轴安装孔 113 凹设有至少一安装部 114，以用于装置所述套轴驱动模组 50。在本较佳实施例中，该安装部 114 共三个，均呈中空矩形柱状，相互间隔的环绕该套轴安装孔 113 凸设于第一侧壁 111 内表面上。所述第二侧壁 112 上对应所述外接件 70 贯通过设有装配孔 115，该第二侧壁 112 的外表面上环绕该装配孔 115 向外凸设形成一中空圆柱体状的收纳部 116，以将该外接件 70 装设并收容于该收纳部 116 内。所述第二侧壁 112 的内表面上临近该装配孔 115 凸设有一呈中空矩形柱状的装配部 117，以用于装置所述驱动器 80。

【0017】所述密封盖 15 大致呈方形罩体，其上对应所述基座 11 的第一侧壁 111 及第二侧壁 112 的二相邻面两侧呈开口状。该密封盖 15 罩设于基座 11 上，共用围成成本较佳实施例所述的中空齿轮箱 10。所述密封盖 15 具有一与该基座 11 的第一侧壁 111 相对的端壁 151，该端壁 151 上对应该基座 11 上的套轴安装孔 113 贯通过设有一过线孔 153，该过线孔 153 与该套轴安装孔 113 相对设置并位于同一轴线上。

【0018】所述输出套轴 30 呈中空圆柱体状，其一端装设于该齿轮箱 10 的基座 11 的第一侧壁 111 上的套轴安装孔 113 内，并与装设于该齿轮箱 10 的套轴安装孔 113 内的齿轮组件 40 装配在一起。在本较佳实施例中，所述输出套轴 30 包括一轴体主体 35 及设于该轴体主体 35 一端的套接轴 37。该轴体主体 35 由直径逐渐变小的中空的第一输出轴 31、第二输出轴 32 及第三输出轴 33 依次可旋转地套设于一起组成。所述套接轴 37 对应该齿轮箱 10 的基座 11 的套轴安装孔 113 设置成外径沿该轴体主体 35 朝向该套接轴 37 末端方向逐级变小的阶梯轴状。该套接轴 37 的外径尺寸与该套轴安装孔 113 的内径尺寸相当，以使得该套接轴 37 对应可旋转地装设于该齿轮箱 10 的基座 11 的套轴安装孔 113 内。

【0019】所述齿轮组件 40 装设于该齿轮箱 10 的基座 11 的套轴安装孔 113 内朝向齿轮箱 10 内的端部，该齿轮组件 40 与该套接轴 37 可旋转装配于一起。使用过程中，该齿轮组件 40 在所述齿轮驱动模组 50 的驱动下带动所述输出套轴 30 旋转。在本较佳实施例中，所述齿轮组件 40 包括分别对应第一输出轴 31、第二输出轴 32 及第三输出轴 33 的第一驱动齿轮 41、第二驱动齿轮 42 及第三驱动齿轮 43。第一驱动齿轮 41、第二驱动齿轮 42 及第三驱动齿轮 43 分别与该输出套轴 30 的第一输出轴 31、第二输出轴 32 及第三输出轴 33 可旋转地装配于一起。

【0020】所述齿轮驱动模组 50 固定装设于齿轮箱 10 内的装配部 114 上，并通过电线(图未示出)与外界设施、电源电性连接，用以驱动所述齿轮组件 40 旋转。在本较佳实施例中，所述齿轮驱动模组 50 包括三个独立的驱动模块 51，并分别对应装设于该齿轮箱 10 内的三个装配部 114 上，以分别驱动该齿轮组件 40 的第一驱动齿轮 41、第二驱动齿轮 42 及第三驱动齿轮 43。其中，每一驱动模块 51 包括驱动马达 511、减速器 513 及若干电线(图未示出)，所述
减速器 513 对应装设于齿轮箱 10 的基座 11 的装配部 114 上，并与齿轮组件 40 相接。该驱动马达 511 与减速器 513 相接并通过若干电线与外界元件、设备电性导接，所述电线通过所述线管 90 及该输出套轴 30 的内孔伸出至外。

[0021] 所述外接件 70 装设于该齿轮箱 10 的基座 11 的装配孔 115 内，并整体收容于该收纳部 116 内，用以与其他部件相接。在本较佳实施例中，该外接件 70 可为一外接轴，其可旋转的装设于装配孔 115 内，并由所述驱动器 80 驱动旋转。所述驱动器 80 对应装设于齿轮箱 10 内的装配部 117 内。

[0022] 所述过线筒 90 大致呈中空圆柱体状，其装设于该齿轮箱 10 内，用以收容并导出与所述套轴驱动模组 50 电性连接的电线。该过线筒 90 的一端与所述基座 11 的套轴安装孔 113 相接，并与所述输出套轴 30 同轴装设且相互连通，该过线筒 90 的另一端对准并穿过所述密封盖 15 的过线孔 153，与外界相通，以利于收容于该过线筒 90 的电线伸出与外界的其他设备或电源相互导通。

[0023] 请一并参阅图 1 至图 5，组装时，先将所述齿轮组件 40 对应装设于所述基座 11 的套轴安装孔 113 内周缘位置处；将所述输出套轴 30 的套接轴 37 伸入基座 11 的套轴安装孔 113 内并对应与所述齿轮组件 40 可旋转地装设于一起。接着，将所述套轴驱动模组 50 固定装设于齿轮箱 10 内的装配部 114 上，其中该套轴驱动模组 50 的各减速器 513 对应与齿轮组件 40 的各驱动齿轮相接。再接着，将所述外接件 70 装设于基座 11 的装配部 115 内，并收容于该收纳部 116 内，所述驱动器 80 对应装设于齿轮箱 10 内的装配部 117 内。最后，将所述密封盖 15 装设于基座 11 上，与该基座 11 共同围成一封闭的齿轮箱 10，所述过线筒 90 对应装设于该齿轮箱 10 内，其一端一端与该基座 11 的套轴安装孔 113 相接，另一端对准并穿过该密封盖 15 的过线孔 153，与外界相通；与所述套轴驱动模组 50 电性连接的电线对应收容于过线筒 90 及该输出套轴 30 内孔内，并对应穿过该过线筒 90 及输出套轴 30 内孔与外界的其他设备或电源相接，即完成所述多轴齿轮箱结构 100 的安装。

[0024] 所述多轴齿轮箱结构 100 结构简单、在本较佳实施例中，其与工业机器人的手腕相连接，将驱动该手腕的多轴驱动马达、齿轮、电线等密封收容于其内部，从而有效避免了所述工业机器人在进入一些相当恶劣的工作环境（例如：易燃、易爆、多粉尘或潮湿等）中工作时，周围工作环境对驱动马达、电线等元件造成干扰、损坏，从而影响工业机器人的使用寿命，有效提高工业机器人的安全性能。另外，所述多轴齿轮箱结构 100 通过在齿轮箱 10 内布设过线筒 90 及将输出套轴 30 设计成中空结构，使所述电线通过该过线筒 90 与外界相连以及使电线和管路从该与齿轮箱 10 相接的输出套轴 30 内部穿过而到达工业机器人的手腕末端，从而避免了电线和管路直接裸露于工业机器人外部，避免了电线之间的缠绕磨损，延长了电线的使用寿命。

[0025] 另外，本领域技术人员还可以在本发明精神内作其它变化。当然，这些依据本发明精神所作的变化，都包含在本发明要求保护的范围之内。
图2