Title: ELECTRICAL SWITCHING APPARATUS AND CIRCUIT BREAKER INCLUDING A MOLDED ENCLOSURE AND MACHINE SCREWS REINFORCING THE SAME

Abstract: A circuit breaker includes separable contacts, an operating mechanism structured to open and close the separable contacts, a molded enclosure comprising a first molded portion and a second molded portion, a plurality of thread cutting screws fastening the first molded portion to the second molded portion, and a plurality of machine screws. The first molded portion and the second molded portion cooperate to form a plurality of exterior walls. The exterior walls define an interior volume, which encloses the separable contacts and at least a portion of the operating mechanism. The machine screws extend within and reinforce the exterior walls and restrict expansion of the exterior walls away from the interior volume.
The invention relates to electrical switching apparatus, such as, for example, circuit breakers and, more particularly, to molded case circuit breakers.

Circuit breakers, such as molded case circuit breakers, include at least one pair of separable contacts. A first contact is fixed within the molded case and a second movable contact is coupled to an operating mechanism. These separable contacts are in electrical communication with either the line or the load coupled to the circuit breaker. The operating mechanism moves the movable contact between a first, open position wherein the movable contact is spaced from the fixed contact, and a second, closed position wherein the fixed and movable contacts are in contact and electrical communication. The operating mechanism may be operated manually or by a trip mechanism.

Circuit breaker molded cases are typically constructed of a glass polyester or other molded material. Generally, these molded cases are a two-piece molding.

When interruption of relatively high electrical currents occurs, hot gases are formed that can exert significant pressure on the molded case. The outer walls of the molded case may be subjected to relatively high pressure and, thus, severe stress, resulting from the extreme expansion of gases. Because the gas pressure is relatively high and the molded case walls are relatively thin, the molded case is susceptible to breaking due to the pressure and the resulting stresses. The exterior walls of molded case circuit breakers have, thus, typically been a weak link for case strength and a limiting factor in increasing the interrupting ratings of circuit breakers.

Typically, the molded cover and molded base of molded case circuit breakers are joined by conventional thread cutting screws, which cut threads into the molded material. However, that molded material may crack apart and the
conventional thread cutting screws may be pulled out of the molded case during the process of interruption.

One prior proposal mounts the internal components of the circuit breaker poles on or in metal, which then attaches to the molded case.

U.S. Patent No. 4,595,896 discloses a circuit breaker in which each pole of the circuit breaker has a reinforced molded housing. The walls of the housing are provided with reinforcing molded ribs to withstand the high pressures caused by gases generated by the arc during interruption.

U.S. Patent No. 6,452,470 discloses that outward gas forces have a tendency to put downward pressure on portions of side walls that connect with the bottom of the molded base. Support members provide underneath support for the side walls, thereby substantially preventing bottom corner areas of the molded case from being unduly stressed and bent by the aforementioned forces.

U.S. Patent No. 6,970,059 discloses a circuit breaker in which the rigid legs of a slot motor reinforce the exterior walls of the molded housing.

It is known in some relatively large molded case circuit breakers to use only machine screws and hex nuts for the purpose of holding the molded cover in place on the molded base. The same types of machine screws and hex nuts are employed in both the molded case external walls and the molded case internal walls.

It is also known in other relatively large molded case circuit breakers to use machine screws and hex nuts within relatively thick internal walls for the purpose of holding the molded cover in place on the molded base, and to use thread cutting screws within relatively thinner external walls for the same purpose of holding the molded cover in place on the molded base.

There is room for improvement in electrical switching apparatus employing molded enclosures.

There is also room for improvement in molded case circuit breakers.

SUMMARY OF THE INVENTION

These needs and others are met by embodiments of the invention which provide an electrical switching apparatus including a molded enclosure in which a plurality of thread cutting screws fasten a first molded portion to a second molded portion. The first and second molded portions cooperate to form a plurality of
exterior walls, which define an interior volume enclosing separable contacts and at least a portion of an operating mechanism. A number of machine screws extend within and reinforce a number of the exterior walls and restrict expansion of the exterior walls away from the interior volume.

In accordance with one aspect of the invention, an electrical switching apparatus comprises: separable contacts; an operating mechanism structured to open and close the separable contacts; a molded enclosure comprising a first molded portion and a second molded portion; a plurality of thread cutting screws fastening the first molded portion to the second molded portion; and a number of machine screws, wherein the first molded portion and the second molded portion cooperate to form a plurality of exterior walls, wherein the exterior walls define an interior volume, wherein the interior volume encloses the separable contacts and at least a portion of the operating mechanism, and wherein the machine screws extend within and reinforce a number of the exterior walls and restrict expansion of the exterior walls away from the interior volume.

The exterior walls may include a first wall portion having a first thickness, a second wall portion having a second thickness and a third wall portion having a third thickness, the third thickness being greater than the first and second thicknesses. One of the machine screws may be intermediate the first wall portion and the second wall portion of one of the exterior walls. The first and second wall portions may include an interior side facing the interior volume, an opposite exterior side and a solid thickness therebetween of about 0.125 inch.

As another aspect of the invention, a circuit breaker comprises: separable contacts; an operating mechanism structured to open and close the separable contacts; a molded enclosure comprising a first molded portion and a second molded portion, the first and second molded portions cooperating to define an interior volume, a first side, an opposite second side, a pair of exterior side walls and a pair of end walls, the exterior side walls and the end walls extending between the first side and the opposite second side, the first and second molded portions enclosing the separable contacts and at least a portion of the operating mechanism, the first side and the opposite second side including a number of openings, at least some of the exterior side walls including a number of apertures extending from a corresponding one of the
openings of the first side to a corresponding one of the openings of the opposite second side; a plurality of thread cutting screws fastening the first molded portion to the second molded portion; and a plurality of machine screws extending within the apertures, the machine screws holding the first molded portion to the second molded portion and restricting expansion of the exterior side walls away from the interior volume.

One of the machine screws may be disposed through a corresponding one of the openings of the first side, and through a corresponding one of the apertures to a corresponding one of the openings of the opposite second side. The nut may be disposed in the corresponding one of the openings of the opposite second side and may engage the one of the machine screws therein.

The exterior side walls may be longer than the end walls. The nut may have a rectangular shape, a width parallel to the end walls and a length parallel to the exterior side walls, the length being longer than the width. The corresponding one of the openings of the opposite second side may have the rectangular shape.

The operating mechanism may further comprise a crossbar and a trip unit. The exterior side walls may include a first wall portion proximate the crossbar and a second wall portion proximate the trip unit. A first one of the machine screws may be intermediate the first wall portion and the second wall portion of a first one of the exterior side walls, and a second one of the machine screws may be intermediate the first wall portion and the second wall portion of a second one of the exterior side walls. The first and second wall portions may include an interior side facing the interior volume, an exterior side and a solid thickness therebetween in the range of 0.250 inch to about 0.125 inch.

As another aspect of the invention, a circuit breaker comprises: an arc chamber; separable contacts proximate the arc chamber; an operating mechanism structured to open and close the separable contacts; a trip unit cooperating with the operating mechanism to trip open the separable contacts; a molded enclosure comprising a first molded portion and a second molded portion; a plurality of thread cutting screws fastening the first molded portion to the second molded portion; and a plurality of machine screws, wherein the first molded portion and the second molded portion cooperate to form a plurality of exterior side walls, wherein the exterior side
walls define an interior volume, wherein the interior volume encloses the separable contacts, the arc chamber and at least a portion of the operating mechanism, wherein the exterior side walls include a first wall portion proximate the operating mechanism and a second wall portion proximate the trip unit, wherein a first one of the machine screws is intermediate the first wall portion and the second wall portion of a first one of the exterior side walls, wherein a second one of the machine screws is intermediate the first wall portion and the second wall portion of a second one of the exterior side walls, and wherein the first and second ones of the machine screws hold the first molded portion to the second molded portion and restrict expansion of the first and second ones of the exterior side walls away from the interior volume.

Each of the first and second wall portions may include an interior side facing the interior volume, an exterior side and a solid thickness therebetween of about 0.125 inch. The interior side may include a portion facing the arc chamber. Each of the exterior side walls may include a thickness of at least about 0.148 inch from a corresponding one of the machine screws to the portion facing the arc chamber.

BRIEF DESCRIPTION OF THE DRAWINGS

A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:

Figure 1 is an isometric view of a molded case circuit breaker in which some components are shown in simplified form and in which a portion of the molded cover is removed for clarity of illustration in accordance with an embodiment of the invention.

Figure 2 is a cross-sectional view along lines 2-2 of Figure 1.

Figure 3 is cross-sectional view of the molded base of Figure 1 taken at the point where the reinforced base walls around the machine screws are the thickest.

Figure 4 is an isometric view of the nut of Figure 2.

Figure 5 is a bottom plan view of the molded base of Figure 1 including two nuts of Figure 4.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

As employed herein, the statement that two or more parts are "connected" or "coupled" together shall mean that the parts are joined together either directly or joined through one or more intermediate parts. Further, as employed herein, the statement that two or more parts are "attached" shall mean that the parts are joined together directly.

As employed herein, the term "fastener" refers to any suitable connecting or tightening mechanism expressly including, but not limited to, rivets, bolts and screws.

As employed herein, the term "screw" refers to a fastener including a shaft with a helical groove or thread formed on its surface. A screw may be used, for example, as a threaded fastener to hold objects together and/or as a simple machine to translate torque into linear force. A screw may also be defined as an inclined plane wrapped around a shaft.

As employed herein, the term "machine screw" means a screw or a suitably sized bolt having a cylindrical shaft. A machine screw fits into an aperture, a nut and/or a tapped hole and is preferably threaded at least substantially its entire length. A "machine screw" does not mean and, thus, expressly excludes a "thread cutting screw".

As employed herein, the term "thread cutting screw" means a self-tapping screw which advances when turned while creating its own thread in a plastic or molded component, such as, for example, a molded case enclosure, a molded cover or a molded base. Thread cutting screws preferably have sharp threads that cut into the plastic or molded component. Thread cutting screws may be notched at the tip to aid in chip removal during thread cutting. A thread cutting screw does not normally fit into a nut or a pre-tapped hole, but may be removed from and/or be re-advanced into its own self-tapped hole or may be advanced into a similarly tapped hole cut by the same or substantially similar thread cutting screw. A "thread cutting screw" does not mean and, thus, expressly excludes a "machine screw".

As employed herein, the term "nut" means a type of hardware, such as, for example, a piece of metal having a hole with internal screw thread to be fitted onto a machine screw which is inserted through apertures of two or more objects, in order
to couple these objects to each other. A nut often has a square or hexagonal shape, but may also have any suitable shape, such as a rectangular shape (*i.e.*, cross-section).

The invention is described in association with a three-pole circuit breaker, although the invention is applicable to a wide range of electrical switching apparatus having any number of poles.

Referring to Figure 1, an electrical switching apparatus, such as circuit breaker 2, includes separable contacts 4, an operating mechanism 6 structured to open and close the separable contacts 4, and a molded enclosure (*e.g.*, molded case) 8 including a first molded portion, such as molded cover 10, and a second molded portion, such as molded base 12. A plurality of conventional thread cutting screws 14 fasten the molded cover 10 to the molded base 12. The molded cover and base 10,12 cooperate to form a plurality of exterior walls, such as 16,18, which define an interior volume 20. The interior volume 20 encloses the separable contacts 4 and at least a portion of the operating mechanism 6, which includes an operating handle 22 extending through an opening 24 in the molded cover 10. A number (*e.g.*, two are shown in Figure 1) of machine screws 26 extend within and reinforce a number (*e.g.*, two walls are shown in Figure 1) of the exterior walls 16,18 and restrict expansion (*e.g.*, bulging) of such exterior walls away from the interior volume 20 in response to an interruption event.

The molded cover and base 10,12 include a first side 28, an opposite second side 30, the pair of exterior side walls 16,18 and a pair of end walls 32,34. The exterior side walls 16,18 and the end walls 32,34 extend between the first side 28 and the opposite second side 30.

A non-limiting example of the thread cutting screws 14 is a #6-32 thread cutting screw, although any suitable thread cutting screw may be employed. As shown in Figure 1, the example thread cutting screws 14 are disposed in interior walls, such as 33,35, the end wall 32 and the exterior side walls 16,18, although any suitable count of thread cutting screws in any suitable wall dispositions may be employed.

Also referring to Figure 2, the first side 28 and the opposite second side 30 include a number of openings, such as 36,38 and 40,42, respectively. The exterior side walls 16,18 include respective apertures 44,46 extending from a
corresponding one of the openings 36, 38 of the first side 28 to a corresponding one of the openings 40, 42 of the opposite second side 30. The two example machine screws 26 extend from the top (with respect to Figures 1 and 2) of the molded cover 10 to the bottom (with respect to Figures 1 and 2) of the molded base 12. The machine screws 26 extend within the apertures 44, 46, hold the molded cover 10 to the molded base 12, and restrict expansion of the exterior side walls 16, 18 away from the interior volume 20. The machine screws 26 are secured in place by nuts 48 (as best shown in Figures 4 and 5) disposed in the openings 40, 42 in the bottom (with respect to Figures 1 and 2) of the molded base 12. The nuts 48 threadably engage the threads 50 of the machine screws 26, which add strength to keep the exterior side walls 16, 18 from bulging outward during interruption. The machine screws 26 define a longitudinal axis 52 extending from the molded cover 10 to the molded base 12 and cooperate with the nuts 48 to hold the molded cover and base tightly together.

Referring to Figure 3, the exterior side walls 16, 18 include a first wall portion 54 having a first thickness, a second wall portion 56 having a second thickness and a third wall portion 58 having a third thickness, with the third thickness being greater than the first and second thicknesses. The machine screws 26 (shown in Figures 1 and 2) are within the apertures 44, 46 intermediate the first wall portion 54 and the second wall portion 56 of the exterior side walls 16, 18. The exterior side walls 16, 18 are generally planar and include (as shown with exterior side wall 16) an exterior side 60 and an opposite interior side 62 facing the interior volume 20. The machine screws 26 (Figures 1 and 2) extend through the exterior side walls 16, 18 generally intermediate (as shown with exterior side wall 16 and aperture 44) the exterior side 60 and the opposite interior side 62.

The operating mechanism 6 includes a crossbar 64 and a trip unit 66 (shown in Figure 1) cooperating with the operating mechanism to trip open the separable contacts 4 (Figures 1 and 3). The first wall portion 54 is proximate the operating mechanism 6 and crossbar 64, and the second wall portion 56 is proximate the trip unit 66. In this example, the separable contacts 4 of each pole are proximate a corresponding arc chamber 68. The interior volume 20 encloses the separable contacts 4, the arc chambers 68 and at least a portion of the operating mechanism 6.
Example 1

Referring to Figures 4 and 5, the length of the exterior side walls 16,18 is longer than the width of the end walls 32,34. The nuts 48 have a rectangular shape, a width parallel to the end walls 32,34 and a length parallel to the exterior side walls 16,18. As a non-limiting example, the length of the nut is about 0.400 inch, the width of the nut is about 0.200 inch and the thickness of the nut is about 0.125 inch. The nuts 48 have a pre-tapped hole 70, which threadably engages (as best shown in Figure 2) the threads 50 of the corresponding machine screw 26. The corresponding openings 40,42 (Figure 2) of the bottom (with respect to Figures 1 and 2) side 30 have the same rectangular shape as the rectangular shape of the nuts 48.

Example 2

In this example, the machine screws 26 are #6-32 x 3.094 inch machine screws made of zinc chromate plated steel. The nuts 48 (Figure 4) are also made of zinc chromate plated steel. The machine screws 26 are superior to conventional thread cutting screws (e.g., #6-32), such as 14 of Figure 1, which may be pulled out of the molded enclosure 8 during the process of interruption. Also, the molded material that the conventional thread cutting screws 14 cut threads into may crack apart. In contrast, the machine screws 26 can achieve a higher tightening torque and, thus, effectively "sandwich" the molded cover 10 and molded base 12 together.

Example 3

The total thickness of the molded material from the machine screw holes 44,46 (Figures 2 and 3) to the interior wall 72 (Figure 3) that faces the arc chambers 68 is at least about 0.148 inch. Preferably, this thickness at least faces the arc chambers 68, as shown. Most preferably, the thickness is employed all the way around (not shown) the screw holes, if possible. This molded material around the machine screw holes 44,46 adds strength to keep the molded material from cracking away from the machine screw 26 during an interruption event.

Example 4

The first and second wall portions 54,56 of Figure 3 include the interior side 62 facing the interior volume 20, an exterior side 60 and a solid thickness therebetween of about 0.125 inch.
Example 5
The first and second wall portions 54,56 of Figure 3 include the interior side 62 facing the interior volume 20, an exterior side 60 and a solid thickness therebetween in the range of 0.250 inch to about 0.125 inch.

The benefits of the circuit breaker 2 employing the machine screws 26 include holding the molded base 12 and the molded cover 10 tightly together, and providing strength to keep the exterior side walls 16,18 of the molded enclosure 8 from bulging or otherwise expanding outward during an interruption event.

While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the claims appended and any and all equivalents thereof.
What is Claimed is:

1. An electrical switching apparatus (2) comprising:
 separable contacts (4);
 an operating mechanism (6) structured to open and close said separable contacts;
 a molded enclosure (8) comprising a first molded portion (10) and a second molded portion (12);
 a plurality of thread cutting screws (14) fastening said first molded portion to said second molded portion; and
 a number of machine screws (26), wherein said first molded portion (10) and said second molded portion (12) cooperate to form a plurality of exterior walls (16,18,32,34), wherein said exterior walls define an interior volume (20), wherein said interior volume encloses said separable contacts and at least a portion of said operating mechanism, and wherein said machine screws extend within and reinforce a number of said exterior walls (16,18) and restrict expansion of said exterior walls away from said interior volume.

2. The electrical switching apparatus (2) of Claim 1 wherein said exterior walls (16,18) include a first wall portion (54) having a first thickness, a second wall portion (56) having a second thickness and a third wall portion (58) having a third thickness, said third thickness being greater than said first and second thicknesses; wherein one of said machine screws (26) is intermediate the first wall portion and the second wall portion of one of said exterior walls; and wherein said first and second wall portions include an interior side (62) facing said interior volume, an opposite exterior side (60) and a solid thickness therebetween of about 0.125 inch.

3. The electrical switching apparatus (2) of Claim 1 wherein said machine screws (26) define a longitudinal axis (52) extending from said first molded portion to said second molded portion; wherein one of said exterior walls has a first length defined by said first molded portion and a second length defined by said second molded portion; and wherein a corresponding one of said machine screws (26)
is elongated along said longitudinal axis and substantially extends along said first and second lengths.

4. The electrical switching apparatus \(T \) of Claim 1 wherein said first molded portion is a molded cover (10) and said second molded portion is a molded base (12).

5. The electrical switching apparatus (2) of Claim 4 wherein said molded cover and said molded base cooperate to form said exterior walls (16,18,32,34); wherein said exterior walls include a first side wall (16) and an opposite second side wall (18); and wherein said machine screws include a first machine screw (26) extending within and reinforcing said first side wall and a second machine screw (26) extending within and reinforcing said second side wall.

6. The electrical switching apparatus (2) of Claim 1 wherein one of said exterior walls is generally planar and includes an exterior side (60) and an opposite interior side facing (62) said interior volume (20); and wherein a corresponding one said machine screws (26) extends through said one of said exterior walls generally intermediate said exterior side and said opposite interior side.

7. The electrical switching apparatus (2) of Claim 1 wherein said exterior walls include a first wall portion (54) having a first thickness, a second wall portion (56) having a second thickness and a third wall portion (58) having a third thickness, said third thickness being greater than said first and second thicknesses; wherein a first one of said machine screws (26) is intermediate the first wall portion and the second wall portion of a first one of said exterior walls; and wherein a second one of said machine screws (26) is intermediate the first wall portion and the second wall portion of a second one of said exterior walls.

8. A circuit breaker (2) comprising:

 separable contacts (4);

 an operating mechanism (6) structured to open and close said separable contacts;

 a molded enclosure (8) comprising a first molded portion (10) and a second molded portion (12), said first and second molded portions cooperating to define an interior volume (20), a first side (28), an opposite second side (30), a pair of exterior side walls (16,18) and a pair of end walls (32,34), said exterior side walls
and said end walls extending between the first side and the opposite second side, said
first and second molded portions enclosing said separable contacts and at least a
portion of said operating mechanism, the first side and the opposite second side
including a number of openings (36,38,40,42), at least some of said exterior side walls
including a number of apertures (44,46) extending from a corresponding one of the
openings (36,38) of the first side to a corresponding one of the openings (40,42) of the
opposite second side;

 a plurality of thread cutting screws (14) fastening said first
molded portion to said second molded portion; and

 a plurality of machine screws (26) extending within said
apertures, said machine screws holding said first molded portion to said second
molded portion and restricting expansion of said exterior side walls away from said
interior volume.

 9. The circuit breaker (2) of Claim 8 wherein one of said machine
screws (26) is disposed through a corresponding one of the openings (36,38) of the
first side, through a corresponding one of said apertures (44,46) to a corresponding
one of the openings (40,42) of the opposite second side; and wherein a nut (48) is
disposed in the corresponding one of the openings of the opposite second side and
engages said one of said machine screws therein.

 10. The circuit breaker (2) of Claim 9 wherein said exterior side
walls are longer than said end walls; wherein said nut has a rectangular shape, a width
parallel to said end walls and a length parallel to said exterior side walls, said length
being longer than said width; and wherein the corresponding one of the openings
(40,42) of the opposite second side has said rectangular shape.

 11. The circuit breaker (2) of Claim 8 wherein the first molded
portion is a molded cover (10) and the second molded portion is a molded base (12).

 12. The circuit breaker (2) of Claim 8 wherein one of said exterior
side walls is generally planar and includes an exterior side (60) and an opposite
interior side (62) facing said interior volume; and wherein a corresponding one said
machine screws (26) extends in a corresponding one of said apertures (44,46)
generally intermediate said exterior side and said opposite interior side.
13. The circuit breaker (2) of Claim 8 wherein said machine screws are #6-32 machine screws (26).

14. The circuit breaker (2) of Claim 8 wherein said machine screws are #6-32 x 3.094 inch machine screws (26).

15. The circuit breaker (2) of Claim 8 wherein said molded enclosure further comprises a plurality of interior walls (33,35); and wherein said thread cutting screws are #6-32 thread cutting screws (14) disposed in some of said interior walls (33,35), some of said end walls (32,34) and some of said exterior side walls (16,18).

16. The circuit breaker (2) of Claim 8 wherein said operating mechanism further comprises a crossbar (64) and a trip unit (66); wherein said exterior side walls include a first wall portion (54) proximate said crossbar and a second wall portion (56) proximate said trip unit; wherein a first one of said machine screws (26) is intermediate the first wall portion and the second wall portion of a first one of said exterior side walls; and wherein a second one of said machine screws (26) is intermediate the first wall portion and the second wall portion of a second one of said exterior side walls.

17. The circuit breaker (2) of Claim 16 wherein said first and second wall portions include an interior side (62) facing said interior volume, an exterior side (60) and a solid thickness therebetween in the range of 0.250 inch to about 0.125 inch.

18. A circuit breaker (2) comprising:
 an arc chamber (68);
 separable contacts (4) proximate said arc chamber;
 an operating mechanism (6) structured to open and close said separable contacts;
 a trip unit (66) cooperating with said operating mechanism to trip open said separable contacts;
 a molded enclosure (8) comprising a first molded portion (10) and a second molded portion (12);
 a plurality of thread cutting screws (14) fastening said first molded portion to said second molded portion; and
a plurality of machine screws (26),
wherein said first molded portion and said second molded portion cooperate to form a plurality of exterior side walls (16,18),
wherein said exterior side walls define an interior volume (20),
wherein said interior volume encloses said separable contacts, said arc chamber and at least a portion of said operating mechanism,
wherein said exterior side walls include a first wall portion (54) proximate said operating mechanism and a second wall portion (56) proximate said trip unit,
wherein a first one of said machine screws (26) is intermediate the first wall portion and the second wall portion of a first one of said exterior side walls,
wherein a second one of said machine screws (26) is intermediate the first wall portion and the second wall portion of a second one of said exterior side walls, and
wherein said first and second ones of said machine screws hold said first molded portion to said second molded portion and restrict expansion of said first and second ones of said exterior side walls away from said interior volume.

19. The circuit breaker (2) of Claim 18 wherein each of said first and second wall portions (54,56) includes an interior side (62) facing said interior volume, an exterior side (60) and a solid thickness therebetween of about 0.125 inch.

20. The circuit breaker (2) of Claim 19 wherein said interior side includes a portion (72) facing said arc chamber (68); and wherein each of said exterior side walls includes a thickness of at least about 0.148 inch from a corresponding one of said machine screws to said portion facing said arc chamber.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. H01H71/02

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HOIH

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X J</td>
<td>JP 09 282994 A (FUJI ELECTRIC CO LTD) 31 October 1997 (1997-10-31) abstract; figures 5,6</td>
<td>1,3-6, 18-20</td>
</tr>
<tr>
<td>Y</td>
<td>US 6 452 470 B1 (MALINGOWSKI RICHARD P [US] ET AL) 17 September 2002 (2002-09-17) cited in the application column 21, line 55 - column 23, line 3; figures 1,2,43-49</td>
<td>1,3-6, 8-15, 10-20</td>
</tr>
<tr>
<td>A</td>
<td>EP 1 098 340 A (GEN ELECTRIC [US]) 9 May 2001 (2001-05-09) paragraphs [0016], [0024]; figures 1,2,8</td>
<td>1,8,18</td>
</tr>
</tbody>
</table>

D. Further documents are listed in the continuation of Box C

X See patent family annex

Special categories of cited documents

'A' document defining the general state of the art which is not considered to be of particular relevance

'E' earlier document but published on or after the international filing date

'L' document which may throw doubts on priority claims(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

'O' document referring to an oral disclosure, use, exhibition or other means

'S' document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

'&' document member of the same patent family

Date of the actual completion of the international search

10 August 2007

Date of mailing of the international search report

22/08/2007

Name and mailing address of the ISA

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk

Tel (+31-70) 340-2040, Tx 31 651 epo nl

Fax (+31-70) 340-3016

Authorized officer

GLAMAN, C
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 9282994 A</td>
<td>31-10-1997</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UO 0116989 A1</td>
<td>08-03-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6377144 B1</td>
<td>23-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002050891 A1</td>
<td>02-05-2002</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (April 2005)