A motor vehicle active wing apparatus comprising a wing assembly, wherein the wing assembly comprises pitch adjustment means for adjusting a pitch angle of the wing assembly, the pitch adjustment means comprising a pitch adjustment actuator for adjusting the pitch angle, the apparatus being configured to allow adjustment of the pitch angle by means of the pitch actuator in real time whilst the vehicle is travelling.
MOTOR VEHICLE APPARATUS AND METHOD

TECHNICAL FIELD

The present disclosure relates to a motor vehicle active wing apparatus.

BACKGROUND

It is known to provide a motor vehicle having a rear mounted wing for generating a down force when the vehicle is travelling at speed. The down force increases the force between wheels of the vehicle and the driving surface, enhancing traction. In some vehicles the wing is fixed whilst in some known vehicles the wing is retractable. In the case of retractable wings, packaging of the wing in the retracted condition can be a problem due to extreme packaging constraints, particularly in vehicles intended to provide high performance at speed.

It is against this background that the present invention has been conceived. Embodiments of the invention may provide an apparatus, vehicle, controller, method, carrier medium, computer program product, computer readable medium or processor which addresses the above problems. Other aims and advantages of embodiments of the invention will become apparent from the following description, claims and drawings.

SUMMARY OF THE INVENTION

In an aspect of the invention for which protection is sought there is provided a motor vehicle active wing apparatus comprising a wing assembly, wherein the wing assembly comprises pitch adjustment means for adjusting a pitch angle of the wing assembly, the pitch adjustment means comprising a pitch adjustment actuator for adjusting the pitch angle, the apparatus being configured to allow adjustment of the pitch angle by means of the pitch actuator in real time whilst the vehicle is travelling.

It is to be understood that the means for adjusting pitch angle may be employed to adjust an angle of attack of the wing assembly to airflow, thereby enabling adjustment of an aerodynamic force generated by the wing assembly in use.

Embodiments of the present invention have the advantage that the amount of downward force generated on a vehicle by the wing apparatus may be adjusted by adjusting the pitch angle of the wing apparatus in real time whilst the vehicle is travelling. This feature permits a noticeable enhancement in vehicle handling and performance.
Optionally, the actuator of the pitch adjustment means is configured to enable adjustment of the pitch angle by causing rotation of the wing assembly about a lateral axis of the wing assembly that is normal to a longitudinal axis of the vehicle.

Optionally, the apparatus has a basal portion, wherein the pitch adjustment means comprises a support arm of variable length coupled at a first end to the basal portion of the apparatus and at a second end opposite the first to the wing assembly, wherein the pitch adjustment actuator is configured to adjust the length of the support arm thereby to cause adjustment of the pitch angle of the wing assembly.

Optionally, the apparatus is configured to reversibly deploy in a first direction from a stowed condition to a deployed condition, wherein in the deployed condition the wing assembly is raised relative to the retracted condition to increase an amount of aerodynamic force generated by forward movement of the vehicle, the apparatus being configured to allow adjustment of the pitch angle by means of the pitch actuator in real time whilst the vehicle is travelling with the apparatus in the deployed condition.

Optionally, the apparatus may be configured to reversibly expand telescopically along a second direction transverse to the first direction from a compact condition to an expanded condition when the apparatus deploys in the first direction.

In some embodiments, in the deployed condition the wing assembly is lifted above a body of the vehicle so that air flowing over an upper surface of the vehicle is permitted to flow over the wing assembly both above and below the wing assembly, whilst in the retracted condition air flowing over an upper surface of the vehicle is not permitted to flow over a lower surface of the wing assembly. However, when in the retracted condition, an upper surface of the wing assembly may be exposed to air flowing over the upper surface of the vehicle, the upper surface of the wing assembly providing a visible 'A' surface of the vehicle. In such embodiments, the wing assembly may generate at least some downward force on the vehicle when the vehicle moves in a forward direction. In some alternative embodiments, in the retracted condition the wing assembly may be substantially enclosed so that air flowing over an upper surface of the vehicle is not permitted to flow over an upper or lower surface of the wing assembly. For example, a cover panel may be deployed over the wing assembly so as to at least partially conceal the wing assembly when the wing assembly is in the retracted condition.
In a further aspect of the invention for which protection is sought there is provided apparatus according to a preceding aspect in combination with a boot lid of a motor vehicle, the apparatus being configured wherein at least a portion of the apparatus is stored within the boot lid when in the retracted condition, the apparatus being configured to lift the wing assembly above the boot lid when the apparatus transitions from the retracted to the deployed conditions.

Optionally, at least a portion of the wing assembly is stored within the boot lid when the apparatus is in the retracted condition.

As noted above, in some embodiments the wing assembly may be substantially entirely located within the boot lid when the apparatus is in the retracted condition.

In one aspect of the invention for which protection is sought there is provided a controller for controlling apparatus according to a preceding aspect, the controller being configured to cause adjustment of the pitch angle of the wing assembly by means of the pitch adjustment means.

The controller may be configured to cause an increase in the pitch angle of the wing assembly to increase a downward force imposed by the wing apparatus when at least one predetermined force enhancement condition exists.

Optionally, the controller is configured to cause a temporary increase in the pitch angle of the wing assembly to increase a downward force imposed by the wing apparatus when at least one predetermined force enhancement condition exists.

Optionally, the controller is configured to receive a signal indicative of the amount of brake force generated by the vehicle at a given moment in time, wherein one said at least one force enhancement condition is that the amount of brake force indicated by the signal exceeds a predetermined value.

This feature has the advantage that the amount of brake force that may be generated between a braked wheel and a driving surface may be increased due to an increase in contact force between the wheel and surface.

Optionally, the controller is configured to receive a signal indicative of the amount of lateral acceleration experienced by the vehicle at a given moment in time, wherein one said at least
one force enhancement condition is that the amount of lateral acceleration indicated by the signal exceeds a predetermined lateral acceleration value.

Thus the amount of downward force generated by the wing apparatus may be increased if the vehicle is cornering, enhancing grip between the vehicle and driving surface.

Optionally, the controller is configured to receive a signal indicative of the steering angle of the vehicle at a given moment in time, wherein one said at least one force enhancement condition is that the steering angle indicated by the signal exceeds a predetermined steering angle value.

The controller may be configured to receive a vehicle speed signal indicative of vehicle speed over ground, the controller being configured to cause the apparatus to assume the deployed condition when the apparatus is in the retracted condition and vehicle speed exceeds a first deployment speed value, and to assume the retracted condition if the apparatus is in the deployed condition and vehicle speed falls below a first retraction speed value.

Optionally, the first deployment speed value is greater than the first retraction speed value.

This feature has the advantage that hysteresis may be introduced in respect of raising and lowering of the wing apparatus, reducing the risk of mode chattering whereby the apparatus switches repeatedly between deployment and retraction of the wing assembly in relatively rapid succession as vehicle speed fluctuates above and below the deployment speed value.

The controller may be configured to adjust the pitch angle of the wing assembly in dependence on the at least one force enhancement condition only when the wing assembly is in the deployed condition.

In a further aspect of the invention for which protection is sought there is provided a controller according to a preceding aspect in combination with apparatus according to a preceding aspect.

In an aspect of the invention for which protection is sought there is provided a vehicle comprising apparatus according to a preceding aspect in combination with a controller according to a preceding aspect.
In one aspect of the invention for which protection is sought there is provided a method of increasing traction between a vehicle and ground, the method comprising adjusting automatically by means of pitch adjustment means under the control of a controller a pitch angle of a wing assembly of an active wing apparatus, the method comprising adjusting the pitch angle in real time whilst the vehicle is travelling.

The method may comprise causing the active wing apparatus to switch between a retracted condition and a deployed condition by means of a deployment actuator, whereby in the deployed condition the wing assembly is raised relative to the retracted condition to increase an amount of aerodynamic force generated by forward movement of the vehicle.

Optionally, at least a portion of the apparatus is stored within the boot lid when in the retracted condition, the method comprising lifting the wing assembly above the boot lid when the apparatus transitions from the retracted to the deployed conditions.

Optionally, at least a portion of the wing assembly is stored within the boot lid when the apparatus is in the retracted condition.

The method may comprise automatically causing the apparatus to assume the deployed condition when the apparatus is in the retracted condition and vehicle speed exceeds a first deployment speed value, and to assume the retracted condition if the apparatus is in the deployed condition and vehicle speed falls below a first retraction speed value.

Optionally, the first deployment speed value is greater than the first retraction speed value.

In an aspect of the invention for which protection is sought there is provided a non-transitory computer readable carrier medium carrying a computer readable code for controlling a vehicle to carry out the method of another aspect.

In an aspect of the invention for which protection is sought there is provided a computer program product executable on a processor so as to implement the method of another aspect.

In an aspect of the invention for which protection is sought there is provided a computer readable medium loaded with the computer program product of another aspect.
In an aspect of the invention for which protection is sought there is provided a processor arranged to implement the method of another aspect, or the computer program product of another aspect.

The wing assembly may comprise a primary wing portion and a secondary wing portion, the secondary wing portion being slidably received within the primary wing portion, the wing assembly being configured to reversibly expand telescopically by movement of the secondary wing portion outwardly from within the primary wing portion.

The secondary wing portion may be arranged to slide laterally outwardly in some embodiments.

Optionally, the secondary wing portion comprises first and second secondary wing components configured to move outwardly from respective left and right ends of the primary wing portion when the apparatus transitions from the retracted to the deployed conditions.

Optionally, the apparatus comprises a primary threaded shaft provided within the primary and secondary wing portions and coupled to the first and second secondary wing components, the wing assembly being configured wherein rotation of the primary threaded shaft causes travel of the first and second secondary wing portions in respective opposite directions, wherein rotation of the primary threaded shaft in one direction causes the wing portions to move away from one another towards the deployed condition and rotation of the primary threaded shaft in the opposite direction causes the wing portions to move towards one another, towards the retracted condition.

It is to be understood that this feature has the advantage that movement of the first and second secondary wing portions may be coordinated or synchronised automatically by movement of a single component. Furthermore, because movement of the first and second secondary wing portions may be effected by rotation of a single threaded shaft, their movement may in some embodiments be effected by means of only a single actuator such as a single electric motor. Accordingly, a complexity and potentially cost of the apparatus may be reduced by reducing the number of components required.

The apparatus may comprise a single actuator for causing rotation of the primary threaded shaft.
The actuator may be an electric motor. Other types of actuator may be useful in some embodiments.

Optionally, the respective portions of the primary threaded shaft arranged to be coupled to the first and second wing portions have threads of opposite handedness.

Thus the portion of the primary threaded shaft to which the first wing portion is coupled may be one of a left-hand or right-hand thread, whilst the portion of the primary threaded shaft to which the second wing portion is coupled may be the other of a left-hand or right-hand thread.

The apparatus may comprise lifting means for lifting the wing assembly upwardly when the apparatus transitions from the retracted to the deployed condition.

Optionally, the lifting means comprises at least one lifting arm coupled to the primary threaded shaft, wherein rotation of the primary threaded shaft to cause the first and second secondary wing portions to move towards the deployed condition causes the lifting means to cause lifting of the wing assembly, whilst rotation of the primary threaded shaft to cause the first and second secondary wing portions to move towards the retracted condition causes the lifting means to cause lowering of the wing assembly.

This feature has the advantage that rotation of a single component, the primary threaded shaft, causes both lateral expansion of the wing assembly and lifting of the wing assembly, as the apparatus transitions towards the deployed condition.

It is to be understood that in some embodiments rotation of the primary threaded shaft in one direction causes the apparatus to transition fully from the retracted condition to the deployed condition, and rotation of the primary threaded shaft in the opposite direction causes the apparatus to transition fully from the deployed condition to the retracted condition. It is to be understood that, in some embodiments, rotation of the primary threaded shaft may cause the apparatus to transition part-way between the retracted and deployed conditions, with initial and/or final movement from one condition to the other being effected by one or more other means. In some alternative embodiments, initial movement of the apparatus from the retracted condition and/or the deployed condition may be effected by means other than rotation of the primary threaded shaft in addition or instead of rotation of the primary threaded shaft.
Optionally, a second end of the at least one lifting arm is coupled to the primary threaded shaft and a first end opposite the second is arranged to pivot about a substantially fixed location, wherein rotation of the primary threaded shaft causes the second end of the at least one lifting arm to travel along the primary threaded shaft causing pivoting of the lifting arm about the first end and raising or lowering of the wing assembly.

Optionally, the first end of the at least one lifting arm is coupled to a base portion of the apparatus.

The base portion of the apparatus may be arranged to be fixedly coupled to a portion of a body of a vehicle. Optionally the base portion may be arranged to be coupled to a portion of a boot lid of a vehicle.

Optionally, the lifting means comprises at least two lifting arms arranged to pivot about their first ends in substantially opposite directions when the primary threaded shaft is rotated in a given direction.

The apparatus may further comprise anchor means configured releasably to couple the apparatus to a structural member of a vehicle when the apparatus transitions from the retracted to the deployed conditions.

Optionally, the anchor means comprises at least one shooting bolt configured to assume a deployed position when the apparatus is in the deployed condition and a retracted position when the apparatus in the retracted condition, wherein with the apparatus in the deployed condition the shooting bolt locks the apparatus to a structural member of the vehicle and with the apparatus in the retracted condition the shooting bolt releases the apparatus from the structural member.

Optionally, at least one shooting bolt is coupled to at least one lifting arm, the apparatus being arranged wherein rotation of the at least one lifting arm towards the deployed condition causes the at least one shooting bolt to move towards the deployed position.

Thus it is to be understood that as the at least one lifting arm is raised to the deployed position the at least one shooting bolt moves towards the deployed position to lock the apparatus to the structural member.
Optionally, the apparatus is arranged to be attached to a boot lid of a vehicle and the at least one shooting bolt is configured to lock the apparatus to a portion of the vehicle body other than the boot lid.

Within the scope of this application it is expressly intended that the various aspects, embodiments, examples and alternatives set out in the preceding paragraphs, in the claims and/or in the following description and drawings, and in particular the individual features thereof, may be taken independently or in any combination. That is, all embodiments and/or features of any embodiment can be combined in any way and/or combination, unless such features are incompatible. The applicant reserves the right to change any originally filed claim or file any new claim accordingly, including the right to amend any originally filed claim to depend from and/or incorporate any feature of any other claim although not originally claimed in that manner.

BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:

FIGURE 1 is a sectional rear view of a rear wing apparatus according to an embodiment of the present invention in a deployed condition as viewed in a forward direction along a longitudinal axis of a motor vehicle body to which the apparatus is mounted;

FIGURE 2 is a rear perspective view of the rear wing apparatus of FIG. 1 in the deployed condition and mounted to a tray provided in a rear boot lid of a vehicle;

FIGURE 3 is a rear perspective view of the rear wing apparatus of FIG. 1 in the retracted condition;

FIGURE 4 is a rear perspective view of the rear wing apparatus of FIG. 1 mid-way between the retracted and deployed conditions;

FIGURE 5 is a sectional side view of the rear wing apparatus of FIG. 1;

FIGURE 6 is a rear perspective view of rear wing apparatus according to a further embodiment of the present invention in the deployed condition showing a pitch control device but with the boot lid not shown for clarity;
FIGURE 7 is a rear perspective view of the rear wing apparatus of the embodiment of FIG. 6 but with the wing assembly in a steeper pitch-down condition relative to that shown in FIG. 6; Figure 8 is a rear perspective view of the rear wing apparatus of FIG. 1 in (a) a deployed condition, (b) a partially retracted condition and (c) a retracted condition; and Figure 9 is a plan view of a vehicle incorporating the rear wing apparatus of FIG. 1 in a boot lid thereof.

DETAILED DESCRIPTION

FIG. 1 is a section view of a rear wing apparatus 100 according to an embodiment of the present invention. An x-axis of the Cartesian coordinate system illustrated is directed into the plane of the page as indicated by the feathered arrow indicated at x. FIG. 2 is a rear perspective view of the apparatus 100 mounted to a tray 50T provided in the lid 50L of a rear boot (or trunk) of a motor vehicle having a body 50B a portion of which is shown in FIG. 1. The apparatus 100 has a base portion 105B that is configured to be fixed to a base of the tray 50T of the boot lid 50L. The base portion 105B carries a pair of lever arms 112L, 112R that support an expandable wing assembly 120 of the apparatus 100.

The pair of lever arms 112L, 112R are each pivotably coupled at a first end to the base portion 105B about respective axes parallel to a longitudinal (x) axis of the vehicle body 50B. The lever arms 112L, 112R are provided inboard of respective left and right opposite lateral ends of the base portion 105B and are each arranged to pivot between a retracted position in which they project inwardly towards a centreline of the vehicle body 50B, and a deployed position in which they are each substantially vertically oriented. FIG. 1 shows the apparatus 100 with the lever arms 112L, 112R in the deployed position, with the expandable wing assembly 120 raised to a deployed position. In the embodiment shown the lever arms 112L, 112R lie in a substantially horizontal plane when the apparatus 100 is in the retracted condition as shown in FIG. 3.

A second end of each lever arm 112L, 112R opposite the first is pivotably coupled to a respective threaded union joint 123L, 123R each of which sits within a primary wing portion 126 of the expandable wing assembly 120. The union joints 123L, 123R each have a threaded bore, the bores of the respective joints 123L, 123R being of opposite thread to one another. In the present embodiment the left-hand union joint 123L carries a left-hand thread and the right-hand union joint 123R carries a right-hand thread.
A pair of threaded bars 122L, 122R are also provided within the primary wing portion 126 and pass through the bores of respective union joints 123L, 123R. A first bar 122L that passes through the left-hand union joint 123L carries a left-hand thread corresponding to that of the left-hand union join 123L and a second bar 122R that passes through the right-hand union joint 123R carries a right-hand thread corresponding to that of the right-hand union join 123R.

The threaded bars 122L, 122R are coupled to a primary drive motor 121 that is substantially coaxial with the bars 122L, 122R. The bars 122L, 122R are coupled to respective left and right spindles of the motor 121 in the arrangement shown and the motor 121 is configured to cause rotation of the bars 122L, 122R relative to a casing 121C of the motor 121. The casing 121C is coupled to the primary wing portion 126 of the wing assembly 120. Accordingly, the motor 121 is able to cause turning of the threaded bar 122 relative to the primary wing portion 126 which in turn causes the union joints 123L, 123R to move either towards one another, i.e. in an inboard direction within the primary wing portion 126, or away from one another, i.e. in an outboard direction. It is to be understood that if in the position shown in FIG. 1 the motor 121 rotates in a direction to cause the union joints 123L, 123R to move in the inboard direction, the primary wing portion 126 will be lowered. Rotation of the motor 121 in the opposite direction causes the primary wing portion 126 to be raised.

The union joints 123L, 123R are each coupled to an inboard end of a respective secondary wing portion 127L, 127R. The secondary wing portions 127L, 127R are arranged concentrically with respect to the primary wing portion 126 and are configured to extend telescopically from the primary wing portion 126 when the union joints 123L, 123R are moved in an outboard direction. That is, when the union joints 123L, 123R are moved in an outboard direction from the position assumed when the apparatus 100 is in the retracted condition to the position assumed when the apparatus 100 is in the deployed condition (illustrated in FIG. 1 and FIG. 2), the secondary wing portions 127L, 127R move from respective retracted positions in which they sit substantially wholly within the primary wing portion 126 to extended (deployed) positions in which they project from the primary wing portion 126 in a laterally outboard direction, increasing the overall wing span of the wing assembly 120.

It is to be understood that one advantage of the embodiment of FIG. 1 is that the action of a single actuator, the primary drive motor 121, is able to cause both raising of the wing assembly 120 and extension of the wing assembly from a first wing span value (corresponding to the lateral length of the primary wing portion 126) to a second wing span.
value (corresponding to the lateral length of the primary wing portion 126 and extended portions of the secondary wing portions 127L, 127R). In the present embodiment, the first wing span value is substantially 1.25m and the second wing span value is substantially 2m. Other values may be useful in some embodiments, depending on the required performance characteristics and constraints imposed by available package space within the boot lid 50L.

The manner in which switching of the apparatus 100 between the retracted and deployed conditions is effected is described in more detail below.

In the present embodiment, an automatic shooting bolt arrangement is provided for locking the rear wing apparatus 100 to the vehicle body structure 50B when the apparatus 100 assumes the deployed condition. It is to be understood that the aerodynamic downforce generated by the wing assembly 120 may be substantial when the vehicle is travelling at speed. Accordingly, the boot lid 50L and components by means of which the lid 50L is attached to the vehicle body 50B may be subject to substantial downward force. The downward force can cause accelerated degradation of these components, which are required to perform important primary functions such as hinging of the boot lid (in the case of hinges) or secure closure of the boot lid 50L in the case of a lock. Accordingly, the present applicant has conceived the feature of anchoring or locking the rear wing apparatus 100 to the body 50B of the vehicle when the wing assembly 120 assumes the deployed condition so that forces on the wing assembly 120 are transmitted at least in part directly to the vehicle body 50B from the apparatus 100 and not entirely via hinges and/or a lock.

To this effect, the first end of each of the lever arms 112L, 112R carries a cam-like portion that is coupled to a first end of a respective bar linkage 112B that is in turn coupled at a second end to a respective shooting bolt 113L, 113R. As can be seen in FIG. 1, rotation of the lever arms 112L, 112R causes movement of first ends of the respective bar linkages 112B in an outboard direction when the lever arms 112L, 112R are raised, which in turn causes shooting bolts 113L, 113R to slide laterally outboard so that the bolts 113L, 113R project laterally outboard from the tray 50T of the boot lid 50L. With the boot lid 50L in the closed position as shown in FIG. 1, the shooting bolts 113L, 113R slide through respective apertures into recesses 50BR formed in the vehicle body 50B. Accordingly, as noted above, aerodynamic forces on the rear wing apparatus 100 in a downward, upward, forward or rear direction may be transferred substantially directly to the vehicle body structure 50B, rather than substantially entirely via the boot lid 50L. This feature has the effect of reducing adverse stress loading on hinges and a lock associated with the boot lid 50L, reducing a risk of premature wear and premature failure of one or more of these components. The feature
may also increase a rigidity with which the apparatus 100 is supported on the vehicle, reducing relative movement between the apparatus 100 and vehicle body 50B. This may in turn enhance one or more handling characteristics of the vehicle.

It is to be understood that a further advantage of the embodiment of FIG. 1 is that the action of a single actuator, the primary drive motor 121, is able to cause raising of the wing assembly 120, extension of the wing assembly 120 from the first wing span value to the second wing span value and, in addition, actuation of the shooting bolts 113L, 113R to cause locking of the rear wing apparatus 100 to the vehicle body structure 50B, when the apparatus 100 assumes the deployed condition.

FIG. 4 shows the rear wing apparatus 100 in a condition mid-way between the retracted and deployed conditions.

FIG. 5 is a sectional side view of the rear wing apparatus of FIG. 1.

The apparatus 100 is also provided with a pair of vertical stabiliser devices 141L, 141R shown in FIG.'s 2, 3, 4 and 5 but omitted from FIG. 1 for clarity. The vertical stabiliser devices 141L, 141R are provided immediately adjacent and outboard of a respective lever arm 112L, 112R in order to increase a stiffness of the wing assembly 100 in use. The vertical stabiliser devices 141L, 141R are each in the form of a gas-filled damper that is able to increase in length as the apparatus 100 transitions from the retracted to the deployed conditions and decrease in length in a corresponding manner when the apparatus 100 transitions from the deployed to the retracted conditions. It is to be understood that in some embodiments one or both of the vertical stabiliser devices 141L, 141R may be omitted.

The rear wing apparatus 100 is also configured to allow a pitch angle of the wing assembly 120 to be adjusted whilst the wing assembly 120 is in the deployed position. FIG. 5 illustrates the means by which adjustment of the pitch angle is effected. For the purposes of the present discussion a pitch angle P of the wing assembly 120 will be considered to be the angle between a chord C of the primary wing portion 126 and a horizontal plane.

As shown in FIG. 5, a pitch actuator device 131 in the form of an extendable strut member 131 is located within each of the lever arms 112L, 112R, device 131L being provided within the left-hand lever arm 112L and device 131R being provided within the right-hand lever arm. The devices 131L, 131R are coupled at a first end to the primary wing portion 126 at a respective pitch angle articulation pivot 133L, 133R that is located forward of the respective
union joints 123L, 123R. A second end opposite the first is coupled to a rearward edge of the base portion 105B of the apparatus 100.

It is to be understood that other locations of the pitch actuator devices 131L, 131R may be useful in some embodiments. In some embodiments only a single pitch actuator device is provided. In some embodiments one or more pitch actuator devices may be located externally of the lever arms 112L, 112R, instead of within a lever arm. In some embodiments the single pitch actuator is provided.

The pitch actuator devices 131L, 131R are arranged to freely pivot about the primary wing portion 126 at the respective pitch angle articulation pivot 133L, 133R. The primary wing portion 126 is also configured to pivot about the point at which the union joints 123L, 123R are coupled to the lever arms 112L, 112R. Thus, with the apparatus in the deployed position as shown in FIG. 5, adjustment of the length of the pitch actuator devices 131L, 131R allows the pitch angle P of the wing assembly 120 to be varied.

The pitch angle articulation pivots 133L, 133R are further configured to allow pivoting of the pitch actuator devices 131L, 131R about the respective pitch angle articulation pivot 133L, 133R to allow the pitch actuator devices 131L, 131R to fold towards the primary wing portion 126 when the wing apparatus 100 switches between the deployed and retracted conditions.

As noted above, the length of the pitch actuator devices 131L, 131R may be adjusted to vary the pitch angle P of the primary wing portion 126, with the wing assembly 120 assuming a steeper pitch-down condition (larger P) the shorter the length of the pitch actuator devices 131L, 131R.

FIG. 6 and FIG. 7 show wing apparatus 200 according to a second embodiment of the invention. Like features of the embodiment of FIG. 6 and FIG. 7 to those of the embodiment of FIG.'s 1 to 5 are shown with like reference numerals incremented by 100. The apparatus 200 is shown in FIG. 6 with the wing assembly 220 in a relatively shallow pitch-down condition, whilst FIG. 7 shows the apparatus 200 with the wing assembly 220 in a relatively steep pitch-down condition, the pitch angle being adjusted by means of pitch actuator devices (not shown) located within the lever arms 212L, 212R in a similar manner to the apparatus 100 of FIG.'s 1 to 5.

A principle difference between the apparatus 100 of FIG. 1 and that of FIG. 6 is that in the apparatus of FIG. 6 a single stabiliser device 241 is provided, substantially at a lateral mid-
point of the wing assembly 200. The choice of position of stabiliser for a given application of
wing apparatus according to an embodiment of the present invention may be made within
the constraints of available packaging space, aerodynamic constraints such as additional
drag due to increased surface area, economic constraints and so forth.

The embodiment of the rear wing apparatus 100 shown in FIG.'s 1 to 5 is provided with a
cover panel 151 (FIG. 1, FIG. 8) that covers the tray 50T in which the wing assembly 120 is
stored when the assembly 120 is in the deployed condition shown in FIG. 8(a). The
apparatus 100 is configured to cause the cover panel 151 to be lifted to cover the void
created in the tray 50T when the wing assembly 120 is raised out from the tray 50T. The
direction of movement of the cover panel 151 is indicated by arrows 151A in FIG. 1. The
cover panel 151 is lifted from a lowered position as shown in FIG. 8(c) to a raised position
shown in FIG. 8(a) to provide a visible ('A') surface of the apparatus 100 that is substantially
flush with a remainder of the 'A' surface of boot lid 50L surrounding the region in which the
apparatus 100 is provided. The cover panel 151 is provided at least in part in order to reduce
the amount of aerodynamic drag associated with the vehicle when travelling at speed with
the apparatus 100 in the deployed condition due to turbulent flow in the region of the tray
50T, below the wing assembly 120.

It is to be understood that the upper surface of the primary wing portion 126 provides an
upper visible ('A') surface of the apparatus 100 when the apparatus 100 assumes the
retracted condition instead of the cover panel 151, which assumes the lowered position.

FIG. 8(b) shows the apparatus 100 with the wing assembly 120 in an intermediate
configuration between the deployed condition of FIG. 8(a) and the lowered (retracted or
stowed) condition of FIG. 8(c).

In the present embodiment, the lever arms 112L, 112R protrude through apertures 151A
formed in the cover panel 151 when the apparatus 100 is in the deployed condition. Each of
the lever arms 112L, 112R carries a respective pin element 153L, 153R (FIG. 1) that locates
within a corresponding lateral slot 152L, 152R formed in the cover panel 151. The pin
elements 153L, 153R and slots 152L, 152R are arranged such that as the lever arms 112L,
112R swing from their positions when the apparatus 100 is in the retracted (or stowed)
condition to their positions when the apparatus 100 is in the deployed condition, the pin
elements 153L, 153R slide within the corresponding lateral slot 152L, 152R and cause lifting
of the cover panel 151 from the lowered position to the raised position, substantially flush
with the remainder of the boot lid 50L as noted above. It is to be understood that other arrangements may be useful in some embodiments.

The rear wing apparatus 100 is provided in the body 50B of a vehicle 1 in combination with a controller 15 as illustrated schematically in FIG. 8. FIG. 8 also shows the boot lid 50L (FIG. 1) to which the apparatus 100 is mounted.

The controller 15 is configured to cause the primary drive motor 121 of the apparatus 100 to be operated to cause the apparatus 100 to switch between the retracted and deployed conditions, via control line 15S1. The controller 15 is also configured to cause the pitch actuator device 131 to be operated to adjust the pitch angle of the wing assembly 126, via control line 15S2. It is to be understood that, because the apparatus 100 allows adjustment of the configuration of the wing assembly 126, such as a position or orientation of the wing assembly 126, to be made in real time under the control of the controller 15 (as opposed to by direct manual adjustment of the wing assembly 126) the apparatus 100 may be referred to as an active wing apparatus 100.

In the present embodiment, the controller 15 is configured to communicate with a brake controller 11 of the vehicle 1 in order to receive real-time signals indicative of the speed of the vehicle 1 over ground, the amount of brake pressure being applied in a hydraulic braking system of the vehicle 1 in order to cause braking, and the amount of lateral acceleration experienced by the vehicle 1, at a given moment in time.

The controller 15 determines whether the apparatus 100 should be placed in the retracted or deployed condition in dependence on the signal indicative of vehicle speed. If the vehicle speed exceeds a first deployment speed value for more than a predetermined time period, the controller 15 determines that the apparatus 100 should be caused to assume the deployed condition. The controller 15 causes the apparatus 100 to assume the deployed condition by activating the primary drive motor 121. In the present embodiment the first deployment speed value is substantially 60kph and the predetermined time period is substantially 5s. Other speed values and other time periods may be useful in some embodiments.

If whilst the apparatus 100 is in the deployed condition the vehicle speed falls below a first retraction speed value for more than a predetermined time period, the controller 15 determines that the apparatus should be placed in the retracted condition. Accordingly, the controller 15 causes the apparatus 100 to assume the retracted condition by again activating
the primary drive motor 121, but in the reverse direction. In the present embodiment the first retraction speed value is substantially 40kph and the predetermined time period is substantially 5s. Other speed values and other time periods may be useful in some embodiments.

When the controller 15 causes the apparatus 100 to assume the deployed condition, the controller 15 initially causes the wing assembly 120 to assume a baseline pitch angle P that is 10 degrees below a horizontal reference plane, the horizontal reference plane being a plane that is fixed with respect to the vehicle body 50B.

Whilst the apparatus 100 is in the deployed condition, the controller 15 monitors the signal indicative of brake pressure ('brake pressure signal') and the signal indicative of lateral acceleration ('lateral acceleration signal') in order to determine the required pitch angle P of the wing assembly 120.

In the present embodiment, the controller 15 causes the pitch angle P of the wing assembly 120 to be set to a predetermined value other than the baseline pitch angle in the event that the controller 15 determines that a predetermined force enhancement condition exists.

The controller determines that a predetermined force enhancement condition exists if any one of the following conditions is met:

(i) the lateral acceleration signal indicates that the amount of lateral acceleration experienced by the vehicle exceeds a first predetermined lateral acceleration value or has exceeded this period within a predetermined lateral acceleration period of the present time; or

(ii) the brake pressure signal indicates that the amount of brake pressure exceeds a first predetermined brake pressure value or has exceeded this period within a predetermined brake pressure period of the present time.

In the event that only condition (i) is met, the controller 15 causes the pitch angle P of the wing assembly 120 to be set to a first predetermined cornering pitch angle, by causing actuation of the pitch actuator device 131.

In the event that only condition (ii) is met, the controller 15 causes the pitch angle P of the wing assembly 120 to be set to a first predetermined braking pitch angle.
In the event that both conditions (i) and (ii) are met, the controller 15 causes the pitch angle \(P \) of the wing assembly 120 to be set to the higher of the first predetermined cornering pitch angle and the first predetermined braking pitch angle. If one of the two conditions is subsequently not met but the other is, the controller 15 causes the pitch angle to be set to the value corresponding to the condition that is met, until the condition is no longer met. When neither condition is met the controller 15 causes the pitch angle \(P \) of the wing assembly 120 to revert to the baseline pitch angle.

In the present embodiment, the first predetermined cornering pitch angle is substantially 30 degrees below the horizontal plane, the first predetermined lateral acceleration value is 0.5g and the predetermined brake pressure period is substantially 5s. Other values of predetermined cornering pitch angle, predetermined lateral acceleration value and predetermined brake pressure period may be useful in some embodiments.

In the present embodiment the first predetermined braking pitch angle is substantially 30 degrees, the first predetermined brake pressure value is substantially 5 bar and the predetermined brake pressure period is 5s. Other values of first predetermined braking pitch angle, predetermined brake pressure value and predetermined brake pressure period may be useful in some embodiments.

In some embodiments, in the event that both of conditions (i) and (ii) are met the controller 15 may cause the pitch angle \(P \) of the wing assembly 120 to be set to a predetermined value that is higher than both the first predetermined cornering pitch angle and the first predetermined braking pitch angle in order to further increase the downward force imposed on the vehicle 1 by the wing assembly 120 whilst the vehicle 1 is braking and cornering.

In some embodiments, the pitch angle \(P \) to which the wing assembly 120 is set during cornering may be dependent on the lateral acceleration value experienced by the vehicle 1, the amount by which the pitch angle is steepened below the baseline value increasing with increasing lateral acceleration as indicated by the lateral acceleration signal.

Similarly, in some embodiments, the pitch angle \(P \) to which the wing assembly 120 is set during braking may be dependent on the brake pressure value experienced by the vehicle 1, the amount by which the pitch angle is steepened below the baseline value increasing with increasing brake pressure value as indicated by the brake pressure signal.
In some embodiments, the wing apparatus 100 may be configured to assume the deployed condition when vehicle speed exceeds a predetermined value and, once deployed, remain deployed until the vehicle 1 remains stationary for more than a predetermined time period, or the vehicle is placed in a parked condition. The controller 15 may determine that the vehicle 1 is in a parked condition by one or more of a variety of means, for example by determining that a driver has placed a transmission of the vehicle in a 'park' or similar mode, where the transmission has such a mode, that the driver has switched off an engine of the vehicle, and/or any other suitable means.

It will be understood that the embodiments described above are given by way of example only and are not intended to limit the invention, the scope of which is defined in the appended claims.

Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", means "including but not limited to", and is not intended to (and does not) exclude other moieties, additives, components, integers or steps.

Throughout the description and claims of this specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.

Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.

The reader's attention is directed to all papers and documents which are filed concurrently with or previous to this specification in connection with this application and which are open to public inspection with this specification, and the contents of all such papers and documents are incorporated herein by reference.
CLAIMS:

1. A motor vehicle active wing apparatus comprising a wing assembly, wherein the wing assembly comprises pitch adjustment means for adjusting a pitch angle of the wing assembly, the pitch adjustment means comprising a pitch adjustment actuator for adjusting the pitch angle, the apparatus being configured to allow adjustment of the pitch angle by means of the pitch actuator in real time whilst the vehicle is travelling.

2. Apparatus according to claim 1 wherein the actuator of the pitch adjustment means is configured to enable adjustment of the pitch angle by causing rotation of the wing assembly about a lateral axis of the wing assembly that is normal to a longitudinal axis of the vehicle.

3. Apparatus according to claim 1 or claim 2 having a basal portion, wherein the pitch adjustment means comprises a support arm of variable length coupled at a first end to the basal portion of the apparatus and at a second end opposite the first to the wing assembly, wherein the pitch adjustment actuator is configured to adjust the length of the support arm thereby to cause adjustment of the pitch angle of the wing assembly.

4. Apparatus according to any preceding configured to reversibly deploy in a first direction from a stowed condition to a deployed condition, wherein in the deployed condition the wing assembly is raised relative to the retracted condition to increase an amount of aerodynamic force generated by forward movement of the vehicle, the apparatus being configured to allow adjustment of the pitch angle by means of the pitch actuator in real time whilst the vehicle is travelling with the apparatus in the deployed condition.

5. Apparatus according to claim 4 in combination with a boot lid of a motor vehicle, the apparatus being configured wherein at least a portion of the apparatus is stored within the boot lid when in the retracted condition, the apparatus being configured to lift the wing assembly above the boot lid when the apparatus transitions from the retracted to the deployed conditions.

6. Apparatus according to claim 5 wherein at least a portion of the wing assembly is stored within the boot lid when the apparatus is in the retracted condition.

7. A controller for controlling apparatus according to any preceding claim, the controller being configured to cause adjustment of the pitch angle of the wing assembly by means of the pitch adjustment means.
8. A controller according to claim 7 configured to cause an increase in the pitch angle of the wing assembly to increase a downward force imposed by the wing apparatus when at least one predetermined force enhancement condition exists.

9. A controller according to claim 7 or claim 8 configured to cause a temporary increase in the pitch angle of the wing assembly to increase a downward force imposed by the wing apparatus when at least one predetermined force enhancement condition exists.

10. A controller according to claim 8 or claim 9 configured to receive a signal indicative of the amount of brake force generated by the vehicle at a given moment in time, wherein one said at least one force enhancement condition is that the amount of brake force indicated by the signal exceeds a predetermined value.

11. A controller according to any one of claims 8 to 10 configured to receive a signal indicative of the amount of lateral acceleration experienced by the vehicle at a given moment in time, wherein one said at least one force enhancement condition is that the amount of lateral acceleration indicated by the signal exceeds a predetermined lateral acceleration value.

12. A controller according to any one of claims 8 to 11 configured to receive a signal indicative of the steering angle of the vehicle at a given moment in time, wherein one said at least one force enhancement condition is that the steering angle indicated by the signal exceeds a predetermined steering angle value.

13. A controller according to any one of claims 7 to 12 depending through claim 4 configured to receive a vehicle speed signal indicative of vehicle speed over ground, the controller being configured to cause the apparatus to assume the deployed condition when the apparatus is in the retracted condition and vehicle speed exceeds a first deployment speed value, and to assume the retracted condition if the apparatus is in the deployed condition and vehicle speed falls below a first retraction speed value.

14. A controller according to claim 13 wherein the first deployment speed value is greater than the first retraction speed value.
15. A controller according to claim 13 or claim 14 as depending through claim 8 configured to adjust the pitch angle of the wing assembly in dependence on the at least one force enhancement condition only when the wing assembly is in the deployed condition.

16. A controller according to any one of claims 7 to 15 in combination with apparatus according to any one of claims 1 to 6.

17. A vehicle comprising apparatus according to any one of claims 1 to 6 or a controller according to any one of claims 7 to 16.

18. A method of increasing traction between a vehicle and ground, the method comprising adjusting automatically by means of pitch adjustment means under the control of a controller a pitch angle of a wing assembly of an active wing apparatus, the method comprising adjusting the pitch angle in real time whilst the vehicle is travelling.

19. A method according to claim 18 comprising causing the active wing apparatus to switch between a retracted condition and a deployed condition by means of a deployment actuator, whereby in the deployed condition the wing assembly is raised relative to the retracted condition to increase an amount of aerodynamic force generated by forward movement of the vehicle.

20. A method according to claim 19 whereby at least a portion of the apparatus is stored within the boot lid when in the retracted condition, the method comprising lifting the wing assembly above the boot lid when the apparatus transitions from the retracted to the deployed conditions.

21. A method according to claim 19 or 20 whereby at least a portion of the wing assembly is stored within the boot lid when the apparatus is in the retracted condition.

22. A method according to any one of claims 19 to 21 comprising automatically causing the apparatus to assume the deployed condition when the apparatus is in the retracted condition and vehicle speed exceeds a first deployment speed value, and to assume the retracted condition if the apparatus is in the deployed condition and vehicle speed falls below a first retraction speed value.

23. A method according to claim 22 whereby the first deployment speed value is greater than the first retraction speed value.
24. A non-transitory computer readable carrier medium carrying a computer readable code for controlling a vehicle automatically to carry out the method of any one of claims 18 to 23.

25. A computer program product executable on a processor so as to implement the method of any one of claims 18 to 23.

26. A computer readable medium loaded with the computer program product of claim 25.

27. A processor arranged to implement the method of any one of claims 18 to 23, or the computer program product of claim 25.

28. An apparatus, vehicle, controller, method, carrier medium, computer program product, computer readable medium or processor substantially as hereinbefore described with reference to the accompanying drawings.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. B62D35/00 B62D37/02

According to International Patent Classification (IPC) to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B62D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2012/161607 AI (BOKAREV SERGEY FIODOROVICH [RU]) 29 November 2012 (2012-11-29) abstract; figure 1</td>
<td>1,7,18</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search: 1 February 2017

Date of mailing of the international search report: 10/02/2017

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-2040;
Fax: (+31-70) 340-3016

Authorized officer: Szai p, Andras

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>DE 10 2011 088852 A1 (BAYERISCHE MOTOREN WERKE AG [DE]) 20 June 2013 (2013-06-20) paragraphs [0032] - [0048]; figures 1-2</td>
<td>1,5-7,18</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP S60234076 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4660879 A</td>
</tr>
<tr>
<td>US 2014021742 AI</td>
<td>23-01-2014</td>
<td>CN 103569223 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102012106452 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5616499 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2014019437 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20140011284 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014021742 AI</td>
</tr>
<tr>
<td>Wo 2012161607 AI</td>
<td>29-11-2012</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2002067049 AI</td>
<td>06-06-2002</td>
<td>US 2002067049 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002125738 AI</td>
</tr>
<tr>
<td>DE 102011088852 AI</td>
<td>20-06-2013</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 104176136 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102013105223 AI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014346810 AI</td>
</tr>
</tbody>
</table>