1/45069 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

21 June 2001 (21.06.2001)

(10) International Publication Number

WO 01/45069 A2

(51) International Patent Classification’: GO09B 7/00

(21) International Application Number: PCT/US00/34013

(22) International Filing Date:
15 December 2000 (15.12.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/172,134
Not furnished

Us
Us

17 December 1999 (17.12.1999)
4 December 2000 (04.12.2000)

(71) Applicant: INFORMIX SOFTWARE, INC. [US/US];
4100 Bohannon Drive, Menlo Park, CA 94025 (US).

(72) Inventor: HENNUM, Erik; 78 St. Mary’s Avenue, San
Francisco, CA 94112 (US).

(74) Agents: DIBERARDINO, Diana; Fish & Richardson
P.C., 601 Thirteenth Street N.-W., Washington, DC 20005
et al. (US).

(81) Designated States (national): AU, BR, CA, JP, MX.

(84) Designated States (regional): European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE, TR).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: WEB-BASED INSTRUCTION

(57) Abstract: A method performed in a web-based environment on a computer system teaches a user to implement an application.
The method includes providing predetermined applications and presenting an annotation page that includes one or more annotations
descriptive of a predetermined application. Each annotation includes keyword links, annotation links, and detail of implementation of
the application. The method includes permitting the user to select a link in an annotation. If the user selects a keyword link, reference
documentation associated with that keyword is presented. If the user selects an annotation link, another annotation descriptive of

another source file of a predetermined application is presented.

5

10

15

20

25

WO 01/45069 PCT/US00/34013

WEB-BASED INSTRUCTION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Application No. 60/172,134, filed
December 17, 1999 and U.S. Serial No. 08/888,925, filed July 7, 1997, the entire disclosures

of which are incorporated herein by reference.

TECHNICAL FIELD

This application relates to web-based documentation and instruction.

BACKGROUND

A typical computer system as shown in Fig. 1 inclpﬂ/es a computer 100 having a
central processing unit 105, an input/output unit 110 and‘:‘a memory 115 containing various
programs used by the computer 100 such as an operating system 120 and one or more
application programs 125. An end-user of the computer system communicates with the
computer 100 by means of various input devices (keyboard 130, mouse 135) which transfer
information to the computer 100 via input/output unit 110. The computer 100 replies to this
input data, among other ways, by providing responsive output to the end-user, for example, by
displaying appropriate text and images on the screen of a display monitor 140.

The operating system 120 may include a graphical user interface (GUI) by which the
operating system and any applications it may be running (for example, a word-processing
program) can communicate with a user of the computer system. A commonly used GUI
implementation employs a desktop metaphor in which the screen of the monitor is regarded as
a virtual desktop. The desktop is an essentially two-dimensional working template area
supporting various graphical objects, including one or more display regions. As shown in
Fig. 2, information generated by application programs or the operating system can be
displayed on the desktop 200 within display regions 205 (for example, windows, dialog
boxes, pop-up menus, pull-down menus, drop-down lists, icons). The user can interact with

the operating system, and any applications it may be running, by manipulating the cursor 210

10

15

20

25

30

WO 01/45069 PCT/US00/34013

appropriately within the display regions and by entering information with the keyboard or
other input device.

The computer 100 also includes some sort of communications card or device 145 (for
example, a modem or network adapter) for exchanging data with a network 150 via a
communication link 155 (for example, a telephone line). The network 150 may be, for
example, a local area network (LAN), an intranet, or the Internet. A service provider provides
access to the network and may additionally provide various utilities or services (such as
electronic mail) associated with the network. Examples of service providers include Internet
service providers (ISPs) such as AT&T WorldNet or online service providers (OSPs) such as
America Online and CompuServe.

Developers need to know programming concepts to implement the application
program. Therefore, a description of the implementation of the application (and not only the
operation of the application) would be helpful.

Most computer applications provide an online help / documentation facility which aids
in the use of the application. A typical online help system such as shown in Fig. 3A is
accessed through a GUI in which screens of textual and graphical information are displayed to
the user in a help window 300. The user can then read the screens of help text to get a better
understanding of the application and its various features.

The user invokes the help system with a key sequence (for example, pressing the F1
key on the keyboard) or by clicking the mouse on an appropriate graphical icon or menu item.
In response, the help system may display a table of contents 305 listing the available help
topics and subtopics which can be accessed and viewed by the user as desired. The user can
browse through the table of contents 305 and click a help topic of interest to cause its
corresponding body of information to be displayed in a help window. In the help window 300
shown in Fig. 3A, the user has clicked the "Programming with Microsoft Word" topic 310 to
cause the corresponding help screen 315 to be displayed in window 300 as shown in Fig. 3B.

The "Programming with Microsoft Word" topic 310 shown in Fig. 3B includes several
subtopics 320, each represented by a separate "link." When the user clicks the mouse on one
of these links--for example, the "Error Messages" link 325--the text for the corresponding
help topic is displayed automatically in the help window 300, as shown in Fig. 3C. In this

example, the "Error Messages" topic 330 includes several links to further subtopics relating to

10

15

20

25

30

WO 01/45069 PCT/US00/34013

specific types of error messages. As shown in Fig. 3D, when the user clicks one of these
links, for example, the "Out of memory (stack space)" link 335, a new help window 340 is
spawned to display the corresponding help information ("Freeing up memory") for the
selected topic. The help information displayed in window 340 includes yet another link 345
for another subtopic, "active window," which when clicked by the user causes corresponding
help text to appear in a pop-up dialog box 350. Virtually any level of such nested help
displays is possible. The quantity and types of display regions (windows, dialog boxes, etc.)
used to display help information is largely a matter of design choice based on the preferences
of the help system developer.

A help system may provide "context-sensitive" help information, meaning that the
help system automatically displays help information specifically relevant to the application's
current task, rather than simply displaying all available help topics and forcing the user to
identify and call-up the appropriate help topic manually. A context-sensitive help system
decides which help information to display based on factors such as the current state of the
application (for example, the particular function being invoked by the user) and the current
cursor position.

The information provided by most online help systems relates to the mechanics of
using features of an application. In Fig. 4, for example, the text 400 corresponding to the
chosen help topic 405, "Cancel printing," describes how to control the print feature provided
by the application 410 (Microsoft Word).

A help system also may provide substantive information on how to make use of the
application to achieve a desired goal. In Fig. 5A, for example, the online help system
provides two types of substantive information: reference material 500 for the WordBasic
programming language and practical explanations 505 of how to use WordBasic to write
useful programs. The reference material 500 includes textual annotations describing the
syntax and meaning of various WordBasic statements, such as the AddAddIn statement, the
help text for which is shown in Fig. 5B. The practical explanations 505 can include static
examples of program code which the user can study to gain a better understanding of the
WordBasic programming language. Fig. SC shows an example of a program code that makes

use of the GetCurValues WordBasic statement.

10

15

20

25

30

WO 01/45069 PCT/US00/34013

Online help systems typically are "built" (that is, processed into a form that facilitates
run-time operation) by compiling several different help source files containing help
information that has been composed by technical writers. In general, these help source files
are maintained as a separate body of information apart from the application to which the help
system corresponds. Consequently, when the application developers change or update the
functionality of the application, the technical writers must make corresponding changes to the
help source files to ensure that the online help system accurately describes the operation of the
application. In general, however, online help systems fail to describe the implementation of
the application.

A help system may be implemented in a network environment using a “browser”,
which enables users to access and view electronic content stored in the network environment.
A browser typically is used for displaying documents described in Hyper-Text Markup
Language (HTML) and stored on servers connected to a network such as the Internet. Fig. 6
is a screen shot of a browser application 600 (in this case, Internet Explorer) displaying a
typical HTML document, or web page 605. A user instructs the browser 600 to access the
web page 605 by specifying a network address 610 -- or Uniform Resource Locator (URL) --
at which a desired document resides. In response, the browser 600 contacts the corresponding
server hosting the requested web page, retrieves the one or more files that make up the web
page, and then displays the web page in the computer display 140.

A single web page may be composed of several different files potentially of different
data types (for example, text 615, images 620, virtual worlds, sounds, or movies). In addition,
a web page can include links 625, or pointers, to other resources (for example, web pages,
individual files, or downloadable files) available on the network. Each link has an associated
URL pointing to a location on the network. When a user clicks on, or otherwise selects a
displayed link, the browser will retrieve the web page or other resource corresponding to the
link’s associated URL and display it to, or execute it for, the user.

Referring to Fig. 7, a web page 605 may provide, in addition to content 700, a site
guide 705 that helps the user navigate through all the links associated with that web page.

The site guide 705 is similar to a table of contents and typically resembles a tree structure.

Likewise, the web page 605 could include a search facility 710 that enables the user to search

. for particular key words that appear within the links associated with that web page. The web

10

15

20

25

30

WO 01/45069 PCT/US00/34013

page may provide a “Home” link 715 that sends the user back to a main web page from which
all content and links can be accessed. The web page may provide a download link 720 that,
when accessed, transmits a file from another web page or computer to the user’s computer.

According to one aspect of the invention, a method performed in a web-based
environment on a computer system teaches a user to implement an application. The method
includes providing predetermined applications and presenting an annotation page that
includes one or more annotations descriptive of a source file of a predetermined application.
Each annotation includes keyword links, annotation links, and detail of implementation of the
application. The method includes permitting the user to select a link in an annotation. If the
user selects a keyword link, reference documentation associated with that keyword is
presented. If the user selects an annotation link, another annotation descriptive of another
source file of a predetermined application is presented.

Embodiments may include one or more of the following features. For example, a
predetermined application may be performed and one or more annotations descriptive of the
performed application may be presented in coordination with performance of the
predetermined application. Performing the predetermined application may include receiving
input from the user. Another annotation page may be presented in coordination with
performance of the predetermined application based on input from the user.

Presenting the other annotation page may include automatically and simultaneously
calling an annotation request module including application, file, class and function names of a
program unit for which detail should be displayed. Presenting the other annotation page may
also include mapping the request to an annotation, and informing a browser window in the
web-based environment to display the other annotation page.

Another annotation page may be presented in coordination with performance of the
predetermined application. A global table of contents that includes links to annotations may
be automatically generated by parsing structured links in web pages including annotation
pages. Generation of links in the global table of contents may be synchronized with
presentation of annotations by highlighting links corresponding to a current annotation page.
The global table of contents may be presented in a first frame of a first browser window, the
annotation page may be presented in a second frame of the first browser window, and the

predetermined application may be performed in a second browser window.

10

15

20

25

30

WO 01/45069 PCT/US00/34013

Performing the predetermined application may include launching a Java applet or
application, which may include calling a Java application program interface to ask a web
browser to show the annotation page. Performing the predetermined application may include
downloading a hyper-text markup language page containing a Java applet.

Performing the predetermined application may include sending a common gateway
interface request to a web server that launches the application in a window in the web-based
environment. The application may return a hyper-text markup language page that includes
JavaScript to ask a web browser to display the one or more annotations.

The annotation page may be presented in a first browser window and the
predetermined application may be performed in a second browser window. The application
implementation detail may include text descriptive of the application, fragments of source
code from the application, or both. The source code fragments may be imported directly from
the source code file of the presented application.

The annotation page may be automatically generated. This generation may include
receiving a source code file that has embedded text marked up with instructions.
Additionally, the source code may be parsed to determine a structure of the predetermined
application, and one or more annotations may be generated based on the predetermined
application structure and instructions. Generation of the annotation page may include
generating one or more annotation links for navigating the annotations of the predetermined
application. Additionally, application implementation detail may be generated based on the
embedded information, and one or more keyword links may be generated for reference
documentation. Generating the annotation page may also include highlighting the keyword
links and the annotation links in the annotation page. The annotation page may be
automatically updated when an updated source code file is received.

A global table of contents may be automatically generated by parsing the one or more
annotations for annotation links. The global table of contents may be provided, and may
include links to annotations. Alternatively, the global table of contents may be generated, and
may include links to web page including annotation pages relating to an application. The
local table of contents may be provided when a local link in the global table of contents is

selected.

10

15

20

25

30

WO 01/45069 PCT/US00/34013

The presented annotation page may be descriptive of the performed application, and
the annotation page may be presented in coordination with performance of the predetermined
application.

A source code file, which is stripped of annotation mark up and includes source code
of the application but does not include text from the annotations, may be generated. The
stripped source code file may be presented and the user may be permitted to edit the stripped
source code file.

According to another aspect of the invention, a method, performed in a web-based
environment on a computer system, of teaching a user to implement an application includes
providing a predetermined plurality of applications. A predetermined application is
performed, and an annotation page descriptive of the performed application is presented in
coordination with performance of the predetermined application. The annotation page
includes detail of application implementation and links to annotations and reference
documentation.

According to another aspect of the invention, a method, performed in a web-based
environment on a computer system, of teaching a user to implement an application includes
automatically assembling and providing a global table of contents based on content in the
environment. The global table of contents includes a plurality of links to content within the
environment. A local table of contents that includes links to content that orient the user
within a local topic, is generated. The user is permitted to select links from the local table of
contents to access local topics.

According to a further aspect of the invention, a method, performed in a web-based
environment on a computer system, of teaching a user to implement an application includes
providing a plurality of predefined interactive examples. One or more of the predefined
interactive examples is performed in response to user selection, and one or more annotations
descriptive of the performed interactive example are presented in coordination with
performance of the predefined interactive example. The user is permitted to selectively
explore different aspects of the performed interactive example, the annotations, or both.

According to another aspect of the invention, a web-based computer system for
teaching a user to implement an application includes one or more predefined interactive

applications, and an annotation page including one or more annotations. A predefined

10

15

20

25

30

WO 01/45069 PCT/US00/34013

interactive application is selectively executable by the user of the web-based computer
system. The annotation page describes a predefined interactive application. The annotation
page also includes one or more links, and detail of implementation of the application.
Different annotations are automatically provided in the annotation page in response to
selective execution of a predefined interactive application.

According to a further aspect of the invention, a web-based computer system for
teaching a user to implement an application includes a web-browser window that includes a
content frame, a framework applet, and a table of contents frame that displays a global table
of contents hierarchy of links related to content in the content frame. The system also
includes one or more annotations displayed in the content frame, where each annotation
describes a predefined interactive application and includes links to other content. The system
includes a table of contents window that displays a local table of contents hierarchy of links
related to local content in the displayed annotation.

The details of one or more embodiments are set forth in the accompanying drawings
and the description below. Other features, objects and advantages will be apparent from the

description, the drawings, and the claims.

DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a prior art computer system.

Fig. 2 shows display regions in a graphical user interface as used in the computer
system of Fig. 1.

Figs. 3A — 5C are screen shots from a prior art online help and documentation system.

Fig. 6 is a screen shot of a browser application.

Fig. 7 shows a display region in a browser application.

Fig. 8 is a flow diagram showing the options available to a user of the Informix®
byExample application.

Figs. 9A — 9P are screen shots from the Informix® byExample application and from
the NewEra™ developmeht environment.

Fig. 10 is a block diagram of the NewEra™ architecture.

Fig. 11 is a block diagram showing how the Informix® byExample application is
built.

WO 01/45069 PCT/US00/34013

Fig. 12 is a sample of NewEra™ source code.
Fig. 13 shows display regions in a web-based instruction system.
Figs. 14A — 15A, 15C, 17A-17D, 18A, 18B, 19A and 19C-19F are screen shots from
the Informix® byExample web-based application.
5 Figs. 15B, 15D and 19B show content in a display region of the Informix®
byExample web-based application.
Fig. 15E and 18C are source code files with embedded annotations.
Fig. 16A is a flow diagram showing steps taken by an author of annotation pages.
Fig. 16B is a flow diagram showing steps taken by a scripting program to
10 automatically generate links in the annotation pages.
Fig. 16C is a flow diagram showing steps taken by an example program.
Fig. 20 is a block diagram of a local table of contents model used in the web-based

application.

DETAILED DESCRIPTION

15 The help information provided by conventional online help systems has proven useful
in aiding users to make effective use of application programs. However, because these
conventional online help systems essentially are limited to providing static textual or
graphical information, their effectiveness is diminished considerably. Users of conventional
online help systems gain instruction by reading and carefully studying the textual and

20 graphical information provided by the help system and then applying its teachings to the
problem to be solved. As a result, learning to use applications of any complexity often is a
painstaking and time consuming process.

An online help and instruction system developed by Informix® Software, Inc., known
as NewEra™ byExample, dramatically enhances the ease with which users can absorb

25 information and learn to use new applications. NewEra™ byExample is an online
documentation facility for NewEra™, an object-oriented application development
environment from Informix® Software, Inc. which runs under the Windows 95/NT operating
systems. A copy of NewEra™ byExample's online description of its use and operation is

attached as Appendix A.

10

15

20

25

30

WO 01/45069 PCT/US00/34013

NewEra™ byExample (or more generally, Informix® byExample, which covers the
example-based instruction systems provided for the NewEra™, Visual Basic and Java
development environments) is a specific implementation of a more general concept referred to
as "documentation by example" in which users are provided with dynamic, interactive
examples demonstrating how to accomplish a given task. Annotations describing various
aspects of the examples accompany the examples as they are being executed. Documentation
by example is based in part on the premise that users learn best by doing something (for
example, participating in an activity and observing or influencing its outcome) rather than by
merely reading about the topic.

As illustrated in the flow diagram of Fig. 8, an Informix® byExample user has several
different options for obtaining information including selecting among various different topics
(step 800); running examples while the application for which help is sought remains active
(step 805); reading about the examples, either concurrently while running the example or
independent of the example (step 810); inspecting the examples' source code in different
editor utilities (step 815); and accessing online background reference materials that help the
user to understand the examples (step 820)--all without leaving the help environment. While
in step 815, the source code for the examples can be used as sample program code which can
be cut-and-pasted for use as a template in the NewEra™ development environment in creating
new applications. Moreover, Informix® byExample enables users to learn through
experimentation, for examplé,' by selectively changing the examples or their parameters and
observing how the changes affect the examples' outcomes.

Specific features of Informix® byExample are described in detail with reference to
Figs. 9A-9P, which are exemplary screen shots taken from the Informix® byExample
application.

When a user first launches Informix® byExample, the default screen configuration
shown in Fig. 9A is displayed. This initial screen includes two separate display windows, a
list (or "table-of-contents") window 900 showing the subtopics presently available to the user
under the current topic 902, and a text window 904 which displays the help information
corresponding to the topic or subtopic selected from the list window 900. As the user clicks
different ones of the eight subtopics 906 displayed in the list window 900, the information in

the text window 904 is updated automatically to correspond to the chosen subtopic 906. The

-10-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

user can move to different pages within the current topic by clicking the forward (">>")
button 908 or the backward ("<<") button 910 as desired.

In the example of Fig.9A, the subtopics shown in the list window 904 relate to the
topic "NewEra™ byExample Introductory Topics." To switch to another help topic, and
thereby make available a different subset of the online help documentation, the user clicks the
Help Topics button 912 which brings up a window containing the Help Topics menu 914 with
a list 916 of nine different help topics, as shown in Fig. 9B. At any point in the Informix®
byExample application, the user can jump to any other portion of the online help system by
bringing up the Help Topics menu 914 and clicking the desired topic. The user can return to a
previous topic by pressing the Back button 916 an appropriate number of times.

Each of the help topics in the list 916 in Fig. 9B can be expanded to reveal a hierarchy
of multiple levels of subtopics. When the user clicks, for example, on topic 918 ("NewEra™
byExample"), it expands to reveal two additional levels of subtopics as shown in Fig. 9C--a
first level 920 including the subtopics "Introduction," "Common NewEra™ Programming
Techniques,"” and "The Examples," and a second level 922 under "The Examples" subtopic
which includes the 43 interactive examples.

When the user clicks one of the examples, for example, the "Enabling and Disabling
Buttons" example 924, the list window 900 is updated as shown in Fig. 9D to display the
annotation segments 926 ("Overview of Buttons2 Example," Graphical Object Summary,"
"Event Handler Summary," "Important Event Handlers," and "Enhancements and Variations")
associated with the selected example. The annotation segments 926 collectively describe the
corresponding example and include descriptions of the example's window, its graphical
objects, and its event handlers. In addition to the prose descriptions of the example, an
annotation segment usually also includes a source code fragment of particular interest which
has been imported directly from the source code of the example under consideration.

As shown in Fig. 9D, one of the annotation segments ("Important Event Handlers")
includes 13 topics 928-- a list of the primary event handlers used in the BUTTONS2 example.
Each event handler topic 928 includes source code fragments and prose explanations
describing the event handler to which the topic corresponds. For example, when the user

clicks event handler topic 930, the text window 904 displays source code fragments 932

-11-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

relating to the corresponding event handler (nextBT :: activate()) along with annotations 934
describing the code's operation, as shown in Fig. 9E.

The text window also may contain one or more links to related information, for
example, background reference material, which in turn may include still further links to
additional background information and so on in hierarchical fashion, each successive level in
the hierarchy providing information about the example in greater detail and at a lower level of
abstraction. By providing a hierarchy of links to increasingly detailed documentation in this
manner, Informix® byExample supplies context-appropriate information in a helpful and
efficient manner to all users, regardless of their varying levels of experience and
sophistication. A user can traverse down the hierarchical links of descriptive information
selectively until a level of understanding is reached that is commensurate with the user's needs
and background. This arrangement provides novice users with easy access to detailed
descriptive information while, at the same time, experienced users seeking help on a specific
point are protected from having to navigate through large volumes of unneeded information.

An example of hierarchical linking is shown in Fig. 9D in which text window 904
includes a link 936 (displayed as green, underlined text) to the MAIN() function, one of
functions in the BUTTONS?2 example. When the user clicks the MAIN() function link 936,
the text window 904 displays the source code 940 for that function, as shown in Fig. 9F. The
source code 940 includes further links to related information such as an online language
reference manual containing descriptions of keywords and object classes. When the user
clicks one of these links--for example, the keyword link 942 for the LET statement--the text
window 904 changes to display the corresponding online language reference entry as shown
in Fig. 9G. Similarly, if the user had clicked the object class link 944, the text window 904
would have displayed information about the ixSQLConnect class. In Fig. 9G, the user can
follow links to still further background information, for example, by clicking the Object
Expression box 946 to cause the text window 904 to appear as in Fig. 9H. Subsequently, or
alternatively, the user can click the Glossary button 948 to bring up an online glossary in a
pair of windows--a glossary table of contents window 950 and a glossary text window 952--as
shown in Fig. 91. Clicking a term in the glossary table of contents window 950 causes its

definition to appear in the glossary text window 952.

-12 -

10

15

20

25

30

WO 01/45069 PCT/US00/34013

After studying an example's annotation, its source code fragments, corresponding
language reference entries, the glossary, or a combination thereof, the user can jump
selectively to any other location in the help system by clicking the Contents button 954, which
brings up the Help Topics menu 914 shown in Fig. 9B (or the Index button 956, which
presents the available help topics in a searchable-indexed form), and then selecting the desired
topic in the manner described in connection with Figs. 9B and 9C.

Keyword links and class name links, such as the LET statement link 942 and the
ixSQOLConnect class link 944, respectively, in Fig. 9F are represented in visually unique
manners (for example, blue uppercase text for keywords, blue upper and lowercase text for
class names) so that they may be distinguished easily from each other and from other types of
links such as the MAIN() function link 936 in Fig. 9D (green, underlined text). By using
different styles for different types of links, Informix® byExample provides the user with
intuitive and useful information concerning the nature of the online information available and
the interrelationships between the different components (annotations, source code fragments,
language references, etc.) of the examples. Virtually any number of different link types may
be represented by different styles according to the preferences of the system designer.

For each of the source code fragments included in an example's annotation, a user can
invoke an appropriate editing utility from within Informix® byExample to inspect, edit or
copy the example's source code. This allows users to view a source code fragment in the
context of the larger program from which it was taken.

Informix® byExample includes source code fragments from two different types of
source code--textual program code in the NewEra™ programming language (as indicated by a
4GL or 4GH file suffix), and windows interface definition files (files having the suffix WIF)
which define how the GUI will appear to, and interact with, the end-user of the application
undergoing development. To view either type of source code fragment, the user clicks a
short-cut arrow next to a code fragment, for example, one of the short-cut arrows 958 and 960
shown in Figs. 9D-9F, and Informix® byExample responds by launching an editor that
corresponds to the type of source code under consideration. When the user clicks a short-cut
arrow next to a 4GH or 4GL file, such as short-cut arrow 958 in Figs. 9D and 9F, Informix®
byExample automatically launches the appropriate editor--NewEra™ Codewright--to view

the source code file from which the code fragment was taken, as shown in Fig. 9J. Similarly,

-13-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

when the user clicks a short-cut arrow next to a WIF file, such as short-cut arrow 960 in Figs.
9D and 9E, Informix® byExample automatically launches the appropriate editor--NewEra™
Window Painter 3.0--to view the WIF file from which the code fragment was taken, as shown
in Fig. 9K.

Selectively launching an appropriate one of multiple different editors in this manner
reflects the standard editing behavior of the NewEra™ development environment. Both the
NewEra™ development environment and the Informix® byExample documentation system
make use of the same editors in the same manner. As a result, users gain familiarity with the
application for which help is sought (that is, the NewEra™ development environment)
through normal interaction with the online help system (that is, Informix® byExample).

Once the user has opened up the source code for an example, the user simply can
study the code or can cut-and-paste portions of the code, whether visual objects from a WIF
file or program statements in a 4GH or 4GL file, into the user's own source files.
Alternatively, the user can perform a "Save As..." operation and thereby save the source code
for the example under a new file name. The user then can edit or otherwise manipulate the
new file as desired. In this manner, the examples provided by Informix® byExample can
serve as templates for use in developing new applications in the NewEra™ development
environment.

Users also may execute any or all of the 43 interactive examples provided with
Informix® byExample to observe first hand how they operate. The examples are prebuilt and
can be launched directly from their corresponding Informix® byExample annotations. To do
S0, a user first selects an example of interest from the Help Topics window 914 shown in Fig.
9C and, when the corresponding annotation appears in the text window, clicks the Run button
appearing near the top of the text window. In response, the example executes and, based on
the input received from the user, displays various screens to the user as if the example were a
standalone application. At the same time, the text window automatically updates to display
descriptive information that is pertinent to the portion of the example that was just executed
by the user. With each successive operation that the user performs on the running example,
the text window is updated simultaneously (or nearly so) to maintain synchronization with the
state of the interactive example by displaying corresponding sections of the annotations which

explain to the user what just happened in the example. By coordinating the help display with

-14 -

10

15

20

25

30

WO 01/45069 PCT/US00/34013

the current state of the examples, users consistently are provided with timely and useful
information (for example, the particular source code being executed by the example) that is
directly relevant to the user's current topic of interest. As a result, the user's ability to
comprehend and absorb information is enhanced dramatically. An example of Informix®
byExample's automatically coordinated help display is illustrated in Figs. 9L-9P.

Fig. 9L shows the initial list window 900 and text window 904 that are displayed
when the user selects the "Displaying an Edit Menu" example from the Help Topics menu.
To run this example, the user clicks the Run button 962 which, as shown in Fig. 9M, spawns
an example window 964 illustrating the basics of an edit window. At the same time, the text
window 904 is updated to display information on the MAIN() function for the "Displaying an
Edit Window" example.

As the user selectively manipulates the GUI controls in the example window 964, the
information displayed in the text window 904 is updated automatically in a corresponding
manner. In Fig. 9N; the user has clicked in text box 966 which causes the text window 904 to
display information relating to edit/TB :: focusin(). Similarly, when the user clicks text box
968, text window 904 displays information relating to edit2TB :: focusin() as shown in Fig.
90. When the user clicks the CheckBox 970, text window 904 displays information relating
to noneditCB :: focusin() as shown in Fig. 9P.

Users can experiment with an example by changing its source code or modifying its
parameters and observing how these changes affect the example. To do so, the user edits the
desired source code file, saves it a separate working directory so as not to disturb the
predefined examples, and then rebuilds the example using mechanisms provided with the
NewEra™ development environment. The number and types of such experiments that can be
created and performed are limited only by the imagination of the user.

Other options in running the examples are possible. For example, users can run an
example without concurrently viewing annotations. Additionally, the Debugger provided
with NewEra™ can be used to set breakpoints in the example source code before running the
example, thereby giving the user even further insight into how an example works.

A description of the Informix® byExample architecture, and the manner in which the
NewEra™ development environment and the Informix® byExample application are built, is

provided with reference to Figs. 10-12.

-15 -

10

15

20

25

30

WO 01/45069 PCT/US00/34013

Informix® byExample builds upon the Online Help (OLH) facility provided with the
Windows 95/NT operating systems. As shown in Fig. 10, the Informix® byExample
application 1000 draws both upon resources created specifically for Informix® byExample as
well as resources that are native to the NewEra™ development environment 1005. The
components specific to the Informix® byExample application 1000 include the interactive
examples 1007, source code 1010 for the examples, and annotations 1015 describing the
examples. The annotations 1015 include several different subcomponents including
representative fragments 1020 of the examples' source code, short-cuts 1025 that launch an
appropriate editor (for example, NewEra™ Codewright or NewEra™ Window Painter) for
viewing the examples' source code, jumps 1030 to the interactive examples, and links 1035 to
descriptions of specified keywords and class names contained in the NewEra™ online
reference 1040.

As indicated in Fig. 10, the online reference 1040, the Codewright editor 1050 and the
Window Painter editor 1055--along with other components such as Application Builder 1060,
Debugger 1065 and Interprocess Communications (IPC) library 1070--exist as part of the
development environment 1005 and thus are logically separated from the Informix®
byExample application 1000. Consequently, when a user of the Informix® byExample
application 1000 requests a resource residing in the NewEra™ development environment--
either by clicking a link 1035 for a keyword or class name or by clicking a shortcut 1025 to
view source code--Informix® byExample 1000 first must communicate with the NewEra™
development environment 1005 via an interface dynamic linked library (DLL) 1080 to access
the requested resources. The interface DLL 1080 is a compiled library of routines that enable
the Informix® byExample application 1000 to communicate with other applications such as
the components of the development environment. Informix® byExample 1000 calls the
appropriate DLL routines to display the requested online reference information or to launch
the appropriate source code editor, depending on the nature of the request made by the user.

More specifically, when an Informix® byExample user clicks on a shortcut 1025 to a
location in an example's source code 1010, the Informix® byExample application 1000 calls a
function in the DLL, which in turn calls a function in the IPC library 1070 which launches the
appropriate editor. As part of this function call (which is generated automatically by

processing source code fragments during the build of Informix® byExample, discussed

-16 -

10

15

20

25

30

WO 01/45069 PCT/US00/34013

below), the Informix® byExample application 1000 passes parameters that designate the
editor to be launched (Codewright 1050 or Window Painter 1055), and that identify the line
number at which the examples' source code 1010 is to be opened by the designated editor.
When an Informix® byExample user clicks on a link 1025 for a keyword or class name, the
Informix® byExample application 1000 calls a function in the DLL, which in turn uses the
Windows OLH facility to display the corresponding definition in the online reference 1040.

Other functions provided by the interface DLL 1080 control execution of the
interactive examples 1007 and coordinate the list window and the text window displays to
ensure that they maintain correspondence. Further details on the interface DLL 1080 and the
runtime operation of the Informix® byExample application 1000 are set forth in Appendix B.

The manner in which the Informix® byExample application 1000 and its components
(for example, examples 1007, examples' source code 1010 and annotations 1015) are
generated realizes a high degree of code "maintainability”--a measure of the efficiency and
ease with which an application can be modified. The high degree of code maintainability is
achieved by incorporating all of the information used to generate both the interactive
examples and the corresponding annotative components of Informix® byExample into a
unified logical entity--namely, the source code for the interactive examples themselves. As a
result, only one central source of information need be maintained. Any changes or updates
made to that central information source will be incorporated automatically both into the
examples and into the documentation / instruction / help facility (Informix® byExample) for
the examples. This automated build procedure ensures that the examples and the
corresponding Informix® byExample annotations are kept in synchronization regardless of
the number and frequency of modifications made to the underlying source code.

As shown in Fig. 11, the NewEra™ byExample source code 1100 can be thought of as
a single logical entity, although physically it is formed of a collection of interdependent files.
The source code 1100 contains three basic types of text--program instructions 1105, program
comments 1110 and annotations 1115--intermixed throughout the sourceAcode. The different
text types are distinguished from each other by programming conventions and by strategically
placing various different markup symbols 1120 throughout the source code.

Some of the text in the source code 1100 can serve multiple purposes. For example,

the program instructions 1105 in the source code 1100 are compiled into the examples' binary

-17-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

executable files 1125. These program instructions include calls to the OLH facility to display
the corresponding annotation at the appropriate point during execution of the example. When
an example is run by the end-user, these OLH calls cause the text window to display the
appropriate annotation automatically to describe what just happened in the example.

Portions of these same program instructions 1105 also will be extracted to serve as a
clean copy of the examples' source code, which can be displayed to the user in an editing
environment. Similarly, descriptive text that serves as program comments 1110 (unprocessed
programming explanations directed at the Informix® byExample project developers) also can
serve as annotations 1115 (programming explanations displayed to end-users of Informix®
byExample at runtime).

The markup symbols 1120 delineate the various types of text in the source code and
specify how they are to be handled when the interactive examples and the Informix®
byExample annotations are built. Fig. 12 shows a sample of NewEra™ source code which
includes several markup symbols including two instances of the "normal" symbol 1200 and
1205, an "[edit" symbol 1210 and a "] file" symbol 1215. Each of these markup symbols,
along with their respective arguments, are bounded by a pair of brackets ("{ ... }") indicating
that they reside in comment fields and are not to be treated as NewEra™ program
instructions. Programming languages other than NewEra™ may use different conventions to
delineate comment fields. In the Java programming language, for example, a start of a
comment field is designated by a "/*" symbol and terminated by a "*/" symbol. In any event,
the corresponding programming language compiler will ignore any text that has been
designated as residing in a comment field.

The ".normal" markup symbol indicates that the text following that symbol (for
example, "Since objects,," following symbol 1200) is to be treated as explanatory
comments, and thus to be displayed to the end-user in a text window as part of the annotation
text at an appropriate point during execution of a corresponding interactive example. Other
markup symbols specify the name of output files, portions of the source code that are to serve
as representative fragments of the examples' source code, hotspots and destinations for jumps
and links, or GUI-related information concerning display characteristics and objects
(windows, popups, buttons, etc.). A detailed description of the markup language is set forth
in Appendix C.

-18 -

10

15

20

25

30

WO 01/45069 PCT/US00/34013

Once the source code 1100 has been modified as desired, it is used to build the
interactive examples and the descriptive content of the Informix® byExample application
through a number of different steps. First, the source code 1100 is processed by two different
scripts 1130--a PERL script (Practical Extraction and Report Language, a general purpose
interpreted language often used for parsing text) and a WordBasic script. The scripts 1130
generate two basic types of output: source code files 1135 for the interactive examples, and
RTF files 1140 (Rich Text Format, the format expected by the OLH compiler) which
represent the descriptive and visual content (for example, annotations, source code fragments,
shortcuts to source code editors, links to online reference, jumps to executable examples) of
the Informix® byExample application.

The PERL script parses the source code 1100 searching for markup symbols and, |
based on the particular markup symbols encountered, produces several RTF file fragments
and several source code files 1135, which represent various subsets of the overall source code
1100. The WordBasic Script then merges the RTF file fragments into complete RTF files
1140 which are processed by the Windows OLH compiler 1145 to produce OLH files 1150
containing the descriptive and visual content for the Informix® byExample application. At
the same time, the examples' source code 1135 is compiled by the NewEra™ compiler 1155
to generate the binary executable corresponding to the interactive examples 1125.

The RTF file fragments generated by PERL script contain several different
components in addition to the annotations 1115 appearing in the source code 1100. The
PERL script identivﬁes each instance of a keyword or a class name appearing in the source
code extracted for the examples. For each keyword and class name detected, the PERL script
creates a link in the RTF file to the corresponding entry in the online reference materials.

The PERL script also extracts fragments of representative source code for inclusion in
the RTF files as text that appears along with the explanatory comments. The source code
fragments are formatted as monospace unwrapped text delineated by leading and trailing
blank lines whereas the explanatory comments are formatted as proportionally spaced
wrapped text. For each source code fragment included in the RTF file, the PERL script also
inserts in the RTF file a corresponding short-cut button which enables the end-user to launch
the source code editors and view the source code at the line where the fragment starts. The

PERL script also strips all of the markup symbols 1120 from the source code extracted for the

-19-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

examples. This provides end-users with a clean version of the source code for viewing in the
associated editor.

Other functions performed by the PERL script include automatically guaranteeing that
the identifier for an annotation topic is the same in an interactive example as it is in the
Windows OLH facility. That is, the PERL script reads the help topic identifiers for the
Windows OLH facility and generates corresponding NewEra™ constants. The PERL script
also generates modified versions of the NewEra™ makefiles (files that include computer-
readable instructions for building an application) which are used to build the examples.
Further details of the PERL script and its operation are set forth in Appendix B.

Although the PERL and WordBasic scripts described above operate on source code
written in the NewEra™ programming language, different scripts can be used to parse other
types of source code, for example, Java or Visual Basic. Generally, appropriate PERL and
WordBasic scripts can be written to process virtually any type of programming language
provided the programming language utilizes ASCII source code (required by PERL) and
provides some sort of source code comment mechanism. Other programming language
attributes that facilitate use of the Informix® byExample techniques include a mechanism for
invoking the Windows OLH facility with a topic identifier (so the example can display its
annotations), a mechanism for invoking the editing functions of the development environment
(so the annotation can open source code files, assuming the programming language under
consideration provides or requires a development environment), and an online reference in
Windows OLH format (so keywords in the source code can have jumps to the online
reference). Many of the Informix® byExample features described above can be implemented
even if the underlying programming language lacks one or more of these other attributes,
however.

PERL scripts can be modified to output files in formats other than RTF. For example,
a modified PERL script can output hypertext markup language (HTML) files, which can be
viewed using any available web browser (for example, Netscape Navigator).

Other variations of documentation by example are possible. For example, the
annotations describing the interactive examples could be presented in a manner other than
textual. Sounds, graphical symbols, pictures, movies or any other means of communication

could be used as desired. Further, the selection of which interactive examples to perform

-20-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

could be based on factors other than, or in addition to, designation by the user. For example,
an interactive example could be launched automatically at certain points during execution of
the underlying application, or at certain execution points in the help system. When the user
clicks a keyword, class name or other link, an example could be launched automatically either
in addition to, or instead of, displaying the textual reference information pointed to by the
link.

The documentation by example methods and techniques described above are not
limited to aiding users of software development systems but rather may find application as a
general training and education tool for any computer-based application or utility. Moreover,
the techniques described here may be implemented in hardware or software, or a combination
of the two. Preferably, the techniques are implemented in computer programs executing on
programmable computers that each includes a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or storage elements), and suitable
input and output devices. Program code is applied to data entered using an input device to
perform the functions described and to generate output information. The output information
is applied to one or more output devices.

Each program is preferably implemented in a high level procedural or object-oriented
programming language to communicate with a computer system. However, the programs can
be implemented in assembly or machine language, if desired. In any case, the language may
be a compiled or interpreted language.

Each such computer program is preferably stored on a storage medium or device (for
example, CD-ROM, hard disk or magnetic diskette) that is readable by a general or special
purpose programmable computer for configuring and operating the computer when the
storage medium or device is read by the computer to perform the procedures described. The
system also may be implemented as a computer-readable storage medium, configured with a
computer program, where the storage medium so configured causes a computer to operate in a
specific and predefined manner.

Other embodiments are within the scope of the following claims.

For example, the documentation by example method and techniques may be applied in
a network or web-based environment such as a local area network (LAN), an intranet, or the

Internet. A web-based instruction system developed by Informix® Software, Inc., known as

-21-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

Informix® byExample, dramatically enhances the ease with which developers can effectively
and efficiently implement database applications. The web-based instruction system provides
users with examples and instructions in web pages to teach users how to implement
applications. The applications themselves may or may not be web-based applications. The
web-based instruction system enables users to read formatted source code, and navigate
program structure (for example, the hierarchy of file, class, and function) to access details of
the application program’s implementation. The web-based system also permits users to jump
from a language keyword (that may be indicated as such in code fragments) to a full reference
documentation pertaining to that keyword. Users are able to open source code in an editor
and run programs directly from the web browser at the click of a run button in a toolbar. As
the example runs, an annotation page for the current method or function in the program
displays. Therefore, the user is able to view the annotation as the function or method executes
to more quickly understand how to implement such an application program.

This is in contrast to prior online help systems that simply show a user how to use an
application. Because some implementation changes do not alter the operation of the
application, but all implementation changes, by definition, affect the implementation, this
makes maintenance of the implementation documentation even more important. The web-
based instruction and help system solves this problem with prior online help systems by
maintaining the annotations as embedded comments within the source code and generating
the annotation pages automatically whenever the source file changes.

The web-based system also provides the users with how-to documentation for
accomplishing a particular task. The how-to documentation provides clear step-by-step
instructions, and presents a flexible interface for experts and “newbies” alike. The how-to
documentation includes useful graphics, and provides links to needed software and related
demos and other technical information. Additionally, the how-to documentation helps the
user to determine which products to use to accomplish a goal.

As illustrated in Fig. 13, when a user first accesses a web browser providing the web-
based instruction system, a default browser configuration 1300 is displayed. The initial
browser includes a framework of three separate display frames: a content frame 1305 that
typically displays a web page, but may also display other relevant content such as annotation

pages (which are a specific type of web page), a top frame 1310 that includes a framework

-22.-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

applet (for example, a Java applet) that displays a tool or navigation bar in addition to
providing other services, and a table of contents (TOC) frame 1315 which may be
implemented using, for example, a Java applet.

When the browser displays a byExample® HTML page, the page uses JavaScript to
automatically check for the presence of the framework. If the framework is present, the
JavaScript notifies the framework applet in the top frame 1310 about the name of the new
page and the type of content it provides. If the framework is absent from the page, the
JavaScript opens the framework with the page as the initial page (that is, the page on which
the notification occurs).

Referring also to Figs. 14A and 14B, based on the name of the page 1400, the table of
contents 1315 automatically selects the corresponding title 1405. The table of contents 1315
tests the available Java libraries on the client and automatically displays the table of contents
hierarchy with a tree control if available. The table of contents frame 1315 is user- resizable
and dismissible using a contents button 1410 in the top frame 1310: for example, in Fig. 14A,
the table of contents frame 1315 takes up around 40% of the browser, while in Fig. 14B, the
table of contents frame 1315 is dismissed and therefore not visible. The contents button 1410
automatically indicates the status of the TOC by displaying a dismissed icon (for example, in
Fig. 14B) or an opened icon (for example, in Fig. 14A).

The user may access other links in the content frame 1305 from the TOC frame 1315
by clicking on a corresponding subtopic in the TOC tree, for example, the subtopic
“Extending Database Servers” 1415. In response, as shown in Fig. 14C, the content frame
1305 displays content corresponding to that subtopic and the TOC frame 1315 highlights the
selected subtopic 1415. Also evident in this particular example is that the top frame 1310
includes a home button 1420 that automatically changes its appearance (like the contents
button) depending on whether the browser is displaying a home page or not.

Alternatively, the user may access links in the content frame 1305 by clicking on the
corresponding link in the content frame, for example, subtopic link “Java Database
Connectivity (JDBC)” 1425 shown in Fig. 14B. In response, as shown in Fig. 14D, the
content frame 1305 displays content corresponding to that subtopic, including a title 1430
representing that subtopic. Furthermore, the TOC frame 1315 automatically highlights the
selected subtopic 1435 in the TOC tree to indicate to the user which content is displayed in

-23-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

the content frame 1305. Such synchronization between the TOC and the content helps the
user to effectively and efficiently navigate through the many subtopics and topics of an
application.

Referring again to Fig. 14C, when the user selects an example using either an example
icon or link 1440 in the content frame 1305 or a subtopic icon or link 1445 in the TOC frame
1315, the browser displays in the content frame 1305 an annotation page 1500 that describes
the corresponding example as shown in Fig. 15A. Referring also to Fig. 15B, the annotation
page 1500 includes annotations 1505 descriptive of the example (also called prose), and at
least one link to another annotation page 1510.

For example, when the user clicks the link for the source file “querydb.html”, the
content frame 1305 displays the source code file annotation page “querydb.html” 1525 as
shown in the browser of Fig. 15C. The content frame displays source code fragments 1530
relating to the corresponding source code file querydb.html, as shown in Fig. 15D. The
source code fragments 1530 have been imported directly from the source code files of the
example under consideration. The source code file annotation page in the content frame also
displays annotations 1535 describing the source code file to which the topic corresponds; such
annotations 1535 may be referred to as prose.

Source code is marked up with standard HTML . Annotations 1535 are easy to
maintain because the annotation comments are embedded within source code comments in the
source code files. For example, referring to Fig. 15E, the source code file 1560 is shown for
the querydb.html source code 1525. Annotation pages, containing the source code fragments,
are generated automatically from the marked up source code files.

Referring to the flow chart 1600 of Fig. 16A, an author of an example annotates the
source code file by embedding annotations in source code comments (step 1605). The author
also marks up the embedded annotations with HTML tags and one or more special instruction
tags for the web-based system (step 1610). Once the source code files are marked up, as
shown in the flow chart 1620 of Fig. 16B, a scripting programming language such as PERL
parses the source code file to determine the program structure from the programming
language, and reads the annotations and special instruction tags (step 1625). The PERL script
generates annotation pages that reflect the program structure of the source code file (step

1630). Moreover, the PERL script provides links between annotation pages for navigating the

-24-

10

15

20

25

30

WO 01/45069 PCT/US00/34013

program structure (step 1635), incorporates the annotation comments (step 1640), while using
Java Script to notify the framework (step 1645), and highlights language keywords in source
code as links to related information (step 1650). Annotations are therefore easily maintained.
Referring again to Fig. 16A, the author of the example may adjust or edit the source code and
the annotations at the same time and at the same location (step 1615). Therefore, annotations
are regenerated automatically.

The annotation page in the content frame also may contain one or more links to related
information or from one annotation page to another annotation page. Such flexibility is due to
the automatic generation of annotation pages discussed above because the PERL script
determines the program structure and formats references to other parts of the program as
links. For example, when the user selects the “sportsHeader.tag” link in the querydb.html file
1525, the content frame 1305 displays the sportsHeader.tag source code annotation page
1540, and the TOC frame 1315 automatically highlights the corresponding subtopic link
1700, as shown in Fig. 17A.

The selectable link in the content frame annotation page may correspond to
background reference material. For example, when the “MIVAR?” link is selected, a separate
browser 1705 is spawned that displays information about the MIVAR tag, as shown in Fig.
17B. In this case, the PERL script finds keywords in the source code and formats them as
links to the reference documentation. If the user selects the “WEB HOME?” link in the
content window, a browser 1710 is spawned that includes a glossary, as shown in Fig. 17C.

Referring again to Fig. 15C, the user can select an edit button 1562 in the top frame
1310 to open the source file corresponding to the annotation page in the content frame 1305
as plain text in a browser window 1715, as shown in Fig. 17D. In this case, the PERL script
automatically strips the annotation comments out of the source file so the user is able to edit a
source file that is unencumbered by long explanations. The user could then cut and paste text
between this window and another text window that displays the user’s own program.

Referring again to Fig. 15A, the user can run an example using the framework applet
to launch a Java example applet or application, to download an HTML page containing a Java
applet or other embeddable program object, or to send a common gateway interface (CGI)
request to the web server to run non-interactive programs with output redirected to a browser

window. In the case of Java examples, the running example calls Java application

-25.

10

15

20

25

30

WO 01/45069 PCT/US00/34013

programming interfaces (APIs) to ask the web browser to show the annotation pages. In the
case of CGI programs, the example program returns an HTML page that contains JavaScript
to ask the web browser to show the annotation pages. Thus, the examples run either on the
server or in the restricted sandbox of the web browser. The examples could run on a local
client if the framework used the security features of the browser to ask the user for permission
to run the example locally.

In Fig. 15A, the user can run the example by selecting the Run button 1570. Referring
to the flow chart 1655 in Fig. 16C, upon selection of the Run button 1570, the example
launches (step 1660), using any of the methods described above, in a browser window 1800,
as shown in Fig. 18A. The TOC frame 1315 simultaneously and automatically synchronizes
with the running example by highlighting the current annotation page for the source code that
implemented the example. A PERL script generates the TOC automatically by parsing the
HTML pages for links that indicate hierarchical structure much like the automatic generation
of the annotation pages.

Moreover, the example simultaneously and automatically synchrdnizes the content
frame 1305 with the running example by displaying the current annotation page, in this
example, the querydb.html file 1525 discussed above. The user can then view the annotated
source code or edit the source file while the example is running, and jump from keywords to
the reference documentation for the keywords as described above.

When the user interacts (step 1665) with the example in the browser window 1800,
(by, for example, entering a customer number and selecting the “Submit” button in the
browser window 1800), the user interface changes (for example, the Customer Report
corresponding to the entered customer number) in the browser window 1800, as shown in Fig.
18B (step 1670). The user interface changes correspond to the next annotation page,
cust_db.html file, 1586 used in the running example. The running example automatically and
simultaneously calls an annotation request module with the example, file, class and function
names of the program unit for which annotations should be displayed (step 1675). The
annotation request module maps that request to an annotation page and tells the browser to
display the annotation page in the content frame (step 1680). For example, in Fig. 18B, the
next annotation page is cust_db.html 1586. The cust_db.html subtopic is highlighted 1585 in
the TOC frame 1315 and the content frame 1305 displays the cust_db.html annotation page

=26 -

10

15

20

25

30

WO 01/45069 PCT/US00/34013

1586, as shown in Fig. 18B. Embedded annotation markup 1810 are shown in the
cust_db.html source code file displayed in Fig. 18C. The embedded markup 1810 is used
when generating the annotation page from the source code file.

Referring again to Fig. 14C, in addition to selecting an example, the user could also
select a how to document icon or link 1450 in the content frame 1305 or a how to document
subtopic link 1455 in the TOC frame 1315. In this case, a how to document 1900 is displayed
in the content frame 1305, as shown in Fig. 19A. For clarity, the complete document 1900 is
shown in Fig. 19B. In synchronization, the TOC frame 1315 highlights the displayed
subtopic 1902 corresponding to the how to document 1900.

Also in synchronization, the top frame 1310 dynamically changes to reflect the
selected how to document 1900. For example, in the top frame are now displayed an up
button 1905, a first page button 1910, a previous page button 1915, a next page button 1920, a
last page button 1925, and a list button 1930. The up button 1905, when selected, jumps to
the category or subtopic that lists the how to document 1900. For example, the subtopic
“Extending a Database Server” lists the “Create Web applications” how to document 1900,
and upon selection of the up button 1905, the browser would display all information relating
to the “Extending a Database Server” subtopic, as shown in Fig. 14C. Generally, the top
frame changes to match the content type which is specified in the Java Script call that notifies
the framework that a new content page has displayed.

The document 1900 contains pointers to other documents or pages, the pointers being
accessed in one of several ways. The pointers may be selected directly from the content
frame 1305 by clicking on a link in the content frame which is indicated by, for example, a
different color, font, or style. For example, the user may click on the Application Page link
1930 or the Prepare Database link 1935 in the content frame 1305 as shown in Fig. 19B.
Pointers may be selected from the TOC frame 1315 by selecting a subtopic for the Create
Web applications document 1902. For example, the subtopic Prepare Database 1940
corresponds to the link Prepare Database 1935, and selection of either of these pointers would
take the user to the same document. Upon selection of a pointer, the document or page
corresponding to the pointer is then displayed to the user.

Referring also to Fig. 19C, if the user selects the list button 1930 in the top frame, a

local table of contents window 1320 is displayed. For example, if the user selects the list

227 -

10

15

20

25

30

WO 01/45069 PCT/US00/34013

button 1930 in Fig. 19A, the window 1320 is spawned, as shown in Fig. 19C. A traditional
model for navigating a document is with a hierarchical table of contents. The TOC model
orients the user at all times but restricts the content, which may not fit a hierarchy. A newer
model for navigating a document is the hypertext web. The web model links any topic in a
document with a more detailed document that expands on the same topic. The web model
removes artificial restrictions but quickly disorients the user.

In contrast, the web version of byExample® uses a local table of contents model that
provides a structured hierarchical view at a local corner of an unstructured web page of links.
In this model, some of the pages in the document are root pages for the local TOC. For
example, the page corresponding to the Create Web applications document 1900 is a root
page for the local TOC. When the user navigates to any page that is unique to the local TOC,
such as the root page (which is unique), the framework applet reads the local TOC for that
root page. As seen in Fig. 19D, when the user navigates to the Introduction page in the local
TOC 1320, the framework applet reads the local TOC for that root page and displays the
corresponding information in the TOC frame 1315 and the content frame 1305. Each page in
the local TOC is unique within the local TOC. The user can step through the pages in the
local TOC sequentially, see the number of the page in the local TOC sequence, or view the
local TOC hierarchy with the current page selected. Thus, the user is oriented within the local
topic.

The local TOC does not constrain links in pages within the local TOC. That is, pages
within the local TOC can have links to pages that are not in the local TOC 1320. For
example, when the user selects the Informix Web Integration Option link 1942 in the
Introduction document, the browser opens an Informix Web Integration Option page 1945
that is not in the local TOC 1320, as shown in Fig. 19E.

Moreover, pages can appear within multiple local TOCs. For example, the page
entitled “Create subspace” 1950 in the local TOC in Fig. 19D might appear in another local
TOC relating to another document. Only the root page (in this example, the “Create Web
applications” page 1900) is constrained to a single local TOC.

The user may navigate through the local TOC directly from the local TOC Window by
selecting the topic of interest in the local TOC. Additionally, the user may navigate the
through the local TOC via the top frame 1310 using the first page button 1910, the previous

-28-

10

WO 01/45069 PCT/US00/34013

page button 1915, the next page button 1920, or the last page button 1925. These buttons
basically turn the pages in the document for the user by moving through the local TOC. For
example, if the user selects the next page button 1920 while in the Create Web applications
document 1900, the browser displays the next document in the Create Web applications
document, which is the “Table of Contents” document 1955, as shown in Fig. 19F.

Referring to Fig. 20, a model 2000 of how the local TOCs 2005 are built is shown.
The building of local TOCs imposes ordered views on the unstructured (or random) web of
pages 2010, thus facilitating viewing of the web of pages 2010.

Other embodirﬁents are within the scope of the following claims.

The web-based instruction system may support Java, Visual Basic, C, C++, HTML,
Perl, JavaScript, SQL, Informix Stored Procedure Language (SPL), Embedded SQL for
C(ESQL/C), SQLIJ, JSP, ASP, and Informix Web DataBlade Module languages.

What is claimed is:

-29.

O 0 N1 Oy AW N

—
—_ O

N N U AW =

WO 01/45069 PCT/US00/34013

1. A method, performed in a web-based environment on a computer system, of helping a
user learn to implement an application, the method comprising:

providing a predetermined plurality of applications;

presenting an annotation page that includes one or more annotations descriptive of a
source file of a predetermined application, each annotation including keyword links,
annotation links, and detail of implementation of the application;

permitting the user to select a link in an annotation;

if the user selects a keyword link, presenting reference documentation associated with
that keyword; and

if the user selects an annotation link, presenting another annotation descriptive of

another source file of a predetermined application.

2. The method of claim 1 further comprising performing a predetermined application and
presenting one or more annotations descriptive of the performed application in coordination

with performance of the predetermined application.

3. The method of claim 2 in which performing the prédetermined application comprises

receiving input from the user.

4. The method of claim 3 further comprising presenting another annotation page in

coordination with performance of the predetermined application based on input from the user.

5. The method of claim 4 in which presenting another annotation page comprises:

automatically and simultaneously calling an annotation request module including
application, file, class and function names of a program unit for which detail should be
displayed;

mapping the request to an annotation; and

informing a browser window in the web-based environment to display the other

annotation page.

-30-

HOW N =

—

WO 01/45069 PCT/US00/34013

6. The method of claim 3 in which another annotation page is presented in coordination

with performance of the predetermined application.

7. The method of claim 6 further comprising automatically generating a global table of
contents comprising links to annotations by parsing structured links in web pages including

annotation pages.

8. The method of claim 7 in which the links in the global table of contents are
synchronized with presented annotations by highlighting links corresponding to a current

annotation page.

9. The method of claim 8 in which the global table of contents is presented in a first
frame of a first browser window, the annotation page is presented in a second frame of the
first browser window, and the predetermined application is performed in a second browser

window.

10 The method of claim 2 in which performing the predetermined application comprises

launching a Java applet or application.

11. The method of claim 10 in which launching the Java applet or application comprises

calling a Java application programming interface to ask a web browser to show the annotation

page.

12. The method of claim 2 in which performing the predetermined application comprises

downloading a hyper-text markup language page containing a Java applet.
13. The method of claim 2 in which performing the predetermined application comprises

sending a common gateway interface request to a web server that launches the application in a

window in the web-based environment.

31-

N B W N -

[V, I S ST S

WO 01/45069 PCT/US00/34013

14. The method of claim 13 in which the application returns a hyper-text markup language

page that includes JavaScript to ask a web browser to display the one or more annotations.

15. The method of claim 2 in which the annotation page is presented in a first browser

window and the predetermined application is performed in a second browser window.

16. The method of claim 1 in which application implementation detail includes text

descriptive of the application, fragments of source code from the application, or both.

17. The method of claim 16 in which source code fragments are imported directly from

the source code file of the presented application.

18. The method of claim 1 further comprising automatically generating the annotation

page descriptive of the source code file of a predetermined application.

19. The method of claim 18 in which generating the annotation page comprises:
receiving a source code file that has embedded text marked up with instructions;
parsing the source code to determine a structure of the predetermined application; and
generating one or more annotations based on the predetermined application structure

and instructions.

20. The method of claim 19 in which generating the annotation page comprises:
generating one or more annotation links for navigating the annotations of the
predetermined application;
generating application implementation detail based on the embedded information; and

generating one or more keyword links for reference documentation.

21. The method of claim 20 in which generating the annotation page comprises

highlighting the keyword links and the annotation links in the annotation page.

-32-

wn R W N -

[u—

WO 01/45069 PCT/US00/34013

22. The method of claim 19 further comprising automatically updating the annotation
page descriptive of the source code file of the predetermined application when an updated

source code file is received.

23. The method of claim 1 further comprising automatically generating a global table of

contents by parsing the plurality of annotations for annotation links.

24. The method of claim 23 further comprising providing the global table of contents, in

which the global table of contents comprises links to annotations.

25. The method of claim 23 further comprising generating a local table of contents, in
which the local table of contents comprises links to web pages including annotation pages

relating to an application.

26. The method of claim 25 further comprising providing the local table of contents when

a local link in the global table of contents is selected.

27. The method of claim 1 in which the presented annotation page is descriptive of the
performed application and the annotation page is presented in coordination with performance

of the predetermined application.

28. The method of claim 1 further comprising:
generating a source code file stripped of annotation mark up, the generated source
code file including source code of the application but not including text from the annotations;
presenting the stripped source code file; and

permitting the user to edit the stripped source code file.
29. A method, performed in a web-based environment on a computer system, of teaching

user to implement an application, the method comprising:

providing a predetermined plurality of applications;

-33-

~N N W A

o
O O 00 N0 N b WN -

O 0 ~1 &N U R W =

AW NN =

WO 01/45069 PCT/US00/34013

performing a predetermined application; and
presenting an annotation page descriptive of a performed application in coordination
with performance of the predetermined application, the annotation page including detail of

application implementation and links to annotations and reference documentation.

30. A method, performed in a web-based environment on a computer system, of teaching
a user to implement an application, the method comprising:

automatically assembling a global table of contents based on content in the
environment, the global table of contents including a plurality of links to content within the
environment;

providing the global table of contents;

generating a local table of contents that includes links to content that orient the user
within a local topic; and

permitting the user to select links from the local table of contents to access local

topics.

31. A method, performed in a web-based environment on a computer system, of teaching
a user to implement an application, the method comprising:

providing a plurality of predefined interactive examples;

performing one or more of the predefined interactive examples in response to user
selection;

presenting one or more annotations descriptive of the performed interactive example
in coordination with performance of the predefined interactive example; and

allowing the user to selectively explore different aspects of the performed interactive

example, the annotations, or both.

32. = A web-based computer system for teaching a user to implement an application, the
system comprising:
one or more predefined interactive applications, a predefined interactive application

selectively executable by the user of the web-based computer system; and

-34-

O 0 1 SN W

10

BOW N = N =

WO 01/45069 PCT/US00/34013

an annotation page including one or more annotations, in which the annotation page
describes a predefined interactive application, and the annotation page further includes:
one or more links, and
detail of implementation of the application,
in which different annotations are automatically provided in the annotation page in

response to selective execution of a predefined interactive application.

33. The system of claim 32 further comprising a utility through which the user can access

source code associated with a predefined interactive application.

34. The system of claim 33 in which the utility enables the user to view or copy a

predefined interactive application’s source code.

35. The system of claim 32 in which detail of implementation of the application comprises
text descriptive of the application, fragments of source code associated with the application,

or both.
36. The system of claim 32 in which a link comprises a keyword link that provides the
user with access to a body of reference documentation or an annotation link that provides the

user with access to another annotation page.

37. The system of claim 32 further comprising a web-browser window that includes a

framework that comprises:
a content frame that displays the annotations;
a framework applet that displays a navigation bar; and

a table of contents frame that displays a table of contents hierarchy of links.

38. The system of claim 37 in which the framework applet comprises a Java applet.

-35.-

O 00 N1 N U R WN

WO 01/45069 PCT/US00/34013

39. The system of claim 37 in which a Java Script automatically determines whether the
framework is present in the web browser window, and if the framework is present, notifies the

framework applet about the content in the framework.

40. The system of claim 39 in which the table of contents automatically highlights a link

in the hierarchy based on the content in the framework.

41. The system of claim 40 in which the user accesses an annotation page by selecting a

link in the table of contents hierarchy.

42. The system of claim 40 in which the user accesses an annotation page by interacting

with the navigation bar.

43. The system of claim 40 in which the table of contents highlights the hierarchy based

on an annotation page displayed in the content frame.
44. The system of claim 37 in which the table of contents is dismissible or resizable.

45. A web-based computer system for teaching a user to implement an application, the
system comprising:

a web-browser window that includes a content frame, a framework applet, and a table
of contents frame that displays a global table of contents hierarchy of links related to content
in the content frame; |

one or more annotations displayed in the content frame, each annotation describing a
predefined interactive application and including links to other content; and

a table of contents window that displays a local table of contents hierarchy of links

related to local content in the displayed annotation.

-36-

WO 01/45069

|00

135

PCT/US00/34013

1/59

Wy

—1

s

lio

CPA
/os/{ i

Covmunicatio
4 Deviet

\:ls

/200'

WO 01/45069
2/59

PCT/US00/34013

205 —

Q05
/

305

1e]

k\\ a0

P 205
C

Fig. 2
PRIOR ART

WO 01/45069

Word

3/59

Help Contents

To leam how to use Hel, press F1.

PCT/US00/34013

&

4

B

e

Using Word ™

Step.y.stap nstructions to help you compiste
your tesxs

Examples and Qemon

Visusl examoiss and demonstrations to hep
You iearm word

Referencs Informatiga
Angwers {0 common questions; tisx end guides
to terminciogy, commands, and the keyboard

o /310

Campiets referanca infarmation about the
VVOrcBesic Mecro aNguacs

Tachnical Suppant .
Avedabls SUDPOrt SEtONS SO thit You can gt

. 305

the MESt from yYOur MICIGSOTt Sroauct

Fig.

3A .
PRIOR ART

. . —— - A ———————" =¥

WO 01/45069 PCT/US00/34013

4/59

~ WurdBasic Help

) Programmmg wufh — i
WZal Microsoft Word 3iS
@ Ward Help Cgntents

WordBasic Statements and Functions
Conventong

t n Funct [»

; nt '

Mare WordBasic Information
What's New in YorgdBasic

< —
-y .
<
P ¢ e e e ¢ et T

Fig. 3B
PRIOR ART

WO 01/45069 PCT/US00/34013
5/59

< WouidBasic Help
= ST il L S

Error Messages i T 130 s

When you rnun a macro end an eror occurs, yOu can get more information by prassing F1 or choosing the Melp butan in the 3%

error message oox The fallowing lists. the firstfor WardBasic emror messagas and the second for Word error messagas,
includes numbars you can use when repping smars. For more informatian on 8TCr repping, $88 Qn E7or statament

WordBasic Error Messages
Error 8 Mestage

5 llegal fincuon cal

8 Quartiqw

7 Qutof memary

g Subscrigt out of range
1 Qivision Ly zarg

| 14 Qutof swing space
22 Invalid arrav dimensign
24 Sad cerameter 235
%5 Qutctmemory (stack sgice)
2 Qislog needs End Dialog or a push buttan
28 Rirectory already exists
39 CASE ELSE expacted

51 Internal eroe

52 Ead file name ornumboer
53 File notfound

54 Sad fils modg

g5 Figalreagyopen

57 Qavical/Qamor

62 Ingutpastend ot file
B4 8ad fiie nama

67 Togmenvfiles

74 Rename acrogs disks
73 Path/File access eror
75 Path notfound

Fig. 3C
PRIOR ART

WO 01/45069 PCT/US00/34013
6/59

- Wardbane Help

£ . s T T e

] WordBasic srror 25

Qut of memory (stack space)
Thers i1s not enough memory to perform the operaton. See Freeing up memary.

HO
Freeing up memory

Usa as many of the followng grocsdures as practical to free up
memary. After sach step beiow. Ty agen to compiets the ask.
To free up memory
Oo ane or more of the following:
From the File memy, choase Save Al. _
Quit ary cther applications you are running. H#S
Close aif windows and penes exceptfor the active 4nd .

Active window 3o

The window in which you are warking. The active window cantains
the insertion point or a sslection of texd or graghics. The tide bar in
the active window is highlightsd.

Quit iem ap p g ’

Quit all open agplications, and then restart the computar.

applicable. disconnect network connections. and quit

tanminate-and-stay-resident applications (TSRs) and any other

utilities you usually un.

Fig. 3D
'PRIOR ART

WO 01/45069 PCT/US00/34013
7/59

410

v Migawmf® Woid Document!

Hip Papres Macoonall Wanl

Cancel prinﬂnu

¢ IfDACkYroUNG prirting 1 tumeg off ¢lick Cancat.

¢ fdackground printing is tumed on, caum-car.ml printer

3 Prts icon & ¢n the status bar.

4 f n kground
Prirt more than ore cooy of 2 e :t:t.ung rmv:nzum"m: .anm??::: 32': :::uon ne
Prirt saveral fiss & orce status bar long enough for you to clickitts cancel printng.
Pt 4 master document .
Print back to front . e — ———
Print oniy odd o even pages

Print summary information or other document rformation
Print & craft of a documens

Tum background printing on or off -

Usa differant paoss for a section of 3 document ‘
Uudhﬂmtuhhmaammd

Fig. 4
PRIOR ART

WO 01/45069

Programmmg wrrh
M Microsoft Word
Q ward Halpg Can tantg

8/59

PCT/US00/34013

WordBasic Statements and Functions

A ot i C
3t nt \

wWhats Newin WordBasic

hn 16 Di

Conventons }an

More WordBasic Information)

>-S0S

Fig. 5A
PRIOR ART

WO 01/45069 PCT/US00/34013
9/59

AddAddIn, AddAddIn()

Q Examole
AddAddin Aoains [, Losd) !
AddAddin(4acins |, Load]) |

Tempiates And Add-ins dialog bax (Templates command. File menu).
Argument Explanation
Acoing
load

The AddAddIn statement adds & tempiats or Ward add-in library (WLL) to the list of global tempiates and add-ins in the ‘
|

The path and filename of the tempiam or WAL

Specifias whether 1o load the tempiate or add-in after adding it to the list
O(2er0) Doee nol bad the template o addn : :
1 or omitted Loads the temolate & addn ‘

The AddAddin() function behavas the same as the statement and aiso returns a vaiue corresponding to the posi;i_nn ofthe

global tamplate or add-n in the list where 1 is the firsttemplate or add-in. 2 is the secand, and so on. This valus mey ba used
with other add-in statements and funcions. '

‘You can use functions defined in a loaded YWLL in a macro. Functions that take no arguments may be used just like
" WordBasic statements; you can retum the names of thess functions using CountMacros() and MacroNemes(). Funcisns
in the WLL thattake arguments must be deciered using the Declare statement,

For more information on loading giobsi templates and adc-ins, see Chapter 31, "Customizing and Optimizing Word.* in the
Microson yord {/sér's Guae . Far mors infarmation on using functions in WLs, see Chapter 9, "Mors WordBasic
Techmques.” in the Migresaft Ward Qavelopers Ky

e e 3o

See aiso
0 ts, Templates. an

AddinStateq .

e e g s i et - e 2

Fig. 5B
PRIOR ART

WO 01/45069 PCT/US00/34013
10/59

B wordhase Fxampile:

GetCurvalues Example

Thi; example uses GetCurvalues o ratieve the date the active document was created from tha Documant
Statistics diaiog box (Summary info command, File menu). The instructions then use date funclions to calculate the
number af days since the documentwas craated and displey a messags box according to the rasult, '
Dia dlg As DocumentStatistics
GetCurValues dlg
docdates = dlg.Crsated
age = Now() - DateValue(docdate$)
age = Int(age)
Select Case age
Case 0
MsgBox “This docunent is less than a day old.*
Case Is > 0 .
MsgBox “This docunent vas created® + StrS(age) + ° day(s) age.*
Case Else
MagBox °"Check your computer's dats and tine.*
End Select

For an example that uses GetCurvalues and shows how to toggie any check box, see Abs() Example,

Fig. 5C
PRIOR ART

WO 01/45069

Ehito (heww wp o Micid
”Ell. Edif View.~

11/59

lolO

L?nln wid f:ph..-.

PCT/US00/34013

-
 Bade - TS
Addrase | @] htp:/ fwww aip.org/ T Sa
' ' — e = s PGﬂ
AMERICAN |I'|ISTITUTE ©F PHYSICS ¢ thetdor o HrFeodiat o somn 7
' \ .
Vlember Saveties IN THE SPOTLIGHT)
| nformation Physics Sacieties Physics and Chemistry
PR ST—— Announce Joint Nobel Prizes
Publishing Service Venture to Two Dutch physicista win for their S
work towerd deriving & unified
77" AIP luurnais Launch Virtual framewark for the forcas in nature: a & ‘
Journals : Caltach chamist wins for dmloping/
753 Magazines, Baoks Th.Naniar} Insttute otPhysics AP) 4, ultrefast camera thet captures ail
xPrococdings and the Amarican Physical Society the steps of & chemical reaction.
Publishing (APS) enncunced thathe firstwo 618 \/qre detail in Ptrysics News Updats.
Services saries of '\irtual" journais in the
physical sciences are setto launch in -
Cindury Januesy. 2000. Erotmom s
UM aafsases &30
elones Paliey APS Division Physics Students Taks a
Nistery Cencer of Plasma Stand Against Recent ‘
Physics Kansas Evolution “
Employment Decision
Ceanter The Socisty of Physics Siudents K|
8 IR it e e e .

B £V S L

LOS

PCT/US00/34013

WO 01/45069

12/59

OlL —]

SO~

MY RS |
Speojurag v

oel

——

R

Iy sk sper A

x|

WO 01/45069

13/59

Q STARTS

<‘

PCT/US00/34013

—

Choose Topic —

L/
o——qu Run Examples H
X 4
®----- » Read About Examples r----------- »
Inspect / Edit |
' Source Code '

)

- Access Online Reference

Information

Fig. 8

WO 01/45069

a ¥ xample
T NewEra by Example Intraductory
Topics '

Overview

Before Using NewEra by Exampie
How to Get Started

Reading an Annotation

; Opening the Exampie Source Files

|| Viewing Related Reference aterta
Running the Example

Building the Examples Yourselt

G0

PCT/US00/34013
14/59

/‘413- Il /4!0—‘/ 08 404

introducing NewEra by Example

NewEra by Examgie dommcwtomuémpmg:m\g ©2mpias using Micosctt Onine Haip
ana e NewEra 1.0 tools. You can rean anowt examotes, 180 hev soures €ade n he NewEr window
Peimar and Languagae Editor, and run hem, &l wihout isaving e oniine heln emaronment,
Nﬂwimemuumnmmwm.nmwm.nm be & sugywalg
hmmhmmwnmmmlmmmmmum
mmmmmmmmmmmmwm ceand
in the Yindow Penter, udy e Code m the Language Edior read he reerence documentaton, and
study the examole at rumime.

NewEra by Exampie can aiso provide you wih 1ampie code. which you can a4t and pasts G use as &
tempisis 10r Saginning your cwn NewEra appicasions.

Finally. you can use NewEra by Examoie 10 “pisy wir® he NewEra deveiopment and runime
am‘umm.mnmwmmmwmmmn
ana more famianty with e NewErs landscepe,

Getting Around NewEra by Example

mmmwmmwmnmmwmmummmm

" currently ©ameng. Thciamduwyoumlmbﬁ“mddmmuﬁuummy

anncie. Click on any suBIOReS 1t the st window ©© 950N & hare i the mam help wrdow.
Getting Started
Toleamhow o start using NewEra by Exampie nght now, cick here; How 1o Gl Stased

Fig. 9A

PCT/US00/34013

WO 01/45069

15/59

Hewt ta by Examgle

NewEra
Topies

Overview

JramTinG SRMoies using Miarosat Ontine Help
#3. 380 heir $0uTS cods Nty NewEra Window
leaving the oniing heip sraonmen,

dmbw.inmwmhmbumwwu
d development emronment hacause ¢ the

€1 yOU Can 538 how sach exampie wes croamsd
Editor, rean e reierence cocumentasion, ang

Before Using NewEra by Exa:
How to Get Started :
Reading an Annotation
Opening the Exampie Sourcen
Viewing Related Reference h1
Running the Example |

Building the Examples Yours §

A ek 3

mm'chymmmmdpmmmma

the New€ra deveicoment and runtme
Exampie e sysem you gradualy scqurs mare

muamsuummmummn
mudusmmmm
i here n e man heip wndow. ’

Ow. cick here: How o Gat Started

Fig. 48

WO 01/45069 PCT/US00/34013
16/59

i Newkra by Fringle

NewEra by Example lmroductoty

Topics : - ==
QOverview
B J OIS uking Microson Oniing Hewp
Before Using NewEra by Exaangih 3. 140 NEY 30UTE CO08 M the NewEre Windaw
lsaving the oniine haip smronment
How to Get Started developer. in meny ways. t can be & sudy ool ig
d deveiopment emironment Sacause ail he
Reading an Annotation

% YOU CaN $8¢ how sach exampis was crasted

Editor. read e referenca documanazon ana
Opening the Exampie Sou

Viewing Related Reference v
Running the Example ‘
Building the Examples Yours 13

mmmmmw;mbutua

e NewEra deveicoment and umme

Exampie heid rysem. you gracusly scaurs more
3 tremciveSwnide
A Opwz Lockng

! shom ot st v oo
| ' . , ,

Fig. 9C

PCT/US00/34013
17/59

WO 01/45069

NE

SUOBLBA PUR SJUBWSOURYUT
, uorsuepe Apog-and | upwiwe
o1) vorues® ssop - sy we
STt B3TVGUIOP © 838370 U0 108N PUB BT 03 mopuw Asue opp © sAordsy) UOISUBHE apusy- 6] - Wi B
—— | (Yoo - | e R
_ (Jevoraov - 1goep
GO equopcoegeny) | | .
72%b 7 T ey e bl .Ie.au..#%&-u
..353333%32; &b ..g_ ._np_w.o.lu
»Hﬁ..:mo-n.s.uowm@ 1 (Jovarae : Jgsnoverd®
“A1ionb 0 g SBYINY SN Bt VEYW 199 TP 8 Gurosy , -) : jn._.gﬂ
: ‘esoppe ey Aq paiopdsp | 8@) s BT]]
a§53333§§3§§!03!8!&§ I (Jowrae - jpfsenb @
81 Aq pagronb SMO! 10 185 B1 LREW MO1 BIMNO B J0 seqUITY 81 Guvioidsm Aq sesn o Guswen) - .
‘s1008 wenexd oy vopnq o buygoeg - | _ Aw.la;.-e«j%.qﬂﬂ
‘peonponu) semeey [| SIGPUCH jueAl tueyodun .
‘oduoxesvopng § | Aseursing Joppueyy yusay |
¥010() 6t U1 PUNOY AFOUOROUTY €4 BOGN SPENG i 'BIUPEN 8T BY) SUYS: O) 8P [00ads ewos Y | |
o1 | 1adng propuocs 8y AQ PBPWOI] SUOKID BPOW-DIVP B EOVOYUS 0y MOY seyorsnp epdwoxe sy | gﬂv@g%_Q
oHurEXe ZGNOLLNG OU) JO AOUIBAD J| eduexy zsuoung ew jo mewserp

RIS [eidwex3 zuopng o 10 Semjee

Qob

WO 01/45069 PCT/US00/34013
18/59

aLo L 434

\\The activate handier for the Next buttan,
A button2w.wif - in nextST handisr for xButton: :activate event

VARIABLE ok BOOLZAN
VARIABLE SuperTable ixSupezTable
VARIABLE rowPosition INTEGER

LET SuperTable = (geeVisualContainer() CAST ixSupecTahle) Q3D‘

%Lf LEZT rowPosition = SuperTable.gecCurrRowNum() + 1 J
N

\Gat the number of rows for the current disglayMode: , 1

IF rowposition > SuparTable.gesNumStoredRows (NULL) TEIN} 432 » *
LET cowPosition = ixSupecrTable::lastRow ‘
END IrF

EaN |
N\Dontdo amything w/ the retum status: '

454‘ LET ok = SuperTable.setCurrentCell (rowPosition, ixSuperTable::currentCo lml},qsa
‘ N

\Setthe button states: ,
CALL (gec¥indow() CAST exampleVin).resetSupecTablePuttens(1} 432

ZEIN

\Show the current row position: .
CALL (gec¥indow() CAST example¥in).showRowlafo()} 93k

Fig. 4&

459

WO 01/45069 PCT/US00/34013
19/59

The MAIN() FUNCTION
\;!buttoanAql:

HAIN
Qe ABLE exampleVindow exampleWin

CALL 1x Connect::getimplicitConnection
HEH ()-c°mct("s Q "
A4eLET exampledindow = NZ§ exemple¥ia () porta”

CALL exampleV¥indow.open() >CH‘0

RETURN

IND MNAIN

WO 01/45069 PCT/US00/34013
20/59

The LET statement assigns & vaiue or an ob
svery member of & record or of an abject

Case i: tingle-variable

Cazs i1: multipie-varniable

ject reference to a vanabie, or eise assigns avalug to

LET | Variable | " Liwim List

crass
roregn
record

LET rocond— . i "
3 N . g~
\‘IOW Esumiui =
N
Varabls qq’b
C D
o < M7—p
N choss _. A { '
N 70000 .
™ Obiect E xpression '
, / N\
"M\ avup{ Mintege Expreesion |-< | /
Element Duaipﬁonl
aray The name of an ARRAY vanable.
bfob The name of & 8YTE or TEXT variable.

The class of the object whose member veriebie is assigned vaiues.

The name of a FOREIGN variable.

The nams of @ RECORD variable. it no member (or it . ») is specified. then af its
membaer veriabies receive values.

The name of a variable of a simple data type.

Fig. 4 &

WO 01/45069 PCT/US00/34013
21/59

Expressions of NewEra: QObject Expressions
An object expression is a specrfication that evaiy ioct re
i . ates to an ob
objects through vanabies. function cails, casts, or <:cnstrm:u:|rs.lect referanca. You can refarence
Object E!E.Ciﬂl]
k—T' Refeence [
Vanasbie N\ 7 .
“~———————— Function Call |- f CAST e 2 A 1
N — ¢ el
Copy Expression [AS dass A
N\ NEW —— clowr — (| Argument Liat |) y
— NLL J
Reference
- . D |
Obiect £)
{ not SELF nos NULL) j i
A\ arapt g.lntq- Expression D. 1
Element Description Restrictions
acva/ Name of the actual class of the objsct it odyecy Must derive from
cass agvesson includes a call to a constructor, an objactot s/aeg cass of objact
acwal/ c/ass is constructed. refgrencs.
amay Name of an ARRAY varnable that contains arsfersnceto Elementmusthave a
the object ' class for its data type.
cass Name of a class previously deciared in the same
module. and aiso the stated class of the object
referencs. :
Slomee 04 @ veovehan: cnoblie cldith a ArPAmAR detea b e

Fig. 4H

WO 01/45069 PCT/US00/34013
22/59

900

n Nrwtio bLlr numglf
Features of the Buttan2 Exampie
Overview of the Buttons2 Example

Graphical Object Summary The LET statament 35i1gns 8 vaiue or an Obect reNeTencs 1 & venatie, or 8ise assigns a vaue @

Ber of
Event Hander Summa” Svery membaer of & recard or ot an object.
Cam i: singio-variahie

Important Event Handlers

3 eamplevn : stary)

S quenBT : activers()

@ find8T : actverm()

@ neaBT :: ecivare()
TpreviousST actvate()
BinsenST actvere()
EdelewdT : acovee()
3 appty8T : acivems()
HdeelT : acvag()
SealT : acivan()

S entrywin : cre-heeder exdsntion
@ entyWin - dass extension

S entrywin : re-body ansion

Enhancements and Var{ ik

ity [ung

A dass thal cannotbe used directy 1 creats objects, buthet serves as a base
class rom wich 10 demve cther classes. See aiso §

WO 01/45069 PCT/US00/34013
23/59

- Codewsng

| INCLUDE ‘annotats.4gh’
INCLUDE SYSTEM ‘'ixcann.4gh'
INCLUDE “buctonw.4gh"

MIN
VARIABLE exampleWindew exampleVin
CALL nebyex::annotate<buttans2_PRIND
CRLL ixf LCannuu=gocltpluucenn-ctun().ccnn-et(‘smna")
LET sxampleWindow = NEV exampleWin()
CALL example¥Window.open<)
RETURN
{

: END MAINM

Fig. 43

WO 01/45069

I"CUStOMI

Campany

Firat

Last

24/59

Customer Information

<company>

|<fnam>

l<lnamo>

[<addmu1 >

|<a§dms)>

Fig. 4K

PCT/US00/34013

WO 01/45069 PCT/US00/34013

25/59
400 Gom W
Features of the Edit Meny Exampie
Ovemview of the Edit Menu Example QOverview of Edit Menuy
The MAIN () function

This oampie provides a sandan Edt menuwm Q4 Cogy. pasm. &na delets e trom & g pex,

Graphical Qbject Summary Features intfroduced

« Craming menus and meny tams.
Event Handler ay ¢ Exacuang coe when he user chooses a menu tam.
Important Event Handlers + Exacuing bultn dipboand furcsons,

+ Finding M cument contral in en applicason.

Eect! T focusin () * Speciying an accelerator key ior 8 meny rem,

@ eci2 T3 focusin () + Exacuting cade when the user emary & cornl
EncnedaCs : focusin () + Enabiing and disabiing meny items,
Femd : achae () Source Fite Summary
e acvete () Sodi
Gcopym : acyvam () ‘_Oflh-‘d e i . The MAN . _— i
@ pesteM - acovens () I;:mnmwwm-qmmm. L} () uncion of the eppiicaton s n
G deiew : activate () M editwwit
Extension Summary Provides & winoow wih an adit menu and 10me demonsyation tet boxes, _
impertant Extengions

@ oditWin : ciass extension
@ editWin - preheader @aension
@ editWin - prebody exdension

Fig. 4L-

WO 01/45069

400

Features of the E u plo

Overview of the Edit Menu Exampie
The MAIN () function

Graphical Object Summary

Event Handler Symmary

Impertant Event Handlers
Jediti TR focusin ()
dam2T8 : focusin ()
SnoneanCB :: focusin ()
Jexvi - acovae ()
Foutvi - acavets ()

3 copyMl - actvats ()
S oasteml : ecves ()
T deletem : acovate ()

Extension Summary

Important Extensions
3 editWin : ciass extension
3 ecitvin : praheader extension
3 eaitvin : srebody exension

PCT/US00/34013
26/59

O Mrwb oy lyl

St L

The MlN() Function
Al editm. 4q4:

.28 |
VARTABLE
edit® ediclia
LET adic®¥ = NIV edit¥ia()
CALL adit@Wi.open()
RETORN
IND IAIN

Intiaiizes the muyammmwww«tmammnmnMe
rSfErencs 10 he TRERG MNGOW, RIS e WNAoW. and hen cpens he wncow,
In'sa.msammwmdblpmnmaMamummme
0
CALL (NIV® edic¥ia ()).opem ()
ALTURN
IND IATH

The nck here is hatwe only need a referenca & the editWin window © Mmeﬂuu‘u(wna
MMommmammamuﬂunmmmmm -
generaed by NEW in & vanabie. we use £ ns19ad © qually e call © open (). .

(e

o r Chociin

lMoru text to ac - -

Use the edt meny 16 cut and paste text from one textdox to the
other. Use the button to stant 3 text editor 30 m C!ﬂ pasis in the
sditor. Tab to the checkbox and bulton to see disabing of the meny

tome,

|

Fig. M

WO 01/45069 PCT/US00/34013
27/59

B Newkra by b, e :
Foatures of the Edn Menu Exa:rote
Qverview of the Edit Menu Example
The MAIN () function

Graphical Object Summary vViRtAsLE
via edit¥in = gqecPiadae()

21T - fowsln()
2 oditw.wt - n a1 T8 hencter for aTextBax focusin svert

Event Hand'" Summary CALL v1n.setfditlzemslaabled(SILP)

Important Event Handlers
Sedit1 TH : focusin()
3 edt?TE ::focusin() LET editiin * geclindaw ()
SnoneanCs: focusin () n the handier of tve window. he memaers of e wndow &8 in scops. The membwe in scope inciude he
S ol actvare () graprucal cbiects hat you pasnt wihin the window.
S ctmi - acvate () In the handiers cf cther graphical obiscs. howenvar. he members of the wincaw are not in scops. Yau
@ copyMi: acrvene () have 10 quaidy & member wih & reierenca 10 he wndow.
3 pastes - acven () Eﬂmobmhumm()mmmmd\mmmmaMu

i e window. You Can Capisre e reference in a local vanadie of he hancier.
T deleteM : acrva () " CALL wi2.secZdicItemsCasbied(TRUE)

Extension Summary The examoie uses e reterence 1 qualily he call © the se€diliemsEnabied () ncion. The ualpam-
the TRUE paramewr 0 enabis the eciing menu mams whild he useris n he eetae
Important Extensions

@ aditWin - cass exension

@ sdifvin : prehesder exansion

3 sdiWin - prebody extension

ﬁgmomj S

Use the sdit meny (o cul and paste text from one textbox 10 the
other. Use the button te stat a text editor $0 you c3n Paste in the
eddor. Tab te the checkbox and Hutton to see disabiing of the meny
tems.

Fig. 4N

WO 01/45069 PCT/US00/34013
28/59

B Hrwhio byt il
Features of the Edrt Meny Examplo

Cverview of the Edit Manu Example " : . N
9dit278 foeusln() S

The MA i
IN {) function U edtitw.wt - n 43 TB hendier fov o Toeex focusin ean

Graphical Object Summary ViRILLR
Vid edit¥ia « get¥indow()

Event Handler Summ:
X ah[CALL win.setfdicitenmtanplea(STLP)

Important Eyent Handlers
Sacti T8 : focusin()

@ edi2TB : focusin() e 10€S
. Caile dittemsEnabled () funcaon © enadie

3nonediC8 : focusin() 83X See aiso he discussion mnlgm:a ;mn“ 8 477 man s whee e usar amers oo
3 ootvl : acvere ()

oyl - acvete ()

3 copyMi :: scavees ()
Joasem : acovams ()
Jdeleteml : acrvase ()

Extension Summary

important Extensions
@ eciWin - class eaension
3 editvin :: preheeder exansion
3 editwin - prebiody eaEnsion

ot uel P{hnuan

?

Use the edit meny 10 cut 3nd paste text from ane Lexidox (0 the
other. Uss the dutton (o start 3 text editor $0 you Can Saste in the
editor. Tab (0 the CheckdoX and dutton to see dissthng of the meny

nams.

e

Fig. 40

WO 01/45069

B Hewhia by t sampie [Slee-

Features of the Edit Meny Example

Overview ot the Edit Many Example
The MAIN () tunction

Graphicat Object Summary

Event Handler Summary

Important Event Handlers

Jeait1 TR tocusin ()
Jeai2T :: focusin ()
FnonednCa : focusin ()
3 ootMl actvers ()
It acovamm ()
Jcopyml - acovete ()
Spasteml - acivam ()
JdeleteM : scvess ()

Extension Summary

Important Extensions
@ eciv/in : ciass extunsion
@ editwin : preheader easnton
3 editvin - crebody exension

PCT/US00/34013
29/59

O N byt mgde

NaneditCs :: focusin()
Al aditw wit -in nanearC8 hanater for uCheckfex Tacusin event

YLRTABLE
vig editfin = gec¥indow()

CALL viz.secfdititemetasdlea(SEL?)

Warks in the same way as he et TR focuain () Sutcasses 08 FALSE parememr o cisabie he sdtng
MOy ABMS wini@ e user is In he check bax.

Calls he set€ dttamsEnabied () uncion © disadis he aditing meny tems when e usar sen he
CNRCK Bax. The user cannat pase MO & check box.

Fam=

Use the edit meny to cut and paste tex fom one tertdox o the
cther. Use the Dution to start § text ediler $O YOU 2an caste n the
oditor. Tm:o«um:mehnmwmmdmm

e,

———

Fig. 4P

PCT/US00/34013

WO 01/45069

30/59

o) ‘B4

E

$92U319§9Y 3UNUQ 0) SHUI

g

sajdwex3 o} sdwnp

apo) 321N0G 0} SIND pyoys

sjuawbel4 apo) aIN0S

a8 4

SNOILVLONNY.

3apo) 32IN0g
Sodwexy

qlol

sajdwex]
aANoORIBU|

(ool

00|

srdurex3 Aq xuwojur |

mmna
an

———
o800l

aou9s9)9Yy eued
aunuo MOPUIAA
oho mmo_
Aresqny wBumapod
odl
olol 61
Japing
1968nqaq uoneonddy
S! o701
<501 uswuonaug uswdojonsQ L

PCT/US00/34013

WO 01/45069

31/59

4 o) H10 U
sodwexy . oidwex3

~ eAndee| Aq xiusoju)
seil m M ost

ondwo)
ssil eIImMoN
I I
sopdwexy

109 _ sond 419
8po) 92Mog

s=1l . . D A7 “ohil

5

&1

ooll

|- | A
e || |

ot~ -]

sioquig %..azi_ — suonelouuy _
“amy o o

BP0 BINOS LIJMON

"B14

WO 01/45069 PCT/US00/34013
32/59

FUNCTION driveStockRpt (destType SMALLINT, destName CHAR (")

360, NG vOID, PAEER
{.normal
Since objects, in particular ixRow objects, cannot be vassed
és a:quments.tc the report formatter, rows of fatched aa:a Wwill
De unpacked inte a record that matches the cata types and lengtas
of elements in the fetched rows. e
}
VARIABLE
stockRec RECORD
mn CHAR(1S), -- manufact.manu_name
sn SMALLINT, -- stock.stock_num
sd CHAR(13), -- stock.description
sp MONEY(6,2), == stock.unit _price
su CHAR(4) -= stock.unit
END RECORD,
stockStmt 1xSQLStme,
stmtString CHAR(*),
sStockRow ixRow,
arrorCocde INTEGER,
logFile ixErrorlog
1a0%
N\{.nocrmal
Use the implicit connection object to create an SQL statement
object. The cpnneccion object must already be connected to a
database. . .
Checking the status of the prepare() call will confirm this.
[} .
\\(.[edit stme}

LET stockStmt = | ’
mS\ixSQLConnec ::getimplici tConnection() .createstmtObject ()
{

.]file stmt}

Fig. |12

PCT/US00/34013

WO 01/45069

33/59

o1 by

Spu2A9)
wO
3L 171

oo%!

Sogl

pp)

+\w_mm< m_ﬂ_v

= (VL
¥ 2190

A

L

Qe
Seel S RN
k] et S’Mgﬂﬂ x.e.r&ﬂuw

HE!EIII
-

WO 01/45069

R wdcunnx ty (rample Detly i

34/59

Conaealioiby How T,

hep: //nampm mmu com/hm.uthﬂm

PCT/US00/34013

-4
3 Gemnq Startead with Informex by Exampie 4
—J Foundazen 2000
—4J08C
—JJOE
— Extending Database Servers « |4y 45
—Jo08ec
1 Application Servers
. CGl Scnpung
¢ Extra

ot i

el 10 i

—J Croating & simpie form in Visual Basic
- Croate Web Applicatans :
¥ _linstall OCBC and SetUp Systam OSMEY
® SetUp aVirual Directory
® Prapare idc and .htc Files
2 _3 Use ADO with Microsott Visual Basic
install infarmoc OLE 08 Provider
Open answ Standerd EXE Projectin . :
Chanqge project name. form name, anics
Add ADC librasy reference and ADQ « ¢

101 ivd

Add tha data controls (ADCOC) -
Agd the OaaGrid conyots K

® Frapare he code for the MSDmGnd
* Example Lmnq

. Hew Tl i

byExample

Informix)_~ <

Fully annotated
Informix examples

Conmecting:

and How-To application
solutions to haip developed v
you set-up, fava Devel
understand, and Ermronmer:

_use Informix _

Connecs
(308C)

Connecting ;
SEE N g
IntOrmix so. -

Java

Fig. 11

WO 01/45069 PCT/US00/34013
35/59

Mrcrasalt leleensd T plexee

o\
Informzx' IHo 1432 Java Database Connectivity
byExample - (JDBC)

Connecting your Jzwz =raaram to an Informix
server.

Java Development Environment :

Connecting a web application developed within a
Java Devalnoment Emarorment (JOE) to an
informix database ervironment.

Extending Database Servers
Fully annotated Using and Writing CrataBlade Modules.
Informix examples

R and How-To Open Database Connectivity !

. solutions to help (ODBC) !

B you set-up, Connecting your C crogram to a database server. |
Lt i fe understand, snd

SN T use Informix Application Servers
noloav with____|icina retwnde acrionten an6es im o
T Loy, <fFr b o -

WO 01/45069 PCT/US00/34013
36/59

® informix by Exampie Homa
® Getting Started with Infarmix by Exampis
2 "_$ Foundaton.2000

Using Other Standard Using the Web

- _j Setup the Informor J/Foundation amvii DataBlade Modules DataBlade
&- _J Write. depioy. and tast & Java UDR Mod |
& 2] Utlize & Javerbased terator rouine Writing DataBlade odule
&] Create a simple userdefined ype (U Modules
@ la"'%acéam *WORin enAcovexoLl, F Example: Generating
N —] - -
@) JDE a report using the
4 S < a

O Web DataBlade
I Module to query for

|
& 3 Generatng a repont \ o
(data and report the b

® cust_db i
- @ quenydb.hmi ‘Hfs

® sponsFooter.tag resuits in HTML 3

® sportstHeader.tag s format. 3
& _j Croate Web Qﬂp“moﬂ. J ’ . Bt
3 _7] Genarating detaii braak reports) How To. Create Web 2
gg é“""'"';_m"‘i" l:'"" sat e applications with the =
@& 2] Generatng a repo g
3~ 2] Seerch informix documants * Q r'l:dbu?au z“de 0
3-2] Creating & document repository @ and AppPage
=] Seerch for and retiieve imagas Bullder.

. - 2] Whits a C User Defined Routine :
x[-‘--~~;" R Saunssr sunno l7

A‘fr‘ Example: Generating

WO 01/45069 PCT/US00/34013
37/59

'I ll"p e nunnlm snfoes) " e

dmesed bl Micionctt [nkewned Fxplemey
" :

. Igformu by Exampie Home :
® Gaming Started with info Excampie * . . v
= * Faungsdon a0 meeyEamee Nl Working With B3 JWINg procedures
: j_JDE 4 . : JDBC o mples lllqutrata
% _jExtending Detabase Senery - "WP-YOU can use Java
¥ _j008C ,4 Oatabase Connectivity
z _Jég?ﬁcagn_n Servers 4| Informix J0BC (IDBC) to establish a
* S8 Serptng Oriver connection between your
_J Creating & simpts form in Visual Basic

1) s

JDBC/ODBC Bridge Java program and an
Remote JDBC Informix database servar.

The JOBC procedures and
Saervers with RMI examples aiso illustrata

- 4 Creats Web Agplications
3 Jlinstall QOBC and Set Up System OSP
¢ SetUp aVirtvai Directory
¢ Prepare .idc and .hix Files

e M o ual Basic Other JDBC how to access and :
@ instadl | [o
Open :n:wngmdmd BE Projsanf] EXamples manipulate an Informix
Chenge project name. form name. anr database.

Add ADQ library referencs and ADC i

L3N X B N X

Add the d | oD
Add e om:':a;&ﬁ 9 You have two aitemative .
Prspare the code for the MSDataGrid APIs that you can use to

o Example Listing i

estabiish a connection AT
_between yourJava ‘

® HrwTalistina___

F,;,)Hb

WO 01/45069 PCT/US00/34013
38/59

28 TN Hexamples infommcy,

ficmnesed Wil Microsoft Tnboened fFxploser

¢ informix by Exampte Home
¢ Goting Started with Informix by Example =
__1 Foundation.2000
2 1 Setup the Informix J/Foundation emviiog
3 __I'\Write. depley. and test a Java LUDR -
2) VUtlize & Jevarbased ttarater routing
E —] Craete a simpls userdefined type (Ul
_) Create a UDR in an Activex DLL
_] Josc
JJOE

-1 Exiending Database Servers
.

® cust_db.hmi
o querydb.hon
® sportsFootertag

n

Generating a Report
Using the Web 1500
Datablade Module

191 el i)

T iner report
& demonstrates
'to use the Web
® sportsHeaderisg

ol
Craate Wab eppiications 3 DataBlade module to

Ganerating deteil break reports = i
wamgmgm e —— : Contributed by query for data and report

~ | Ganerating a report Enk Hennum, the results in HTML
Search informix documents byExample Team format.
Cresting a documant regository 9

Search for and retieve imagss
cust db html

Bie) Lt) i Lo L o) el 1)
UL L

Wits aC Un' Dcﬁnud Rom

WO 01/45069

PCT/US00/34013
39/59

Generating a Report Using the Web 1322

Datablade Module

Contributed by
Erik Hennum,
byExample Team

cm———

Tha customer report example demonstrates how to use the
Web DataBlade module to query for data and report the
results in HTML format. \

|50S

cust_db.html - 1si0
- 1505
This app page accepts a query and generates an HTML report

querydb.html —sio 1S05

This HTML Apage contains a form t"\at invokes an app page
sportsFooter.tag — iSi© 1505
‘ r

The sportsFooter dynamic tag generates the footer for an
app page.

sportsHeader.tag - !SI0 (1505

The sportsHeader dynamic tag generates the header for an
app page.

N Click here to view or print all of the source files for this example,

yright Q1999 informix Software. All Rights Reserved.
Terms ana Conaitions goveming the use of this webs«e.

b, ISR

WO 01/45069 PCT/US00/34013
40/59

’3 hitp Ils Iamplus -nluml.c

lu:uvsd himd - Mclmdl lnlnnel Exploses
Els Ect View Fovorws Toois Heig ' IR ' :
V'-l - ‘ ﬂ ﬁ a 3 .". ! 3 - ” ¥ 'l
Back Tarware © Ratreaw. Home ! Seerch Favorites Ht;’my | ?d' Fh?m E?R * Seo :
mi@ hitp:// exampies.intormex com/framesathtmt -] ®Go |
\\ %
TSI o MEERN YT mm-:saa —131©

® Informx by Exampie Home

g S8 =
: oo Sarmemmmemaoyeenne | qUErYd b, html File ==

« _JJ08C

%+ _JJDE »

3 E’Ej?::;?a:r%&;ﬁ:.ns‘w This HTML page contains a form that invokes
® cust_ab.htmi instead of a CGI program to process the vaiuy
¢ form.
¢ sportsFooter.tag -

¢ sporisHeadertag
Croate Web applications
Gensrating detai break reports
Walking through a resuit set
Genarating & report .
Search Informex documents The sportsHeader dynamic tag creates a star
Creating & document reposiary i
Saarch for and rameve mages for the HTML page as well as standard openit..
Manage Hiarerchicel Data .
Vi ant - ;
_lv—v‘mn;ws'zmg;g.ﬁ';?:"u ’ <?gpogtsHeader title="Customer Query"> - l305
~'J _joo8c)
% _| Applicaton Servers .
9 _J CGlI Scripting -
¢ Exra

] _Iclmng“m‘mm mv‘m/wc i As its action. the form must soecifv the Wel-?id

LLLLLLLL

1] kel tel 1ok 1ol 19 10 14 I

[31S

F‘Tg,ISC-

WO 01/45069 PCT/US00/34013
41/59

querydb.htmi*File

This HTML page contains a form that invok i .
es an ap age in
program to process the values in the form, P Page instead of a CGI

. . |S3s
€ sportsHeader dynamic tag creates a standard header for the HTM
as well as standard opening text. t paga

<?spgeasHe title="Cuscomer Query">
—smauuk' g 15320
T1SH0

As its action, the form must specify the Web Oriver utility.

<P>

<FORM ACTION="<?MIVAR>SWER HOME<?/MIVAR® METHOD="GET*> } [530
\1550

To specify the app page, the form must use a hidden input component. The 535
input component must have a name of MIval and a value that's the name of l

the app page. The input component below specifies the cust db.htmi app

page.

<INPUT TYPE="HIDDEN" NAMEs"MIval" VALUE="/examples/CustRpt/cust_db.nheml">

Jptional state: ‘

<INPUT TYPE="TEXT" NAMEs»"selectStacs” SIZE="3" MAXLENGTH="2"> .-30
<INPUT TYPE="SUBMIT® NAMEs"Submit" VALUEe"Submit®> {:

</FORM>
</P>

</800Y>
</HTML>

Cooyngnt 1998 imformex Softwere. Al Rignts Reserved. r 1 Conations govemwy e use of 1 weoate.

WO 01/45069
42/59

<!-= <Lbyx>
<intros
<P><abstract>This HTML Page contains a form that invokes

40 app page</abstract> instead of a CGI Program to process &s
the values in the form. P l

</p>
</intzro>
</ibyxs> -->

<!-- <ibyx>

<p>The sportsHeader dynamic tag creates a standard header
for the HTML page as wall as standard cpening text. '535
</p>

</ibyx> -->

<?sportsHeader titlas*Customer Quary”>

<!-- <ibyx>

<p>As its actiocn, the form must specify the Web Driver utilicy.
</p>

</ibyx> -->

<P>

<FORM ACTIONs"<?MIVAR>$WEB_HOMEB<?/MIVAR>" METHODe"GET">

<!-- <ibyx>

<p>To specify the app page, the form must use a hidden input component.
The input component must have a name of MIval and

a value that's the name of the app page. The input component below
specifies the <a hrefs“cust_db.html*>cust_db.htmlc/a> app page.

</p>

</ibyx> -->

<INPUT TYPE="HIDDEN® NAMBe"MIval® VALURs"/examples/CustRpt/cust_db.heml"*>

Optional state:
<INPUT TYPE«"TEXT" NAMEs="sgselectState" SIZEa"3" MAXLENGTHae"2'>
<INPUT TYPE="SUBMIT" NAMEs="Submit” VALUBe"Submit®s>

</FORM>
</P>

<?annotate>

</BODY>
</HTML>

Page 1

PCT/US00/34013

=Ve

WO 01/45069 PCT/US00/34013
43/59

7
Cmbed Aonctdions

In Souwrce Code.
Coromentts,

i

Mask up 'A{\nd{’ad‘lbqs
With WTMLBas and | ~1L(0
Spcc.io.l ~ Instructron

Tags

J

A
 Edrt Sowce lode. | -leis

And /OF PAn,otahons

Fg. Za

WO 01/45069 PCT/US00/34013
44/59

[{0
-— Parse. Sousee 125
ECOC’.L E\L T

Conerete. Prnatation
Paal..s ELFltd"M |
Pmsm.m s wre.

-

[L3o

Pfox/i’c:h. Links 1(s0 :
Rehween ' Hignlight Lanquage
Avnctetion fages| kegwor&% Sousce

IhCorch‘an_
Anvrotetion. Comments

’w«: T

U.sllvgﬂua.&-ﬁﬁﬁ' g
us | Nohity Frareworl<,

Fig L3

WO 01/45069 PCT/US00/34013
45/59

0
1670 /‘Bﬂﬁa@« Uwﬁ

7S

uast New

Annotation WJ

;P

Cornmand, Browses
=2 To " D'\S?lﬂ

AL Mnctation Pagr_

Fg. 1L

WO 01/45069

Zle Zdt View Fgvumes Toots Helg

r; hityy ’I!‘Ill'l"l'l?l -:l_un'\ Py am—— . Moot Infonet Fxplotes

PCT/US00/34013
46/59

= 3 a1 a 3 X
A\ Jd - i N i - »]
Sack Fsenare Refresh Home | Search Favontes History i %ﬁ P?m 'gt v Sg)
Adcrese |€] htp://exampies.informoc com/frame setnmmi j ®Go
(™ I
= 19 ‘
o ERIN SYI —I1310
¢ intormix oy Exampie Mome - B

& Ceting Stanted with Informnx by Examptie =
® Foundaten 2000
+ _J JOBC
s _J.0E
= _{Exanaing a Oatahase Server
= _1Generatng arspont
® cust_db.htmi

® quarydb hemi \77Q¢C
® sponsFooter.ta
. S seaoter. /

1 Croate Web applicatons

—1 Generating detail break repons
_J Walking through a rasuit set

1 Generatng a repon

—J Search Informox documents

1 Crasting a documaent repositary
—i Search for and ratneve images
—J Manage Hisrarchical Oata

4} 18] 1ok a0s 0 (o) L] Lot (e

sportsHeader.tag File
' | o

The sportsHeader dynamic tag generates the
an app page. This tag ensures that every HT
which it is used will have a standard header.

<IDOCTYPE HTML PBUBLIC "-//W3C//DTD ATML 3.2//E
<HTML>
<HEAD>

<META I-('I'I‘P-EQUIVa"Concent-Type" CONTENT="te

i i Ch -
3 _J»?‘n;‘:g:w&iﬂﬁ:" " The app page that uses this dynamic tag can.
1 o8¢ title as a parameter. If tha title is not supplic-

1 Applicaton Servers))) _
« _ CGl Senpting following block sets a default title.

® Exra -
4-_J Creatng a simpie form in Visual Basix ld ! [_r'
8] [@imeme L

/318 [%s

WO 01/45069

47/59

The MIVAR tag enables you to assign and display
variables. Use variables with Web DataBlade module

tags to dynsmically generate and format ths results of 3oL
statements and to process errors.

The following table lists the MIVAR tag attributes.

- ME<?/MIVAR® METH

Axtrﬂnno Mnndaury?l Description
FNamn of the variable tpeclﬁnd|

o bdea baawh b cbumis oo Mloa b

] form must use &
i component must

PCT/US00/34013

specify the Web ;

Fig. (716

= —|312
B standard openifd

ouery®> /"'I XS

WO 01/45069 PCT/US00/34013
48/59

3 hito Jiexamplos inium-'-.c{.\ -

B mj_hir-i Mﬁcrcndt Irtcaned Exnlou;

2 Sur _aw Fyomas Tsgls Hr-lp

=i
= = 3 B @ ! A 3 ;-
_Back 7 Forwers * Retresh Hcrnt l Search Favortes H.g,y ! é Pfém E?! Sen .1
m-) hitp texamples wfoamix camficdmencoappdewfc2 hismi 9272 7431 - Micicaolt Intewnet Explaa RGO]
m ., Ele Edt Yiew. Favores Tools Heip- - I—
- . -p . '_1 ﬁ E a j H 3\ ¢ iy)ul
: ‘G" f T “irwa-d Refesh Home | Searchr Favortss. Hl?w ' ilsd P?w . ‘ 3
. jl m-[g h«p //examples.iniomx.com/referance/appdev/xc2.htmi#227 431 BENY
|
= when an AppPage calls another AppPage. This dyeb
= ;1 E variable is mandatory aud should always be set
= to WEB_HOME. siuce this is the anchor variable
anchorvar used by AppPage Builder (APB) and the Web _]
' DataBlade Module Administration Tool. Siuce ETHC
5 _ anchorvar is aiways set to wEs_HOME, you can
. always use WEB_HOMR as an auclior variable in
s. Specifies the directory that Webdriver uses to - hust
i internally coordinate its iuteraction with the Web e
ﬁ‘:- driverdir server. The default value of this variable is / tap. "
- g This variable is only used by the Apache and CGI s
% j 0 umplementations of Webdriver.
4 _JA Qnnansfrac tHha il natmivne nftha laa fAla ta K|
;-1 -JCE]oan. [[@ inermet Apxam
n‘c 4 _1Creatng a simple form in Visual Basic _vf| ____J)
] Wllmlummlmmwm o , m‘ -

F@- 17C

WO 01/45069 PCT/US00/34013
49/59

u,n‘g' w Vol
')h"p fie e nnpi:’-\ eriby any] ;

LU T N T

@ Informex by Example Home l “
¢ Say e oy S iLq uerydb.html File ==

3 1 Setup the informix J/F 5B
* _| Write, depicy. andtes

]

= _JjUtlize a Javarbased i =
3 _] Cieets & simple usar
T _Ceetea UDR inan A
£ _Joec
£ _JJOE . :
= _jExtending Database Sery A
= JGenerstingarepon [{?9pertsHeader titles“Customer Query-> 2
@ cust_db.htmt T
« BRI
@ sportsFooter.tag
¢ sportsHeadertag | p
2 _ | Craate Web appiicati{<P> v :
3 _J Genereting detail bretfC FORM ACTIONs “"C?MIVAR>SWEB _HOME<?/MIVAR" METHOD:“GET"> .
3 __J Walking through a res
2 _J Genersting a repont
3 7] Search Informix dacur N
3 2] Creeting a document N
‘2] Seerch for and reviev{C INPUT TYPEs"HIDDEN" NAMEs“MIval™ UALUEs"/ oxamples/CustRn:| &
} ;]Wmn aCUserDefine
2=

Opnonal stlt.«

Fg./7D

oo B e e

WO 01/45069

PCT/US00/34013

50/59

SR S v I LRIY . 2 N
mix com/framessat htmi [

1 ki

¢ Infarmix by Exampie Home
¢ Gatting Started with infarmix by Example ’,
- Foundation.2000)
3 _] Setup the Informix J/Foundation anvil;
3 _) Write. deploy. and tasta JavaUDR -
3 _]Vilize a Jave-based itarator routine . -
2 _j Craate & simple userdsfined typa (U=
@ __Create a UDR in an ActiveX OLL
_1Jo8c

—JJOE

_y Extanding Oatabase Servers
& _jGenerating a report
- & cust_db.htmi
o SUGTIS RIS 'AQD
¢ sporsFootertag
¢ sporisHeader.tag
3 __J Creats Wab applications
3 _jGenerating detail braak reports
3 _) Walking through a resuit sat
@ _) Genarating a repon
3 _j Search Informix documents
@ _J Creating a document repository
£ __jSeerch for and retriove images
3 _) wirita a CUser Definad Routine
- 1Addinn S@ip‘ﬂn l:f onn

instead!
form.

Customer Query

Date: 1999-11-10 08:22:21.000 ,

Fé,'l“&A

the | form must soecifv the W?EE

WO 01/45069 PCT/US00/34013
51/59

¢
J
]
i

Mﬁm @ : /lexamplesxnfo

& Informox by Example Home J

® Gotiing Started with Informix by Exampl 1

* Goting Siaras wihinarmoc oy el cust_db.html File

3 1 3:‘ up tha informox J/Foundation emvi -
® _iWrte, deploy. andtesta JavaUDR = ; ;

5 1 {tilize & Java-based fterator routine . This : »ahﬂp Hoxamples infosmix comfcop-binfwobsdnves 7M. i Q%]

% _| Creete a simple user-defined typa (Ul -)

= J_DJBC(r:eato aUDR in an Activex DLL repor Date: 1999-11-10 08:26:13.000 -

) " . i

~ 10E _ gene:

- Extending Oatabase Servers —

=4 (ienaran‘nﬂ “F"ls‘ts The :- Customer REPOI't

® qusrytb.himi !
& sponsFootertag for tk For state: 9
¢ sponsHeadertag '
= __ Create Web applications
= __ Genarating detail break reparts | <73pe mnber |
—J Welking through & result sat ' . IN et LNRIIIG[{CONPM}’ {State;
_ Generating a report e
-] Search informx documaents Igm —
—J Creating a documant repositoty
—] Saarch for and retieve images
_1Writg a C User Defingd Routine,
1 Adddinn Qnundmr LIl j\nnn

.tlh

[t

1) el 2}

“"_"‘""E" ot

n

C e) el) (o)) 1) el

L

r'\g R0

WO 01/45069 PCT/US00/34013
52/59

cust_db.html

<!-- <ibyx>
<intzo>

<p><abatracts>This ApPp page acce
pts A query and generates HTML
l?b reportc/abatrace> in Tesponse. ? m

The app page uses dynamic tags to generats the h
HTML report. 9 g eader and footer for the

</p>

</intro>

</ibyx> -->

<!-= <ibyx>

<p>The sportsHeader dynamic tag creates a standard header
E7r the HTML page as well as standard opening taext.

</ P>

</ibyx> -->

<?sportgHeader titlee'Customer Report">

¢l-= <ibyx>

<p>First, the app page checks whethar a stats was aspecified to use for

selecting customers in the state. If so, the block gensrates a

paragraph to identify the state.

</p>

</ibyX> -->

<?MIVAR NAME=SWHERB_STR><?/MIVAR>

<?MIBLOCK CONDs"$ (AND, $ (XST, $selectStats),$(<,0,$ (STRLEN, $selectState))) ">
<?MIVAR NAMB=SWHERE_STR>WHERE states="$selectState®<?/MIVAR> '
<?MIVAR><P>For state: S$selectStatec/P><?/MIVAR>

<? /MIBLOCK>

<!-= <ibyx>

<p>Next, the app page starts the table that will contain the data.

</p>

</ibyx> -->

<P><TABLE BORDERs"1">

<TR> |
<TH>Number</TH><TH>Name</TH><TH>Company</TH><TH>State</TH>
</TR>

<!-- <cibyx> .

<p>The MISQL block queries for customers, optionally selecting only customers
from the specified state. Because the contents of the block are generated
for every row of data, a new table row describes each customer. :

The samp;nbsp; HTML entity is a non-breaking space. By putting a nom-breaking
space in each column, we force the Web Browser to display the column even
if the value is noull.

</p>
</ibyx> -->.
<?MISQL SQLa"SELECT customer_num, fname, lname, company, state FROM customer $WHERE_STR;">
) <TR>
<TD>$1&nbep; </TD><«TD>$24nbep; $3</TD><TD>$4&nbap; </TD><TD>$5anbsp; </TD>
</TR>
<?/MISQL>
</TABLB></P>
<!-« <ibyx>

<p>The sportsPooter dynamic tag creates a standard footer
for the HTML page.

</p>

</ibyx> -->

<?sportsFooter>

D, 15C

Page 1

WO 01/45069

53/59

1430

PCT/US00/34013

2 1300
v —— " / A £
. Ele Edit View Favorites Toals:. Hyjpe B R
i _Batk " Forwmre - Rewsh:- Homs [Search Fav?ﬁbr-r Hn?my‘ %&&5“ %ﬁ é%' Sey f

Adikess |8 http://examples informx com Bsathtm

B

AT - T T

EEEE- 1930

- 1310

$ Infomix by Example Homa V|4 ¢S |
® Getting Started with Infarmix by Example
® Foundation.2000
@ _jJo8sC
& _i JOE-
2 _yExtending & Oatabase Sarver
=- _4Generatng arepont
¢ cust_db.htmi
& querydb.him|
- ® sponsFootartag

& sponsHeader ta;
= utEEE, |02

2 4 Introduction

- @& AppPage Overview i
Prepera Oatabase ~" lq*o
Prepare Web DataBiade Module —
Registar Web OataBlade Madute
Create sbspace
Install AppPage Builder
SetUp AgpPeage Builder
Create Sampie AppPage

* J Generating detail break repors

& _J Walking through & resuit set

#t _] Generating a repon

% __{ Search informx documants

se0ceece

15 [4ss

<

In this How To we'll build a simple Web applicaton using a Web

Creating Web
Applications with

[§00

the Web DataBlade

AppPage

DataBlade Application Page (AppPage). This Web application will
access an Informix databasa.

Requirements: (DS 3.x, the Web DataBlade module,

BladeManager, and a web server. BladeManager is provided
with IDS 9.x for UNIX. NT users must install BladeManager
from the DataBlade Development Kit (OBDK).

These instructions assume you've already installed Informix

_IIIJS 9.x and have it running locally. .

. @ _j Creating & document repository iy =

13s

. 4R

Y.

In this How To we'il build a simple Web application usin
Web application will access an Informix database.

Requirements: [DS 3.x,

provided with IDS 9.x for UNIX. NT ysers must install
(DBDK),

WO 01/45069

54/59

Creating Web Applications wit
DataBlade AppPage

the Web DataBlade module, BIadeMaﬁager,

PCT/US00/34013

h the Web
|a%0

1900

9 a Web DataBlade Application Page (AppPage). This

and a web server. BladeManager is
BladeManager from the DataBlade Development Kit

These instructions assume you've already installed Informix IDS 9.x and have it running locally.

/

» Prepare Database.

1.

4

Define a server connection and prepare a sample database.

Define a server connection with setnet32 (NT). Create a sample database
Or use the stores7 demo database.

Prepare the Web DataBlade development benvironment.
Install the Web Data#llade module and BladeManager.

Register the Web DataBlade module in the demo database with
BladeManager.

Create a sbspace for smart large objects, like gifs.

Instail AppPage Builder in your database.

Setup AppPage Builder on your web server,

Create a sample AppPage.
Run the sample application,

Enter the URL hetp://your_server/scripts/webdriver.exa.

instructions for setting and testing database environment properties.

Capyright 1999 informix Soflwere. All Rights Reserved.
Terms ang Conartions governing the use of this weosse.

Prepare Web
DataBlade

Deveiopment
Environment,

1935

Register the Web

DataBiade.

Create Smart 8lob

[nstall AppPage
Builder in Your

Database.

Setup AppPage
Builder on Your
Web Server. -

Create Sample

AppPage.

Space (sbspace).

i inti Il of the steps
This How To has been compiled into two separate files for ease of printing. The basic file contains all of
you need to Create Web Applications with AppPage Builder. The secondary file contains additional detailed

Fg.qu

00/34013
WO 01/45069 PCT/US
55/59

; 0
¢ LY —py infoumex”
| File Edt view Faom®® Taolg Help
l = hd - - ﬂ. Q 'a @
| _Sack Forwerd Refresh Home I Seerch Favor
i
| Adcram |) ht://examples.informex comy frames et hmi

Introduction

@- 4 Extending a Database Server
3 _3 Generating areport
& cust_db.htmi
® querydb htmi
¢ sportsFootertag

- @& sportsHeader.t

=-
&- _4Introduction
" - ® AppPage Ovenview

¢ Prepars Databass

o Croate sbspacs
-@ Install AppPage Builder
& SetUp AppPage Builder
@ Crgate Sample AppPage
it _J Generating detail breek repons
S _) Walking through a result set
_j Generating a report
& _) Search Informix documsnts

i - — — 01. N
CPUMEN . IR O G 2 B BN EI 30 | o
@ Informix by Exampie Mome - Prapars Web DataBlade Mod: =
: gem'ng S_tanzaudo gm Informix by Example C l'eatill g éegai:m:’“ DataBiade Moa :x
oundatgn. eate sbspace
i JoBC Instail AppPage Suilde
5)06 « Applicati oa38 Builde

& Prepars Web DataBlade Module =
® Register Wab DataBlade Module

@ __ Creating a document repository |

Set Up AppPags Builder
Crecte Sampis AgpPage

the Web
AppPage|, B
lGaO—-anmmg- Applat Window '

In this How To we'll build a simple Web application using a Web

DataBlade Application Page (AppPage). This Web appiication wil
access an Informix database.

Requirements: [0S 9.x, the Web DataBlade module,
BladeManager, and a web server. BladeManager is provided i
with [0S S.x for UNIX. NT users must install BladeManager |25
from the DataBlade Development Kit (DBOK). : / .

These instructions assume you've already installed Informix

IDS 9.x and have it running locally. B _[_._(

X ——— J o[

|@) Oone : /

131S

ﬁé. 19C

WO 01/45069 PCT/US00/34013
56/59

Edit ew Favortas Taolz Help.
BN 3 ‘ a = a N
i_Bak _ Forsam " Refresh Home | Search Fevores History | Maik F[Cream Wab appicatons
Sdem @) htp://exampies.intormix com/framasetrmi Tabie of Cantams
I - -
3 " = AppPage Ovarew
TR (- BT T G B | Prepare Detasase
* ® Informix by Exampte Home - icati Prapare Web DataSiade Moa =
® Getling Stentad with informix by Exampie —]| " C2t¢ Web applications (3 of 11) é:f.';",’;::b Detae':aso Mo H
® F gon.20 acys=
5 _| Jgg::“ on4000 Introduction | Install AcpPage Builder
= I0E I3AD™ | SetUp AspPaga Builder
=- _y Extending & Database Sarver ‘ ' Creats Sampie AppPage
= _3jGeneratng a rapont An AppPage is a special HTML templa
® cust_db.htmi HTML for presentation and Web Dats
® quanydb.htmi SQL commands on the database andl«[1
® sponsFootertag HTML. | Waming: Applet Windaw
' @ sporsHeadertag
= 5‘ C:Wp"m“' Anyone who is comfortable coding standard HTML pages in a
" e AppPage Overview text editor will be at ease creating AppPages by hand, as
- @ Prapare Database demonstrated in this How To.
® Prapare Wab DataSlade Module — -
: g‘g'f’“;:;’::g“a'“' Modul® 1 (|nformix Data Director for Web [DOW] makes creating
aa) .
. AppPages even simpler. Data Director for Web 2.0, to be .
: 'g:ﬁj' Afg:;g;.a;ﬂﬁ;;, released shortly, uses an AppPage editor which is similar to the
P Qsm: Sampia AppPage three-panel HTML editor used in Microsoft FrontPage. DOW
+- __1 Generaung datail break reports ‘ runs on both‘ 9.x and 7 .x servers with the ir=ri~> . ot . SOS
- _1'Walking through aresuit set SRy o)) HQ‘ /' l /
+- _| Generatng a rsport . .
* _ Search informix documents i ides the framework for creating AppPages .
- _J Creeting adocumentregository | v AppPage Builder provides the fran ol 9 APE S =
(@] Oone / e intarnet
e
1315

We,mD

WO 01/45069

Eis

Edt View Favontes

57/59

PCT/US00/34013

-
| Back =yrapg

- ___ 3

Q] 3
Search Favorites History

[~

: Addiem (@) hip: /wrw infofme com/wio/

Hoeme | Contact Us

PROBUCTS

o Lg%

e ations P bct

i

Do b g,

Sl lbesiooe Froooget

HELaltD IBEOENATION
e 2000

Oindire
[l nrnent sttan

el By

Taaooe,, Slones

Informix:

The one with the SMartast data wiQ‘

iy IR,
Informix Web Integration
Option Overview

Scarch | Carparove | Solutrana

Informix Web integration Option provides high-performance
connectivity between Web servers and Informix Qynamig
Server. Wab Integration Option enables Wab developers to
rapidly creats, manage, and depioy vaius-added Web
applicaions that dynamically deliver tailored Web pages to
a corporation’s Internet, intranet, and extranet users.

With its openness and highly optimized irtegration, Web
Integration Option enables organizations to exploit the
power of Informix Dynamic Server while using the tools and
languages they already know.

Waeb Integration Option offers:
)

945 -

)

| 305

F [[@imemet-

WO 01/45069

“Rhitp Honamples, "-lo-nux\

Jamesel hhnf - Miciosoft Intuoinet Explores

PCT/US00/34013
58/59

|_fle_£dt view- F:vwho Tooly Help et
- @r A & ..
) Bagk: ro-marc " Pakest Hm Sedrch Fevorites: ngy Meade
| Adcrams (@ htp:/ /examples.informc com/ramesethmi
mmm-- (T E — ey
© @ Informix by Exampie Home R
@ Gatling Sterted with Informex by Exampie —|| CT€ate Web applications PA:::n‘g 53:::? B
g— :1 Tgér;:duon .2000 Prapare Web CataBlade Me
Registar Web OataSlade Mc
2/ _) JDE- (o] b:
& _j Extending aDatabage Server Tab|e Of CO"t' in:tuml.A::;g:;:aunlder
=49 Genof;m;g :;;‘pcn ge:Up AppPage Builcar
- @ cust_db. mSamplnAppP [}
o e mi 1. Web DataBlade / AppPL. .
e spomHesderm 2. Introduction | Wamng: Appletdndow
- 2 — 1. AppPage Overview \
- '] n
o anioRage Oraniew ‘3{ Erepam 37??5331 de Modul =0
- ® Prapars Database . Prepare Web DataBlade Module
- Py Web DateBlacde Module — p .
o Register web DataBlose adue | 5. Register Web DataBlade Module
-~ #® Create sbspace
o waltaopbuge Buider 6. Create sbspaca _
s SatUnApPPﬁngugdu 7. Instail AppPage Builder
-~ & Croatg Sample AppPege A i
8 _1Gaenerating detail break reports 8. S.et Up fppPage Builder -
- ® _JWalking through & result set 9. Create Sample AppPage ,
| & _jGaenerating a repon ’
© @ _] Seach informix documents) !
" & _)Creating a document repository [R =
@ T =12
|20

S

o

WO 01/45069

PCT/US00/34013
59/59
ordered
local TOC
orderedt L .
local TOC 00000 /_ 97' oo S
| JO0000acx
000000 |
XOOB0R000K =
XD et
XO00000K ~_|
(KOO
e,
2005

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

