Office de la Propriéte Canadian CA 2982017 A1 2016/10/13
Intellectuelle Intellectual Property

du Canada Office (21) 2 982 01 7
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada

CANADIAN PATENT APPLICATION
13) A1

(86) Date de déepot PCT/PCT Filing Date: 2016/03/10

(87) Date publication PCT/PCT Publication Date: 2016/10/13
(85) Entree phase nationale/National Entry: 201//10/06

(86) N° demande PCT/PCT Application No.: EP 2016/055135
(87) N° publication PCT/PCT Publication No.: 2016/162165

51) Cl.Int./Int.Cl. G70L 79/008(2013.01),
GT10L 21/0272(2013.01), HO3M 1/72(2006.01)

(71) Demandeur/Applicant:
THOMSON LICENSING, FR

(72) Inventeurs/Inventors:
BILEN, CAGDAS, FR;

(30) Priorités/Priorities: 2015/04/10 (EP15305536.3), OZEROV, ALEXEY, FR;
2015/07/10 (EP15306144.5); 2015/09/16 (EP15306425.8) PEREZ, PATRICK, FR
(74) Agent: FETHERSTONHAUGH & CO.

(54) Titre : PROCEDE ET DISPOSITIF SERVANT A CODER DE MULTIPLES SIGNAUX AUDIO, ET PROCEDE ET
DISPOSITIF SERVANT A DECODER UN MELANGE DE MULTIPLES SIGNAUX AUDIO AVEC SEPARATION

AMELIOREE

54) Title: METHOD AND DEVICE FOR ENCODING MULTIPLE AUDIO SIGNALS, AND METHOD AND DEVICE FOR

DECODING A MIXTURE OF MULTIPLE AUDIO SIGNALS WITH

Sources

BB FITETES

FERR Ry B EBE R

.........................................................................

IMPROVED SEPARATION

515 Random Sampling j;“’ Quantization
ljk» ;J U IRVRTRTY lj Side
Information
Quantization » >

g
B & 0
% ¥
: : iz
o :Z 2
W - I
i X X
i g -
B i
‘. T
i .

V. .

A b 2
v

'.‘:'. S A P A A A T O N M A A P I S T S T 19 :

ENCODER

Fig.2

(57) Abréegée/Abstract:

O v |
L% | %'!Q rfilf}-i’ E F,'g h’*. _Jf‘ﬁ N M\ : |
- 5 >
Mixture X

A method for encoding multiple audio signals comprises random sampling and quantizing each of the multiple audio signals, anad

encoding the sampled and guantized multiple audio signals as side inforn
multiple audio signals from a mixture of said multiple audio signals. A

ation that can be used for decoding and separating the
ethod for decoding a mixture of multiple audio signals

comprises decoding and demultiplexing side information, the side informat

on comprising quantized samples of each of the multiple

audio signals, recelving or retrieving from any data source a mixture of saild multiple audio signals, and generating multiple

estimated audio signals that approximate said multiple audio signals, wherein said g

sighals are used.

C an adg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

lantized samples of each of the multiple audio

SRR VNEEEN
R 5. sas ALy
O
A

OPIC




WO 2016/162165 A1 [T HHLR 00 RO RER AU,

(43) International Publication Date

CA 02982017 2017-10-06

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization
International Bureau

(10) International Publication Number

WO 2016/162165 Al

13 October 2016 (13.10.2016) WIPO | PCT
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GI10L 19/008 (2013.01) HO3M 1/12 (2006.01) kind of national protection available). AE, AG, AL, AM,
GI0L 21/0272 (2013.01) AQO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
: . e . BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
10 March 2016 (10.03.2016) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
N | PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
(30) Priority Data: (84) Designated States (unless otherwise indicated, for every
15305536 .3 10 Apl’il 2015 (10004.2015) EP kind Of regz’onal prorection available): ARIPO (BW, GH,
15306144.5 10 July 2015 (10.07.2015) EP GM, KE, LR, L5, MW, MZ, NA, RW, 3D, SL, ST, 52,
15306425.8 16 September 2015 (16.09.2015) EP 12, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(71) Applicant: THOMSON LICENSING [FR/FR]; 1-5 rue DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
Jeanne d'Arc, 92130 Issy-les-Moulineaux (FR). LV, MC, MK, MT, NL, NO, PL. PT, RO, RS, SE, SI, SK,
(72) Inventors: BILEN, Cagdas; 199 St Jean Baptiste de la b - %P{VI(EF&EJ»S%F»T%G»T(?» (M, GA, GN, GQ,
Salle Apt 703, 35000 Rennes (FR). OZEROV, Alexey: 20 KM, ML, MR, NE, 5N, 1D, TG).
Boulevard de Chezy, 35000 Remnes (FR). PEREZ, Published:
Patrick; 4 rue Bugene Quessot, 35200 Rennes (FR). —  with international search report (Art. 21(3))
(74) Agent: KONIG, Uwe; DEUTSCHE THOMSON OHG,

Karl-Wiechert-Allee 74, 30625 Hannover (DE).

(34) Title: METHOD AND DEVICE FOR ENCODING MULTIPLE AUDIO SIGNALS, AND METHOD AND DEVICE FOR
DECODING A MIXTURE OF MULTIPLE AUDIO SIGNALS WITH IMPROVED SEPARATION

Sources

S15

pna bandantan
bby?UbJ%buUU

v
R Z DT

Random Sampling

52
Ak A ‘,vitflff-ﬁgwn A i

Random Sampling

5] Quantization

ri+¢  Quantization  §

At 3 SV B WA A

$=»1 Quantization }

BUUE AN T WK AW TS FEir B Rowe RREE RESk Ko R5EE 5o W0 NGEE WYUK ANG (e WK "Wl SN2 Ross BT

Side
Information

.
s 1s s 1z

=

Fig.2

ENCODER

(57) Abstract: A method for encoding multiple audio signals comprises random sampling and quantizing each of the multiple audio
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METHOD AND DEVICE FOR ENCODING MULTIPLE AUDIO SIGNALS, AND
METHOD AND DEVICE FOR DECODING A MIXTURE OF MULTIPLE AUDIO
SIGNALS WITH IMPROVED SEPARATION

Field of the invention

This invention relates to a method and a device for encoding multiple audio
signals, and to a method and a device for decoding a mixture of multiple audio

signals with improved separation of the multiple audio signals.

Background
The problem of audio source separation consists in estimating individual sources

(e.g. speech, music instruments, noise, etc.) from their mixtures. In the context of
audio, mixture means a recording of multiple sources by a single or multiple
microphones. Informed source separation (1SS) for audio signals can be viewed
as the problem of extracting individual audio sources from a mixture of the
sources, given that some information on the sources is available. ISS relates also
to compression of audio objects (sources) [0], I.e. encoding a multisource audio,
given that a mixture of these sources is known on both the encoding and
decoding stages. Both of these problems are interconnected. They are important
for a wide range of applications.

Known solutions (e.qg. [3], [4], [9]) rely on the assumption that the original sources
are avalilable during an encoding stage. Side-information is computed and
transmitted along with the mixture, and both are processed in a decoding stage to
recover the sources. While several ISS methods are known, in all these
approaches the encoding stage is more complex and computationally expensive
than the decoding stage. Therefore these approaches are not preferable in cases
where the platform performing the encoding cannot handle the computational
complexity demanded by the encoder. Finally, the known complex encoders are
not usable for online encoding, I.e. progressively encoding the signal as it arrives,

which Is very important for some applications.

Summary of the Invention
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In view of the above, it is highly desirable to have a fully automatic and efficient
solution for both the ISS problems. In particular, a solution would be desirable
where the encoder requires considerably less processing than the decoder.

The present invention provides a simple encoding scheme that shifts most of the
processing load from the encoder side to the decoder side. The proposed simple
way for generating the side-information enables not only low complexity encoding,
but also an efficient recovery at the decoder. Finally, in contrast to some existing
efficient methods that need the full signal to be known during encoding (which is
called batch encoding), the proposed encoding scheme allows online encoding,
..e. the signal is progressively encoded as it arrives.

The encoder takes random samples from the audio sources with a random
pattern. In one embodiment, it is a predefined pseudo-random pattern. The
sampled values are quantized by a predefined quantizer and the resulting
quantized samples are concatenated and losslessly compressed by an entropy
coder to generate the side information. The mixture can also be produced at the
encoding side, or it is already available through other ways at the decoding side.
The decoder first recovers the quantized samples from the side information, and
then estimates probabillistically the most likely sources within the mixture, given
the quantized samples and the mixture.

In one embodiment, the present principles relate to a method for encoding
multiple audio signals as disclosed in claim 1. In one embodiment, the present
principles relate to a method for decoding a mixture of multiple audio signal as
disclosed in claim 3.

In one embodiment, the present principles relate to an encoding device that
comprises a plurality of separate hardware components, one for each step of the
encoding method as described below. In one embodiment, the present principles
relate to a decoding device that comprises a plurality of separate hardware
components, one for each step of the decoding method as described below.

In one embodiment, the present principles relate to a computer readable medium
having executable instructions to cause a computer to perform an encoding
method comprising steps as described below. In one embodiment, the present

principles relate to a computer readable medium having executable instructions to
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cause a computer to perform a decoding method comprising steps as described
below.

In one embodiment, the present principles relate to an encoding device for
separating audio sources, comprising at least one hardware component, e.g.
hardware processor, and a non-transitory, tangible, computer-readable, storage
medium tangibly embodying at least one software component, and when
executing on the at least one hardware processor, the software component
causes steps of the encoding method as described below. In one embodiment,
the present principles relate to an encoding device for separating audio sources,
comprising at least one hardware component, e.g. hardware processor, and a
non-transitory, tangible, computer-readable, storage medium tangibly embodying
at least one software component, and when executing on the at least one
hardware processor, the software component causes steps of the decoding
method as described below.

Further objects, features and advantages of the present principles will become
apparent from a consideration of the following description and the appended

claims when taken in connection with the accompanying drawings.

Brief description of the drawings
Exemplary embodiments are described with reference to the accompanying

drawings, which show In

Fig.1 the structure of a transmission and/or storage system, comprising an
encoder and a decoder;

Fig.2 the simplified structure of an exemplary encoder;

Fig.3 the simplified structure of an exemplary decoder; and

Fig.4 a performance comparison between CS-1SS and classical 1SS.

Detailed description of the invention
Fig.1 shows the structure of a transmission and/or storage system, comprising an

encoder and a decoder. Original sound sources s, S, ...,5; are input to an

encoder, which provides a mixture x and side information. The decoder uses the

mixture x and side information to recover the sound, wherein it Is assumed that
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some Information has been lost: therefore the decoder needs to estimate the

sound sources, and provides estimated sound sources §4,5;, ..., ;.
It Is assumed that the original sources s;, s, ..., s; are available at the encoder,

and are processed by the encoder to generate the side information. The mixture
can also be generated by the encoder, or it can be available by other means at
the decoder. For example, for a known audio track available on the internet, side
iInformation generated from individual sources can be storedq, e.g. by the authors
of the audio track or others. One problem described herein is having single
channel audio sources recorded with single microphones, which are added
together to form the mixture. Other configurations, e.g. multichannel audio or
recordings with multiple microphones, can easily be handled by extending the
described methods In a straight forward manner.

One technical problem that is considered here within the above-described setting
consists in: when having an encoder to generate the side information, design a

decoder that can estimate sources 4,5, ..., §; that are as close as possible to the
original sources s, 55, ..., 5;. The decoder should use the side information and the

known mixture x in an efficient manner so as to minimize the needed size of the
side information for a given quality of the estimated sources. It is assumed that
the decoder knows both the mixture and how it is formed using the sources.

Therefore the invention comprises two parts: the encoder and the decoder.

Fig.2 a) shows the simplified structure of an exemplary encoder. The encoder is
designed to be computationally simple. It takes random samples from the audio
sources. In one embodiment, it uses a predefined pseudo-random pattern. In
another embodiment, it uses any random pattern. The sampled values are
quantized by a (predefined) quantizer, and the resulting quantized samples

¥1, Y2, -,y are concatenated and losslessly compressed by an entropy coder

(e.g. Huffman coder or arithmetic coder) to generate the side information. The
mixture Is also produced, If not already available at the decoding side.
Fig.2 b) shows, enlarged, exemplary signals within the encoder. A mixture signal

x Is obtained by overlaying or mixing different source signals s, s,, ..., s;. Each of
the source signals s4, 55, ..., §; IS also random sampled in random sampling units,

and the samples are quantized in one or more quantizers (in this embodiment,
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one quantizer for each signal) to obtain quantized samples y4,y,, ..., y;. The

gquantized samples are encoded to be used as side information. Note that, in other

embodiments, the sequence order of sampling and quantizing may be swapped.

Fig.3 shows the simplified structure of an exemplary decoder. The decoder first

recovers the quantized samples y4, y,, ..., y; from the side information. It then
estimates probabilistically the most likely sources §4, 55, ..., §;, given the observed

samples y;,y,, ..., ¥; and the mixture x and exploiting the known structures and

correlations among the sources.

Possible implementations of the encoder are very simple. One possible
iImplementation of the decoder operates based on the following two assumptions:
(1) The sources are jointly Gaussian distributed in the Short-Time Fourier

Transform (STFT) domain with window size F and number of windows N.

(2) The variance tensor of the Gaussian distribution V € R*"*/ has a low

rank Non-Negative Tensor Decomposition (NTF) of rank K such that

K
V(f,nj) = Z Hn, W(f,k)Q(, k), HEeRVX W eRXK QeR"
k=1

Following these two assumptions, the operation of the decoder can be

summarized with the following steps:

1. Initialize matrices H € R}**, W € R, 0 € RY** with random nonnegative

values and compute the variance tensor V € R,V as:

V(fn )= ) Ho W, DG,k
k=1

2. Until convergence or maximum number of iterations reached, repeat:
2.1 Compute the conditional expectations of the source power spectra such
that
P(f,n,j) = E{|S(f1 n,j)\2|x,y1,y2, ...,y],V}

FXNX]J

where S € C are the array of the STFT complex coefficients of the
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sources. More details on this conditional expectation computation are

provided below.

2 2 Re-estimate NTF model parameters H € R} ™", W € R, Q € R*" using
the multiplicative update (MU) rules minimizing the IS divergence [19]
between the 3-valence tensor of estimated source power spectra

P(f,n,j) and the 3-valence tensor of the NTF model approximation
V(f,n,j) such that:

2raW(f,K)H(n, k)P (f,n,j) V(f, n;j)"z)
2rn W, K)H(n, )V(f,n,j)=

2in QU K)H(n, k)P(f,n,j) V(f, n,j)"z)
2in QU K)H(n, K)V(f,n,j)=

2ri W, k)QU, K)P(f,n,j)V(f, n;j)"z)
e WL )QG, V(fin, )™

QG k) <« QG k) (

W(f, k) « W(f,k) (

Hn k) « H(n k) (

These updates can be iteratively repeated multiple times.

FXNX]

3. Compute the array of STFT coefficients § € C as the posterior mean

asS

S(f,nj) = E{S(f,n,)|xy.,¥2 ...y, V}
and convert back into the time domain to recover the estimated sources

$1,52, ...,8;. More details on this posterior mean computation are provided

below.

The following describes some mathematical basics on the above calculations.

A tensor Is a data structure that can be seen as a higher dimensional matrix. A
matrix is 2-dimensional, whereas a tensor can be N-dimensional. In the present
case, V Is a 3-dimensional tensor (like a cube). It represents the covariance matrix
of the jointly Gaussian distribution of the sources.

A matrix can be represented as the sum of few rank-1 matrices, each formed by
multiplying two vectors, in the low rank model. In the present case, the tensor is
similarly represented as the sum of K rank one tensors, where a rank one tensor
IS formed by multiplying three vectors, €.g. h;, g;and w; .These vectors are put

together to form the matrices H, Q and W. There are K sets of vectors for the K
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rank one tensors. Essentially, the tensor is represented by K components, and the
matrices H, Q and W represent how the components are distributed along
different frames, different frequencies of STF T and different sources respectively.
Similar to a low rank model in matrices, K is kept small because a small K better
defines the characteristics of the data, such as audio data, e.g. music. Hence it is
possible to guess unknown characteristics of the signal by using the information
that V should be a low rank tensor. This reduces the number of unknowns and

defines an interrelation between different parts of the data.

The steps of the above-described iterative algorithm can be described as follows.
First, initialize the matrices H, Q and W and therefore V.
Given V, the probability distribution of the signal is known. And looking at the

observed part of the signals (signals are observed only partially), it is possible to

estimate the STFT coefficients S, e.g. by Wiener filtering. This Is the posterior

mean of the signal. Further, also a posterior covariance of the signal is computed,
which will be used below. This step Iis performed independently for each window

of the signal, and it is parallelizable. This is called the expectation step or E-step.

Once the posterior mean and covariance are computed, these are used to
compute the posterior power spectra p. This is needed to update the earlier model
parameters, ie. H, Q and W. It may be advantageous to repeat this step more
than once in order to reach a better estimate (e.g. 2-10 times). This is called the
maximization step or M-step.

Once the model parameters H, Q and W are updated, all the steps (from

estimating the STFT coefficients S ) can be repeated until some convergence Is

reached, in an embodiment. After the convergence is reached, in an embodiment

the posterior mean of the STFT coefficients S is converted into the time domain to

obtain an audio signal as final result.

One advantage of the invention is that it allows improved recovering of multiple
audio source signals from a mixture thereof. This enables efficient storage and
transmission of a multisource audio recording without the need for powerful

devices. Mobile phones or tablets can easily be used to compress information
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regarding the multiple sources of an audio track without a heavy battery drain or
processor utilization.

A further advantage is that the computational resources for encoding and
decoding the sources are more efficiently utilized, since the compressed
Information on the individual sources are decoded only if they are needed. In
some applications, such as music production, the information on the individual
sources are always encoded and stored, however it IS not always needed and
accessed afterwards. Therefore, as opposed to an expensive encoder that
performs high complexity processing on every encoded audio stream, a system
with a low complexity encoder and a high complexity decoder has the benefit of
utilizing the processing power only for those audio streams for which the individual
sources are actually needed later.

A third advantage provided by the invention is the adaptability to new and better
decoding methods. When a new and improved way of exploiting correlations
within the data is discovered, a new method for decoding can be devised (a better

method to estimate §4,5,, ...,$; given x,y,,y,,...,¥;), and it is possible to decode

the older encoded bitstreams with better quality without the need to re-encode the
sources. Whereas In traditional encoding-decoding paradigms, when an improved
way of exploiting correlations within the data leads to a new method of encoding,
it Is necessary to decode and re-encode the sources in order to exploit the
advantages of the new approach. Furthermore, the process of re-encoding an
already encoded bitstream is known to introduce further errors with respect to the
original sources.

A fourth advantage of the invention is the possibility to encode the sources in an
online fashion, I.e. the sources are encoded as they arrive to the encoder, and the
avallability of the entire stream is not necessary for encoding.

A fifth advantage of the invention is that gaps in the separated audio source
signals can be repaired, which is known as audio inpainting. Thus, the invention

allows joint audio inpainting and source separation, as described In the following.

The approach disclosed herein is inspired by distributed source coding [9] and In
particular distributed video coding [10] paradigms, where the goal is also to shift

the complexity from the encoder to the decoder. The approach relies on the



10

15

20

25

30

CA 02982017 2017-10-06

WO 2016/162165 PCT/EP2016/055135

9

compressive sensing/sampling principles [11-13], since the sources are projected
on a linear subspace spanned by a randomly selected subset of vectors of a basis
that is incoherent [13] with a basis where the audio sources are sparse. The
disclosed approach can be called compressive sampling-based ISS (CS-ISS).
More specifically, it is proposed to encode the sources by a simple random
selection of a subset of temporal samples of the sources, followed by a uniform
guantization and an entropy encoder. In one embodiment, this is the only side-
information transmitted to the decoder.

Note that the advantage of sampling in the time domain is double. First, it is faster
than sampling in any transformed domain. Second, the temporal basis Is
iIncoherent enough with the short time Fourier transform (STFT) frame where
audio signals are sparse and it is even more incoherent with the low rank NTF
representation of STFT coefficients. It Is shown In compressive sensing theory
that the incoherency of the measurement and prior information domains is
essential for the recovery of the sources [13].

To recover the sources at the decoder from the quantized source samples and the
mixture, it I1s proposed to use a model-based approach that is in line with model-
based compressive sensing [14]. Notably, in one embodiment the Itakura-Saito
(IS) nonnegative tensor factorization (NTF) model of source spectrograms is
used, as in [4,5]. Thanks to its Gaussian probabilistic formulation [15], this model
may be estimated in the maximum-likelihood (ML) sense from the mixture and the
transmitted quantized portion of source samples. To estimate the model, a new
generalized expectation-maximization (GEM) algorithm [16] based on multipli-
cative update (MU) rules [15] can be used. Given the estimated model and all
other observations, the sources can be estimated by Wiener filtering [17].
OVERVIEW OF THE CS-ISS FRAMEWORK

The overall structure of the proposed CS-ISS encoder/decoder Is depicted In
Fig.2, as already explained above. The encoder randomly subsamples the
sources with a desired rate, using a predefined randomization pattern, and
quantizes these samples. The quantized samples are then ordered in a single
stream to be compressed with an entropy encoder to form the final encoded
bitstream. The random sampling pattern (or a seed that generates the random

pattern) is known by both the encoder and decoder and therefore needs not be
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transmitted, in one embodiment. In another embodiment, the random sampling
pattern, or a seed that generates the random pattern, is transmitted to the
decoder. The audio mixture Is also assumed to be known by the decoder. The
decoder performs entropy decoding to retrieve the quantized samples of the
sources, followed by CS-ISS decoding as will be discussed in detail below.

The proposed CS-ISS framework has several advantages over traditional ISS,
which can be summarized as follows:

A first advantage is that the simple encoder in Fig.2 can be used for low com-
plexity encoding, as needed e.g. in low power devices. A low-complexity encoding
scheme Is also advantageous for applications where encoding Is used frequently
but only few encoded streams need to be decoded. An example of such an
application is music production in a studio where the sources of each produced
music are kept for future use, but are seldom needed. Hence, significant savings
In terms of processing power and processing time is possible with CS-ISS.

A second advantage is that performing sampling in time domain (and not in a
transformed domain) provides not only a simple sampling scheme, but also the
possibility to perform the encoding in an online fashion when needed, which is not
always as straight forward for other methods [4,5]. Furthermore, the independent
encoding scheme enables the possibility of encoding sources in a distributed
manner without compromising the decoding efficiency.

A third advantage Is that the encoding step Is performed without any assumptions
on the decoding step. Therefore it is possible to use other decoders than the one
proposed in this embodiment. This provides a significant advantage over classical
ISS [2—-9] in the sense that, when a better performing decoder is designed, the
encoded sources can directly benefit from the improved decoding without the
need for re-encoding. This iIs made possible by the random sampling used in the
encoder. The compressive sensing theory shows that a random sampling scheme
provides incoherency with a large number of domains, so that it becomes possible
to design efficient decoders relying on different prior information on the data.
CS-ISS DECODER

Let us indicate the support of the random samples with QQ° , such that the source

j €11,/ is sampled at time indices t & (' © 11, T]. After the entropy decoding
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stage, the CS-ISS decoder has the subset of quantized samples of the sources

Vit Q}’-’),j e [[1,/], where the quantized samples are defined as

Yie = Sje T bjt (1)
where s;. indicates the true source signal and b;, is the quantization noise.
Note that herein the time-domain signals are represented by letters with two
primes, e.g. X, while framed and windowed time-domain signals are denoted by
letters with one prime, e.g. X, and complex-valued short-time Fourier transform
(STFT) coefficients are denoted by letters with no prime, e.g. x.

The mixture Is assumed to be the sum of the original sources such that

x/ =X, sji, telLTL jelL)] (2)
The mixture is assumed to be known at the decoder. Note that the mixture is
assumed to be noise free and without quantization herein. However, the disclosed
algorithm can as well easily be extended to include noise in the mixture.
In order to compute the STFT coefficients, the mixture and the sources are first
converted to a windowed time domain with a window length M and a total of N

windows. Resulting coefficients denoted by y;,.., , Sim, @and x,,,, represent the

quantized sources, the original sources and the mixture in windowed-time domain
respectively forj=1,....,d,n=1,....Nand m=1,...,M (only for m in appropriate
subset (;,, in case of quantized source samples). The STFT coefficients of the
sources, Sy, and of the mixture, x», are computed by applying the unitary Fourier
transform U € C**" (F=M), to each window of the windowed-time domain
counterparts. For example, [Xin, ..., Xe]' = U[x!, o, xb 1"

The sources are modelled in the STFT domain with a normal distribution

(Sirn ~ N:(0,v6, ) where the variance tensor V = [v;¢, ]izn has the following low-

rank NTF structure [18]:

vjfn — I}§=1 ij Wfk hnkiK < max(], F! N) (3)

The model is parametrized by @ = {Q, W, H}, with Q = [q;;] € Ry , W = [wg] €
Ri*% and H = [h,;,] € RY*X,

According to an embodiment of the present principles, the source signals are
recovered with a generalized expectation-maximization algorithm that is briefly

described in Algorithm 1. The algorithm estimates the sources and source

statistics from the observations using a given model 0 via Wiener filtering at the
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expectation step, and then updates the model using the posterior source statistics

at the maximization step. The details on each step of the algorithm are given

below.

model

&nmm e S (%m&n 65) and P
p b } E. & {g 3} |

.. ). W. H given P
ntil conver gence criteria met
? 9 '3 d rgce ul“*e

Estimating the sources

Since all the underlying distributions are Gaussian and all the relations between

the sources and the observations are linear, the sources may be estimated in the

minimum mean square error (MMSE) sense via the Wiener filter [17], given the
10  covariance tensor V defined in (3) by the model parameters Q,W,H.

Let the observed data vector for the n-th frame o,, be defined as
57'1 = [)71’?11 ' ’}7]’7’1; ) _’T] ’ Where f?'?, = [x{w "'JxI,\/In]T and y]n — [yjmnlm S Q}’n]T
Given the corresponding observed data o,, and the NTF model 0 , the posterior

distribution of each source frame sj, can be written as s;,|0;; © ~ N, (§jn,fsjnsjn)

15 with §;, and > being, respectively, posterior mean and posterior covariance

matrix. Each of them can be computed by Wiener filtering as

H-)

LA
N

given the gefinitions
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.2 ) . 5 - ' - .. v € & A PP AR
E e T T TR i R T iy T : : :
j ?%‘ j ?w?!"\ 'J Iq. ; .
b o0 '

where U(Q;,) is the F X |[Q, | matrix of columns from U with index in Q.

Therefore the posterior power spectra P = [p irn] that will be used to update the

NTF model as described below, can be computed as

Updating the model
NTF model parameters can be re-estimated using the multiplicative update (MU)

rules minimizing the IS divergence [15] between the 3-valence tensor of estimated

source power spectra P and the 3-valence tensor of the NTF model appProxi-

mation V defined as D, (P V) = X rndis(@ifnllvien), Where

dis(x|ly) =~ — log (i) — 1 is the IS divergence; and p;,, and v;., are specified
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by (14) and (3). As a result, Q,W,H can be updated with the MU rules presented In
[18]. These MU rules can be repeated several times to improve the model

estimate.

Further, In source separation applications using the NTF/NMF model it Is often
necessary to have some prior information on the individual sources. This
iInformation can be some samples from the sources, or knowledge about which
source IS “inactive” at which instant of time. However, when such information is to
be enforced, it has always been the case that the algorithms needed to predefine

how many components each source is composed of. This Is often enforced by

initializing the model parameters W € R,"* He R,"**, Q € R,/*", so that
certain parts of Q and H are set to zero, and each component Is assigned to a
specific source. In one embodiment, the computation of the model is modified
such that, given the total number of components K, each source is assigned
automatically to the components rather than manually. This is achieved by enfor-
cing the “silence” of the sources not through STFT domain model parameters, but
through time domain samples (with a constrain to have time domain samples of
zeros) and by relaxing the initial conditions on the model parameters so that they
are automatically adjusted. A further modification to enforce a sparse structure on
the source component distribution (defined by Q) Is also possible by slightly
modifying the multiplicative update equations above. This results in an automatic
assignment of sources to components.

Thus, In one embodiment the matrices H and Q are determined automatically
when side information Is of the form of silence periods of the sources are present.
The side information Is may include the information which source is silent at which
time periods. In the presence of such specific information, a classical way to
utilize NMF is to initialize H and Q In such a way that predefined ki components
are assigned to each source. The improved solution removes the need for such
iINnitialization, and learns H and Q so that ki needs not to be known In advance.
This is made possible by 1) using time domain samples as input, so that STFT
domain manipulation is not mandatory, and 2) constraining the matrix Q to have a
sparse structure. This Is achieved by modifying the multiplicative update

equations for Q, as described above.



10

15

20

25

CA 02982017 2017-10-06

WO 2016/162165 PCT/EP2016/055135

15

Results

In order to assess the performance of the present approach, three sources of a
music signal at 16 kHz are encoded and then decoded using the proposed CS-
1SS with different levels of quantization (16 bits, 11 bits, 6 bits and 1 bit) and
different sampling bitrates per source (0.64, 1.28, 2.56, 5.12 and 10.24
kbps/source). In this example, it is assumed that the random sampling pattern is
pre-defined and known during both encoding and decoding. The quantized
samples are truncated and compressed using an arithmetic encoder with a zero
mean Gaussian distribution assumption. At the decoder side, following the
arithmetic decoder, the sources are decoded from the quantized samples using
50 iterations of the GEM algorithm with STFT computed using a half-overlapping
sine window of 1024 samples (64 ms) with a Gaussian window function and the
number of components fixed at K = 18, I.e. 6 components per source. The quality
of the reconstructed samples is measured in signal to distortion ratio (SDR) as
described In [19]. The resulting encoded bitrates and SDR of decoded signals are
presented in Tab.1 along with the percentage of the encoded samples In
parentheses. Note that the compressed rates in Tab.1 differ from the
corresponding raw bitrates due to the variable performance of the entropy coding

stage, which is expected.

Bits per Sample Compressed Rate / SDR (% of Samples Kepf)

Raw rate (kbps / source)
0.64 1.28 2.56 5.12 10.24

16 bits 0.50/-1.64{0.25) 1.00/4.28 (0.530) 2.00/9.54(1.00y  4.01/16.17(2.00)  B8.00/21.87 (4.00)
11 bits 0.43 7 1.30 {0.36} 0877654073y L75/713.30(1.45) 3.50/1947(2.91y 7.00/24.66 (5.82)
6 bits 0.27 7 4.17 (0.67) 0.54/7.62(1.33)y 1.08/12.09(2.67) 2.18/14.55(5.33)y 437/16.55(10.67)
1 bit 0.64/-306{4.00) 1.28/-257(8.00) 256/1.08(16.00) 5.12/71.59(32.00) 10.24/1.536{64.00)

Table 1: The final bitrates (in kbps per source) after the entropy coding stage of
CS-ISS with corresponding SDR (in dBs) for different (uniform) quantization levels
and different raw bitrates before entropy coding. The percentage of the samples
kept is also provided for each case Iin parentheses. Results corresponding to the
best rate-distortion compromise are in bold.

The performance of CS-ISS Is compared to the classical ISS approach with a
more complicated encoder and a simpler decoder presented in [4]. The ISS
algorithm is used with NTF model quantization and encoding as in [5], i.e., NTF

coefficients are uniformly quantized in logarithmic domain, quantization step sizes
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of different NTF matrices are computed using equations (31)-(33) from [5] and the
iIndices are encoded using an arithmetic coder based on a two states Gaussian

mixture model (GMM) (see Fig. 5 of [5]). The approach is evaluated for different

quantization step sizes and different numbers of NTF components, i.e. A = 2%,

215 271 .., 2%and K =4, 6,..., 30. The results are generated with 250 iterations

of model update. The performance of both CS-ISS and classical ISS are shown In
Fig.4, in which CS-ISS clearly outperforms the ISS approach, even though the
1SS approach can use optimized number of components and quantization as
opposed to our decoder which uses a fixed number of components (the encoder
IS very simple and does not compute this value). The performance difference is
due to the high efficiency achieved by the CS-ISS decoder thanks to the
iIncoherency of random sampled time domain and of low rank NTF domain. Also,
the ISS approach is unable to perform beyond an SDR of 10 dBs due to the lack
of fidelity in the encoder structure as explained in [5]. Even though it was not
possible to compare to the ISS algorithm presented in [5] in this paper due to time
constraints, the results indicate that the rate distortion performance exhibits a
similar behavior. It should be reminded that the proposed approach distinguishes
itself by it low complexity encoder and hence can still be advantageous against
other ISS approaches with better rate distortion performance.

The performance of CS-ISS In Tab.1 and Fig.4 indicates that different levels of
quantization may be preferable in different rates. Even though neither 16 bits nor
1 bit quantization seem well performing, the performance indicates that 16 bits
quantization may be superior to other schemes when a much higher bitrate is
avallable. Similarly coarser quantization such as 1 bit may be beneficial when
considering significantly low bitrates. The choice of quantization can be performed
In the encoder with a simple look up table as a reference. One must also note that
even though the encoder in CS-1SS is very simple, the proposed decoder is
significantly high complexity, typically higher than the encoders of traditional ISS
methods. However, this can also be overcome by exploiting the independence of
Wiener filtering among the frames in the proposed decoder with parallel

processing, €.g. using graphical processing units (GPUSs).
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The disclosed solution usually leads to the fact that a low-rank tensor structure

appears In the power spectrogram of the reconstructed signals.

It is to be noted that the use of the verb “comprise” and its conjugations does not
exclude the presence of elements or steps other than those stated in a claim.
Furthermore, the use of the article "a” or "an” preceding an element does not
exclude the presence of a plurality of such elements. Several "'means” may be
represented by the same item of hardware. Furthermore, the invention resides In
each and every novel feature or combination of features. As used herein, a "digital
audio signal” or "audio signal” does not describe a mere mathematical
abstraction, but instead denotes information embodied in or carried by a physical
medium capable of detection by a machine or apparatus. This term includes
recorded or transmitted signals, and should be understood to include conveyance
by any form of encoding, including pulse code modulation (PCM), but not limited
to PCM.

While there has been shown, described, and pointed out fundamental novel
features of the present invention as applied to preferred embodiments thereof, it
will be understood that various omissions and substitutions and changes in the
apparatus and method described, in the form and detalils of the devices disclosed,
and in their operation, may be made by those skilled in the art without departing
from the spirit of the present invention. It is expressly intended that all
combinations of those elements that perform substantially the same function in
substantially the same way to achieve the same results are within the scope of the
Invention. Substitutions of elements from one described embodiment to another
are also fully intended and contemplated. Each feature disclosed in the
description and (where appropriate) the claims and drawings may be provided
Independently or in any appropriate combination. Features may, where
appropriate be implemented in hardware, software, or a combination of the two.
Connections may, where applicable, be implemented as wireless connections or

wired, not necessarily direct or dedicated, connections.
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Claims

1. A method for encoding multiple time-domain audio signals, comprising steps
of
- random sampling and quantizing each of the multiple time-domain audio
signals; and
- encoding the sampled and quantized multiple time-domain audio signals as
side information that can be used for decoding and separating the multiple
time-domain audio signals from a mixture of said multiple time-domain

audio signals.

2. The method according to claim 1, wherein the random sampling uses a

predefined pseudo-random pattern.

3. The method according to claim 1 or 2, wherein the mixture of multiple time-

domain audio signal is progressively encoded as it arrives.

4. The method according to one of the claims 1-3, further comprising steps of
determining which source is silent at which time periods, and encoding the

determined information in said side information.

5. A method for decoding a mixture of multiple audio signals, comprising steps of

- decoding and demultiplexing side information, the side information
comprising quantized time-domain samples of each of the multiple audio
signals;

- receiving or retrieving, from storage or any data source, a mixture of said
multiple audio signals; and

- generating multiple estimated audio signals that approximate said multiple
audio signals, wherein said quantized samples of each of the multiple audio

signals are used.

6. The method according to claim 5, wherein the step of generating multiple
estimated audio signals comprises steps of

- computing a variance tensor V from random nonnegative values;
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- computing conditional expectations of the source power spectra of the
quantized samples of the multiple audio signals, wherein estimated source
power spectra P(f,n,j) are obtained and wherein the variance tensor V
and complex Short-Time Fourier Transform (STFT) coefficients of the
multiple audio signals are used;

- Iteratively re-calculating the variance tensor V from the estimated source

power spectra P(f,n, j);

- computing an array of STFT coefficients S from the resulting variance

tensor V: and

- converting the array of STFT coefficients S to the time domain, wherein the

multiple estimated audio signals are obtained.

The method according to claim 5 or 6, further comprising audio inpainting for

at least one of the multiple audio signals.

The method according to one of the claims 5-7, wherein said side information
further comprises information defining which audio source is silent at which
time periods, further comprising determining automatically matrices H and Q

that define the variance tensor V.

An apparatus for encoding multiple audio signals, comprising

a processor and a memory storing instructions that, when executed, cause

the apparatus to perform a method for encoding multiple time-domain audio

signals that comprises steps of

- random sampling and quantizing each of the multiple time-domain audio
signals; and

- encoding the sampled and quantized multiple time-domain audio signals as
side information that can be used for decoding and separating the multiple

time-domain audio signals from a mixture of said multiple audio signals.

The apparatus according to claim 9, wherein the random sampling uses a

predefined pseudo-random pattern.
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An apparatus for decoding a mixture of multiple audio signals, comprising

a processor and a memory storing instructions that, when executed, cause

the apparatus to perform a method for decoding a mixture of multiple audio

signals that comprises

decoding and demultiplexing side information, the side information
comprising quantized time-domain samples of each of the multiple audio
signals;

receiving or retrieving, from storage or any data source, a mixture of said
multiple audio signals; and

generating multiple estimated audio signals that approximate said multiple
audio signals, wherein said quantized samples of each of the multiple audio

signals are used.

The apparatus according to claim 11, wherein the step of generating multiple

estimated audio signals comprises steps of

computing a variance tensor V from random nonnegative values;
computing conditional expectations of the source power spectra of the
quantized samples of the multiple audio signals, wherein estimated source
power spectra P(f,n,j) are obtained and wherein the variance tensor V
and complex Short-Time Fourier Transform (STFT) coefficients of the
multiple audio signals are used;

iteratively re-calculating the variance tensor V from the estimated source

power spectra P(f,n,j);
computing an array of STFT coefficients S from the resulting variance

tensor V: and

converting the array of STFT coefficients S to the time domain, wherein the

multiple estimated audio signals are obtained.

The apparatus according to claim 11 or 12, further comprising audio inpainting

for at least one of the multiple time-domain audio signals.
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