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(57) Abstract

Disclosed is a method for estimating properties of a multi-component fluid (10) using pseudocomponents.

The fluid (10) is

characterized using a set of base components and a set of fluid compositions is defined that corresponds to fluid compositions expected to
occur in computations of interest. Pseudocomponents are defined to represent the multi-component fluid (10) by (i) defining an ordered
set of vectors corresponding to a characteristic of the base components, each vector containing one entry for each base component, the
first vector being most representative of the set of compositions according to a predetermined criterion and each vector thereafter in the set
being less representative of the set of compositions than the vector before it, and (ii) selecting a subset of the ordered set that comprises
the first vector and a predetermined number of vectors immediately thereafter, the subset of vectors corresponding to a pseudocomponent
characterization of the multi—-component fluid (10).
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A METHOD OF ESTIMATING PROPERTIES OF A MULTI-COMPONENT
FLUID USING PSEUDOCOMPONENTS

FIELD OF THE INVENTION

The invention relates generally to a method for estimating properties and/or
behavior of a multi-component fluid in one or more volumetric zones using a
pseudocomponent representation of the multi-component fluid. The method is
particularly useful in estimating properties and/or behavior of fluids contained in

hydrocarbon-bearing, subterranean formations or in hydrocarbon processing facilities.

BACKGROUND OF THE INVENTION

Reservoir simulation is a process of inferring the behavior of a real reservoir
from the performance of a model of that reservoir. Because mass transfer and fluid
flow processes in petroleum reservoirs are so complex, reservoir simulations can only
be done using computers. Computer programs that perform calculations to simulate
reservoirs are called reservoir simulators. The objective of reservoir simulation is to
understand the complex chemical, physical, and fluid flow processes occurring in a
petroleum reservoir sufficiently well to be able to predict future behavior of a
reservoir and to maximize recovery of hydrocarbons. The reservoir simulator can
solve reservoir problems that are not solvable in any other way. For example, a

reservoir simulator can predict the consequences of reservoir management decisions.

Reservoir simulation typically refers to the hydrodynamics of flow within a
reservoir, but in a larger sense it also refers to the total petroleum system which

includes the reservoir, the surface facilities, and any interrelated significant activity.

Compositional reservoir simulations are used to simulate recovery processes
for which there is a need to know the compositional changes in at least part of the
reservoir. For example, compositional simulations can be helpful in studying (1)

depletion of a volatile oil or gas condensate reservoir where phase compositions and
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properties vary significantly with pressure below bubble or dew point pressures, (2)
injection of non-equilibrium gas (dry or enriched) into a black-oil reservoir to
mobilize oil by vaporizaﬁon into a more mobile gas phase or by condensation through
an outright (single-contact) or dynamic (multiple-contact) miscibility, and (3)
injection of CO; into an oil reservoir to mobilize oil by miscible displacement and by

oil viscosity reduction and oil swelling.

The compositional model describes reservoir hydrocarbon content as a
multiple-component mixture. Gas/oil phase properties and equilibrium are calculated
from pressure and composition dependent correlations or more typically from a
suitable equation of state (EOS). Several EOSs have been developed and are in use

today, including for example the Redlich-Kwong EOS and the Peng-Robinson EOS.

Compositional reservoir simulators using an EOS to describe the phase
behavior of multi-component fluid mixtures are expensive to use because of the large
number of iterative phase equilibrium calculations and large computer storage space
required. The number of equations having to be solved in EOS calculations is
proportional to the number of components in the fluid. Since a reservoir fluid can
contain hundreds of pure components, it is not economically practical to perform
compositional simulations in which all reservoir cémponents are used in the
calculations. It is therefore desirable to keep the number of components used in

describing a fluid mixture to a minimum.

To limit the computational time of compositional reservoir simulations, a
common practice is to pseudoize the fluid description. In the pseudoization, the pure
compounds are grouped into a number of component groups, termed
pseudocomponents. The pseudocomponents are treated as if they were pure

components in subsequent reservoir simulations.

It is obvious that the pseudoization can lead to losses in accuracy and
flexibility in the equation of state calculations. The accuracy depends both on how
the pseudocomponents are developed and the number of pseudocomponents. The
number of pseudocomponents used in a study will usually represent a compromise

between accuracy and computational cost. Therefore, considerable effort has been
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made to formulating pseudoization methods in which the fluids can be described as

accurately as possible, with as few pseudocomponents as possible.

Many different methods have been proposed for selecting pseudocomponents.
The methods include (1) ordering the original components of the fluid with respect to
their normal boiling point, and grouping the original components to form
pseudocomponents with approximately equal mole fractions, (2) grouping the original
components to form pseudocomponents having approximately equal weight fractions,
(3) grouping the pure components with similar properties by an iterative scheme in
which the distances between the pure components and the pseudocomponents is
minimized, (4) selecting pseudocomponents based on molar averaging of the pure
component properties, and (5) grouping components using weight-based averaging of

the pure component properties.

In these pseudoization methods, the pseudocomponents are formed by
"lumping." Each lumped pseudocomponent contains only a few "base" components,
and each base component appears in only one pseudocomponent. These methods
work reasonably well for performing simulation computations. However, the
pseudoization methods do not directly provide an effective way to “delump” the
results. Delumping involves converting the computed results expressed in terms of
pseudocomponents back to an expression in terms of the original base components.
Several approaches to delumping have been proposed, most of which perform
supplementary computations after the simulation has been completed. Some involve
delumping only the results of interest, while others require performing computations

at all gridblocks for all simulation timesteps.

A pseudoization method that is capable of being delumped can be important in
modeling fluid flow between two zones having different fluid characteristics. This
delumping capability can be particularly useful in éstimating fluid properties of
surface processing facilities, which often requires a detailed fluid representation. A
few (for example, three to eight) pseudocomponents may be adequate for most
reservoir computations, while many more pseudocomponents may be needed to
adequately represent a processing facility. In modeling a reservoir and a processing

facility, the model in effect comprises two fluid representation regions — the reservoir
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and the processing facilities — each requiring a different level of detail in its fluid
representation. Often it would be desirable to divide the reservoir into similar fluid
representation regions. Ih many reservoir models, significant changes and complex
behavior occur in only one part of the model. A larger number of pseudocomponents
could be used in one zone and a smaller number in another zone where such behavior
does not occur. This would require converting any fluid that crosses a boundary
between these different types of zones from one representation to another.
Pseudoization methods proposed in the past have not been able to effectively estimate

fluid behavior and properties as the fluid flows between such zones.

A need exists for an improved method for developing pseudocomponents that
can effectively represent a multi-component fluid in a reservoir and a pseudoization
method that can effectively transform a fluid as it flows between regions of a reservoir

having different fluid representations.

SUMMARY

This invention relates to a method for estimating one or more properties of a
multi-component fluid contained in at least one volumetric zone. The first step
characterizes the multi-component fluid using a set of base components. A set of
fluid compositions is then defined that corresponds to fluid compositions predicted to
occur in the volumetric zone. One or more pseudocomponents are then defined to

represent the multi-component fluid by the following sequence of steps:

(1) defining an ordered set of vectors corresponding to a characteristic of
said base components, each vector containing one entry for each base component, the
first vector of the ordered set being most representative of the set of compositions
according to a predetermined criterion and each vector thereafter in the ordered set

being less representative of the set of compositions than the vector before it; and

(1)  selecting a subset of said ordered set of vectors, said subset comprising
the first vector and a predetermined number of vectors immediately thereafter, said
subset of vectors corresponding to a pseudocomponent characterization of the multi-

component fluid.
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The subset of vectors is then used to estimate one or more properties of said multi-

component composition.

In one embodiment, the steps of defining the pseudocomponents further
comprise determining, for each vector of the subset of vectors, a dominant component
corresponding to a predetermined criterion, and modifying each selected vector by
eliminating all other selected vectors' dominant components. Each modified vector is
then normalized. In another embodiment, once the dominant components are known,
the pseudocomponents are defined by normalizing the vectors obtained in a least

squares calculation.

In still another embodiment of this invention, properties of a multi-component
fluid are estimated as the fluid crosses a boundary between a first region and a second
region, each region having a different pseudocomponent representation. In this
embodiment, the pseudocomponent representation of the fluid in one region is
transformed to a base component representation and the base component
representation is transformed to the pseudocomponent representation in the second

region.

DESCRIPTION OF THE DRAWINGS

Fig. 1 is an illustrational view of a subterranean hydrocarbon-bearing reservoir
having production wells and injection wells that are connected to a processing plant,
all of which can contain fluids the properties of which can be estimated in accordance

with the method of this invention.

Fig. 2 illustrates in graphical form the first three right singular vectors,
depicting the mole fraction of each component for a 13-component example of a

pseudoization method of this invention.

Fig. 3 illustrates in graphical form the first step of determining intermediate

vectors for the 13-component example of Fig. 2.

Fig. 4 illustrates in graphical form the second step of determining intermediate

vectors for the 13-component example of Fig. 2.
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Fig. 5 illustrates in graphical form the third step of determining intermediate

vectors for the 13-component example of Fig. 2.

Fig. 6 illustrates three pseudocomponents for the 13-component example of

Fig. 2.

Fig. 7 illustrates in graphical form a comparison of an origin base composition
with a computed base composition derived from a five-pseudocomponent

representation.

Fig. 8 illustrates in graphical form a comparison of an origin base composition
with a computed base composition derived from a three-pseudocomponent

composition.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description makes use of a several mathematical symbols, many
of which are defined as they occur in this description. Additionally, for purposes of
completeness, a symbols table containing definitions of symbols used herein is

presented following the detailed description.

Definitions
Before proceeding with the detailed description, definitions of principal terms

used in the description is provided to aid the reader in understanding the invention.

Fluid characterization means a mathematical representation of a set of fluids that
mimics their important behavior at the compositions, pressures, and temperatures
encountered in a reservoir or facility being simulated. The fluid characterization will
typically comprise (1) a set of either pure components or pseudocomponents, (2) an
equation of state such as the Peng-Robinson equation of state and its associated
parameters, and (3) physical relationships or correlations used for computing certain

fluid properties.
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Base characterization means a fluid characterization determined by selecting a set of
components and tuning (or matching) physical parameters to provide a match of
desired behavior for the conditions of interest, typically performed by matching

available laboratory data.

Base component means a component used in the base fluid characterization. Many
base components will be hydrocarbon species such as methane, ethane, propane,
butane, and heavier hydrocarbons. Some can be mixtures of multiple components,
such as C7+, Cyo.12, Ca0+, etc and may also include, for example, carbon dioxide,

nitrogen, and hydrogen sulfide. The base components typically range from 10 to 50.

Pseudocomponent means a fluid mixture used to reduce the cost of performing
reservoir and facility computations. Each pseudocomponent comprises a fixed

mixture of base components.

Pseudocomponent characterization means fluid characterization that uses a set of
pseudocomponents with physical parameters computed from the base
characterization's parameters. The number of pseudocomponents will be smaller than

the number of base components.

Base composition means a fluid composition expressed in terms of the amount of

each base component per unit amount of fluid present.

Pseudocomponent composition means a fluid composition expressed in terms of the

amount of each pseudocomponent per unit amount of fluid present.

Base representation means a representation of a fluid in terms of the amount of each

base component present.

Pseudocomponent representation means a representation of a fluid in terms of the

amount of each pseudocomponent present.

This invention relates to a method for estimating fluid properties of a multi-
component fluid contained in one or more volumetric zones. The volumetric zones

could be different zones in a hydrocarbon-bearing, subterranean reservoir, and they
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may also comprise injection wells, production wells, above-ground fluid gathering
facilities, flowlines, and fluid processing facilities of chemical plants, refineries, and

gas plants.

The inventor has discovered a new method for representing a multi-component
fluid system using pseudocomponents derived by a mathematical technique, with the
pseudocomponents corresponding to a set of base compositions. In one embodiment
of this invention, each pseudocomponent can contdin all the base components except
that a dominant base component, selected by a predetermined selection criterion,
appears in only the pseudocomponent for which it is the dominant component. Once
the pseudocomponent is determined, the fugacity of its dominant component is used
as the pseudocomponent’s fugacity in phase equilibrium calculations, assuming that
equilibrium calculations are being performed based on equality of fugacities. If
equilibrium calculations are being performed in some other way, a corresponding
approach may be used, adapted to the particulars of how the equilibrium calculations
are being performed. For example, if equilibrium ratios (K-values) are used, the
pseudocomponent’s equilibrium ratio is assumed to be the same as its dominant

component’s equilibrium ratio.

The pseudocomponents generated by the practice of this invention always
have the same definition for a given model, regardless of the phase or phases that
contain the pseudocomponents. By defining pseudocomponents in accordance with
this invention, a fluid can be modeled as it crosses a boundary between two regions
having different pseudocomponent representations. The pseudocomponent
representation in one region is transformed to a base representation and the base
representation is transformed to the pseudocomponent representation in the other
region. Fig. 1 illustrates examples of regions that typically require different fluid

representations.

Fig. 1 is a simplified, two-dimensional, section of a producing oil reservoir 10
with a schematic depiction of production wells 11a, 11b, 11c, and 11d, injection wells
12a and 12b, flow lines 13 and 14, and surface processing plant 15. The oil zone 17

contains water as well as oil, and the oil in the oil zone 17 contains gas held in
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solution by the typically high reservoir pressure. As a result, the four production
wells (11a-d) produce oil primarily, but they also produce varying amounts of water
and gas. The production- streams are combined and sent by flowline 13 to the
processing plant 15, which separates water from the produced hydrocarbons and also
separates the hydrocarbons into three product streams — gas, oil, and natural gas
liquids (NGLs). The processing plant 15 can also take in carbon dioxide from an
external source, combine it with some of the produced gas and NGLs, and send the
gas mixture through distribution line 14 to the injection wells 12a and 12b. This
injected gas mixture 19, at reservoir temperature and pressure, will displace oil
miscibly, making it possible to recover a high fraction of the oil in the contacted area.
In addition, there is an aquifer 16 from which water flows into the reservoir as the

reservoir pressure declines.

A reservoir simulation model of the reservoir 10 can be divided into multiple
regions with different pseudocomponent characterizations for each region. Having
multiple pseudocomponent characterizations is oftfsn desirable because some parts of
the model require more detailed fluid representation than other parts. The simplest
pseudocomponent characterization would typically be the aquifer 16. The aquifer
starts out containing no hydrocarbons, but as the reservoir 10 is exploited it is possible
for small amounts of hydrocarbon to be pushed down into the aquifer 16. As the
hydrocarbons move into the aquifer they will typically be trapped as residual
saturation and will be unable to move further. As a result, it is not necessary to
represent these hydrocarbons accurately. Merely recognizing their presence and the
volume that they occupy is adequate. This can be done with a single hydrocarbon
pseudocomponent for aquifer 16. The oil zone 17 requires a somewhat more accurate
representation. Since it contains both oil and gas, it is typically represented by at least
two pseudocomponents. However, in the oil zone little is happening other than
movement of oil and the gas it contains to the production wells 11a-d. This will not
lead to wide variations in composition, and two pseudocomponents would typically be
adequate. This is not true in the miscible recovery zone 18 in which a new
component, carbon dioxide, is present. Also, a continuous composition path is

traversed as the injected gas mixture 19 miscibly displaces the inplace oil. Several
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pseudocomponents, typically five to ten, would be needed to obtain the desired
accuracy to estimate fluid properties and behavior in the miscible recovery zone 18. In
the processing plant 15, é variety of processes take place and the fluids being
processed undergo a wider range of pressure and temperature than are encountered in
the reservoir. The plant's processes typically occur at pressures much lower than
those in the reservoir. A much more detailed fluid representation, and therefore
significantly more pseudocomponents, would be needed to estimate fluid behavior
and properties in the processing plant than would be need to estimate fluid behavior in

the reservoir 10.

Although the primary focus of compositional reservoir simulation concerns
fluid properties and behavior within a subterranean reservoir, the method of this
mnvention can be used in estimating fluid properties in non-reservoir fluid media such
as wellbore tubing, surface flow lines, pipelines, separators, and other facilities such

as oil and gas processing plants and refineries.

In this description of the invention, the pseudoization method will be applied
to a reservoir generally illustrated in Fig. 1. The reservoir is treated as a group of
volume cells or gridcells. Typically these are defined so as to permit flow in three
dimensions, but optionally simpler one- or two-dimensional models can also be used.
The art of reservoir simulation using either compositional or black-oil representations
of the hydrocarbons is well established. The units within the processing plant 15, the
flow lines 13 and 14, and the wells 11a-d and 12a-b may be modeled as nodes and
connections or they may be modeled in any other suitable way by modeling
techniques well known in the art. Regardless of how the facilities are modeled, flow

stream compositions and flow rates are required.

The first general step in applying the pseudoization method of this invention to
a reservoir generally illustrated in Fig. 1 is to characterize the hydrocarbon fluids in
terms of a set of base components. The first step in doing this is to decide how many
base components to use and to define the individual base components. This
characterization is preferably done using measurements made in the laboratory on

fluid samples taken from the reservoir. The number of components varies, with



10

15

20

25

30

WO 00/37898 PCT/US99/29407

-11-

numbers in the range 10 to 40 being typical. The next step is to tune a suitable
equation of state and/or other physical parameters to enable the fluid characterization
to match available laborétory measurements. This two-step process may be iteratively
repeated until a characterization is obtained that is within desired limits of accuracy or
acceptability. Processes for characterizing multi-component fluids in terms of base
components are well known in the art. The characterization defined in terms of the

base components is referred to in this description as the base characterization.

An additional initial step is to define a volumetric zone or zones to be modeled
and to equate the volumetric zone or zones being modeled to a volumetric system
comprising a plurality of volume cells or gridcells. The practice of this invention is
not limited to any particular type or size of gridcells. The gridcells may be of any
geometric shape, such as parallelepipeds (or cubes) or hexahedrons (having four
vertical corner edges which may vary in length), or tetrahedrons, rhomboids,
trapezoids, or triangles. The grid may comprise rectangular cells organized in a
regular, structured fashion, or it may comprise cells having a variety of shapes laid out
in an irregular, unstructured fashion. The gridcells will be developed to model the
reservoir and its associated wells and facilities. Development of such suitable

gridcells for modeling the various zones are known to those skilled in the art.

The next step in practicing this invention is to divide the model into
computational regions, each of which can use a different pseudocomponent
characterization. Although this invention is not limited to the number of
computational regions that may be modeled, the number of regions having different

pseudocomponent characterizations will typically not exceed about five.

To conserve computational resources, it is desirable as an optional step to
construct one or more simplified models that exhibit the important behavior of the
detailed model. This simplified model could, for example, contain only a few
hundred gridcells instead of the few hundred thouéand gridcells to be used in the final
model, and it could contain only a few representative wells and facilities. This
simplified model could correspond to the entire detailed model, or a separate

simplified model could be developed for each computational region, or multiple
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models could be developed to yield behavior characteristics of a given computational
region. The simplified model or models should generate compositions that span the
range of compositions eXpected in the computations of interest, and they should be
designed with this in mind. One skilled in the art of compositional reservoir
simulation would be able to design such simplified models. Modeling packages that
can aid in constructing such simplified models are commercially available and are

known to those skilled in the art.

Once the fluid has been characterized in terms of a set of base components, the
next step is to define a set of base compositions corresponding to fluid compositions
predicted to occur in the regions being modeled. The base compositions are
preferably obtained by performing computations on the simplified model or models
using the base characterization. The set of base compositions will preferably contain
more compositions than there are base components, and more preferably the set will

contain several times as many compositions as base components.

The next step is to define an ordered set of vectors corresponding to a
characteristic of the base components, with each vector containing one entry for each
base component. The first vector of the ordered set is most representative of the set of
base compositions according to a predetermined criterion, for example compositions
can be expressed in mole fractions, and each vector thereafter in the order is less
representative of the set of compositions than the vector before it. This is carried out
by assembling the set of base compositions into a matrix, each row of which is one of
the base compositions, then determining a set of vectors, fewer in number than the
base components, that when appropriately combined can best reproduce the rows of
this matrix. This set of vectors is determined using singular value decomposition,
with the right singular vectors produced by singular value decomposition being the
desired vectors. The desired pseudocomponents will be based on a subset of these
right singular vectors. The subset will comprise the first of the right singular vectors,
one singular vector for each pseudocomponent. The subset will normally comprise 3
to 10 right singular vectors. For example, if three pseudocomponents are to be used,

the three pseudocomponents will be based on the first three right singular vectors.
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Vector determinations used in the practice of this invention can be performed by those
skilled in the art in light of the teachings of this description. For examples of vector
calculations see (1) a papér by G. Golub and W. Kahan, “Calculating the Singular
Values and Pseudo-inverse of a Matrix,” SIAM Journal of Numerical Analysis (May
1965) 205-224 and (2) a book by William H. Press, Saul A. Teukolsky, William T.
Vetterling, and Brian P. Flannery, Numerical Recipes, Second Edition, Cambridge
University Press (1994).

The next step 1s to decide how many pseudocomponents to use in each
computational region. The singular values provide a measure of how accurately a
given number of right singular vectors can approximate the rows of the matrix and
can be used as a guide in making this decision. The final decision will be based on
how accurately a pseudocomponent characterization reproduces the results using the
computations of interest when compared to the results of using the base

characterization in the same computations.

Once the desired number of pseudocomponents has been selected, the right
singular vectors are converted to pseudocomponents. Beginning with the first right
singular vector, the vectors are converted one by one until the desired predetermined
number of pseudocomponents is obtained. Once the pseudocomponents have been
defined, their equation of state and other characterization parameters can be
determined directly from the base fluid characterization. Moreover, as discussed in
more detail below, because the pseudocomponent compositions have been defined to
match the compositions of interest, base compositions can be computed with
acceptable accuracy from the pseudocomponent compositions. From the base
compositions, fluid properties such as molecular wéight, density, and viscosity can be
computed. However, with some multi-component fluids, these desired properties may
be obtained with sufficient accuracy using only the pseudocomponent composition,

without computing the base composition.

In one embodiment of this invention, the next step is to select for each vector,
the vector’s dominant component. A determination based on mole fraction is one of

several possible criteria for defining the dominant component. The component having
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the largest mole fraction, at the time of selection, becomes the dominant component

for that vector.

Consider as a non-limiting example determining three pseudocomponents for
a five base-component system. The process begins with the three most significant
right singular vectors. These vectors can be assembled into a matrix, the transpose of

which is

Vit Yo Vs Vu o Vs

The first row in this matrix is the most significant right singular vector, the second is
the second most significant, and so on. Assume that the largest entry in the first row
is v;,. Then the first component will become the corresponding pseudocomponent’s

dominant component. The first entry is eliminated from the second and third rows

using a process similar to Gaussian elimination. The first row is multiplied by —*
v
11

. . g v
and subtracted from the second. Similarly, the first row is multiplied by —2 and
Vi
subtracted from the third. The result is a matrix of intermediate vectors of the

following form.

Vi Vai V3 Va Vs
v,V V,,V V,,V v,,V
12V21 12V31 12Va1 1251

vp=|0 v, - 2 ” 53 = | e (2)

Vi Vi Vi Vi
AVIRY AURY ARY V.V
13V 13V31 13Va1 13Vs1

0 wvy-— 33 Viz = 53

L Vi Vi Vi Vit

Next, the largest remaining element in the second row is determined, and the process
is repeated. Finally, the largest element remaining in the third row is determined, and
the process is repeated again. Assuming that component five is the second dominant

component and component three is the third, the final matrix of intermediate vectors
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has the following general form, where d denotes the dominant component and x

denotes a non-zero term.

d x 0 x 0
VE S0 X 0 X | oot 3)
0 x d x 0

Fig. 2 illustrates the first three right singular vectors determined for a 13-component
system used in the example presented below. In Fig. 2, lines designated RSV1,
RSV2, and RSV3 represent the first, second, and third singular vectors, respectively.
Referring to RSV1 in Fig. 2, the dominant component for the first pseudocomponent
is Cy. Its mole fraction is eliminated from each of the other vectors. Fig. 3 shows the
result of this computation for the first three vectors. In Fig. 3, lines designated IV1.1,
IV2.1, and IV3.1 represent intermediate vectors corresponding to RSV1, RSV2, and
RSV3 of Fig. 2, respectively. In Fig. 3, note that the mole fraction of C;, the first
pseudocomponent’s dominant component, in intermediate vectors IV2.1 and IV3.1 is
zero. Following the same procedure beginning with intermediate vector IV2.1, the
dominant component is C7 (see Fig. 3). This component is eliminated from the other
intermediate vectors (IV1.1 and IV3.1). Fig. 4 shows the result, with lines IV1.2,
IV2.1, and IV3.2 corresponding to IV1.1, IV2.1, and IV3.1 of Fig. 3. Following the
same procedure beginning with intermediate vector IV3.2, the dominant component
for the third pseudocomponent is C; 3 (see IV3.2 of Fig. 4). This component is
eliminated from the other vectors. Fig. 5 shows the result, where IV1.3, IV2.3 and
IV3.2 correspond to IV1.2, IV2.1 and IV3.2 of Fig. 4.

Assuming that three pseudocomponents are to be used, the final computation
is to normalize the intermediate vectors such that their defining mole fractions sum to
unity. This is done for each intermediate vector by dividing each of its defining mole
fractions by the sum of its defining mole fractions. The result is the three
pseudocomponents shown in Fig. 6 where lines PC1, PC2, and PC3 represent the first,

second, and third pseudocomponents, respectively.
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It is desired that the dominant component be the one that best represents the
pseudocomponent as a whole in phase equilibrium calculations. Typically, a good
choice will be the compohent having the largest mole fraction in the
pseudocomponent definition. As a result, one embodiment of this invention selects
the component having the largest mole fraction at the time the pseudocomponent’s
dominant component is selected. Other criteria could be used. For example,
modifications to a pseudocomponent made after its dominant component has been
selected can result in a component other than its dominant component coming to have
the largest mole fraction. These modifications occur as less significant
pseudocomponents’ dominant components are eliminated from the pseudocomponent
of interest. If this occurs, the pseudocomponent determination process can be
repeated, beginning with the pseudocomponent of interest, with a revised selection for
the pseudocomponent’s dominant component. Also, it is possible to use a more
complex procedure, such as determining the correlation of each component’s mole
fraction with the optimal pseudocomponent mole fraction in a set of compositions,
with the component having the highest correlation being selected as the dominant

component. The additional complexity does not seem to be justified.

Once the dominant components are known, another way to determine an
equivalent and similar set of pseudocomponents is to use least squares minimization.
The approach is to determine the linear combination of dominant component
concentrations that provides the best fit of the observed compositions. This is done

component by component for each component that is not a dominant component.

Let x,5c be the concentration of base component ¢ (not a dominant component)

in observation o. Then approximate x,;. by x,, where

Xope = Zapcxobdp ............................................................................................................ ()
p

Here p denotes the pseudocomponent, a,, is a constant to be determined through

minimization of least squares, and x,,, is the concentration of the p™
I
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pseudocomponent’s dominant component in observation o. Define F as the sum over

the observations of the squares of the errors in representing x,5.. Then

2
F= Z(ﬁoha - X, )2 = Z(Z B peX oy, — xabc] ................................................................ %)
0 0 4

Taking the derivative of F with respect to a,., where ¢ denotes a pseudocomponent,

yields the condition for minimum least squares.

ZZapcxobdpxobd” = Zxobcxobdq ..................................................................................... 6)
o p 0

where x,,, is the observed concentration of the g™ pseudocomponent’s dominant

component. Eq. (3) yields an Np¢ by Npc set of eqhations, where Npc is the number of
pseudocomponents. This set of equations is solved for the a,.. In this way, a,. can be
determined for all ¢ corresponding to non-dominant components. The resulting
unnormalized definition of pseudocomponent p is a vector containing the a,. in the
positions corresponding to non-dominant components, zeroes in positions
corresponding to dominant components of pseudocomponents other than the p™, and a
one in the position corresponding to the p™ pseudocomponent’s dominant component.
The final pseudocomponent definition is obtained by scaling the entries in this vector

so that they sum to one.

A similar procedure can be used to “delump” lumped pseudocomponent fluid
representations. Let x, be the concentration of luﬁlped pseudocomponent in
observation o. Then a perfect concentration of lumped pseudocomponent in

observation o is given by

The concentration of base component ¢ in observation o is approximated as a linear

combination of these lumped pseudocomponent concentrations.
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Since there are no dominant components, ¢ must range over all components. The

least squares optimal values of a . are determined by minimizing

2
F = Z(fcobc — X, )2 = Z(Z Ay X, — xobc] ................................................................... )
o 0 P

The a .are determined by solving the set of equations

Z Z A0 X0 X,, = Z XXy +eesesersasmsrsresseestesintesinte sttt e b sttt eb et s et e e et e st et taebeerens (10)
o ¢ 4

where n denotes a lumped pseudocomponent. Given the a ., the “delumping” is

performed by computing approximate base concentrations using equation (8).

After the pseudocomponents are known for each computational region,
transformation matrices must be determined if there will be more than one
computational region. There must be a transformation matrix for any flow from one
computational region to another. If flow between two computational regions can only
be in one direction, only one transformation matrix is needed for the computational

region pair. If flow can be in both directions, two transformation matrices are needed.

Let my, be a vector, each of the entries of which is an amount of the
corresponding base component; m; be a vector, each of the entries of which is an
amount of the corresponding pseudocomponent in pseudocomponent set1; and P; be a
matrix, each column of which defines a pseudocomponent in pseudocomponent set i.

Then

My = Py, covvvvvvevevssesssssssssssssssssssssssssssssssssssssssssssssesssssessssessssssessenessessesmsssnsesessessessssss (11)

H

m; contains fewer entries than my, and correspondingly P; contains fewer columns

than rows.

Given a second set of pseudocomponents, indicated by the subscript j,

My = Pilj ot (12)
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It is desired to determine the m; that yields a base composition as nearly as
possible the same as that corresponding to m;. In other words, as nearly as possible, it

is desired that

Pt = Pyttt et ens (13)

J i

Projection from the space of P; to the space of P; is performed by premultiplying Eq.

(13) by the transpose of P;. The solution of the resulting set of equations is

T 1 B (14)

If there are more pseudocomponents in set j than in set i, the equality can be satisfied

exactly. If there are more in set 1, then it can be satisfied only approximately.

It is also necessary to determine the pseudocomponent characterization for
each computational region. This includes parameters used in computing density,
viscosity, and phase equilibrium. They are computed so that the fluid properties, such
as viscosity or density, of a pseudocomponent mixture are the same, or as nearly as
possible the same, as of the mixture of base components having the same composition
as the pseudocomponent mixture. This computation is needed regardless of the type
of pseudocomponents (such as lumped pseudocomponents) being used, and those
skilled in the art of computations using pseudocomponents will be familiar with how
it can be done. As an example, consider the computation of fugacity coefficients
using a general form of the cubic equation of state, as described in a paper by K. H.
Coats, “Simulation of Gas Condensate Reservoir Performance,” SPE 10512 presented
at the Sixth SPE Symposium on Reservoir Simulation, New Orleans, LA, January 31-
February 3, 1982. In matrix-vector form, the computations proceed as follows. Let

the elements of the matrix 4 be

1
Ay =(1=8 N0 40, )7 oo, et (15)

where the §,, are the binary interaction parameters, and
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where the subscript k indicates the base component, ay is a parameter for component &

that depends on the particular cubic equation of state being used, p, is the reduced
pressure of component £, and 7 is the reduced temperature of component k. o, is

similarly defined. Let the elements of the vector B be

Bk — bkprk
,

where by is a parameter for component k that depends on the particular cubic equation

of state being used.

Given 4, B, and x;, the base composition of the fluid being represented, the following

two scalars are computed.

Given these scalars, the following cubic equation is solved for Z, the compressibility

factor.

Z3

+[(m, + m, —1)p -1]2?

+ a+m1m2b2 _(ml +m2)b(b+1)]Z .............................................................................
- [ab +mym,b* (b + l)] =

Given Z, the logarithm of the fugacity coefficient vector is computed by

Iny =—[ln(Z—b)]e+i:( " [;:Z?bﬂ[%mb "éB}L(Z—b_ljB .............. (1)
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In this sequence of computations, the only place composition appears is Egs. (18),
(19), and (21). In one embodiment of this invention, Eqgs. (18) and (19) are replaced
by

A X] AyX, ettt s e s e (22)
D= X! B, oottt et s s, (23)
where

Ay ZPTAP, oo seesess s (24)
By =PTB oot e s e (25)
In Eq. (21), Ax} 1s replaced by A;x;, where

A = AP i ettt s e (26)

Given these effective properties, compositional computations using
pseudocomponents are performed in substantially the same way that conventional

compositional computations are performed, which is known to those skilled in the art.

At this point, it is desirable to verify the pseudocomponent definitions by
rerunning the simplified models. Comparing the results to those obtained using the
base components makes it possible to decide whether the chosen pseudocomponent

representation is adequate.

Next, the actual detailed simulations are performed using the
pseudocomponents. As noted above, the computations are substantially unaffected by

the fact that the components being used are actually pseudocomponents.

The results obtained using pseudocomponents can be transformed in the
practice of this invention back to representations in terms of the base components.
This corresponds to the delumping procedure sométimes used in connection with

lumped pseudocomponent calculations. A process for transforming
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pseudocomponent compositions back to base compositions is provided in more detail
in the following example.
Example |

This example is provided to further illustrate the practice of this invention.
This example illustrates construction of a set of pseudocomponents, computation of a
pseudocomponent composition corresponding to a given base composition,
computation of a base composition corresponding to a given pseudocomponent

composition, and transformation from one pseudocomponent composition to another.

The data provided in this example was based on a real reservoir fluid. Using
available data from laboratory tests performed on reservoir samples of the reservoir
fluid, a base characterization of the fluid using 13 components was developed. Seven
of the components corresponded to either pure compounds (C1, CO2, and C2) or
single carbon numbers including isomers thereof (C3, C4, C5, and C6). The
remaining six components corresponded to ranges of carbon numbers. These
components were designated C7.1, C7.2, C7.3, C7.4, C7.5, and C7.6. The
characterization used the Peng-Robinson equation of state parameters tuned to match
as well as possible laboratory measurements. Those skilled in the art are familiar with

such fluid characterizations.

The base characterization was then used to perform a series of six vapor-liquid
equilibrium calculations on each of two fluid samples: one that was liquid at reservoir
conditions and one that was vapor at the same conditions. Each equilibrium
calculation resulted in two compositions, therefore the 12 equilibrium calculations
yielded 24 compositions, the results of which are illustrated in Table E1 below. Each

row of Table E1 represents one of the 24 compositions.

For the purposes of this example, Table E1 was assumed to contain the base
compositions predicted to occur in the computations of interest. For a full-scale
simulation, it would be preferable to generate the predicted base compositions by
performing a simplified version of the simulation of interest. However, this set of 24
base compositions suffices to illustrate the process of the invention while being small

enough to be presented conveniently.
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A singular value decomposition of the matrix in Table E1 was performed.
Singular value decomposition produces three results: the singular values, the left
singular vectors, and the ﬁght singular vectors. Only the singular values and right
singular vectors are needed. These are presented in Tables E2 and E3, respectively.
The singular values provide guidance regarding the number of pseudocomponents to

use, and the right singular vectors are used to generate the pseudocomponents.

The fact that the fifth singular value is only slightly smaller than the fourth,
while the fourth is significantly smaller than the third, and the sixth significantly
smaller than the fifth, suggest using either three or five pseudocomponents. For
simplicity of presentation, the construction of three pseudocomponents is described;
however, additional pseudocomponents could have been constructed. The three
pseudocomponents are generated from the first three right singular vectors. The first
three rows of Table E3 contain the transposes of these and the results are graphically
displayed in Fig. 2. The first step is to select the dominant component of the first
right singular vector. This is the component with the largest entry; this component is
C1. Using a process similar to Gaussian elimination, the entry for this component is
eliminated from the other two right singular vectors. Referring to Table E3, the first
row is multiplied by the quantity obtained by dividing the C1 entry in the second row
by the C1 entry in the first row. This quantity is —0.1357/0.9770, or —0.1361. The
first row is multiplied by this quantity, and the result is subtracted from the second.
The result is a C1 entry equal to zero in the second row. A similar process is used to
obtain a zero C1 entry in the third row. The result is shown in Table E4 and
graphically illustrated in Fig. 3. The vectors are no longer right singular vectors, but
they are not yet pseudocomponent definitions, so they are referred to as intermediate

vectors.

The next step is to select the dominant component for the second vector; this
dominant component is C7.2. The entry for this component is eliminated from the
first and third vectors using the procedure described in the preceding paragraph. The

result is shown in Table E5 and Fig. 4. Following this, the procedure is repeated for
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the third vector, the dominant component of which is C7.3. The result is shown in

Table E6 and graphically illustrated in Fig. 5.

Finally, the actual pseudocomponents are generated by normalizing the
intermediate vectors shown in Table E6 such that their entries sum to one. The result
is shown in Table E7 and graphically illustrated in Fig. 6 where lines 1, 2, and 3

represent pseudocomponents 1, 2, and 3, respectively.

For purposes of comparison, the least squares pseudocomponents
corresponding to the same set of dominant components are presented in Table ES.

They are generally similar to the pseudocomponents shown in Table E7.

If 1t is desired to transform a fluid from one pseudocomponent representation
to another, this can be done by first transforming (delumping) the first
pseudocomponent representation to a base component representation and then
transforming the base component representation to the second pseudocomponent
representation. Consider the transformation of pseudocomponent compositions.
Given a composition expressed as i pseudocomponent mole fractions, the

corresponding base composition is
Xy = Bt (E1)

The pseudocomponent composition that most closely corresponds to a given base

composition in a least squares sense is given by

For the three pseudocomponents given by Table E7, ( ! .>_1 P is given by Table E9.

H

Of the 24 base compositions in Table E1, the one composition least well
represented by three pseudocomponents is the 19™. The three-pseudocomponent

composition corresponding to it is
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[0.4230 ]
0.0872
0.0507
0.0320
0.0244

0.5415 0.0229
%y =( 01117 | = (BT B PT0.0194 | oo (E3)

0.3667 0.0907
0.0937
0.1015
0.0420
0.0118
0.0009 |

As shown above, the 13 base-component mole fractions appear not to sum to one, but
this is because the mole fractions have been rounded to four decimal places for
presentation. The three pseudocomponent mole fractions computed above, on the
other hand, in actuality do not sum to one, because the computation used to determine

them does not ensure that they do so. If desired, they can be normalized.

The corresponding base composition is computed using Eq. (E1).

[0.4226]
0.0894
0.0505
0.0332
0.0261

0.5415] |0.0224
Xy = B 01117 [ =] 0.2080 | covoooroooeeeeoeeeeeeeeeee oo seemeeneennensesseseeee (E4)

0.3667 | |0.0997
0.0968
0.0773
0.0337
0.0229
0.0246
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The two composition vectors are plotted in Fig. 7 where line 4 represents the mole
fractions of the 13 base components and line 5 represents the mole fractions estimated
using three pseudocomponents. The agreement between them, though not perfect, is
quite good given that only three pseudocomponents are being used and this is the

composition that is reproduced least well by the three pseudocomponents.

Table E10 contains the pseudocomponent definitions for five
pseudocomponents. The five-pseudocomponent composition of the 19™ observation

1S

[0.4230]
0.0872
0.0507
0.0320
[ 0.4495 ] 0.0244
0.2250 0.0229
xg =] 0.1993 | = (P7B, T PI0.0194 | oo (ES)
0.1285 0.0907
| -0.0007 0.0937
0.1015
0.0420
0.0118
0.0009 |

The corresponding base composition, computed using Eq. (E1), is
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[0.4230 ]
0.0868
0.0512
0.0325
[0.44957 | 0.0249
0.2250 0.0234
Xps =Py 0.1993 | =] 0.0194 | .oooooivoeireeeeeeeeeeeeeseeeeeeeeee e ses s (E6)
0.1285 0.0897
-0.0007 | 0.0947
0.1012
0.0407
0.0145
-0.0003 |

Fig. 8 compares this approximate composition with the original where line 4
represents the mole fractions of the base components and line 6 represents the mole
fractions using five pseudocomponents. The agreement is very good — lines 4 and 6

are virtually superposed for all 13 base components.

If there are two computational regions, one using three pseudocomponents and
one using five, any fluid moving between the two must be transformed from one
representation to the other. For flow from the five-pseudocomponent region to the

three pseudocomponent region, the necessary transformation is

Table E12 contains the transformation matrix, (P3TP3 )_1 P/ P,. The three-

pseudocomponent composition resulting from transforming the five-

pseudocomponent composition in Eq. (E6) is

0.5415
X3 = 01117 | oot ee e (E8)
0.3667
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This composition is identical to that obtained by transforming the original base
composition to three pseudocomponents, as can be seen by comparing Eqs. (E8) and

(E3).

If flow is from the three-pseudocomponent region to the five-pseudocomponent

region, the transformation used is

Table E13 contains the transformation matrix, (PfP5 )_1 P/ P,. The result of

transforming the three-pseudocomponent composition given in Eq. (E8) is

[0.4491]
0.2300
D 1 7% S (E10)
0.1324
0.0562

This composition differs somewhat from the starting composition of Eq. (E6).
The underlying base composition is unchanged from that corresponding to three

pseudocomponents, as given in Eq. (E4).

Persons skilled in the art will readily understand that the present invention is
computationally intense. Accordingly, use of a computer, preferably a digital
computer, to practice the invention is virtually a necessity. A large number of
iterative calculations and large computer storage space is typically required.
Computer software for various portions of the method is commercially available, for
example, to develop gridcells, display results, and to calculate fluid properties from an

equation of state.

The invention is not to be unduly limited to the foregoing which has been set
forth for illustrative purposes. On the contrary, a wide variety of modifications and
alternative embodiments will be apparent to persons skilled in the art without

departing from the true scope of the invention as defined in the claims set forth below.
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SYMBOLS

A Matrix used in equation of state computations; elements are defined in Eq. (15)
a Quantity used in equation of state computations; defined in Eqs. (18) and (22)
a Linear multiplier used in Eq. (4), (5), (6), (8), (9), and (10)

A; Modification of matrix 4 for i pseudocomponents; defined in Eq. (26)

A; Modification of matrix 4 for i pseudocomponents; defined in Eq. (24)

B Vector used in equation of state computations

b Quantity used in equation of state computations; defined in Eqgs. (19) and (23)
by Parameter used in equation of state computations

d In Eq. (3), denotes dominant component

e Base of the natural logarithm

m Vector of component masses, typically expressed as mass-moles

my Equation of state parameter, the value of which depends on the equation of state being used
ms Equation of state parameter, the value of which depends on the equation of state being used
P Matrix containing pseudocomponent vectors

Dr Reduced pressure

7, Reduced temperature

v Entry in singular vector

x In Eq. (3), denotes non-zero term other than dominant component

x Concentration or vector of concentrations, typically’expressed as mole fraction
VA Compressibility factor

o Parameter used in equation of state computations

6 Equation of state interaction parameter

¥ Vector of fugacity coefficients

SUBSCRIPTS

b Denotes base component or base component representation

c Denotes a component

d Denotes a dominant component

i Denotes number of pseudocomponents used
J Denotes number of pseudocomponents used

k Denotes a component

l In Eq. (15), denotes a component

{ In Eq. (7), (8), (9), and (10), denotes a particular lumped pseudocomponent.

n Denotes a particular lumped pseudocomponent
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0 Denotes an observed concentration
p Denotes a pseudocomponent

q Denotes a pseudocomponent
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WHAT IS CLAIMED IS:

1. A method for estiméting one or more properties of a multi-component fluid

contained in one or more volumetric zones, comprising the steps of:
(a) characterizing the multi-component fluid using a set of base components;

(b) defining a set of fluid compositions corresponding to fluid compositions

predicted to occur in one or more volumetric zones;

(c¢) developing a fluid characterization of the multi-component fluid using one or
more pseudocomponents by a sequence of steps comprising:
(i)  defining an ordered set of vectors corresponding to a characteristic of said
base components, each vector containing one entry for each base component,
the first vector of the ordered set being most representative of the set of
compositions according to a predetermined criterion and each vector thereafter
in the ordered set being less representative of the set of compositions than the
vector before it;
(i) selecting a subset of said ordered set of vectors, said subset comprising the

first vector and a predetermined number of vectors immediately thereafter;
(iii) defining a set of pseudocomponents based on said subset of vectors; and

(d) using the fluid characterization to predict one or more properties of said multi-

component fluid.

2. The process of claim 1 wherein sub-step (iii) of defining a set of pseudocomponents
based on said subset of vectors, comprises the steps of (1) for each vector of the
subset of vectors, determining a dominant component corresponding to a
predetermined criterion, and (2) determining a pseudocomponent corresponding to

each said dominant component.
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The process of claim 2 wherein step (2) comprises determining a set of vectors of
linear multipliers using least squares minimization and then normalizing each

vector in said set of vectors.

The process of claim 2 wherein step (2) comprises modifying each selected vector
by eliminating all other selected vectors' dominant components and normalizing

each modified vector.

The process of claim 4 further comprising using the resulting pseudocomponents to
determine representations of fluid compositions in terms of said pseudocomponents
and computing a property of each pseudocomponent as being equivalent to a

corresponding property of the pseudocomponent's dominant component.

The method of claim 5 further comprising computing each pseudocomponent’s
fugacity, equilibrium ratio, or other physical quantity controlling phase equilibrium
as being equal to the fugacity, equilibrium ratio, or other physical quantity

controlling phase equilibrium of its dominant component.

The method of claim 6 further comprising performing phase behavior computations
based on the pseudocomponents’ fugacities, equilibrium ratios, or other physical

quantities controlling phase equilibrium.

The process of claim 1 wherein the multi-component fluid comprises base
components comprising methane, ethane, propane, butane, and heavier

hydrocarbons.

The process of claim 8 wherein base components further comprise carbon dioxide,

nitrogen, and hydrogen sulfide.
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The process of claim 1 wherein the number of fluid compositions in step (b)

exceeds the number of base components.

The process of claim 1 wherein the number of base components ranges from 10 to

50 and the subset of vectors ranges from 3 to 10.

The process of claim 1 wherein the volumetric zones comprise flowlines and

processing facilities.

The process of claim 1 wherein the volumetric zones comprise flowlines and

processing facilities of a chemical plant.

The process of claim 1 wherein the volumetric zone comprises at least a portion of a

hydrocarbon-bearing formation.

The process of claim 7 further comprising determining the phase behavior of fluid

in a volumetric zone.

The method of claim 1 wherein the fluid characterizations, in terms of either the

base components and one or more sets of pseudocomponents or in terms of two or

more sets of pseudocomponents, are used in different computational regions, further

comprising the steps of:

(a) defining computational regions comprising the volumetric zones within a
petroleum reservoir, wells and surface flow lines used in the production of
petroleum, surface facilities and groups of surface facilities related to

production and subsequent processing of petroleum;
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(b) specifying which fluid characterization is to be used within each computational
region;
(c) identifying instances where fluids flow between computational regions using

different fluid characterizations; and

(d) transforming the fluids flowing between computational regions from their
original representations to the representations used in the computational regions

into which they are flowing.

A method for estimating one or more properties of a multi-component fluid

contained in a volumetric zone, comprising the steps of:
(2) characterizing the multi-component fluid using a set of base components;

(b) defining a set of fluid compositions corresponding to fluid compositions

predicted to occur in the volumetric zone;

(c) characterizing the multi-component fluid using one or more pseudocomponents
by a sequence of steps comprising:
(1) defining an ordered set of vectors corresponding to a characteristic of said
base components, each vector containing one entry for each base component,
the first vector of the ordered set being most representative of the set of
compositions according to a predetermined criterion and each vector thereafter
in the order being less representative of the set of compositions than the vector
before it;
(1) selecting a subset of said ordered set of vectors, said subset comprising the
first vector and a predetermined number of vectors immediately thereafter;
(iii) for each selected vector, determining a dominant component
corresponding to a predetermined criterion;
(iv) determining a pseudocomponent corresponding to each said dominant

component;
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(d) using the fluid characterization to predict one or more properties of said multi-

component fluid.

The method of claim 17 wherein sub-step (iv) of step (c) comprises modifying each
selected vector by eliminating all other selected vectors’ dominant components and

normalizing each modified vector.

The method of claim 17 wherein sub-step (iv) of step (c) comprises determining a
set of vectors of linear multipliers using least squares minimization and then

normalizing each vector in said set of vectors.

A method for performing computations involving a multi-component fluid mixture

by representing the mixture as a set of pseudocomponents, said method comprising
(a) characterizing the fluid mixture using a set of base components;

(b) identifying a set of compositions representative of those compositions expected
to be encountered in the computations of interest, said set containing more

compositions than there are base components;

(c) determining an ordered set of vectors, the number of vectors in the set being
equal to the number of base components, with each vector containing one entry
for each base component, such that the first vector reproduces the set of
representative compositions as accurately as any single vector can, the first and
second vectors combined reproduce the set of representative compositions as
accurately as any two vectors combined can, the first three vectors combined
reproduce the set of representative compositions as accurately as any three

vectors combined can, and so on up through the number of vectors in the set;

(¢) deciding upon a certain number of these vectors to be retained for subsequent

computations;
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(d) retaining the specific vectors that are the first of this number in the ordered set

of vectors;

(e) for each retained vector, determining a dominant component that is most

representative of the vector’s partitioning between phases;

() modifying each retained vector by eliminating from it all other retained vectors’

dominant components;

(g) normalizing each retained vector so modified by scaling its remaining

components such that they sum to one;
(h) using the resulting normalized vectors as pseudocomponents;

(1) determining characterizations of fluid compositions in terms of these

pseudocomponents;

(j) computing each pseudocomponent’s fugacity, equilibrium ratio, or other
physical quantity controlling phase equilibrium as being equal to the fugacity,
equilibrium ratio, or other physical quantity controlling phase equilibrium of its

dominant component; and

(k) performing phase behavior computations based on the fugacities, equilibrium

ratios, or other physical quantities controlling phase equilibrium so defined.

The method of claim 20 further comprising the step of performing compositional

simulation of a volumetric zone for a series of time steps.

A method for estimating over a time step one or more properties of a multi-
component fluid contained in both a first volumetric region and a second volumetric
region, each region comprising a plurality of volume cells arranged adjacent to one
another, and the regions having a boundary therebetween which is crossed by at

least a fraction of the fluid over the time step, comprising the steps of:
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(2) characterizing the multi-component fluid for both regions using a set of base

components;

(b) defining a set of fluid compositions corresponding to fluid compositions

predicted to occur in both regions;

5 (¢) characterizing the multi-component fluid in the first region using one or more

pseudocomponents by a sequence of steps comprising:
(1) defining an ordered set of vectors corresponding to a characteristic of said
base components, each vector containing one entry for each base component,
the first vector of the ordered set being most representative of the set of

10 compositions in the first region according to a predetermined criterion and each
vector thereafter in the ordered set being less representative of the set of
compositions in the first region than the vector before it;
(1) selecting a subset of said ordered set of vectors, said subset comprising the
first vector and a predetermined number of vectors immediately thereafter, said

15 subset of vectors corresponding to a pseudocomponent characterization of the

multi-component fluid in the first region;

(d) characterizing the multi-component fluid in the second region using one or more
pseudocomponents by performing the sequence of steps of step (c) with respect

to the second region;

20 (e) transforming the fraction of the multi-component fluid that crosses the boundary
over the time step by the steps of transforming the pseudocomponent
characterization of the multi-component fluid in the first region to a base
component characterization of the multi-component fluid and transforming the

base characterization to the second pseudocomponent characterization;
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() performing a compositional simulation using the first pseudocomponent
characterization to predict one or more properties of said multi-component fluid
in the first region and using the second pseudocomponent characterization to
predict one or more properties of said multi-component fluid in the second

5 region
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