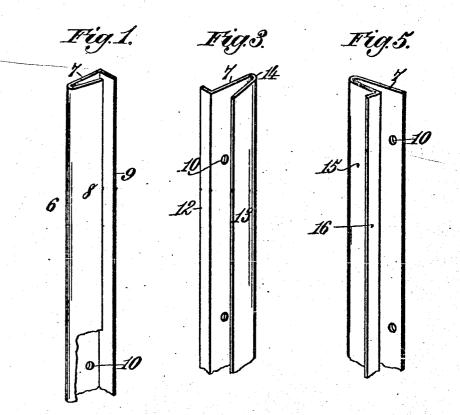
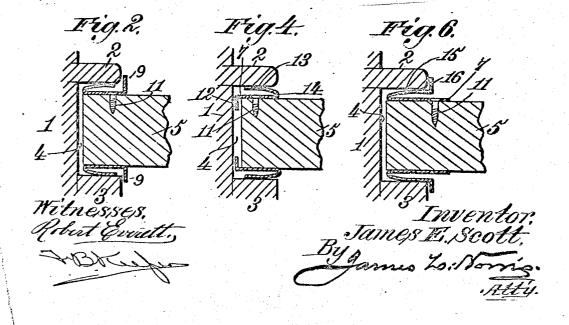
No. 739,931.


PATENTED SEPT. 29, 1903.


J. E. SCOTT.

WEATHER STRIP FOR SASHES.

APPLICATION FILED JULY 15, 1903.

NO MODEL.

UNITED STATES PATENT OFFICE.

JAMES E. SCOTT, OF LOUISVILLE, KENTUCKY.

WEATHER-STRIP FOR SASHES.

PECIFICATION forming part of Letters Patent No. 739,931, dated September 29, 1903. Application filed July 15, 1903. Serial No. 165,611. (No model.)

To all whom it may concern:

Be it known that I, JAMES E. SCOTT, a citizen of the United States, residing at Louisville, in the county of Jefferson and State of 5 Kentucky, have invented new and useful Improvements in Weather-Strips for Sashes, of which the following is a specification.

This invention relates to a certain new and useful improvement in windows, and has for to its object to provide a novel weather-strip for attachment to the window-sash and adapted to afford a spring or yielding contact between the sash and the window-frame and to effectively exclude air and dust when the window 15 is closed and to prevent rattling of the sash in any position thereof.

To this end the invention resides in the novel construction of a spring-metal weatherstrip and in the combination and arrange-20 Lient of the same in connection with the sash and window-frame, all as hereinafter described and as illustrated in the drawings ac-

companying this specification.

That which I claim as my invention will be 25 particularly pointed out in the claims.

The invention may find its embodiment in different shapes or forms of weather-strip and is not to be confined to any particular shape except in so far as indicated in the claims. I have illustrated the invention in the ac-

companying drawings, in which-

Figure 1 shows in perspective a section of the preferred form of weather-strip. Fig. 2 is a sectional plan view illustrating the application of two of such strips at one side of the window-sash. Fig. 3 is a perspective view of a section of a modified form of strip. Fig. 4 is a plan view illustrating the application of two of the strips constructed according to 40 Fig. 3 to one side of the window-sash. Fig. 5 illustrates in perspective a further modification in the construction of the strip, and Fig. 6 is a sectional plan view showing the application of the strip of Fig. 5 to one side 45 of a window-sash.

Referring now to the drawings, 1 indicates a portion of the window-frame having the parting-bead 2 and the window-bead 3, affording a sash-groove 4 in the usual manner.

5 indicates a window-sash, on each side of which at the front and rear two of my improved weather-strips are designed to be se-

cured. As shown by Fig. 1, the preferred construction of weather strip 6 comprises a strip or plate of metal bent upon itself lon- 55 gitudinally to provide a body portion 7 and a spring member 3, the body portion 7 being further bent up at right angles to itself and at its inner edge to provide a flange 9. The body portion 7 is provided with a series of 60 apertures 10, whereby the strip may be secured to the sides of the sash by means of screws 11. These screws are inserted by partially bending back the spring member S, or the strip may first be applied to the sash and 65 secured thereto by the screws 11 and then the part of the strip forming the spring member 8 bent over.

As shown by Fig. 2, when applied to the sash in the manner described the rounded or 70 bent edge of the strip will lie flush with the outer edge of the sash, the spring member 3 of each strip will bear against the adjacent parting-bead 2 and window-bead 3, respectively, and the flange 9 will bear against the 75 outer faces of these parts. The yielding contact of the spring members 8 with the side walls of the groove 4 periods the ready raising or lowering of the window-sash, while at the same time constantly engaging said walls 80 to prevent the entrance of dust and air and also to prevent rattling of the sash. The flanges 9 limit the sidewise movement of the sash in either direction and also assist in preventing the entrance of air and dust and 85 in providing a secure or yielding fit of the

sash in the frame.

In the modified construction shown in Fig. 3 the body portion 7 is provided at its inner edge portion with a flange 12, bent at right 90 angles to itself, but in an opposite direction to the flange 9 of Fig. 1, and the spring member 13 is also bent over on the opposite side of the body portion 7 from that shown by Fig. 1. The body portion 7 is provided with 95 holes 10, whereby the strip may be secured to the sash by screws 11 in the same manner as described with reference to Fig. 2, as shown by Fig. 4. When the strip illustrated in Fig. 3 is employed, the rounded or bent ico edge 14 is disposed so as to lie flush with the beads 2 and 3, and the flanges 12 extend toward each other at a slight distance beyond the outer edge of the sash 5, the flanges 12 in

this instance being designed to bear against the bottom of the sash-groove 4 to limit the sidewise movement of the window, while the spring members 13 bear against the side walls of the groove in the same manner and for the same purpose as described with ref-

erence to Fig. 2

In the modified construction shown by Fig. 5 the strip is provided with the body 10 portion 7 and spring member 15. In this case the flange 16 extends outward from the spring member instead of from the body portion 7. In the application of the strip to the sash, as shown by Fig. 6, the parts have about the 15 same relative arrangement as shown by the device in Fig. 1, except, as stated, the flange 16 extends outward from the spring member 15, said flange, it will be seen, bearing against the outer edges of the beads 2 and 3 in the 20 same manner as the flanges 9 of Figs. 1 and 2.

My improved weather-strip in either of the forms shown is designed not only for the purposes stated above, but is also adapted to compensate for any shrinking or swelling of 25 the woodwork of the window, the spring members of the weather-strip being adapted to expand or to be compressed accordingly as the wood swells or shrinks. I also contemplate making the weather-strips of such

30 strength that the spring members 8, 13, or 15 will operate to hold the sash in any position to which it may be raised or lowered, and thus enable the use of weights and ropes to be dispensed with. The metal which I pre-

35 fer to employ in the construction of my weather-strips is spring-brass; but other character of sheet metal suitable for the purpose may be used.

Having thus fully described my invention;

40 what I claim as new is-

1. A weather-strip having two members, one of which is a spring member, and a flange extending at right angles to the other member across the outer edge of said spring mem-

A weather-strip for window-sashes, comprising a plate of metal bent upon itself to afford two members, one of which is a spring member, the other member being provided with a series of apertures and having a flauge co extending at right angles to itself across the

edge of said spring member.

3. In combination with a window-frame having sash-grooves, a sash slidably mounted in said grooves and provided on both sides 55 at opposite edges with weather-strips, each of which has a spring member bearing outward against the side walls, and a flange bearing against a portion of the window-

4. In combination with a window-frame provided with sash-grooves, a sash slidably mounted in said grooves, and weather strips secured to said sash at both sides at opposite edges, each of which comprises a body por- 65 tion secured to the sash, an outwardly-directed spring member bearing against the side wall of the groove, and a flange extending at right angles to the body portion across the edge of said spring member and adapted 70 to bear against the adjacent bead forming one wall of said groove.

In testimony whereof I have hereunto set my hand in presence of two subscribing wit-

nesses.

JAMES E. SCOTT.

Witnesses: M. G. SULLIVAN, NEWTON G. ROGERS.