发明名称
亚临界流体处理烟草的方法

摘要
本发明公开了一种亚临界流体处理烟草的方法。该方法控制亚临界流体流量在0.4～4kg/分钟，萃取温度20～90℃，萃取压力0.5～3Mpa，pH值9～11，分离温度20～60℃，分离压力0.1～0.5Mpa，选择性脱除烟草中的有害成分，减压回收介质时对烟草进行制冷处理，处理后的烟草温度在－20～－60℃，接着通入饱和蒸汽，控制压力0.1～0.5Mpa，温度90～100℃，时间1～10分钟，对烟草进行膨化处理，提高烟草的填充值，从而达到膨化烟草的效果。本发明提供了一种能在保持卷烟原有风格和吃味的前提下，能低成本、选择性脱除烟草中的有害成分，同时对烟草进行膨化处理，而烟草致香成分、还原糖在处理过程中变性小或损耗少的方法。
1. 一种亚临界流体处理烟草的方法，该方法包括以下步骤：
 ① 烟草预处理：烟草回潮后水分控制在15～35%范围内待用；
 ② 选择性脱除尼古丁和亚硝胺：
 将经回潮含水量为15～35%的烟草装入萃取釜（1）中，关闭阀门（2）、（3）、（4）、（5）、（6）、（7）、（23）打开剩余的所有阀门，启动真空泵（8）抽取系统中的空气，关闭高真空蝶阀（9），关闭减压阀（10）、（11），打开阀门（2）、（3）、（5）启动计量泵（12）、（13），把液态二甲醚储罐（14）中的二甲醚与助剂储罐（15）中的混有碱化剂和增溶剂的助剂经高效混合器（16）高效混合后形成的亚临界流体通过交换器（17）加温到20～90℃，压入萃取釜（1）中，调整亚临界流体流量为0.4～4 kg/分钟，压力0.5～3 Mpa，pH值9～11，打开减压阀（11），调整分离温度为20～60℃。压力0.1～0.5 Mpa，亚临界流体经分离釜（18）、（19）分离出尼古丁、亚硝胺和二甲醚气体，二甲醚气体进入储气罐（20），启动真空压缩机（21），二甲醚气体经压缩后，经冷却器（22）冷却成液态二甲醚，打开阀门（23）液态二甲醚进入液态二甲醚储罐（14）中进行再循环，循环处理烟草时间5～90分钟；
 ③ 制冷处理：关闭计量泵（13），关闭阀门（3）、（5），打开减压阀（10），调节分离压力0.1～0.5 Mpa，二甲醚经气化对萃取釜（1）内的烟草制冷后，经分离釜（18）、（19），进入储气罐（20），经真空压缩机（21）。二甲醚气体经压缩后，经冷却器（22）冷却成液态二甲醚后进入液态二甲醚储罐（14）中进行再循环，循环处理烟草温度冷到-20～-60℃；
 ④ 腐化处理和溶剂回收：关闭阀门（2）、（10），启动真空压缩机（21），当萃取釜（1）内真空度达到10～100 Pa，打开阀门（4），将蒸汽锅炉（24）中压力0.1～0.5 Mpa、温度90～100℃的饱和蒸汽喷入萃取釜（1）内对烟草进行膨化，处理时间1～10分钟，蒸汽把烟草中的二甲醚全部带出来后，进入分离釜（18）、（19）分离出水和二甲醚气体，二甲醚气体进入储气罐（20），经真空压缩机（21），二甲醚气体经压缩后，经冷却器（22）冷却成液态二甲醚进入液态二甲醚储罐（14）中，关闭所有阀门，将处理后的烟草从萃取釜（1）中取出。

2. 根据权利要求1所述的亚临界流体处理烟草的方法，其特征在于所述亚临界流体由二甲醚、碱化剂和增溶剂组成。

3. 根据权利要求1或2所述的亚临界流体处理烟草的方法，其特征在于所述二甲醚纯度在90%以上。
4. 根据权利要求 1 或 2 所述的亚临界流体处理烟草的方法，其特征在于所述碱化剂，包括以下任一种或多种混合：氨水、碳酸氢铵水溶液、氢氧化钙水溶液、三乙醇胺水溶液。

5. 根据权利要求 1 或 2 所述的亚临界处理烟草的方法，其特征在于所述增溶剂，包括以下任一种或多种混合：非离子表面活性剂、阴离子表面活性剂、乙醇、丙二醇、丙三醇。
亚临界流体处理烟草的方法

技术领域

本发明属于一种处理烟草的方法，具体地说涉及一种亚临界流体处理烟草的方法。

背景技术

“降焦减害”被确定为中国烟草科技工作的总体思路，如何既能降低焦油含量，减少吸烧行对消费者健康的危害，又能尽量降低焦油对卷烟市场的冲击，已成为中国烟草业培育“低焦油、低危害、高香气”中式卷烟品牌急待解决的难题。特别是2003年11月10日，中国加入《烟草控制框架公约》后，这个问题显得越来越突出。

中国专利申请号90106894.2公开了烟草处理方法。该方法将含水的烟草萃取物与氨接触，以增加含水的烟草萃取物pH值至9或9以上，使其与第二溶剂卤化烃如一氟三氯甲烷或卤化烃如二氯三氟代乙烷相接触，从而可使尼古丁从含水烟草萃取物转移到第二溶剂中得到分离。

中国专利申请号03817167.8公开了选择性减少烟草中某些成分的方法。该方法将含水量在5～60%的烟草与亚临界流体接触，流量为5～150克/分，压力1000～2200psi，温度0～24℃，时间2～14小时的工艺条件下减少烟草中某些成分。所述的亚临界流体包括二氧化碳、氯氟烃、氯氟碳氢化合物、碳氢化合物、一氧化二氮、及其组合。

中国专利申请号01820000.1公开了减少烟草和烟草产品中的亚硝胺的方法。该方法将烟草与溶剂混合形成可溶性部分，所述可溶性部分与减少亚硝胺的吸附剂接触，以减少烟草中的亚硝胺。

中国专利申请号95197978.7公开了一种处理烟草的方法。该方法将烟草置于不高于7千帕的减压下，用70～90℃温度的异戊烷蒸气浸渍烟草的细胞结构，保持烟草与蒸气在至少400千帕的压力下接触长达30分钟，抽空过量蒸气，绝热地产生压力变化，用水蒸气处理浸渍的烟草以膨化烟草结构。

上述技术存在下列缺陷和不足：每一种技术只能针对烟草中
的一种有害成分进行处理，不能同时对烟草中的两种以上的有害成分进行处理，不能同时对烟草进行膨化处理，经上述技术处理过的烟草致香成分、还原糖大部分变性或严重损耗，从而使烟草香气、吃味和劲头受到严重损失，无法满足消费者的生理要求；与此同时，又增添有害物质。

发明内容

本发明克服了现有技术的不足，提供了一种能在保持烟草原有风格和吃味的前提下，能低成本、能同时减少烟草中的多种有害成分，同时对烟草进行膨化处理，而烟草致香成分、还原糖在处理过程中变性小或损耗少的方法。

本发明技术方案如下：

①烟草预处理：烟草回潮后水分控制在15～35%范围内待用；
②选择性脱除尼古丁和亚硝胺：
将经回潮含水量为15～35%的烟草装入萃取釜1中，关闭阀门2、3、4、5、6、7、23打开剩余的所有阀门，启动真空泵8抽除系统中的空气，关闭高压真空蝶阀9，关闭减压阀10、11，打开阀门2、3、4、5启动计量泵12、13，把液态二甲醚储罐14中的二甲醚与助剂储罐15中的混有碱化剂和增溶剂的助剂经高效混合器16高效混合后形成的亚临界流体通过交换器17加温到20～90℃，压入萃取釜1中，调整亚临界流体流量为0.4～4kg/分钟，压力0.5～3Mpa，pH值9～11，打开减压阀11，调整分离温度为20～60℃，压力0.1～0.5Mpa，亚临界流体经分离釜18、19分离出尼古丁、亚硝胺和二甲醚气体，二甲醚气体进入储气罐20，启动真空压缩机21，二甲醚气体经压缩后，经冷却器22冷却成液态二甲醚，打开阀门23液态二甲醚进入液态二甲醚储罐14中进行再循环，循环处理烟草时间5～90分钟；
③制冷处理：关闭计量泵13，关闭阀门3、5，打开减压阀10，调节分离压力0.1～0.5Mpa，二甲醚经气化对萃取釜1内的烟草制冷后，经分离釜18、19，进入储气罐20，经真空压缩机21，二甲醚气体经压缩后，经冷却器22冷却成液态二甲醚后进入液态二甲醚储罐14中进行再循环，循环处理烟草温度冷到-20～-60℃；
④膨化处理和溶剂回收：关闭阀门2、10，启动真空压缩机21，当萃取釜1内真空度达到10～100Pa，打开阀门4，将蒸汽锅炉24中压力0.1～0.5Mpa、温度90～100℃的饱和蒸汽喷入萃取釜1内对烟草进行膨化，处理时间1～10分钟，蒸汽把烟草中的二甲醚
全部带出来后，进入分离釜 18、19 分离出水和二甲醚气体。二甲
醚气体进入储气筒 20，经真空压缩机 21，二甲醚气体经压缩后，
经冷却器 22 冷却成液态二甲醚进入液态二甲醚储罐 14 中，关闭
所有阀门，将处理后的烟草从萃取釜 1 中取出。

亚临界流体，由二甲醚、碱化剂和增溶剂组成；二甲醚纯度
在 90%以上；碱化剂，包括：氨水、碳酸氢铵水溶液、氢氧化钙
水溶液、三乙醇胺水溶液；增溶剂，包括：非离子表面活性剂，
阴离子表面活性剂，乙醇，丙二醇，丙三醇。

本发明有益效果是由于采用了具有优良溶解性能和优良制冷
效果的二甲醚为亚临界流体介质，对烟草进行处理，选择性减少了
烟草中的多种有害成分，降低了焦油含量，从而改善了烟草的
内在品质；整个系统在低温、低压、密封条件下进行循环处理，
烟草致香成分不易变性或损耗；溶剂在较低温易气化，经压缩、
冷却后回收循环利用，从而对环境无污染；因设备投资小、耗能
小、生产运行成本低，从而解决了低成本、大规模处理烟草的技
术瓶颈问题。

附图说明

附图是本发明的工艺流程图。

具体实施方式

下面结合附图，对本发明的具体实施方式详细说明：

实施例一：

第一步，选择性脱除尼古丁和亚硝胺：将经回潮的 100 kg 含水
量为 15%的烟草装入萃取釜 1 中，关闭阀门 2、3、4、5、6、7、
23 打开剩余的所有阀门，启动真空泵 8 抽除系统中的空气，关闭
高真空蝶阀 9，关闭减压阀 10、11，打开阀门 2、3、5 启动计
量泵 12、13，把液态二甲醚储罐 14 中的二甲醚与助剂储罐 15 中的
混有碱化剂和增溶剂的助剂经高效混合器 16 高效混合后形成的亚
临界流体通过交换器 17 加温到 20℃，压入萃取釜 1 中，调整亚临
界流体流量为 0.4 kg/分钟，压力 0.5 Mpa，pH 值 9，打开减压阀
11，调整分离温度为 20℃，压力 0.1 Mpa，亚临界流体经分离釜 18、
19 分离出尼古丁、亚硝胺和二甲醚气体，二甲醚气体进入储气罐
20，启动真空压缩机 21，二甲醚气体经压缩后，经冷却器 22 冷却
成液态二甲醚，打开阀门 23 液态二甲醚进入液态二甲醚储罐 14
中进行再循环，循环处理烟草时间 5 分钟；
③制冷处理：关闭计量泵 13，关闭阀门 3、5，打开减压阀 10，调节分离压力 0.1Mpa，二甲醚经气化对萃取釜 1 内的烟草制冷后，经分离釜 18、19 进入储气罐 20，经真空压缩机 21，二甲醚气体经压缩后，经冷却器 22 冷却呈液态后甲醚后进入液态二甲醚储罐 14 中进行再循环，循环处理烟草温度冷到 -20℃；

④膨化处理和溶剂回收：关闭阀门 2、10，启动真空压缩机 21，当萃取釜 1 内真空度达到 10Pa，打开阀门 4，将蒸汽锅炉 24 中压力 0.1Mpa、温度 90℃的饱和蒸汽喷入萃取釜 1 内对烟草进行膨化，处理时间 1 分钟，蒸汽把烟草中的二甲醚全部带出来后，进入分离釜 18、19 分离出水和二甲醚气体，二甲醚气体进入储气罐 20，经真空压缩机 21，二甲醚气体经压缩后，经冷却器 22 冷却呈液态后甲醚进入液态二甲醚储罐 14 中，关闭所有阀门，将处理后的烟草从萃取釜 1 中取出。

表 1 公开了烟草经上述工艺重复三次处理之后尼古丁、亚硝胺、还原糖、致香成分在烟草中减少的质量百分比，以及填充值和内在品质数据。

<table>
<thead>
<tr>
<th>序号</th>
<th>尼古丁减少%</th>
<th>亚硝胺减少%</th>
<th>还原糖减少%</th>
<th>致香成分减少%</th>
<th>填充值提高%</th>
<th>内在品质</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.3</td>
<td>30.2</td>
<td>2.3</td>
<td>0.01</td>
<td>15</td>
<td>处理前：吃味辛辣、苦涩、刺激性强。</td>
</tr>
<tr>
<td>2</td>
<td>43.2</td>
<td>33.4</td>
<td>2.5</td>
<td>0.01</td>
<td>16</td>
<td>处理后：吃味平和刺激性弱。</td>
</tr>
<tr>
<td>3</td>
<td>42.7</td>
<td>32.6</td>
<td>2.6</td>
<td>0.01</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>42.1</td>
<td>32.1</td>
<td>2.5</td>
<td>0.01</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

实施例二：

本实施例工艺流程与实施例一相同，将经回潮的 100 kg 含水量为 25%的烟草装入萃取釜 1 中，启动真空泵 8 抽除萃取釜 1 中的空气后，按每 1 kg 烟草需亚临界流体 2 kg/分钟，控制流量，萃取温度 60℃，压力 1.5Mpa，pH 值 10，在温度 40℃，压力 0.25Mpa 的工艺条件下，在分离釜 18 中尼古丁和亚硝胺与气体分离而被脱除，循环处理时间 45 分钟；将经减压阀 10 减压的气体，控制压力 0.25Mpa 喷入萃取釜 1 中，对萃取釜 1 中的烟草进行制冷；当萃取釜 1 中的烟草温度冷到 -40℃时，启动真空压缩机 21 将萃取釜 1 抽真空，控制真空度 50Pa，通入饱和蒸汽，控制压力 0.25Mpa，温度 95℃，处理时间 5 分钟。
表 2 公开了烟草经上述工艺重复三次处理之后尼古丁、亚硝胺、还原糖、致香成分在烟草中减少的质量百分比，以及填充值和内在品质数据。

<table>
<thead>
<tr>
<th>序号</th>
<th>尼古丁减少%</th>
<th>亚硝胺减少%</th>
<th>还原糖减少%</th>
<th>致香成分减少%</th>
<th>填充值提高%</th>
<th>内在品质</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.3</td>
<td>57.1</td>
<td>5.3</td>
<td>0.03</td>
<td>23</td>
<td>处理前：吃味辛辣、苦涩、刺激性强。</td>
</tr>
<tr>
<td>2</td>
<td>63.1</td>
<td>56.7</td>
<td>5.5</td>
<td>0.03</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>62.2</td>
<td>56.4</td>
<td>5.6</td>
<td>0.03</td>
<td>23</td>
<td>处理后：吃味平淡。刺性弱。</td>
</tr>
<tr>
<td>平均</td>
<td>62.5</td>
<td>56.7</td>
<td>5.5</td>
<td>0.03</td>
<td>22.7</td>
<td></td>
</tr>
</tbody>
</table>

实施例三：

本实施例工艺流程与实施例一相同，将经回潮的 100kg 含水量为 35%的烟草装入萃取釜 1 中，启动真空泵 8 抽除萃取釜 1 中的空气，插每 1kg 烟草需亚临界流体 4kg/分钟，控制流量，萃取温度 90℃，压力 3Mpa，PH 值 11，在温度 60℃，压力 0.5Mpa 的工艺条件下，在分离釜 18 中尼古丁和亚硝胺与气体分离而被脱除，循环处理时间 90 分钟；将经减压阀 10 减压的气体，控制压力 0.5Mpa 喷入萃取釜 1 中，对萃取釜 1 中的烟草进行制冷；当萃取釜 1 中的烟草温度冷到-60℃时，启动真空压缩机 21 将萃取釜 1 抽真空，控制真空度 100Pa，通入饱和蒸汽，控制压力 0.5Mpa，温度 100℃，处理时间 10 分钟。

表 3 公开了烟草经上述工艺重复三次处理之后尼古丁、亚硝胺、还原糖、致香成分在烟草中减少的质量百分比，以及填充值和内在品质数据。

<table>
<thead>
<tr>
<th>序号</th>
<th>尼古丁减少%</th>
<th>亚硝胺减少%</th>
<th>还原糖减少%</th>
<th>致香成分减少%</th>
<th>填充值提高%</th>
<th>内在品质</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78.3</td>
<td>77.5</td>
<td>8.3</td>
<td>0.05</td>
<td>31</td>
<td>处理前：吃味辛辣、苦涩、刺激性强。</td>
</tr>
<tr>
<td>2</td>
<td>79.1</td>
<td>76.6</td>
<td>8.5</td>
<td>0.05</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>78.2</td>
<td>76.4</td>
<td>8.6</td>
<td>0.05</td>
<td>31</td>
<td>处理后：吃味平淡。刺激性弱。</td>
</tr>
<tr>
<td>平均</td>
<td>78.5</td>
<td>76.8</td>
<td>8.5</td>
<td>0.05</td>
<td>31.7</td>
<td></td>
</tr>
</tbody>
</table>