A home security and control system for monitoring and controlling an external environment such as a home environment comprising: an Internet browser connectable to an extranet; an extranet located external to the home environment and accessible via the Internet browser; a communications server located in the extranet and adapted to interconnect on demand with one of a series of connection gateways located in predetermined home environments; and a connection gateway located in the home environment adapted to control and/or monitor the operation of at least one security device in the home environment; wherein upon accessing a predetermined address by the Internet browser on the extranet, the communications server connects to a predetermined one of the connection gateways to control and/or monitor the operation of the security device. The extranet can ideally be implemented as a Virtual Private Network (VPN) across an Internet substrate.
HTTP SERVER

APPLICATIONS

OPERATING SYSTEM

SERVICES MODULE

FILE SYSTEM

TCP/IP PROTOCOL STACK

USER PREMISES NETWORK PROTOCOL STACKS

DEVICE DRIVERS

PHYSICAL INTERFACE

FIG. 2
Gateway bridges separate user premises networks to create a single unified user premises network.
CONNECTION GATEWAY FOR COMMUNICATING MONITORING AND CONTROL INFORMATION BETWEEN A REMOTELY LOCATED MOBILE DEVICE AND PREMISES DEVICES/APPLIANCES ON A PREMISES NETWORK

CROSS-REFERENCE TO RELATED APPLICATIONS

FIELD OF THE INVENTION

[0002] The present invention relates to the area of local and remote monitoring and control, through use of a standard web browser and the Internet.

BACKGROUND OF THE INVENTION

[0003] A communication node between data and a telecommunication networks is disclosed in PCT Patent Publication Number WO 94/24803 which describes a node that enables communication between users using different types of terminals, such as telephones and computers.

[0004] PCT Patent Publication Number WO 98/19445 describes a service node between Internet networks and a telecommunications network that is used to order telephony services by means of HTML pages from a computer with a WWW browser. It also describes a method of calling a subscriber, in which the call is ordered by computer but the connection is set up between the telephones of a first and second subscriber. The service node communicates with computers connected to computer networks using the HTTP protocol. The node stores data related to a subscriber; said data can be used when the user requests a telephony service.

[0006] The automation and security systems that may be installed in a user’s premises are becoming more and more advanced. Users often have a common need to control and monitor such systems both locally and remotely. Typically these systems provide an on-site control panel offering input facilities and visual status display facilities, but generally must resort to non-visual monitoring and control mechanisms for remote operation. Remote operation is usually achieved by telephone through codes entered via a telephone handset. Some systems allow both local and remote operation using any combination of voice command input and voice feedback of status. Due to the complexity of the automation systems and the choices they afford users, such remote systems are cumbersome and limit the scope for interaction. In addition, the user must learn several alternate methods of control.

[0007] Another problem with current systems is the absence of a monitoring and control method that provides a geographically independent standard interface that is universally accessible and not platform or hardware dependent. The Desbonnet and Corcoran paper describes the use of a web browser and the WWW for a standard interface, both local and remote. However it is assumed in that paper that for remote monitoring and control, the site to be controlled is actively connected to the Internet at the time that remote operation is desired. In the case that the site is not actively connected to the Internet, a user may initiate a connection from their remote location to the desired site manually. However, this requires special knowledge and telecommunications access facilities on the part of the user and is not a suitable mechanism for those individuals who are not technically literate.

[0008] Another problem with current systems, and with the system described by the Desbonnet and Corcoran paper, is that if the user is geographically remote to the user premises, then initiating a direct connection through the public telecommunication network is expensive, requiring a long distance or international call.

[0009] Another problem with current systems relates to the handling of alarm and surveillance data. Current systems are based on CCTV and VCR technology. A problem associated with such systems is that surveillance data remains unprotected whilst retained at the site of an incursion.

[0010] Another problem with current systems relates to the cost associated with the surveillance system. System costs for video surveillance may be prohibitive, as they are based on CCTV and VCR technology. In addition, steps must be taken to ensure that surveillance data remains protected if it must be retained at the site of an incursion. Methods employed to make such systems tamper-proof add to the total system cost.

[0011] Another problem associated with current surveillance systems is that they may not differentiate alarm and non-alarm conditions, and continuously record activity. Such systems record in a loop fashion, eventually overwriting prerecorded material.

[0012] Another problem with current systems is that they do not allow, except in the case of expensive systems, a remote user, or remote authorised security personnel, to interrogate a surveillance or automation system during an alarm condition.

[0013] Another problem with existing systems is that they do not provide a facility for viewing surveillance material in relation to a user premises during non-alarm periods using standard platform independent and location independent mechanisms.

SUMMARY OF THE INVENTION

[0014] In accordance with a first aspect of the present invention, there is provided a home security and control system for monitoring and controlling an external environment such as a home environment comprising: an Internet browser connectable to an extranet; an extranet located external to the home environment and accessible via the Internet browser; a communications server located in the extranet and adapted to interconnect on demand with one of a series of connection gateways located in predetermined home environments; and a connection gateway located in the home environment adapted to control and/or monitor the operation of at least one security device in the home envi-
environment; wherein upon accessing a predetermined address by the Internet browser, the communications server connects to a predetermined one of the connection gateways to control and/or monitor the operation of the security device. The extranet can ideally be implemented as an Virtual Private Network (VPN) across an Internet substrate.

Preferably, when a customer connects to their home, their home effectively appears to them as a website, with all devices, security and otherwise, accessible for monitoring or control.

In accordance with a further aspect of the present invention, there is provided a home security system for monitoring a home environment comprising: an extranet located external to the home environment; storage means forming part of the extranet; at least one communications server located in the extranet and adapted to interconnect on demand with one of a series of connection gateways located in predetermined home environments; a connection gateway located in the home environment adapted to control and/or monitor the operation of at least one security device in the home environment; and a security device activating a security condition upon the occurrence of a predetermined event; wherein, upon the occurrence of the predetermined event, the security device notifies the connection gateway and transfers event information on the predetermined event to the connection gateway and the connection gateway establishes an interconnection with the communications server and transfers the event information via the communications server to the storage means for later interrogation by a user of the home security system.

Ideally, the storage means operates virtually in that it is allocated dynamically to a server in accordance with usage demands.

Ideally, the communication server utilises a telecommunications network to interconnect with the connection gateway. The security device preferably can include or respond to alert conditions which are preferably forwarded to the connection gateway, wherein it can be qualified with a pre-programmed enable, and if the result can be TRUE, an alarm event can be generated, whereupon the connection gateway establishes a connection with one of the communications servers, and surveillance data related to the alarm event can be uploaded to the extranet for secure storage accessible upon interrogation by a user. In a further refinement, the enables can be across zones or device types so as to simultaneously arm multiple security devices.

In one example, the extranet forms part of the Internet and the communications server can be located within the local telephone call radius of the home environment, thus providing lowest cost PSTN access from or to the home environment. Other types of access may be provided (e.g. ADSL or ISDN interconnection).

In a further preferred modification, photos of authorised occupants of the home environment are preferably accessible from the extranet and are accessed upon an alarm event and cross referenced with surveillance data to ascertain whether a true alarm condition has been raised. The accessibility to surveillance data can be controlled by the user.

The system preferably requires user authentication to access the extranet by users, with the authentication being provided only once per Internet browser session. The system uses web page technology and can be implemented in, for example, the following manner: a) directly in HTML, b) directly in XML, c) XML parsed through style sheet to format supported by users browser (HTML, WAP, VRML, . . .), d) scripting languages (e.g. Java). The accessible URL provided for each user of the home security system provides details of the current status of the home environment of the user. The Internet browser can be utilised in conjunction with an Internet access device which can include a smart card reader and associated user smart card which provides authentication details and a URL corresponding to the home environment. The smart card also ideally facilitates global access to the Internet for access of the extranet, and optionally additionally tracks connections for expensing. The Internet access device can be a computer, WebPhone, Portable digital assistant, or mobile phone or any other device with web browsing capability.

In one embodiment, the smart card can include an on-board bio-sensor. Hence the smart card consists of a data receptacle and substrate, with the substrate including a biosensor on the surface. An embedded controller reads biosensor and processes input data using a stored identification algorithm. The substrate can also include an embedded communication means and means of accepting power for operation, either through direct electrical connection or magnetic/rf coupling. The authentication data can be bound to an individual’s "fingerprint" during a registration process. Through utilizing an on-board biosensor, sensor devices are not required everywhere, only on the one card.

The extranet can be extended to other uses including providing a user premises e-mail facility and other facilities, for example downloading of standard news data etc. The connection gateway can further incorporate a user programmed answer strategy, including delayed answer, and optionally detection of a voice connection and recording compressed message, thus operating in answering machine mode. After accepting the transmitted voice, fax, or data, upon completion of inbound call the connection gateway, can raise a connection to a communications server, and send an indication to the user of the home security system of the receipt of a recorded data. The connection gateway can further send a recorded compressed voice messages to a communications server for storage on the extranet for forwarding to a user of the home environment. The connection gateway also provides an indication of messages received on a HTML page accessible by a user of the home environment. In one embodiment, the connection gateway acts as a hub and Internet connection mechanism for connected devices including the security devices located in the home environment. That is, the gateway acts as a router, so if a URL is entered which is external to home it automatically raises the connection to Internet.

The connection gateway is ideally in a tamper proof enclosure and can operate without mains power such that, upon tampering, the connection gateway triggers an alarm and relays the alarm to the extranet.

The system can also include a control terminal interconnected to the connection gateway, the control terminal comprising a wall mounted flat panel display incorporating a touch screen and running web browser. The control terminal can use wireless protocols such as TCP/IP running over wireless standards such as Bluetooth. The control terminal can be equipped with biosensor such as a fingerprint sensor, for access authentication of a local user in the home environment to the connection gateway. Alternatively, other forms of secure authentication can be provided.
The control terminal can be connected to the connection gateway in a wireless manner and can be powered by rechargeable batteries, allowing the control terminal mobility within the range of wireless transmitters attached to the user premises network. Ideally, the control terminal can be of reduced handheld size, so that it can operate as universal premises remote control.

0026 Ideally, the control terminal integrates a digital camera, microphone and speaker, and H.323 protocol software, thus allowing the control terminal to be used as a videophone, through a standard browser interface. Alternatively, the control terminal can be provided by a personal computer (PC) equipped with a user premises network connection, wherein the PC runs a browser accessing a URL corresponding to the connection gateway. Alternatively, the control terminal can be provided with a set top box connected to TV and running a web browser. The control terminal can be provided with a smartcard reader for e-commerce transactions over the extranet.

0027 At least one of the security devices can comprise a digital security camera embodying image capture and compression method and an interconnection to the connection gateway running a protocol such as the H.323 protocol standard. The camera could alternatively take JPEG stills, motion JPEG, or digital video. The camera preferably can include motion detection and image significance algorithms which run in the camera, and filter input so that only detected motion input can be compressed and sent through the connection gateway to the extranet.

0028 The connection gateway can be programmable to allow different response mechanisms to differing classes of alert event. Preferably, the connection gateway contains connection details for preferred and secondary communication servers on the extranet, so that if a first communication server does not respond, other communication servers may be contacted until successful connection can be achieved. The extranet preferably can include a user contact database which preferably can include preferred contact methods, allowing automatic contact mechanisms to be associated with alarm condition, including use of e-mail, pager, computer generated voice message through telephone, requesting response or if timeout, security action.

0029 The user data storage on the extranet for storing event data associated with the home environment can be allocated virtually and allocated redundantly, ensuring integrity of stored surveillance data.

0030 The security devices preferably can include an external access mechanism to the user premises. Also one of the security devices can be equipped with reader for an RF tag that can be used for user authentication or equipped with a smartcard reader that can be used for user authentication.

0031 Preferably, the connection gateway provides support for standards such as the HomePnP standard for CEBus networks, OSGI, Bluetooth, the HAVi standard for consumer appliance control etc.

0032 In one example access mechanism, the smartcard preferably can include a biosensor bonded to the substrate of the smart card, and circuit embedded in smartcard to authenticate user before the smartcard will operate.

0033 In accordance with a further aspect of the present invention, there is provided a system for providing information access across at least two networks, the system comprising a first network having a first network access controller; a second network having a second network access controller; and a user access browser located on the first network for locating and examining information on the first and second networks by means of network address locators; wherein when a predetermined location on the network is accessed, the first network access controller initiates the establishment of a network connection to the second network access controller so as to provide for the temporary interconnection of the first network to the second network, the system thereby providing a seamless access to information stored on the second network from the user access browser.

BRIEF DESCRIPTION OF THE DRAWINGS

0034 Preferred embodiments of the present invention will now be described with reference to the accompanying drawings in which:

0035 FIG. 1 illustrates the arrangement of the preferred embodiment;

0036 FIG. 2 illustrates the software modules of a gateway;

0037 FIG. 3 illustrates a gateway attached to a series of appliance via different networks;

0038 FIG. 4 illustrates a gateway attached to a series of appliances;

0039 FIG. 5 illustrates schematically the structure of a first camera system; and

0040 FIG. 6 illustrates schematically the structure of a second camera system.

DESCRIPTION OF PREFERRED AND OTHER THE EMBODIMENTS

0041 The preferred embodiments provide a method of remote control that provides the user visual monitoring and control information. The preferred embodiment also provides a visual interface for both remote and local monitoring and control. The preferred embodiment simplifies the use, for a user, of automation and security services in relation to their designated premises. It also simplifies monitoring of the user’s premises by an authorised security service. It achieves this simplification of use by providing an integrated facility for monitoring and control, alarm detection and transmission, and alarm servicing, that is accessible both locally and remotely through a standard web browser via secure user-specific HTML pages. Of course other protocols such as WAP, VRML or XML can also be utilised.

0042 Turning now to FIG. 1, there is illustrated the arrangement of the preferred embodiment which includes the following components:

0043 An Internet access device 15, which may include, but is not limited to, a computer, a mobile phone with display, a Web Phone, or a Personal Digital Assistant, capable of connection to the World Wide Web (WWW) through a client web browser supporting the HyperText Transfer Protocol (HTTP).

0044 A web browser interface which runs on the Internet access device 15 and that allows the user to access, through queries over the WWW, HTML pages from HTTP servers corresponding to associated URLs.

0045 An active Internet connection that connects the Internet access device 15 to the Internet 16.

0046 A virtual private network (VPN) 17, termed here the “provider network”, which is connected to the Internet and which embodies a collection of Internet-accessible
resources that implement part of the integrated monitoring and control, alarm transmission and servicing functions of the invention. This network 17, whilst accessible from the Internet, forms an Extranet.

[0047] An extranet is a private network that uses the Internet protocols and the public telecommunication system to securely share part of a business’ information or operations with suppliers, vendors, partners, customers, or other businesses. An extranet can be viewed as part of a company’s intranet that is extended to users outside the company. An extranet requires security and privacy. These require firewall server management, the issuance and use of digital certificates or similar means of user authentication, encryption of messages, and the use of virtual private networks (VPNs) that tunnel through the public network.

[0048] A virtual private network (VPN) is a private data network that makes use of the public telecommunication infrastructure, maintaining privacy through the use of a tunnelling protocol and security procedures. A virtual private network can be contrasted with a system of owned or leased lines that can only be used by one company. The idea of the VPN is to give the company the same capabilities at much lower cost by sharing the public infrastructure. Using a virtual private network involves encrypting data before sending it through the public network and decrypting it at the receiving end. An additional level of security involves encrypting not only the data but also the originating and receiving network addresses.

[0049] The resources associated with the provider VPN 17 network include:

[0050] An authentication system or database 18 containing access information in relation to authorised users.

[0051] A user connection system or database 14 containing connection parameters in relation to the user premises.

[0052] A login facility 19 to initiate a secure connection for authorised users of Internet access devices 15. User specific HTML (or other standard) pages which are stored on the logon facility server 19 and linked to private areas, and possibly public areas.

[0053] A service node 20 which uses the user connection parameters to direct a communications server 21 to establish a connection through either a private or public telecommunication network to a gateway 22 at the user premises.

[0056] A user premises gateway 22 including a web server running on the user premises gateway 22.

[0057] A home network 26 attached to the gateway 22, which may include sub nets of differing physical implementation.

[0058] Appliances 27 attached to the home network which may be monitored and controlled by gateway 27 and include specific intrusion detection devices which may instigate alarms.

[0059] A surveillance device 28 in the form of a digital security camera or other form of intrusion detection such as motion detection etc.

[0060] A control terminal 29. The following situations for operation of the preferred embodiment are identified:
1. The user is in a remote location with respect to their premises and wishes to monitor and control, or retrieve recorded data associated with, their premises;
2. The user is local to their premises and wishes to monitor and control their premises;
3. An alarm condition is reported to the monitoring network, and surveillance data recorded.

1. Remote Operation

[0061] The user premises network 26 is normally in an unconnected state in relation to the provider network 17. Specific actions on the part of the remote user, or their authorised agents, connect the user premises network to the provider network, thus allowing monitoring and control operations to proceed.

[0062] Each user registered with the provider network has login data and premises connection data stored respectively in user login and user connection systems or databases 18 located within the provider network. In addition, private Web pages are provided for each user, allowing access to URLs dedicated to either of two resource classes. One resource class is dedicated to stored surveillance data, whilst the other resource class is dedicated to active connection to the user premises for monitoring and control.

[0063] A remote user, who desires to monitor or control their premises, uses a web browser on an Internet access device 15 to view the private HTML pages that are dedicated to monitoring and control of the user premises by entering a URL associated with the HTML page they wish to access.

[0064] Before the remote user may view the particular HTML pages that are associated with the monitoring and control of the user premises, they must first identify themselves to the provider network via a login procedure associated with the HTML pages in question. Once the user’s identification details, constituting a user name and password, are authenticated, the user is permitted access to the HTML page requested.

[0065] Once the user authentication process is complete, the records associated with the user, detailing connection parameters for the user premises, are retrieved from a database 18 in the provider network. The process of accessing the URL dedicated to the monitoring and control of the user premises initiates a sequence of events that culminate in connection of the user premises network 26 to the provider network 17. A service node 20 within the provider network intercepts the access to the URL dedicated to the monitoring and control of the user premises, and uses the premises connection data associated with the user to instruct a communications server 21 to initiate a connection to the gateway 22 at the user premises.

[0066] The communications server 21 at the service node interprets the user connection parameters and initiates a connection phase across the telecommunications facility to connect with the gateway 22 at the customer premises. The telecommunications facility 24 includes any system that allows end to end communication, including but not limited to the PSTN, PLMN, ISO 13 and RF communication.

[0067] Preferably, a gateway 22 at the user premises has a dedicated port to the telecommunications network. However, it is possible for the gateway to share the port to the telecommunications network, in which case the user may connect to the gateway using a number of different response mechanisms, including a delayed answer mechanism.

[0068] The gateway answers the incoming call and completes the connection. The gateway and the connection server negotiate connection parameters and establish a network connection between the user premises network and the provider network. A web server on the gateway then accepts HTTP protocol through the connection. The service node 20
forwards the URL that was previously intercepted and that corresponds to a resource contained within the customer premises network to the gateway.

Turning now to FIG. 2 there is illustrated the components running on the gateway computer 22 in more detail. The computer includes a HTTP server 30 which runs as an application. The gateway web server 30 then serves information in relation to user premises appliances through appropriate web pages to the user. The gateway web server communicates with a Services Module 31, which allows the control and monitoring actions to be performed, and issues requests to the Services Module 31 to fulfill the user requests. The requests are relayed through the protocol stack 34 attached to the operating system resident in the gateway to the target appliances attached to the network. Data is sent or received from the device in response to the requests. In the case of control actions, the device performs the action, whilst in the case of monitoring actions, the device returns the requested data.

As illustrated in FIG. 3, the gateway can be interconnected to a series of appliances 40 over a number of different networks 41, 42, 43. FIG. 4 illustrates one form of hardwired interconnection with a series of appliances 27.

User Access Master Node Website

1. From web browser, user initiates connection to login facility http server 19 via its domain name server (DNS) address.
2. DNS address is translated to associated IP address of login facility 19 by a DNS server.
3. HTTP connection request is sent to IP address of login facility 19.
4. HTTP request is received by login facility 19 HTTP server and ACK is replied
5. Page request is sent to HTTP service node 20.
6. HTTP service node 20 determines availability of requested document
7. HTTP service node 20 responds with response code.
8. HTTP transaction occurs

User Logs In

1. User access login page at login facility 19.
2. User is prompted for authentication details
3. User supplies authentication details
4. HTTP login facility 19 receives authentication details (potentially via SSL 40 bit secure connection)
5. HTTP login facility 19 decodes details and consults authentication database 18.
6. Database 18 verifies user authentication and notifies login facility.
7. If successful, user profile/identifier is pulled from database 18.
8. Two concurrent processes are initiated on service node 20 (P1 to keep the user informed, the P2 to establish the connection via communications server 21 to the monitored premises
9. P1 Personalised web page is dynamically constructed and sent to user’s browser requesting wait
10. P2 Connection profile is used to initiate request to gateway 22 by either of 3 possible scenarios

Scenario 1: Service Node 20, Login Facility 19 and Connection Establishment Server 21 are Co-Resident at Same Network Node

1. A response request is sent to an interface on the connection server 21 which initiates connection (dialup) to remote host 22.
2. Connection is established using connection profile for automatic authentication at remote side.
3. Remote web server gateway is queried for active HTTP services
4. If successful user HTTP connection is redirected to remote HTTP service on gateway 22.
5. If non-successful the user is notified and alert raised to monitoring personnel monitoring extranet 17.

Scenario 2: Service Node 20 and Connection Establishment Service 21 are at Separate Nodes, Connection is Identified by Static Addressing

1. A response request is sent to communications server 21 which also holds subnet routing entry for static IP address.
2. Response is delivered to communications server 21 via intermediate gateways using appropriate routing protocol b
3. Request for response is delivered to appropriate interface on communications server 21, which may initiate remote connection via entries within gateway configuration tables
4. Wait state is established until positive response from gateway 22 bound with specified IP address
5. Response (either positive or negative) is received from communications server 21.
6. Response is relayed to login facility 18.
7. If successful user HTTP connection is redirected to remote HTTP service on gateway 22.
8. If non-successful user is notified and alert raised to monitoring personnel

Case 1: Dynamic assignment is achieved by reconfiguration of end point router interface configuration tables service node 20

1. A control channel is established to the end-point gateway 22 as specified in the connection profile
2. The end point gateway 22 is programmed with the IP address specified in the connection profile (the IP address may be obtained dynamically by the service node 20 server from any dynamic host configuration service), and with the connection details required to establish physical connection via OSI level 1 network.
3. Request for response is sent to IP address specified in connection profile of device e.g. 27-29 via end point gateway 22.
4. Request for response is delivered to appropriately reconfigured interface.
5. Response (either positive or negative) is received from interface of device 27-29.
6. Response is relayed to Gateway 22.
7. If successful user HTTP connection is redirected to remote HTTP service on gateway 22.
8. If non-successful user is notified and alert raised to monitoring personnel

Case 2: Dynamic assignment is achieved by request for IP address assignment from dynamic host con-
figuration service (local to end-point router) initiated by endpoint router based on connection parameter (from the connection profile) encapsulated in the request packet received from the server node \textit{20}.

1. Service Node \textit{20} encapsulates connection parameters from connection profile in request packet which is sent to communications server \textit{21}.

2. Communications server \textit{21} detects request packet received from service node \textit{20}.

3. Communications server \textit{21} detects queries DHC server with connection parameters.

4. DHC server dynamically assigns IP address for connection profile to endpoint gateway.

5. Endpoint router reconfigures interface using connection parameters and IP address.

6. Request for response is delivered to appropriately reconfigured interface.

7. Response (either positive or negative) is received from interface.

8. Response is relayed to Gateway Web/Auth Service.

9. If successful user HTTP connection is redirected to remote HTTP service.

10. If non-successful user is notified and alert raised to monitoring personnel for all dynamic IP address assignment methods, the allocated IP address is relayed to the home gateway once the interface is successfully raised (There are several methods. For instance, PPP can be used to negotiate the IP address to be assigned to the Home Gateway). Immediately that the interface with the assigned IP address on the Home Gateway is raised a watchdog process will bind an instance of the HTTP service to the raised interface for service of request coming through to that interface.

2. Local Operation

\textbf{[0076]} A local user can monitor and control devices and appliances in the user premises through a control terminal incorporating a display and an input mechanism and running a web browser. The control terminal can be implemented as a wall mounted display unit \textit{45}, a set top box and TV \textit{46}, or a PC \textit{47}, which runs a web browser. The user accesses HTML pages on the gateway \textit{22} which provide monitoring and control services for devices located within the user premises that are attached to the premises network.

\textbf{[0077]} The gateway web server serves information through HTML pages to the user. The gateway web server communicates with a Services Module, which allows the control and monitoring actions to be performed, and issues requests to the Services Module to fulfill the user requests. The requests are relayed through the protocol stack attached to the operating system resident in the gateway to the target appliances attached to the network. Data is sent or received from the device in response to the requests. In the case of control actions, the device performs the action, whilst in the case of monitoring actions, the device returns the requested data. The gateway can also acts as a router, so if non-local address is detected, gateway can raise connection so that non-local IP address can be accessed across Internet.

3. Alarm Operation

\textbf{[0078]} Devices, such as sensors \textit{49}, attached to the user premises network may generate alert conditions, in response to a condition detected by a device sensor or to a particular device state. A special case identified is an alert condition generated by an intrusion detection or surveillance device.

\textbf{[0079]} A digital security camera \textit{28} is provided and, as shown in more detail in FIG. 5, incorporates an imaging device \textit{50} for capturing an image from lens \textit{56}, preprocessing unit \textit{51}, memory store \textit{52}, compression unit \textit{53}, network interface \textit{54} and CPU \textit{55}. The digital security camera is connected to the user premises network gateway through a physical or wireless network. The gateway \textit{22} and the camera system \textit{28} communicate through a common protocol. The imaging device \textit{51} within the digital security camera continuously records image data, which is then read from the imaging device, through the pre-processing circuit \textit{51}, and written to memory store \textit{52}. A processor \textit{53} reads image data from memory and produces a compressed version of the image data. The CPU \textit{55} may optionally analyse the raw image using motion detection and image significance algorithms programmed into the CPU. If the security system is armed, and a significant event is detected, an alert condition is generated and compressed images and other information are transmitted through the network interface \textit{54}, across the user premises network, to the gateway \textit{22}.

\textbf{[0080]} In another embodiment of the security camera, as shown in FIG. 6, the functionality of the gateway is incorporated directly into the camera and a telecommunications interface \textit{57} is provided for direct connection with the communications server.

\textbf{[0081]} Returning to FIG. 1, generally, once an alert condition is detected by a sensor or other device attached to the user premises network, information regarding the alert condition is transmitted via the user premises network \textit{26} to the gateway \textit{22}. Software on the gateway interprets the information in relation to the alert condition, and may qualify the alert condition with user pre-programmed qualifiers stored in a database on the gateway \textit{22}. An alarm condition is generated if the logical AND of the alert condition and corresponding qualifier is TRUE. In response to an alarm condition, the gateway \textit{22} uses pre-programmed connection parameters to initiate a connection through the telecommunications network \textit{24} to a preferred communications server \textit{21} on the provider network \textit{17}. The communications server answers the call and completes the connection. If there is a fault and a successful connection to the communications server can not be raised, the gateway may retrieve from a local database further connection details for alternative communication servers on the provider network. Once a successful connection exists between the gateway and a communication server on the provider network, the gateway and the communication server negotiate connection parameters and establish a connection between the user premises network \textit{26} and the provider network. This process identifies the user premises network, and hence the associated user, to the provider network \textit{17}. Information in relation to the alarm condition is transmitted from the user premises network \textit{26} to the provider network \textit{17}. Software running on the provider network processes the alarm condition, and transmits an alarm state to a monitoring console. In addition, pre-programmed alarm actions in relation to the user are retrieved from a user database \textit{18} on the provider network, and all actions identified are automatically performed. These may include automatic notification of the alarm condition to the user through mechanisms such as, but not limited to: e-mail, pager, and telephone. In addition, all data associated with the alarm condition transmitted from the user premises
network to the provider network is stored in a secure repository within the provider network. User pre-pro-
grammed qualifiers may gate access to this recorded surveillance data by authorised monitoring personnel. The data
is accessible to the user in their private storage area, and may be viewed from their web browser.

[0082] Further modifications and applications are possible. For example, the connection gateways could form
core nodes of a distributed computing environment that may be allocated by the extranet on a demand basis to facilitate
supercomputer type calculations.

[0083] It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be
made to the present invention as shown in the preferred embodiment without departing from the spirit or scope of
the invention as broadly described. The preferred embodiment is, therefore, to be considered in all respects to be
illustrative and not restrictive.

What is claimed is:

1. A system comprising:
 (a) at least one connection gateway located in a user
 premises network;
 (b) at least one server located in a network external to the
 user premises network and configured to establish
 communication sessions involving the at least one
 connection gateway and one or more access devices
 running a user interface application; and
 (c) at least one premises device or appliance located in
 the user premises network and communicatively
coupled to the at least one connection gateway and not
 communicatively coupled to the server, wherein the at least
 one premises device or appliance is configured to
 output premises monitoring information and receive
 premises control information;

wherein:

(i) one or more of the communications sessions involve
 the transfer of one of the premises monitoring
 information and the premises control information;
(ii) the at least one server is configured to determine
 which connection gateway to establish one of the
 communication sessions with based on authentication
details received from the access device, wherein the
 authentication details are used by the at least one server
 to retrieve premises connection data; and
(iii) the user interface application is configured to receive
 and display the premises monitoring information or
 output premises control information.

2. The system of claim 1, wherein the network is a Virtual
 Private Network (VPN).

3. The system of claim 1, wherein the at least one
 premises device or appliance is a surveillance device.

4. The system of claim 1, wherein the at least one
 premises device or appliance is a user appliance.

5. The system of claim 1, wherein the at least one server
 is configured to receive and send the premises monitoring
 information and the premises control information as part of
 the communications sessions.

6. The system of claim 1, wherein the access devices
 running a user interface application is configured to receive
 the premises monitoring information from one of the server
 and the connection gateway as part of the communications
 sessions.

7. The system of claim 1, wherein the connection gateway
 and the at least one premises device or appliance are
 enclosed in a common housing.

8. The system of claim 1, wherein the connection gateway
 is configured to generate an alarm state in response to
determining that the premises monitoring information
received from the at least one premises device or appliance
is related to an alert condition.

9. The system of claim 1, wherein the connection gateway
 is communicatively coupled to the at least one premises
 device or appliance through a wireless communications
 protocol.

10. The system of claim 1, wherein the authentication
details comprise a user name and password.

11. The system of claim 1, wherein the server is
 configured to store the premises monitoring information.

12. A connection gateway comprising:
 (a) a gateway web server configured for installation at a
 user premises to connect to at least one service node;
 and
 (b) a services module communicatively coupled to at least
 one premises device or appliance located at the user
 premises, wherein the connection gateway is configured
 to establish communications sessions involving the at least one
 service node and the premises device or appliance, which is not
 directly connected to the at least one service node, and wherein
 the premises device or appliance is configured to output premises
 monitoring information and receive premises control information;

wherein:

one or more of the communications sessions involve the
transfer of one of premises monitoring information and
premises control information between the at least one
service node and the premises device or appliance,
and wherein the gateway web server is further configured to:

(i) receive or send the premises monitoring information
and premises control information as part of the
transfer of premises monitoring information and
premises control information;
(ii) receive information originating from an access
device upon the at least one service node’s authen-
tication based upon authentication details the at least
one service node receives from the access device
running a user interface application, wherein the
authentication details are used by the at least one
at least one service node to retrieve premises connec-
tion data and establish the one or more communica-
tions sessions; and
(iii) output premises monitoring information in a format
for display by the access device running a user
interface application.

13. The connection gateway of claim 12, wherein the at
least one premises device or appliance is a surveillance
device.

14. The connection gateway of claim 12, wherein the at
least one premises device or appliance is a user appliance.

15. The connection gateway of claim 12, wherein the
access device is a mobile device.

16. The connection gateway of claim 12, wherein the
gateway web server is configured to send the premises
monitoring information to one of the service node and the
access device running a user interface application.
17. The connection gateway of claim 12, wherein the services module and the at least one premises device or appliance are enclosed in a common housing.

18. The connection gateway of claim 12, wherein the gateway web server is configured to generate an alarm state in response to determining that the premises monitoring information received from the at least one premises device or appliance is related to an alert condition.

19. The connection gateway of claim 12, wherein the services module is communicatively coupled to the at least one premises device or appliance through a wireless communications protocol.

20. The connection gateway of claim 12, wherein the gateway web server is configured to store the premises monitoring information.

21. A provider network comprising:
(a) a login facility server configured to authenticate users based on authentication details received by the login facility server from one or more access devices running a user interface application; and
(b) a communications server configured to establish communications sessions involving the provider network and at least one connection gateway located in a user premises network and configured to receive from the connection gateway premises monitoring information from at least one premises device or appliance located at the user premises and receive premises control information from one or more access devices running a user interface application, wherein the at least one premises device or appliance is configured to output premises monitoring information and receive premises control information; and

wherein:
(i) the communications server is not directly communicatively coupled to the premises device or appliance;
(ii) one or more of the communications sessions involve the sharing of premises monitoring information and premises control information between the access device and the premises device or appliance;
(iii) the communications server is configured to receive the premises monitoring information and send the premises control information as part of one or more of the communications sessions;
(iv) the communications server is configured to determine which connection gateway to establish one of the communication sessions with based on the authentication details, wherein the authentication details are used by the provider network to retrieve premises connection data; and
(v) the communications server is configured to provide premises information to the access device in a format for display by the user interface application.

22. The provider network of claim 21, wherein the at least one premises device or appliance is a surveillance device.

23. The provider network of claim 21, wherein the at least one premises device or appliance is a user appliance.

24. The provider network of claim 21, wherein the connection gateway and the at least one premises device or appliance are enclosed in a common housing.

25. The provider network of claim 21, wherein the connection gateway is configured to generate an alarm state in response to determining that the premises monitoring information received from the at least one premises device or appliance is related to an alert condition.

26. The provider network of claim 21, wherein the services module is communicatively coupled to the at least one premises device or appliance through a wireless communications protocol.

27. The provider network of claim 21, wherein the communications server is configured to store the premises monitoring information.

28. Computer readable program code configured to cause an access device to perform a method of receiving premises monitoring information and sending premises control information comprising:
(a) initiating a communications session by a provider network involving an access device and a communications gateway, wherein the communications session is initiated based on authentication details received by the provider network from the access device, wherein the authentication details are used by the provider network to retrieve premises connection data related to the communications gateway;
(b) sending premises control information to one of the provider network and the connection gateway for delivery through the connection gateway to a premises device or appliance, wherein the connection gateway is located in a user premises network and is communicatively coupled to the premises device or appliance, wherein the premises device or appliance is configured to output premises monitoring information and receive premises control information and is not otherwise connected to the provider network; and
(c) receiving premises monitoring information from one of the provider network and the connection gateway and processing the premises monitoring information for display by the access device.

29. The computer readable program code of claim 28, wherein the access device is configured to receive an alarm state from one of the communications gateway and the provider network in response to a determination that the premises monitoring information received from the at least one premises device or appliance is related to an alert condition.

30. The computer readable program code of claim 28, wherein the connection gateway is communicatively coupled to the at least one premises device or appliance through a wireless communications protocol.

* * * * *